1 /* 2 * bcache journalling code, for btree insertions 3 * 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcache.h" 8 #include "btree.h" 9 #include "debug.h" 10 #include "request.h" 11 12 #include <trace/events/bcache.h> 13 14 /* 15 * Journal replay/recovery: 16 * 17 * This code is all driven from run_cache_set(); we first read the journal 18 * entries, do some other stuff, then we mark all the keys in the journal 19 * entries (same as garbage collection would), then we replay them - reinserting 20 * them into the cache in precisely the same order as they appear in the 21 * journal. 22 * 23 * We only journal keys that go in leaf nodes, which simplifies things quite a 24 * bit. 25 */ 26 27 static void journal_read_endio(struct bio *bio, int error) 28 { 29 struct closure *cl = bio->bi_private; 30 closure_put(cl); 31 } 32 33 static int journal_read_bucket(struct cache *ca, struct list_head *list, 34 struct btree_op *op, unsigned bucket_index) 35 { 36 struct journal_device *ja = &ca->journal; 37 struct bio *bio = &ja->bio; 38 39 struct journal_replay *i; 40 struct jset *j, *data = ca->set->journal.w[0].data; 41 unsigned len, left, offset = 0; 42 int ret = 0; 43 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 44 45 pr_debug("reading %llu", (uint64_t) bucket); 46 47 while (offset < ca->sb.bucket_size) { 48 reread: left = ca->sb.bucket_size - offset; 49 len = min_t(unsigned, left, PAGE_SECTORS * 8); 50 51 bio_reset(bio); 52 bio->bi_sector = bucket + offset; 53 bio->bi_bdev = ca->bdev; 54 bio->bi_rw = READ; 55 bio->bi_size = len << 9; 56 57 bio->bi_end_io = journal_read_endio; 58 bio->bi_private = &op->cl; 59 bch_bio_map(bio, data); 60 61 closure_bio_submit(bio, &op->cl, ca); 62 closure_sync(&op->cl); 63 64 /* This function could be simpler now since we no longer write 65 * journal entries that overlap bucket boundaries; this means 66 * the start of a bucket will always have a valid journal entry 67 * if it has any journal entries at all. 68 */ 69 70 j = data; 71 while (len) { 72 struct list_head *where; 73 size_t blocks, bytes = set_bytes(j); 74 75 if (j->magic != jset_magic(ca->set)) 76 return ret; 77 78 if (bytes > left << 9) 79 return ret; 80 81 if (bytes > len << 9) 82 goto reread; 83 84 if (j->csum != csum_set(j)) 85 return ret; 86 87 blocks = set_blocks(j, ca->set); 88 89 while (!list_empty(list)) { 90 i = list_first_entry(list, 91 struct journal_replay, list); 92 if (i->j.seq >= j->last_seq) 93 break; 94 list_del(&i->list); 95 kfree(i); 96 } 97 98 list_for_each_entry_reverse(i, list, list) { 99 if (j->seq == i->j.seq) 100 goto next_set; 101 102 if (j->seq < i->j.last_seq) 103 goto next_set; 104 105 if (j->seq > i->j.seq) { 106 where = &i->list; 107 goto add; 108 } 109 } 110 111 where = list; 112 add: 113 i = kmalloc(offsetof(struct journal_replay, j) + 114 bytes, GFP_KERNEL); 115 if (!i) 116 return -ENOMEM; 117 memcpy(&i->j, j, bytes); 118 list_add(&i->list, where); 119 ret = 1; 120 121 ja->seq[bucket_index] = j->seq; 122 next_set: 123 offset += blocks * ca->sb.block_size; 124 len -= blocks * ca->sb.block_size; 125 j = ((void *) j) + blocks * block_bytes(ca); 126 } 127 } 128 129 return ret; 130 } 131 132 int bch_journal_read(struct cache_set *c, struct list_head *list, 133 struct btree_op *op) 134 { 135 #define read_bucket(b) \ 136 ({ \ 137 int ret = journal_read_bucket(ca, list, op, b); \ 138 __set_bit(b, bitmap); \ 139 if (ret < 0) \ 140 return ret; \ 141 ret; \ 142 }) 143 144 struct cache *ca; 145 unsigned iter; 146 147 for_each_cache(ca, c, iter) { 148 struct journal_device *ja = &ca->journal; 149 unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG]; 150 unsigned i, l, r, m; 151 uint64_t seq; 152 153 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 