xref: /openbmc/linux/drivers/md/bcache/journal.c (revision 22a8f39c520fc577c02b4e5c99f8bb3b6017680b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache journalling code, for btree insertions
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12 
13 #include <trace/events/bcache.h>
14 
15 /*
16  * Journal replay/recovery:
17  *
18  * This code is all driven from run_cache_set(); we first read the journal
19  * entries, do some other stuff, then we mark all the keys in the journal
20  * entries (same as garbage collection would), then we replay them - reinserting
21  * them into the cache in precisely the same order as they appear in the
22  * journal.
23  *
24  * We only journal keys that go in leaf nodes, which simplifies things quite a
25  * bit.
26  */
27 
28 static void journal_read_endio(struct bio *bio)
29 {
30 	struct closure *cl = bio->bi_private;
31 
32 	closure_put(cl);
33 }
34 
35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 			       unsigned int bucket_index)
37 {
38 	struct journal_device *ja = &ca->journal;
39 	struct bio *bio = &ja->bio;
40 
41 	struct journal_replay *i;
42 	struct jset *j, *data = ca->set->journal.w[0].data;
43 	struct closure cl;
44 	unsigned int len, left, offset = 0;
45 	int ret = 0;
46 	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47 
48 	closure_init_stack(&cl);
49 
50 	pr_debug("reading %u", bucket_index);
51 
52 	while (offset < ca->sb.bucket_size) {
53 reread:		left = ca->sb.bucket_size - offset;
54 		len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55 
56 		bio_reset(bio);
57 		bio->bi_iter.bi_sector	= bucket + offset;
58 		bio_set_dev(bio, ca->bdev);
59 		bio->bi_iter.bi_size	= len << 9;
60 
61 		bio->bi_end_io	= journal_read_endio;
62 		bio->bi_private = &cl;
63 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
64 		bch_bio_map(bio, data);
65 
66 		closure_bio_submit(ca->set, bio, &cl);
67 		closure_sync(&cl);
68 
69 		/* This function could be simpler now since we no longer write
70 		 * journal entries that overlap bucket boundaries; this means
71 		 * the start of a bucket will always have a valid journal entry
72 		 * if it has any journal entries at all.
73 		 */
74 
75 		j = data;
76 		while (len) {
77 			struct list_head *where;
78 			size_t blocks, bytes = set_bytes(j);
79 
80 			if (j->magic != jset_magic(&ca->sb)) {
81 				pr_debug("%u: bad magic", bucket_index);
82 				return ret;
83 			}
84 
85 			if (bytes > left << 9 ||
86 			    bytes > PAGE_SIZE << JSET_BITS) {
87 				pr_info("%u: too big, %zu bytes, offset %u",
88 					bucket_index, bytes, offset);
89 				return ret;
90 			}
91 
92 			if (bytes > len << 9)
93 				goto reread;
94 
95 			if (j->csum != csum_set(j)) {
96 				pr_info("%u: bad csum, %zu bytes, offset %u",
97 					bucket_index, bytes, offset);
98 				return ret;
99 			}
100 
101 			blocks = set_blocks(j, block_bytes(ca->set));
102 
103 			/*
104 			 * Nodes in 'list' are in linear increasing order of
105 			 * i->j.seq, the node on head has the smallest (oldest)
106 			 * journal seq, the node on tail has the biggest
107 			 * (latest) journal seq.
108 			 */
109 
110 			/*
111 			 * Check from the oldest jset for last_seq. If
112 			 * i->j.seq < j->last_seq, it means the oldest jset
113 			 * in list is expired and useless, remove it from
114 			 * this list. Otherwise, j is a condidate jset for
115 			 * further following checks.
116 			 */
117 			while (!list_empty(list)) {
118 				i = list_first_entry(list,
119 					struct journal_replay, list);
120 				if (i->j.seq >= j->last_seq)
121 					break;
122 				list_del(&i->list);
123 				kfree(i);
124 			}
125 
126 			/* iterate list in reverse order (from latest jset) */
127 			list_for_each_entry_reverse(i, list, list) {
128 				if (j->seq == i->j.seq)
129 					goto next_set;
130 
131 				/*
132 				 * if j->seq is less than any i->j.last_seq
133 				 * in list, j is an expired and useless jset.
