1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio_set_dev(bio, ca->bdev); 59 bio->bi_iter.bi_size = len << 9; 60 61 bio->bi_end_io = journal_read_endio; 62 bio->bi_private = &cl; 63 bio_set_op_attrs(bio, REQ_OP_READ, 0); 64 bch_bio_map(bio, data); 65 66 closure_bio_submit(ca->set, bio, &cl); 67 closure_sync(&cl); 68 69 /* This function could be simpler now since we no longer write 70 * journal entries that overlap bucket boundaries; this means 71 * the start of a bucket will always have a valid journal entry 72 * if it has any journal entries at all. 73 */ 74 75 j = data; 76 while (len) { 77 struct list_head *where; 78 size_t blocks, bytes = set_bytes(j); 79 80 if (j->magic != jset_magic(&ca->sb)) { 81 pr_debug("%u: bad magic", bucket_index); 82 return ret; 83 } 84 85 if (bytes > left << 9 || 86 bytes > PAGE_SIZE << JSET_BITS) { 87 pr_info("%u: too big, %zu bytes, offset %u", 88 bucket_index, bytes, offset); 89 return ret; 90 } 91 92 if (bytes > len << 9) 93 goto reread; 94 95 if (j->csum != csum_set(j)) { 96 pr_info("%u: bad csum, %zu bytes, offset %u", 97 bucket_index, bytes, offset); 98 return ret; 99 } 100 101 blocks = set_blocks(j, block_bytes(ca->set)); 102 103 /* 104 * Nodes in 'list' are in linear increasing order of 105 * i->j.seq, the node on head has the smallest (oldest) 106 * journal seq, the node on tail has the biggest 107 * (latest) journal seq. 108 */ 109 110 /* 111 * Check from the oldest jset for last_seq. If 112 * i->j.seq < j->last_seq, it means the oldest jset 113 * in list is expired and useless, remove it from 114 * this list. Otherwise, j is a condidate jset for 115 * further following checks. 116 */ 117 while (!list_empty(list)) { 118 i = list_first_entry(list, 119 struct journal_replay, list); 120 if (i->j.seq >= j->last_seq) 121 break; 122 list_del(&i->list); 123 kfree(i); 124 } 125 126 /* iterate list in reverse order (from latest jset) */ 127 list_for_each_entry_reverse(i, list, list) { 128 if (j->seq == i->j.seq) 129 goto next_set; 130 131 /* 132 * if j->seq is less than any i->j.last_seq 133 * in list, j is an expired and useless jset. 134 */ 135 if (j->seq < i->j.last_seq) 136 goto next_set; 137 138 /* 139 * 'where' points to first jset in list which 140 * is elder then j. 141 */ 142 if (j->seq > i->j.seq) { 143 where = &i->list; 144 goto add; 145 } 146 } 147 148 where = list; 149 add: 150 i = kmalloc(offsetof(struct journal_replay, j) + 151 bytes, GFP_KERNEL); 152 if (!i) 153 return -ENOMEM; 154 memcpy(&i->j, j, bytes); 155 /* Add to the location after 'where' points to */ 156 list_add(&i->list, where); 157 ret = 1; 158 159 if (j->seq > ja->seq[bucket_index]) 160 ja->seq[bucket_index] = j->seq; 161 next_set: 162 offset += blocks * ca->sb.block_size; 163 len -= blocks * ca->sb.block_size; 164 j = ((void *) j) + blocks * block_bytes(ca); 165 } 166 } 167 168 return ret; 169 } 170 171 int bch_journal_read(struct cache_set *c, struct list_head *list) 172 { 173 #define read_bucket(b) \ 174 ({ \ 175 ret = journal_read_bucket(ca, list, b); \ 176 __set_bit(b, bitmap); \ 177 if (ret < 0) \ 178 return ret; \ 179 ret; \ 180 }) 181 182 struct cache *ca; 183 unsigned int iter; 184 int ret = 0; 185 186 for_each_cache(ca, c, iter) { 187 struct journal_device *ja = &ca->journal; 188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 189 unsigned int i, l, r, m; 190 uint64_t seq; 191 192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 193 pr_debug("%u journal buckets", ca->sb.njournal_buckets); 194 195 /* 196 * Read journal buckets ordered by golden ratio hash to quickly 197 * find a sequence of buckets with valid journal entries 198 */ 199 for (i = 0; i < ca->sb.njournal_buckets; i++) { 200 /* 201 * We must try the index l with ZERO first for 202 * correctness due to the scenario that the journal 203 * bucket is circular buffer which might have wrapped 204 */ 205 l = (i * 2654435769U) % ca->sb.njournal_buckets; 206 207 if (test_bit(l, bitmap)) 208 break; 209 210 if (read_bucket(l)) 211 goto bsearch; 212 } 213 214 /* 215 * If that fails, check all the buckets we haven't checked 216 * already 217 */ 218 pr_debug("falling back to linear search"); 219 220 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets); 221 l < ca->sb.njournal_buckets; 222 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, 223 l + 1)) 224 if (read_bucket(l)) 225 goto bsearch; 226 227 /* no journal entries on this device? */ 228 if (l == ca->sb.njournal_buckets) 229 continue; 230 bsearch: 231 BUG_ON(list_empty(list)); 232 233 /* Binary search */ 234 m = l; 235 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 236 pr_debug("starting binary search, l %u r %u", l, r); 237 238 while (l + 1 < r) { 239 seq = list_entry(list->prev, struct journal_replay, 240 list)->j.seq; 241 242 m = (l + r) >> 1; 243 read_bucket(m); 244 245 if (seq != list_entry(list->prev, struct journal_replay, 246 list)->j.seq) 247 l = m; 248 else 249 r = m; 250 } 251 252 /* 253 * Read buckets in reverse order until we stop finding more 254 * journal entries 255 */ 256 pr_debug("finishing up: m %u njournal_buckets %u", 257 m, ca->sb.njournal_buckets); 258 l = m; 259 260 while (1) { 261 if (!l--) 262 l = ca->sb.njournal_buckets - 1; 263 264 if (l == m) 265 break; 266 267 if (test_bit(l, bitmap)) 268 continue; 269 270 if (!read_bucket(l)) 271 break; 272 } 273 274 seq = 0; 275 276 for (i = 0; i < ca->sb.njournal_buckets; i++) 277 if (ja->seq[i] > seq) { 278 seq = ja->seq[i]; 279 /* 280 * When journal_reclaim() goes to allocate for 281 * the first time, it'll use the bucket after 282 * ja->cur_idx 283 */ 284 ja->cur_idx = i; 285 ja->last_idx = ja->discard_idx = (i + 1) % 286 ca->sb.njournal_buckets; 287 288 } 289 } 290 291 if (!list_empty(list)) 292 c->journal.seq = list_entry(list->prev, 293 struct journal_replay, 294 list)->j.seq; 295 296 return 0; 297 #undef read_bucket 298 } 299 300 void bch_journal_mark(struct cache_set *c, struct list_head *list) 301 { 302 atomic_t p = { 0 }; 303 struct bkey *k; 304 struct journal_replay *i; 305 struct journal *j = &c->journal; 306 uint64_t last = j->seq; 307 308 /* 309 * journal.pin should never fill up - we never write a journal 310 * entry when it would fill up. But if for some reason it does, we 311 * iterate over the list in reverse order so that we can just skip that 312 * refcount instead of bugging. 313 */ 314 315 list_for_each_entry_reverse(i, list, list) { 316 BUG_ON(last < i->j.seq); 317 i->pin = NULL; 318 319 while (last-- != i->j.seq) 320 if (fifo_free(&j->pin) > 1) { 321 fifo_push_front(&j->pin, p); 322 atomic_set(&fifo_front(&j->pin), 0); 323 } 324 325 if (fifo_free(&j->pin) > 1) { 326 fifo_push_front(&j->pin, p); 327 i->pin = &fifo_front(&j->pin); 328 atomic_set(i->pin, 1); 329 } 330 331 for (k = i->j.start; 332 k < bset_bkey_last(&i->j); 333 k = bkey_next(k)) 334 if (!