154 pr_debug("%u journal buckets", ca->sb.njournal_buckets); 155 156 /* Read journal buckets ordered by golden ratio hash to quickly 157 * find a sequence of buckets with valid journal entries 158 */ 159 for (i = 0; i < ca->sb.njournal_buckets; i++) { 160 l = (i * 2654435769U) % ca->sb.njournal_buckets; 161 162 if (test_bit(l, bitmap)) 163 break; 164 165 if (read_bucket(l)) 166 goto bsearch; 167 } 168 169 /* If that fails, check all the buckets we haven't checked 170 * already 171 */ 172 pr_debug("falling back to linear search"); 173 174 for (l = 0; l < ca->sb.njournal_buckets; l++) { 175 if (test_bit(l, bitmap)) 176 continue; 177 178 if (read_bucket(l)) 179 goto bsearch; 180 } 181 bsearch: 182 /* Binary search */ 183 m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 184 pr_debug("starting binary search, l %u r %u", l, r); 185 186 while (l + 1 < r) { 187 seq = list_entry(list->prev, struct journal_replay, 188 list)->j.seq; 189 190 m = (l + r) >> 1; 191 read_bucket(m); 192 193 if (seq != list_entry(list->prev, struct journal_replay, 194 list)->j.seq) 195 l = m; 196 else 197 r = m; 198 } 199 200 /* Read buckets in reverse order until we stop finding more 201 * journal entries 202 */ 203 pr_debug("finishing up"); 204 l = m; 205 206 while (1) { 207 if (!l--) 208 l = ca->sb.njournal_buckets - 1; 209 210 if (l == m) 211 break; 212 213 if (test_bit(l, bitmap)) 214 continue; 215 216 if (!read_bucket(l)) 217 break; 218 } 219 220 seq = 0; 221 222 for (i = 0; i < ca->sb.njournal_buckets; i++) 223 if (ja->seq[i] > seq) { 224 seq = ja->seq[i]; 225 ja->cur_idx = ja->discard_idx = 226 ja->last_idx = i; 227 228 } 229 } 230 231 c->journal.seq = list_entry(list->prev, 232 struct journal_replay, 233 list)->j.seq; 234 235 return 0; 236 #undef read_bucket 237 } 238 239 void bch_journal_mark(struct cache_set *c, struct list_head *list) 240 { 241 atomic_t p = { 0 }; 242 struct bkey *k; 243 struct journal_replay *i; 244 struct journal *j = &c->journal; 245 uint64_t last = j->seq; 246 247 /* 248 * journal.pin should never fill up - we never write a journal 249 * entry when it would fill up. But if for some reason it does, we 250 * iterate over the list in reverse order so that we can just skip that 251 * refcount instead of bugging. 252 */ 253 254 list_for_each_entry_reverse(i, list, list) { 255 BUG_ON(last < i->j.seq); 256 i->pin = NULL; 257 258 while (last-- != i->j.seq) 259 if (fifo_free(&j->pin) > 1) { 260 fifo_push_front(&j->pin, p); 261 atomic_set(&fifo_front(&j->pin), 0); 262 } 263 264 if (fifo_free(&j->pin) > 1) { 265 fifo_push_front(&j->pin, p); 266 i->pin = &fifo_front(&j->pin); 267 atomic_set(i->pin, 1); 268 } 269 270 for (k = i->j.start; 271 k < end(&i->j); 272 k = bkey_next(k)) { 273 unsigned j; 274 275 for (j = 0; j < KEY_PTRS(k); j++) { 276 struct bucket *g = PTR_BUCKET(c, k, j); 277 atomic_inc(&g->pin); 278 279 if (g->prio == BTREE_PRIO && 280 !ptr_stale(c, k, j)) 281 g->prio = INITIAL_PRIO; 282 } 283 284 __bch_btree_mark_key(c, 0, k); 285 } 286 } 287 } 288 289 int bch_journal_replay(struct cache_set *s, struct list_head *list, 290 struct btree_op *op) 291 { 292 int ret = 0, keys = 0, entries = 0; 293 struct bkey *k; 294 struct journal_replay *i = 295 list_entry(list->prev, struct journal_replay, list); 296 297 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 298 299 list_for_each_entry(i, list, list) { 300 BUG_ON(i->pin && atomic_read(i->pin) != 1); 301 302 if (n != i->j.seq) 303 pr_err( 304 "journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 305 n, i->j.seq - 1, start, end); 306 307 for (k = i->j.start; 308 k < end(&i->j); 309 k = bkey_next(k)) { 310 trace_bcache_journal_replay_key(k); 311 312 bkey_copy(op->keys.top, k); 313 