134 				 */
135 				if (j->seq < i->j.last_seq)
136 					goto next_set;
137 
138 				/*
139 				 * 'where' points to first jset in list which
140 				 * is elder then j.
141 				 */
142 				if (j->seq > i->j.seq) {
143 					where = &i->list;
144 					goto add;
145 				}
146 			}
147 
148 			where = list;
149 add:
150 			i = kmalloc(offsetof(struct journal_replay, j) +
151 				    bytes, GFP_KERNEL);
152 			if (!i)
153 				return -ENOMEM;
154 			memcpy(&i->j, j, bytes);
155 			/* Add to the location after 'where' points to */
156 			list_add(&i->list, where);
157 			ret = 1;
158 
159 			if (j->seq > ja->seq[bucket_index])
160 				ja->seq[bucket_index] = j->seq;
161 next_set:
162 			offset	+= blocks * ca->sb.block_size;
163 			len	-= blocks * ca->sb.block_size;
164 			j = ((void *) j) + blocks * block_bytes(ca);
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 int bch_journal_read(struct cache_set *c, struct list_head *list)
172 {
173 #define read_bucket(b)							\
174 	({								\
175 		ret = journal_read_bucket(ca, list, b);			\
176 		__set_bit(b, bitmap);					\
177 		if (ret < 0)						\
178 			return ret;					\
179 		ret;							\
180 	})
181 
182 	struct cache *ca;
183 	unsigned int iter;
184 	int ret = 0;
185 
186 	for_each_cache(ca, c, iter) {
187 		struct journal_device *ja = &ca->journal;
188 		DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
189 		unsigned int i, l, r, m;
190 		uint64_t seq;
191 
192 		bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
193 		pr_debug("%u journal buckets", ca->sb.njournal_buckets);
194 
195 		/*
196 		 * Read journal buckets ordered by golden ratio hash to quickly
197 		 * find a sequence of buckets with valid journal entries
198 		 */
199 		for (i = 0; i < ca->sb.njournal_buckets; i++) {
200 			/*
201 			 * We must try the index l with ZERO first for
202 			 * correctness due to the scenario that the journal
203 			 * bucket is circular buffer which might have wrapped
204 			 */
205 			l = (i * 2654435769U) % ca->sb.njournal_buckets;
206 
207 			if (test_bit(l, bitmap))
208 				break;
209 
210 			if (read_bucket(l))
211 				goto bsearch;
212 		}
213 
214 		/*
215 		 * If that fails, check all the buckets we haven't checked
216 		 * already
217 		 */
218 		pr_debug("falling back to linear search");
219 
220 		for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
221 		     l < ca->sb.njournal_buckets;
222 		     l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets,
223 					    l + 1))
224 			if (read_bucket(l))
225 				goto bsearch;
226 
227 		/* no journal entries on this device? */
228 		if (l == ca->sb.njournal_buckets)
229 			continue;
230 bsearch:
231 		BUG_ON(list_empty(list));
232 
233 		/* Binary search */
234 		m = l;
235 		r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
236 		pr_debug("starting binary search, l %u r %u", l, r);
237 
238 		while (l + 1 < r) {
239 			seq = list_entry(list->prev, struct journal_replay,
240 					 list)->j.seq;
241 
242 			m = (l + r) >> 1;
243 			read_bucket(m);
244 
245 			if (seq != list_entry(list->prev, struct journal_replay,
246 					      list)->j.seq)
247 				l = m;
248 			else
249 				r = m;
250 		}
251 
252 		/*
253 		 * Read buckets in reverse order until we stop finding more
254 		 * journal entries
255 		 */
256 		pr_debug("finishing up: m %u njournal_buckets %u",