__bch_extent_invalid(c, k)) { 335 unsigned int j; 336 337 for (j = 0; j < KEY_PTRS(k); j++) 338 if (ptr_available(c, k, j)) 339 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 340 341 bch_initial_mark_key(c, 0, k); 342 } 343 } 344 } 345 346 static bool is_discard_enabled(struct cache_set *s) 347 { 348 struct cache *ca; 349 unsigned int i; 350 351 for_each_cache(ca, s, i) 352 if (ca->discard) 353 return true; 354 355 return false; 356 } 357 358 int bch_journal_replay(struct cache_set *s, struct list_head *list) 359 { 360 int ret = 0, keys = 0, entries = 0; 361 struct bkey *k; 362 struct journal_replay *i = 363 list_entry(list->prev, struct journal_replay, list); 364 365 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 366 struct keylist keylist; 367 368 list_for_each_entry(i, list, list) { 369 BUG_ON(i->pin && atomic_read(i->pin) != 1); 370 371 if (n != i->j.seq) { 372 if (n == start && is_discard_enabled(s)) 373 pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)", 374 n, i->j.seq - 1, start, end); 375 else { 376 pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)", 377 n, i->j.seq - 1, start, end); 378 ret = -EIO; 379 goto err; 380 } 381 } 382 383 for (k = i->j.start; 384 k < bset_bkey_last(&i->j); 385 k = bkey_next(k)) { 386 trace_bcache_journal_replay_key(k); 387 388 bch_keylist_init_single(&keylist, k); 389 390 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 391 if (ret) 392 goto err; 393 394 BUG_ON(!bch_keylist_empty(&keylist)); 395 keys++; 396 397 cond_resched(); 398 } 399 400 if (i->pin) 401 atomic_dec(i->pin); 402 n = i->j.seq + 1; 403 entries++; 404 } 405 406 pr_info("journal replay done, %i keys in %i entries, seq %llu", 407 keys, entries, end); 408 err: 409 while (!list_empty(list)) { 410 i = list_first_entry(list, struct journal_replay, list); 411 list_del(&i->list); 412 kfree(i); 413 } 414 415 return ret; 416 } 417 418 /* Journalling */ 419 420 #define nr_to_fifo_front(p, front_p, mask) (((p) - (front_p)) & (mask)) 421 422 static void btree_flush_write(struct cache_set *c) 423 { 424 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 425 unsigned int i, nr, ref_nr; 426 atomic_t *fifo_front_p, *now_fifo_front_p; 427 size_t mask; 428 429 if (c->journal.btree_flushing) 430 return; 431 432 spin_lock(&c->journal.flush_write_lock); 433 if (c->journal.btree_flushing) { 434 spin_unlock(&c->journal.flush_write_lock); 435 return; 436 } 437 c->journal.btree_flushing = true; 438 spin_unlock(&c->journal.flush_write_lock); 439 440 /* get the oldest journal entry and check its refcount */ 441 spin_lock(&c->journal.lock); 442 fifo_front_p = &fifo_front(&c->journal.pin); 443 ref_nr = atomic_read(fifo_front_p); 444 if (ref_nr <= 0) { 445 /* 446 * do nothing if no btree node references 447 * the oldest journal entry 448 */ 449 spin_unlock(&c->journal.lock); 450 goto out; 451 } 452 spin_unlock(&c->journal.lock); 453 454 mask = c->journal.pin.mask; 455 nr = 0; 456 atomic_long_inc(&c->flush_write); 457 memset(btree_nodes, 0, sizeof(btree_nodes)); 458 459 mutex_lock(&c->bucket_lock); 460 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 461 /* 462 * It is safe to get now_fifo_front_p without holding 463 * c->journal.lock here, because we don't need to know 464 * the exactly accurate value, just check whether the 465 * front pointer of c->journal.pin is changed. 466 */ 467 now_fifo_front_p = &fifo_front(&c->journal.pin); 468 /* 469 * If the oldest journal entry is reclaimed and front 470 * pointer of c->journal.pin changes, it is unnecessary 471 * to scan c->btree_cache anymore, just quit the loop and 472 * flush out what we have already. 