bch_keylist_push(&op->keys); 314 315 op->journal = i->pin; 316 atomic_inc(op->journal); 317 318 ret = bch_btree_insert(op, s); 319 if (ret) 320 goto err; 321 322 BUG_ON(!bch_keylist_empty(&op->keys)); 323 keys++; 324 325 cond_resched(); 326 } 327 328 if (i->pin) 329 atomic_dec(i->pin); 330 n = i->j.seq + 1; 331 entries++; 332 } 333 334 pr_info("journal replay done, %i keys in %i entries, seq %llu", 335 keys, entries, end); 336 337 while (!list_empty(list)) { 338 i = list_first_entry(list, struct journal_replay, list); 339 list_del(&i->list); 340 kfree(i); 341 } 342 err: 343 closure_sync(&op->cl); 344 return ret; 345 } 346 347 /* Journalling */ 348 349 static void btree_flush_write(struct cache_set *c) 350 { 351 /* 352 * Try to find the btree node with that references the oldest journal 353 * entry, best is our current candidate and is locked if non NULL: 354 */ 355 struct btree *b, *best = NULL; 356 unsigned iter; 357 358 for_each_cached_btree(b, c, iter) { 359 if (!down_write_trylock(&b->lock)) 360 continue; 361 362 if (!btree_node_dirty(b) || 363 !btree_current_write(b)->journal) { 364 rw_unlock(true, b); 365 continue; 366 } 367 368 if (!best) 369 best = b; 370 else if (journal_pin_cmp(c, 371 btree_current_write(best), 372 btree_current_write(b))) { 373 rw_unlock(true, best); 374 best = b; 375 } else 376 rw_unlock(true, b); 377 } 378 379 if (best) 380 goto out; 381 382 /* We can't find the best btree node, just pick the first */ 383 list_for_each_entry(b, &c->btree_cache, list) 384 if (!b->level && btree_node_dirty(b)) { 385 best = b; 386 rw_lock(true, best, best->level); 387 goto found; 388 } 389 390 out: 391 if (!best) 392 return; 393 found: 394 if (btree_node_dirty(best)) 395 bch_btree_node_write(best, NULL); 396 rw_unlock(true, best); 397 } 398 399 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 400 401 static void journal_discard_endio(struct bio *bio, int error) 402 { 403 struct journal_device *ja = 404 container_of(bio, struct journal_device, discard_bio); 405 struct cache *ca = container_of(ja, struct cache, journal); 406 407 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 408 409 closure_wake_up(&ca->set->journal.wait); 410 closure_put(&ca->set->cl); 411 } 412 413 static void journal_discard_work(struct work_struct *work) 414 { 415 struct journal_device *ja = 416 container_of(work, struct journal_device, discard_work); 417 418 submit_bio(0, &ja->discard_bio); 419 } 420 421 static void do_journal_discard(struct cache *ca) 422 { 423 struct journal_device *ja = &ca->journal; 424 struct bio *bio = &ja->discard_bio; 425 426 if (!ca->discard) { 427 ja->discard_idx = ja->last_idx; 428 return; 429 } 430 431 switch (atomic_read(&ja->discard_in_flight) == DISCARD_IN_FLIGHT) { 432 case DISCARD_IN_FLIGHT: 433 return; 434 435 case DISCARD_DONE: 436 ja->discard_idx = (ja->discard_idx + 1) % 437 ca->sb.njournal_buckets; 438 439 atomic_set(&ja->discard_in_flight, DISCARD_READY); 440 /* fallthrough */ 441 442 case DISCARD_READY: 443 if (ja->discard_idx == ja->last_idx) 444 return; 445 446 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 447 448 bio_init(bio); 449 bio->bi_sector = bucket_to_sector(ca->set, 450 ca->sb.d[ja->discard_idx]); 451 bio->bi_bdev = ca->bdev; 452 bio->bi_rw = REQ_WRITE|REQ_DISCARD; 453 bio->bi_max_vecs = 1; 454 bio->bi_io_vec = bio->bi_inline_vecs; 455 bio->bi_size = bucket_bytes(ca); 456 bio->bi_end_io = journal_discard_endio; 457 458 closure_get(&ca->set->cl); 459 INIT_WORK(&ja->discard_work, journal_discard_work); 460 schedule_work(&ja->discard_work); 461 } 462 } 463 464 static void journal_reclaim(struct cache_set *c) 465 { 466 struct bkey *k = &c->journal.key; 467 struct cache *ca; 468 uint64_t last_seq; 469 unsigned iter, n = 0; 470 atomic_t p; 471 472 while (!atomic_read(&fifo_front(&c->journal.pin))) 473 fifo_pop(&c->journal.pin, p); 474 475 last_seq = last_seq(&c->journal); 476 477 /* Update last_idx */ 478 479 for_each_cache(ca, c, iter) { 480 struct journal_device *ja = &ca->journal; 481 482 while (ja->last_idx != ja->cur_idx && 483 ja->seq[ja->last_idx] < last_seq) 484 ja->last_idx = (ja->last_idx + 1) % 485 ca->sb.njournal_buckets; 486 } 487 488 for_each_cache(ca, c, iter) 489 do_journal_discard(ca); 490 491 if (c->journal.blocks_free) 492 return; 493 494 /* 495 * Allocate: 496 * XXX: Sort by free journal space 497 */ 498 499 for_each_cache(ca, c, iter) { 500 struct journal_device *ja = &ca->journal; 501 unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 502 503 /* No space available on this device */ 504 if (next == ja->discard_idx) 505 continue; 506 507 ja->cur_idx = next; 508 k->ptr[n++] = PTR(0, 509 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 510 ca->sb.nr_this_dev); 511 } 512 513 bkey_init(k); 514 SET_KEY_PTRS(k, n); 515 516 if (n) 517 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 518 519 if (!journal_full(&c->journal)) 520 __closure_wake_up(&c->journal.wait); 521 } 522 523 void bch_journal_next(struct journal *j) 524 { 525 atomic_t p = { 1 }; 526 527 j->cur = (j->cur == j->w) 528 ? &j->w[1] 529 : &j->w[0]; 530 531 /* 532 * The fifo_push() needs to happen at the same time as j->seq is 533 * incremented for last_seq() to be calculated correctly 534 */ 535 BUG_ON(!fifo_push(&j->pin, p)); 536 atomic_set(&fifo_back(&j->pin), 1); 537 538 j->cur->data->seq = ++j->seq; 539 j->cur->need_write = false; 540 j->cur->data->keys = 0; 541 542 if (fifo_full(&j->pin)) 543 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); 544 } 545 546 static void journal_write_endio(struct bio *bio, int error) 547 { 548 struct journal_write *w = bio->bi_private; 549 550 cache_set_err_on(error, w->c, "journal io error"); 551 closure_put(&w->c->journal.io.cl); 552 } 553 554 static void journal_write(struct closure *); 555 556 static void journal_write_done(struct closure *cl) 557 { 558 struct journal *j = container_of(cl, struct journal, io.cl); 559 struct cache_set *c = container_of(j, struct cache_set, journal); 560 561 struct journal_write *w = (j->cur == j->w) 562 ? &j->w[1] 563 : &j->w[0]; 564 565 __closure_wake_up(&w->wait); 566 567 if (c->journal_delay_ms) 568 closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms)); 569 570 continue_at(cl, journal_write, system_wq); 571 } 572 573 static void journal_write_unlocked(struct closure *cl) 574 __releases(c->journal.lock) 575 { 576 struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); 577 struct cache *ca; 578 struct journal_write *w = c->journal.cur; 579 struct bkey *k = &c->journal.key; 580 unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size; 581 582 struct bio *bio; 583 struct bio_list list; 584 bio_list_init(&list); 585 586 if (!w->need_write) { 587 /* 588 * XXX: have to unlock closure before we unlock journal lock, 589 * else we race with bch_journal(). But this way we race 590 * against cache set unregister. Doh. 591 */ 592 set_closure_fn(cl, NULL, NULL); 593 closure_sub(cl, CLOSURE_RUNNING + 1); 594 spin_unlock(&c->journal.lock); 595 return; 596 } else if (journal_full(&c->journal)) { 597 journal_reclaim(c); 598 spin_unlock(&c->journal.lock); 599 600 btree_flush_write(c); 601 continue_at(cl, journal_write, system_wq); 602 } 603 604 c->journal.blocks_free -= set_blocks(w->data, c); 605 606 w->data->btree_level = c->root->level; 607 608 bkey_copy(&w->data->btree_root, &c->root->key); 609 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 610 611 for_each_cache(ca, c, i) 612 