257 			 m, ca->sb.njournal_buckets);
258 		l = m;
259 
260 		while (1) {
261 			if (!l--)
262 				l = ca->sb.njournal_buckets - 1;
263 
264 			if (l == m)
265 				break;
266 
267 			if (test_bit(l, bitmap))
268 				continue;
269 
270 			if (!read_bucket(l))
271 				break;
272 		}
273 
274 		seq = 0;
275 
276 		for (i = 0; i < ca->sb.njournal_buckets; i++)
277 			if (ja->seq[i] > seq) {
278 				seq = ja->seq[i];
279 				/*
280 				 * When journal_reclaim() goes to allocate for
281 				 * the first time, it'll use the bucket after
282 				 * ja->cur_idx
283 				 */
284 				ja->cur_idx = i;
285 				ja->last_idx = ja->discard_idx = (i + 1) %
286 					ca->sb.njournal_buckets;
287 
288 			}
289 	}
290 
291 	if (!list_empty(list))
292 		c->journal.seq = list_entry(list->prev,
293 					    struct journal_replay,
294 					    list)->j.seq;
295 
296 	return 0;
297 #undef read_bucket
298 }
299 
300 void bch_journal_mark(struct cache_set *c, struct list_head *list)
301 {
302 	atomic_t p = { 0 };
303 	struct bkey *k;
304 	struct journal_replay *i;
305 	struct journal *j = &c->journal;
306 	uint64_t last = j->seq;
307 
308 	/*
309 	 * journal.pin should never fill up - we never write a journal
310 	 * entry when it would fill up. But if for some reason it does, we
311 	 * iterate over the list in reverse order so that we can just skip that
312 	 * refcount instead of bugging.
313 	 */
314 
315 	list_for_each_entry_reverse(i, list, list) {
316 		BUG_ON(last < i->j.seq);
317 		i->pin = NULL;
318 
319 		while (last-- != i->j.seq)
320 			if (fifo_free(&j->pin) > 1) {
321 				fifo_push_front(&j->pin, p);
322 				atomic_set(&fifo_front(&j->pin), 0);
323 			}
324 
325 		if (fifo_free(&j->pin) > 1) {
326 			fifo_push_front(&j->pin, p);
327 			i->pin = &fifo_front(&j->pin);
328 			atomic_set(i->pin, 1);
329 		}
330 
331 		for (k = i->j.start;
332 		     k < bset_bkey_last(&i->j);
333 		     k = bkey_next(k))
334 			if (!__bch_extent_invalid(c, k)) {
335 				unsigned int j;
336 
337 				for (j = 0; j < KEY_PTRS(k); j++)
338 					if (ptr_available(c, k, j))
339 						atomic_inc(&PTR_BUCKET(c, k, j)->pin);
340 
341 				bch_initial_mark_key(c, 0, k);
342 			}
343 	}
344 }
345 
346 static bool is_discard_enabled(struct cache_set *s)
347 {
348 	struct cache *ca;
349 	unsigned int i;
350 
351 	for_each_cache(ca, s, i)
352 		if (ca->discard)
353 			return true;
354 
355 	return false;
356 }
357 
358 int bch_journal_replay(struct cache_set *s, struct list_head *list)
359 {
360 	int ret = 0, keys = 0, entries = 0;
361 	struct bkey *k;
362 	struct journal_replay *i =
363 		list_entry(list->prev, struct journal_replay, list);
364 
365 	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
366 	struct keylist keylist;
367 
368 	list_for_each_entry(i, list, list) {
369 		BUG_ON(i->pin && atomic_read(i->pin) != 1);
370 
371 		if (n != i->j.seq) {
372 			if (n == start && is_discard_enabled(s))
373 				pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)",
374 					n, i->j.seq - 1, start, end);
375 			else {
376 				pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
377 					n, i->j.seq - 1, start, end);
378 				ret = -EIO;
379 				goto err;
380 			}
381 		}
382 
383 		for (k = i->j.start;
384 		     k < bset_bkey_last(&i->j);
385 		     k = bkey_next(k)) {
386 			trace_bcache_journal_replay_key(k);
387 
388 			bch_keylist_init_single(&keylist, k);