473 */ 474 if (now_fifo_front_p != fifo_front_p) 475 break; 476 /* 477 * quit this loop if all matching btree nodes are 478 * scanned and record in btree_nodes[] already. 479 */ 480 ref_nr = atomic_read(fifo_front_p); 481 if (nr >= ref_nr) 482 break; 483 484 if (btree_node_journal_flush(b)) 485 pr_err("BUG: flush_write bit should not be set here!"); 486 487 mutex_lock(&b->write_lock); 488 489 if (!btree_node_dirty(b)) { 490 mutex_unlock(&b->write_lock); 491 continue; 492 } 493 494 if (!btree_current_write(b)->journal) { 495 mutex_unlock(&b->write_lock); 496 continue; 497 } 498 499 /* 500 * Only select the btree node which exactly references 501 * the oldest journal entry. 502 * 503 * If the journal entry pointed by fifo_front_p is 504 * reclaimed in parallel, don't worry: 505 * - the list_for_each_xxx loop will quit when checking 506 * next now_fifo_front_p. 507 * - If there are matched nodes recorded in btree_nodes[], 508 * they are clean now (this is why and how the oldest 509 * journal entry can be reclaimed). These selected nodes 510 * will be ignored and skipped in the folowing for-loop. 511 */ 512 if (nr_to_fifo_front(btree_current_write(b)->journal, 513 fifo_front_p, 514 mask) != 0) { 515 mutex_unlock(&b->write_lock); 516 continue; 517 } 518 519 set_btree_node_journal_flush(b); 520 521 mutex_unlock(&b->write_lock); 522 523 btree_nodes[nr++] = b; 524 /* 525 * To avoid holding c->bucket_lock too long time, 526 * only scan for BTREE_FLUSH_NR matched btree nodes 527 * at most. If there are more btree nodes reference 528 * the oldest journal entry, try to flush them next 529 * time when btree_flush_write() is called. 530 */ 531 if (nr == BTREE_FLUSH_NR) 532 break; 533 } 534 mutex_unlock(&c->bucket_lock); 535 536 for (i = 0; i < nr; i++) { 537 b = btree_nodes[i]; 538 if (!b) { 539 pr_err("BUG: btree_nodes[%d] is NULL", i); 540 continue; 541 } 542 543 /* safe to check without holding b->write_lock */ 544 if (!btree_node_journal_flush(b)) { 545 pr_err("BUG: bnode %p: journal_flush bit cleaned", b); 546 continue; 547 } 548 549 mutex_lock(&b->write_lock); 550 if (!btree_current_write(b)->journal) { 551 clear_bit(BTREE_NODE_journal_flush, &b->flags); 552 mutex_unlock(&b->write_lock); 553 pr_debug("bnode %p: written by others", b); 554 continue; 555 } 556 557 if (!btree_node_dirty(b)) { 558 clear_bit(BTREE_NODE_journal_flush, &b->flags); 559 mutex_unlock(&b->write_lock); 560 pr_debug("bnode %p: dirty bit cleaned by others", b); 561 continue; 562 } 563 564 __bch_btree_node_write(b, NULL); 565 clear_bit(BTREE_NODE_journal_flush, &b->flags); 566 mutex_unlock(&b->write_lock); 567 } 568 569 out: 570 spin_lock(&c->journal.flush_write_lock); 571 c->journal.btree_flushing = false; 572 spin_unlock(&c->journal.flush_write_lock); 573 } 574 575 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 576 577 static void journal_discard_endio(struct bio *bio) 578 { 579 struct journal_device *ja = 580 container_of(bio, struct journal_device, discard_bio); 581 struct cache *ca = container_of(ja, struct cache, journal); 582 583 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 584 585 closure_wake_up(&ca->set->journal.wait); 586 closure_put(&ca->set->cl); 587 } 588 589 static void journal_discard_work(struct work_struct *work) 590 { 591 struct journal_device *ja = 592 container_of(work, struct journal_device, discard_work); 593 594 submit_bio(&ja->discard_bio); 595 } 596 597 static void do_journal_discard(struct cache *ca) 598 { 599 struct journal_device *ja = &ca->journal; 600 struct bio *bio = &ja->discard_bio; 601 602 if (!ca->discard) { 603 ja->discard_idx = ja->last_idx; 604 return; 605 } 606 607 switch (atomic_read(&ja->discard_in_flight)) { 608 case DISCARD_IN_FLIGHT: 609 return; 610 611 case DISCARD_DONE: 612 ja->discard_idx = (ja->discard_idx + 1) % 613 ca->sb.njournal_buckets; 614 615 atomic_set(&ja->discard_in_flight, DISCARD_READY); 616 /* fallthrough */ 617 618 case DISCARD_READY: 619 if (ja->discard_idx == ja->last_idx) 620 return; 621 622 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 623 624 bio_init(bio, bio->bi_inline_vecs, 1); 625 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); 626 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 627 ca->sb.d[ja->discard_idx]); 628 bio_set_dev(bio, ca->bdev); 629 bio->bi_iter.bi_size = bucket_bytes(ca); 630 bio->bi_end_io = journal_discard_endio; 631 632 closure_get(&ca->set->cl); 633 INIT_WORK(&ja->discard_work, journal_discard_work); 634 queue_work(bch_journal_wq, &ja->discard_work); 635 } 636 } 637 638 static void journal_reclaim(struct cache_set *c) 639 { 640 struct bkey *k = &c->journal.key; 641 struct cache *ca; 642 uint64_t last_seq; 643 unsigned int iter, n = 0; 644 atomic_t p __maybe_unused; 645 646 atomic_long_inc(&c->reclaim); 647 648 while (!atomic_read(&fifo_front(&c->journal.pin))) 649 fifo_pop(&c->journal.pin, p); 650 651 last_seq = last_seq(&c->journal); 652 653 /* Update last_idx */ 654 655 for_each_cache(ca, c, iter) { 656 struct journal_device *ja = &ca->journal; 657 658 while (ja->last_idx != ja->cur_idx && 659 ja->seq[ja->last_idx] < last_seq) 660 ja->last_idx = (ja->last_idx + 1) % 661 ca->sb.njournal_buckets; 662 } 663 664 for_each_cache(ca, c, iter) 665 do_journal_discard(ca); 666 667 if (c->journal.blocks_free) 668 goto out; 669 670 /* 671 * Allocate: 672 * XXX: Sort by free journal space 673 */ 674 675 for_each_cache(ca, c, iter) { 676 struct journal_device *ja = &ca->journal; 677 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 678 679 /* No space available on this device */ 680 if (next == ja->discard_idx) 681 continue; 682 683 ja->cur_idx = next; 684 k->ptr[n++] = MAKE_PTR(0, 685 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 686 ca->sb.nr_this_dev); 687 atomic_long_inc(&c->reclaimed_journal_buckets); 688 } 689 690 if (n) { 691 bkey_init(k); 692 SET_KEY_PTRS(k, n); 693 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 694 } 695 out: 696 if (!journal_full(&c->journal)) 697 __closure_wake_up(&c->journal.wait); 698 } 699 700 void bch_journal_next(struct journal *j) 701 { 702 atomic_t p = { 1 }; 703 704 j->cur = (j->cur == j->w) 705 ? &j->w[1] 706 : &j->w[0]; 707 708 /* 709 * The fifo_push() needs to happen at the same time as j->seq is 710 * incremented for last_seq() to be calculated correctly 711 */ 712 BUG_ON(!fifo_push(&j->pin, p)); 713 atomic_set(&fifo_back(&j->pin), 1); 714 715 j->cur->data->seq = ++j->seq; 716 j->cur->dirty = false; 717 j->cur->need_write = false; 718 j->cur->data->keys = 0; 719 720 if (fifo_full(&j->pin)) 721 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); 722 } 723 724 static void journal_write_endio(struct bio *bio) 725 { 726 struct journal_write *w = bio->bi_private; 727 728 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 729 closure_put(&w->c->journal.io); 730 } 731 732 static void journal_write(struct closure *cl); 733 734 static void journal_write_done(struct closure *cl) 735 { 736 struct journal *j = container_of(cl, struct journal, io); 737 struct journal_write *w = (j->cur == j->w) 738 ? &j->w[1] 739 : &j->w[0]; 740 741 __closure_wake_up(&w->wait); 742 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 743 } 744 745 static void journal_write_unlock(struct closure *cl) 746 __releases(&c->journal.lock) 747 { 748 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 749 750 c->journal.io_in_flight = 0; 751 spin_unlock(&c->journal.lock); 752 } 753 754 static void journal_write_unlocked(struct closure *cl) 755 __releases(c->journal.lock) 756 { 757 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 758 struct cache *ca; 759 struct journal_write *w = c->journal.cur; 760 struct bkey *k = &c->journal.key; 761 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) * 762 c->sb.block_size; 763 764 struct bio *bio; 765 struct bio_list list; 766 767 bio_list_init(&list); 768 769 if (!w->need_write) { 770 closure_return_with_destructor(cl, journal_write_unlock); 771 return; 772 } else if (journal_full(&c->journal)) { 773 journal_reclaim(c); 774 spin_unlock(&c->journal.lock); 775 776 btree_flush_write(c); 777 continue_at(cl, journal_write, bch_journal_wq); 778 return; 779 } 780 781 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c)); 782 783 w->data->btree_level = c->root->level; 784 785 bkey_copy(&w->data->btree_root, &c->root->key); 786 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 787 788 for_each_cache(ca, c, i) 789 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 790 791 w->data->magic = jset_magic(&c->sb); 792 w->data->version = BCACHE_JSET_VERSION; 793 w->data->last_seq = last_seq(&c->journal); 794 w->data->csum = csum_set(w->data); 795 796 for (i = 0; i < KEY_PTRS(k); i++) { 797 ca = PTR_CACHE(c, k, i); 798 bio = &ca->journal.bio; 799 800 atomic_long_add(sectors, &ca->meta_sectors_written); 801 802 bio_reset(bio); 803 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 804 bio_set_dev(bio, ca->bdev); 805 bio->bi_iter.bi_size = sectors << 9; 806 807 bio->bi_end_io = journal_write_endio; 808 bio->bi_private = w; 809 bio_set_op_attrs(bio, REQ_OP_WRITE, 810 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); 811 bch_bio_map(bio, w->data); 812 813 trace_bcache_journal_write(bio, w->data->keys); 814 bio_list_add(&list, bio); 815 816 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 817 818 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 819 } 820 821 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 822 BUG_ON(i == 0); 823 824 atomic_dec_bug(&fifo_back(&c->journal.pin)); 825 bch_journal_next(&c->journal); 826 journal_reclaim(c); 827 828 spin_unlock(&c->journal.lock); 829 830 while ((bio = bio_list_pop(&list))) 831 closure_bio_submit(c, bio, cl); 832 833 continue_at(cl, journal_write_done, NULL); 834 } 835 836 static void journal_write(struct closure *cl) 837 { 838 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 839 840 spin_lock(&c->journal.lock); 841 journal_write_unlocked(cl); 842 } 843 844 static void journal_try_write(struct cache_set *c) 845 __releases(c->journal.lock) 846 { 847 struct closure *cl = &c->journal.io; 848 struct journal_write *w = c->journal.cur; 849 850 w->need_write = true; 851 852 if (!c->journal.io_in_flight) { 853 c->journal.io_in_flight = 1; 854 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 855 } else { 856 spin_unlock(&c->journal.lock); 857 } 858 } 859 860 static struct journal_write *journal_wait_for_write(struct cache_set *c, 861 unsigned int nkeys) 862 __acquires(&c->journal.lock) 863 { 864 size_t sectors; 865 struct closure cl; 866 bool wait = false; 867 868 