389 
390 			ret = bch_btree_insert(s, &keylist, i->pin, NULL);
391 			if (ret)
392 				goto err;
393 
394 			BUG_ON(!bch_keylist_empty(&keylist));
395 			keys++;
396 
397 			cond_resched();
398 		}
399 
400 		if (i->pin)
401 			atomic_dec(i->pin);
402 		n = i->j.seq + 1;
403 		entries++;
404 	}
405 
406 	pr_info("journal replay done, %i keys in %i entries, seq %llu",
407 		keys, entries, end);
408 err:
409 	while (!list_empty(list)) {
410 		i = list_first_entry(list, struct journal_replay, list);
411 		list_del(&i->list);
412 		kfree(i);
413 	}
414 
415 	return ret;
416 }
417 
418 /* Journalling */
419 
420 #define nr_to_fifo_front(p, front_p, mask)	(((p) - (front_p)) & (mask))
421 
422 static void btree_flush_write(struct cache_set *c)
423 {
424 	struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
425 	unsigned int i, nr, ref_nr;
426 	atomic_t *fifo_front_p, *now_fifo_front_p;
427 	size_t mask;
428 
429 	if (c->journal.btree_flushing)
430 		return;
431 
432 	spin_lock(&c->journal.flush_write_lock);
433 	if (c->journal.btree_flushing) {
434 		spin_unlock(&c->journal.flush_write_lock);
435 		return;
436 	}
437 	c->journal.btree_flushing = true;
438 	spin_unlock(&c->journal.flush_write_lock);
439 
440 	/* get the oldest journal entry and check its refcount */
441 	spin_lock(&c->journal.lock);
442 	fifo_front_p = &fifo_front(&c->journal.pin);
443 	ref_nr = atomic_read(fifo_front_p);
444 	if (ref_nr <= 0) {
445 		/*
446 		 * do nothing if no btree node references
447 		 * the oldest journal entry
448 		 */
449 		spin_unlock(&c->journal.lock);
450 		goto out;
451 	}
452 	spin_unlock(&c->journal.lock);
453 
454 	mask = c->journal.pin.mask;
455 	nr = 0;
456 	atomic_long_inc(&c->flush_write);
457 	memset(btree_nodes, 0, sizeof(btree_nodes));
458 
459 	mutex_lock(&c->bucket_lock);
460 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
461 		/*
462 		 * It is safe to get now_fifo_front_p without holding
463 		 * c->journal.lock here, because we don't need to know
464 		 * the exactly accurate value, just check whether the
465 		 * front pointer of c->journal.pin is changed.
466 		 */
467 		now_fifo_front_p = &fifo_front(&c->journal.pin);
468 		/*
469 		 * If the oldest journal entry is reclaimed and front
470 		 * pointer of c->journal.pin changes, it is unnecessary
471 		 * to scan c->btree_cache anymore, just quit the loop and
472 		 * flush out what we have already.
473 		 */
474 		if (now_fifo_front_p != fifo_front_p)
475 			break;
476 		/*
477 		 * quit this loop if all matching btree nodes are
478 		 * scanned and record in btree_nodes[] already.
479 		 */
480 		ref_nr = atomic_read(fifo_front_p);
481 		if (nr >= ref_nr)
482 			break;
483 
484 		if (btree_node_journal_flush(b))
485 			pr_err("BUG: flush_write bit should not be set here!");
486 
487 		mutex_lock(&b->write_lock);
488 
489 		if (!btree_node_dirty(b)) {
490 			mutex_unlock(&b->write_lock);
491 			continue;
492 		}
493 
494 		if (!btree_current_write(b)->journal) {
495 			mutex_unlock(&b->write_lock);
496 			continue;
497 		}
498 
499 		/*
500 		 * Only select the btree node which exactly references
501 		 * the oldest journal entry.
502 		 *
503 		 * If the journal entry pointed by fifo_front_p is
504 		 * reclaimed in parallel, don't worry:
505 		 * - the list_for_each_xxx loop will quit when checking
506 		 *   next now_fifo_front_p.
507 		 * - If there are matched nodes recorded in btree_nodes[],
508 		 *   they are clean now (this is why and how the oldest
509 		 *   journal entry can be reclaimed). These selected nodes
510 		 *   will be ignored and skipped in the folowing for-loop.
511 		 */
512 		if (nr_to_fifo_front(btree_current_write(b)->journal,
513 				     fifo_front_p,
514 				     mask) != 0) {
515 			mutex_unlock(&b->write_lock);
516 			continue;
517 		}
518 
519 		set_btree_node_journal_flush(b);
520 
521 		mutex_unlock(&b->write_lock);
522 
523 		btree_nodes[nr++] = b;
524 		/*
525 		 * To avoid holding c->bucket_lock too long time,
526 		 * only scan for BTREE_FLUSH_NR matched btree nodes
527 		 * at most. If there are more btree nodes reference
528 		 * the oldest journal entry, try to flush them next
529 		 * time when btree_flush_write() is called.
530 		 */
531 		if (nr == BTREE_FLUSH_NR)
532 			break;
533 	}
534 	mutex_unlock(&c->bucket_lock);
535 
536 	for (i = 0; i < nr; i++) {
537 		b = btree_nodes[i];
538 		if (!b) {
539 			pr_err("BUG: btree_nodes[%d] is NULL", i);
540 			continue;
541 		}
542 
543 		/* safe to check without holding b->write_lock */
544 		if (!btree_node_journal_flush(b)) {
545 			pr_err("BUG: bnode %p: journal_flush bit cleaned", b);
546 			continue;
547 		}
548 
549 		mutex_lock(&b->write_lock);
550 		if (!btree_current_write(b)->journal) {
551 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
552 			mutex_unlock(&b->write_lock);
553 			pr_debug("bnode %p: written by others", b);
554 			continue;
555 		}
556 
557 		if (!btree_node_dirty(b)) {
558 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
559 			mutex_unlock(&b->write_lock);
560 			pr_debug("bnode %p: dirty bit cleaned by others", b);
561 			continue;
562 		}
563 
564 		__bch_btree_node_write(b, NULL);
565 		clear_bit(BTREE_NODE_journal_flush, &b->flags);
566 		mutex_unlock(&b->write_lock);
567 	}
568 
569 out:
570 	spin_lock(&c->journal.flush_write_lock);
571 	c->journal.btree_flushing = false;
572 	spin_unlock(&c->journal.flush_write_lock);
573 }
574 
575 #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
576 
577 static void journal_discard_endio(struct bio *bio)
578 {
579 	struct journal_device *ja =
580 		container_of(bio, struct journal_device, discard_bio);
581 	struct cache *ca = container_of(ja, struct cache, journal);
582 
583 	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
584 
585 	closure_wake_up(&ca->set->journal.wait);
586 	closure_put(&ca->set->cl);
587 }
588 
589 static void journal_discard_work(struct work_struct *work)
590 {
591 	struct journal_device *ja =
592 		container_of(work, struct journal_device, discard_work);
593 
594 	submit_bio(&ja->discard_bio);
595 }
596 
597 static void do_journal_discard(struct cache *ca)
598 {
599 	struct journal_device *ja = &ca->journal;
600 	struct bio *bio = &ja->discard_bio;
601 
602 	if (!ca->discard) {
603 		ja->discard_idx = ja->last_idx;
604 		return;
605 	}
606 
607 	switch (atomic_read(&ja->discard_in_flight)) {
608 	case DISCARD_IN_FLIGHT:
609 		return;
610 
611 	case DISCARD_DONE:
612 		ja->discard_idx = (ja->discard_idx + 1) %
613 			ca->sb.njournal_buckets;
614 
615 		atomic_set(&ja->discard_in_flight, DISCARD_READY);
616 		/* fallthrough */
617 
618 	case DISCARD_READY:
619 		if (ja->discard_idx == ja->last_idx)
620 			return;
621 
622 		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
623 
624 		bio_init(bio, bio->bi_inline_vecs, 1);
625 		bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
626 		bio->bi_iter.bi_sector	= bucket_to_sector(ca->set,
627 						ca->sb.d[ja->discard_idx]);
628 		bio_set_dev(bio, ca->bdev);
629 		bio->bi_iter.bi_size	= bucket_bytes(ca);