closure_init_stack(&cl); 869 870 spin_lock(&c->journal.lock); 871 872 while (1) { 873 struct journal_write *w = c->journal.cur; 874 875 sectors = __set_blocks(w->data, w->data->keys + nkeys, 876 block_bytes(c)) * c->sb.block_size; 877 878 if (sectors <= min_t(size_t, 879 c->journal.blocks_free * c->sb.block_size, 880 PAGE_SECTORS << JSET_BITS)) 881 return w; 882 883 if (wait) 884 closure_wait(&c->journal.wait, &cl); 885 886 if (!journal_full(&c->journal)) { 887 if (wait) 888 trace_bcache_journal_entry_full(c); 889 890 /* 891 * XXX: If we were inserting so many keys that they 892 * won't fit in an _empty_ journal write, we'll 893 * deadlock. For now, handle this in 894 * bch_keylist_realloc() - but something to think about. 895 */ 896 BUG_ON(!w->data->keys); 897 898 journal_try_write(c); /* unlocks */ 899 } else { 900 if (wait) 901 trace_bcache_journal_full(c); 902 903 journal_reclaim(c); 904 spin_unlock(&c->journal.lock); 905 906 btree_flush_write(c); 907 } 908 909 closure_sync(&cl); 910 spin_lock(&c->journal.lock); 911 wait = true; 912 } 913 } 914 915 static void journal_write_work(struct work_struct *work) 916 { 917 struct cache_set *c = container_of(to_delayed_work(work), 918 struct cache_set, 919 journal.work); 920 spin_lock(&c->journal.lock); 921 if (c->journal.cur->dirty) 922 journal_try_write(c); 923 else 924 spin_unlock(&c->journal.lock); 925 } 926 927 /* 928 * Entry point to the journalling code - bio_insert() and btree_invalidate() 929 * pass bch_journal() a list of keys to be journalled, and then 930 * bch_journal() hands those same keys off to btree_insert_async() 931 */ 932 933 atomic_t *bch_journal(struct cache_set *c, 934 struct keylist *keys, 935 struct closure *parent) 936 { 937 struct journal_write *w; 938 atomic_t *ret; 939 940 /* No journaling if CACHE_SET_IO_DISABLE set already */ 941 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 942 return NULL; 943 944 if (!CACHE_SYNC(&c->sb)) 945 return NULL; 946 947 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 948 949 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 950 w->data->keys += bch_keylist_nkeys(keys); 951 952 ret = &fifo_back(&c->journal.pin); 953 atomic_inc(ret); 954 955 if (parent) { 956 closure_wait(&w->wait, parent); 957 journal_try_write(c); 958 } else if (!w->dirty) { 959 w->dirty = true; 960 schedule_delayed_work(&c->journal.work, 961 msecs_to_jiffies(c->journal_delay_ms)); 962 spin_unlock(&c->journal.lock); 963 } else { 964 spin_unlock(&c->journal.lock); 965 } 966 967 968 return ret; 969 } 970 971 void bch_journal_meta(struct cache_set *c, struct closure *cl) 972 { 973 struct keylist keys; 974 atomic_t *ref; 975 976 bch_keylist_init(&keys); 977 978 ref = bch_journal(c, &keys, cl); 979 if (ref) 980 atomic_dec_bug(ref); 981 } 982 983 void bch_journal_free(struct cache_set *c) 984 { 985 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 986 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 987 free_fifo(&c->journal.pin); 988 } 989 990 int bch_journal_alloc(struct cache_set *c) 991 { 992 struct journal *j = &c->journal; 993 994 spin_lock_init(&j->lock); 995 spin_lock_init(&j->flush_write_lock); 996 INIT_DELAYED_WORK(&j->work, journal_write_work); 997 998 c->journal_delay_ms = 100; 999 1000 j->w[0].c = c; 1001 j->w[1].c = c; 1002 1003 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 1004 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 1005 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 1006 return -ENOMEM; 1007 1008 return 0; 1009 } 1010