630 		bio->bi_end_io		= journal_discard_endio;
631 
632 		closure_get(&ca->set->cl);
633 		INIT_WORK(&ja->discard_work, journal_discard_work);
634 		queue_work(bch_journal_wq, &ja->discard_work);
635 	}
636 }
637 
638 static void journal_reclaim(struct cache_set *c)
639 {
640 	struct bkey *k = &c->journal.key;
641 	struct cache *ca;
642 	uint64_t last_seq;
643 	unsigned int iter, n = 0;
644 	atomic_t p __maybe_unused;
645 
646 	atomic_long_inc(&c->reclaim);
647 
648 	while (!atomic_read(&fifo_front(&c->journal.pin)))
649 		fifo_pop(&c->journal.pin, p);
650 
651 	last_seq = last_seq(&c->journal);
652 
653 	/* Update last_idx */
654 
655 	for_each_cache(ca, c, iter) {
656 		struct journal_device *ja = &ca->journal;
657 
658 		while (ja->last_idx != ja->cur_idx &&
659 		       ja->seq[ja->last_idx] < last_seq)
660 			ja->last_idx = (ja->last_idx + 1) %
661 				ca->sb.njournal_buckets;
662 	}
663 
664 	for_each_cache(ca, c, iter)
665 		do_journal_discard(ca);
666 
667 	if (c->journal.blocks_free)
668 		goto out;
669 
670 	/*
671 	 * Allocate:
672 	 * XXX: Sort by free journal space
673 	 */
674 
675 	for_each_cache(ca, c, iter) {
676 		struct journal_device *ja = &ca->journal;
677 		unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
678 
679 		/* No space available on this device */
680 		if (next == ja->discard_idx)
681 			continue;
682 
683 		ja->cur_idx = next;
684 		k->ptr[n++] = MAKE_PTR(0,
685 				  bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
686 				  ca->sb.nr_this_dev);
687 		atomic_long_inc(&c->reclaimed_journal_buckets);
688 	}
689 
690 	if (n) {
691 		bkey_init(k);
692 		SET_KEY_PTRS(k, n);
693 		c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
694 	}
695 out:
696 	if (!journal_full(&c->journal))
697 		__closure_wake_up(&c->journal.wait);
698 }
699 
700 void bch_journal_next(struct journal *j)
701 {
702 	atomic_t p = { 1 };
703 
704 	j->cur = (j->cur == j->w)
705 		? &j->w[1]
706 		: &j->w[0];
707 
708 	/*
709 	 * The fifo_push() needs to happen at the same time as j->seq is
710 	 * incremented for last_seq() to be calculated correctly
711 	 */
712 	BUG_ON(!fifo_push(&j->pin, p));
713 	atomic_set(&fifo_back(&j->pin), 1);
714 
715 	j->cur->data->seq	= ++j->seq;
716 	j->cur->dirty		= false;
717 	j->cur->need_write	= false;
718 	j->cur->data->keys	= 0;
719 
720 	if (fifo_full(&j->pin))
721 		pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
722 }
723 
724 static void journal_write_endio(struct bio *bio)
725 {
726 	struct journal_write *w = bio->bi_private;
727 
728 	cache_set_err_on(bio->bi_status, w->c, "journal io error");
729 	closure_put(&w->c->journal.io);
730 }
731 
732 static void journal_write(struct closure *cl);
733 
734 static void journal_write_done(struct closure *cl)
735 {
736 	struct journal *j = container_of(cl, struct journal, io);
737 	struct journal_write *w = (j->cur == j->w)
738 		? &j->w[1]
739 		: &j->w[0];
740 
741 	__closure_wake_up(&w->wait);
742 	continue_at_nobarrier(cl, journal_write, bch_journal_wq);
743 }
744 
745 static void journal_write_unlock(struct closure *cl)
746 	__releases(&c->journal.lock)
747 {
748 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
749 
750 	c->journal.io_in_flight = 0;
751 	spin_unlock(&c->journal.lock);
752 }
753 
754 static void journal_write_unlocked(struct closure *cl)
755 	__releases(c->journal.lock)
756 {
757 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
758 	struct cache *ca;
759 	struct journal_write *w = c->journal.cur;
760 	struct bkey *k = &c->journal.key;
761 	unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
762 		c->sb.block_size;
763 
764 	struct bio *bio;
765 	struct bio_list list;
766 
767 	bio_list_init(&list);
768 
769 	if (!w->need_write) {
770 		closure_return_with_destructor(cl, journal_write_unlock);
771 		return;
772 	} else if (journal_full(&c->journal)) {
773 		journal_reclaim(c);
774 		spin_unlock(&c->journal.lock);
775 
776 		btree_flush_write(c);
777 		continue_at(cl, journal_write, bch_journal_wq);
778 		return;
779 	}
780 
781 	c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
782 
783 	w->data->btree_level = c->root->level;
784 
785 	bkey_copy(&w->data->btree_root, &c->root->key);
786 	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
787 
788 	for_each_cache(ca, c, i)
789 		w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
790 
791 	w->data->magic		= jset_magic(&c->sb);
792 	w->data->version	= BCACHE_JSET_VERSION;
793 	w->data->last_seq	= last_seq(&c->journal);
794 	w->data->csum		= csum_set(w->data);
795 
796 	for (i = 0; i < KEY_PTRS(k); i++) {
797 		ca = PTR_CACHE(c, k, i);
798 		bio = &ca->journal.bio;
799 
800 		atomic_long_add(sectors, &ca->meta_sectors_written);
801 
802 		bio_reset(bio);
803 		bio->bi_iter.bi_sector	= PTR_OFFSET(k, i);
804 		bio_set_dev(bio, ca->bdev);
805 		bio->bi_iter.bi_size = sectors << 9;
806 
807 		bio->bi_end_io	= journal_write_endio;
808 		bio->bi_private = w;
809 		bio_set_op_attrs(bio, REQ_OP_WRITE,
810 				 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
811 		bch_bio_map(bio, w->data);
812 
813 		trace_bcache_journal_write(bio, w->data->keys);
814 		bio_list_add(&list, bio);
815 
816 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
817 
818 		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
819 	}
820 
821 	/* If KEY_PTRS(k) == 0, this jset gets lost in air */
822 	BUG_ON(i == 0);
823 
824 	atomic_dec_bug(&fifo_back(&c->journal.pin));
825 	bch_journal_next(&c->journal);
826 	journal_reclaim(c);
827 
828 	spin_unlock(&c->journal.lock);
829 
830 	while ((bio = bio_list_pop(&list)))
831 		closure_bio_submit(c, bio, cl);
832 
833 	continue_at(cl, journal_write_done, NULL);
834 }
835 
836 static void journal_write(struct closure *cl)
837 {
838 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
839 
840 	spin_lock(&c->journal.lock);
841 	journal_write_unlocked(cl);
842 }
843 
844 static void journal_try_write(struct cache_set *c)
845 	__releases(c->journal.lock)
846 {
847 	struct closure *cl = &c->journal.io;
848 	struct journal_write *w = c->journal.cur;
849 
850 	w->need_write = true;
851 
852 	if (!c->journal.io_in_flight) {
853 		c->journal.io_in_flight = 1;
854 		closure_call(cl, journal_write_unlocked, NULL, &c->cl);
855 	} else {
856 		spin_unlock(&c->journal.lock);
857 	}
858 }
859 
860 static struct journal_write *journal_wait_for_write(struct cache_set *c,
861 						    unsigned int nkeys)
862 	__acquires(&c->journal.lock)
863 {
864 	size_t sectors;
865 	struct closure cl;
866 	bool wait = false;
867 
868 	closure_init_stack(&cl);
869 
870 	spin_lock(&c->journal.lock);
871 
872 	while (1) {
873 		struct journal_write *w = c->journal.cur;
874 
875 		sectors = __set_blocks(w->data, w->data->keys + nkeys,
876 				       block_bytes(c)) * c->sb.block_size;
877 
878 		if (sectors <= min_t(size_t,
879 				     c->journal.blocks_free * c->sb.block_size,
880 				     PAGE_SECTORS << JSET_BITS))
881 			return w;
882 
883 		if (wait)
884 			closure_wait(&c->journal.wait, &cl);
885 
886 		if (!journal_full(&c->journal)) {
887 			if (wait)
888 				trace_bcache_journal_entry_full(c);
889 
890 			/*
891 			 * XXX: If we were inserting so many keys that they
892 			 * won't fit in an _empty_ journal write, we'll
893 			 * deadlock. For now, handle this in
894 			 * bch_keylist_realloc() - but something to think about.
895 			 */
896 			BUG_ON(!w->data->keys);
897 
898 			journal_try_write(c); /* unlocks */
899 		} else {
900 			if (wait)
901 				trace_bcache_journal_full(c);
902 
903 			journal_reclaim(c);
904 			spin_unlock(&c->journal.lock);
905 
906 			btree_flush_write(c);
907 		}
908 
909 		closure_sync(&cl);
910 		spin_lock(&c->journal.lock);
911 		wait = true;
912 	}
913 }
914 
915 static void journal_write_work(struct work_struct *work)
916 {
917 	struct cache_set *c = container_of(to_delayed_work(work),
918 					   struct cache_set,
919 					   journal.work);
920 	spin_lock(&c->journal.lock);
921 	if (c->journal.cur->dirty)
922 		journal_try_write(c);
923 	else
924 		spin_unlock(&c->journal.lock);
925 }
926 
927 /*
928  * Entry point to the journalling code - bio_insert() and btree_invalidate()
929  * pass bch_journal() a list of keys to be journalled, and then
930  * bch_journal() hands those same keys off to btree_insert_async()
931  */
932 
933 atomic_t *bch_journal(struct cache_set *c,
934 		      struct keylist *keys,
935 		      struct closure *parent)
936 {
937 	struct journal_write *w;
938 	atomic_t *ret;
939 
940 	/* No journaling if CACHE_SET_IO_DISABLE set already */
941 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
942 		return NULL;
943 
944 	if (!CACHE_SYNC(&c->sb))
945 		return NULL;
946 
947 	w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
948 
949 	memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
950 	w->data->keys += bch_keylist_nkeys(keys);
951 
952 	ret = &fifo_back(&c->journal.pin);
953 	atomic_inc(ret);
954 
955 	if (parent) {
956 		closure_wait(&w->wait, parent);
957 		journal_try_write(c);
958 	} else if (!w->dirty) {
959 		w->dirty = true;
960 		schedule_delayed_work(&c->journal.work,
961 				      msecs_to_jiffies(c->journal_delay_ms));
962 		spin_unlock(&c->journal.lock);
963 	} else {
964 		spin_unlock(&c->journal.lock);
965 	}
966 
967 
968 	return ret;
969 }
970 
971 void bch_journal_meta(struct cache_set *c, struct closure *cl)
972 {
973 	struct keylist keys;
974 	atomic_t *ref;
975 
976 	bch_keylist_init(&keys);
977 
978 	ref = bch_journal(c, &keys, cl);
979 	if (ref)
980 		atomic_dec_bug(ref);
981 }
982 
983 void bch_journal_free(struct cache_set *c)
984 {
985 	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
986 	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
987 	free_fifo(&c->journal.pin);
988 }
989 
990 int bch_journal_alloc(struct cache_set *c)
991 {
992 	struct journal *j = &c->journal;
993 
994 	spin_lock_init(&j->lock);
995 	spin_lock_init(&j->flush_write_lock);
996 	INIT_DELAYED_WORK(&j->work, journal_write_work);
997 
998 	c->journal_delay_ms = 100;
999 
1000 	j->w[0].c = c;
1001 	j->w[1].c = c;
1002 
1003 	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
1004 	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
1005 	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
1006 		return -ENOMEM;
1007 
1008 	return 0;
1009 }
1010