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 613 614 w->data->magic = jset_magic(c); 615 w->data->version = BCACHE_JSET_VERSION; 616 w->data->last_seq = last_seq(&c->journal); 617 w->data->csum = csum_set(w->data); 618 619 for (i = 0; i < KEY_PTRS(k); i++) { 620 ca = PTR_CACHE(c, k, i); 621 bio = &ca->journal.bio; 622 623 atomic_long_add(sectors, &ca->meta_sectors_written); 624 625 bio_reset(bio); 626 bio->bi_sector = PTR_OFFSET(k, i); 627 bio->bi_bdev = ca->bdev; 628 bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH|REQ_FUA; 629 bio->bi_size = sectors << 9; 630 631 bio->bi_end_io = journal_write_endio; 632 bio->bi_private = w; 633 bch_bio_map(bio, w->data); 634 635 trace_bcache_journal_write(bio); 636 bio_list_add(&list, bio); 637 638 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 639 640 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 641 } 642 643 atomic_dec_bug(&fifo_back(&c->journal.pin)); 644 bch_journal_next(&c->journal); 645 journal_reclaim(c); 646 647 spin_unlock(&c->journal.lock); 648 649 while ((bio = bio_list_pop(&list))) 650 closure_bio_submit(bio, cl, c->cache[0]); 651 652 continue_at(cl, journal_write_done, NULL); 653 } 654 655 static void journal_write(struct closure *cl) 656 { 657 struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); 658 659 spin_lock(&c->journal.lock); 660 journal_write_unlocked(cl); 661 } 662 663 static void __journal_try_write(struct cache_set *c, bool noflush) 664 __releases(c->journal.lock) 665 { 666 struct closure *cl = &c->journal.io.cl; 667 668 if (!closure_trylock(cl, &c->cl)) 669 spin_unlock(&c->journal.lock); 670 else if (noflush && journal_full(&c->journal)) { 671 spin_unlock(&c->journal.lock); 672 continue_at(cl, journal_write, system_wq); 673 } else 674 journal_write_unlocked(cl); 675 } 676 677 #define journal_try_write(c) __journal_try_write(c, false) 678 679 void bch_journal_meta(struct cache_set *c, struct closure *cl) 680 { 681 struct journal_write *w; 682 683 if (CACHE_SYNC(&c->sb)) { 684 spin_lock(&c->journal.lock); 685 686 w = c->journal.cur; 687 w->need_write = true; 688 689 if (cl) 690 BUG_ON(!closure_wait(&w->wait, cl)); 691 692 __journal_try_write(c, true); 693 } 694 } 695 696 /* 697 * Entry point to the journalling code - bio_insert() and btree_invalidate() 698 * pass bch_journal() a list of keys to be journalled, and then 699 * bch_journal() hands those same keys off to btree_insert_async() 700 */ 701 702 void bch_journal(struct closure *cl) 703 { 704 struct btree_op *op = container_of(cl, struct btree_op, cl); 705 struct cache_set *c = op->c; 706 struct journal_write *w; 707 size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list; 708 709 if (op->type != BTREE_INSERT || 710 !CACHE_SYNC(&c->sb)) 711 goto out; 712 713 /* 714 * If we're looping because we errored, might already be waiting on 715 * another journal write: 716 */ 717 while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING) 718 closure_sync(cl->parent); 719 720 spin_lock(&c->journal.lock); 721 722 if (journal_full(&c->journal)) { 723 trace_bcache_journal_full(c); 724 725 closure_wait(&c->journal.wait, cl); 726 727 journal_reclaim(c); 728 spin_unlock(&c->journal.lock); 729 730 btree_flush_write(c); 731 continue_at(cl, bch_journal, bcache_wq); 732 } 733 734 w = c->journal.cur; 735 w->need_write = true; 736 b = __set_blocks(w->data, w->data->keys + n, c); 737 738 if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS || 739 b > c->journal.blocks_free) { 740 trace_bcache_journal_entry_full(c); 741 742 /* 743 * XXX: If we were inserting so many keys that they won't fit in 744 * an _empty_ journal write, we'll deadlock. For now, handle 745 * this in bch_keylist_realloc() - but something to think about. 746 */ 747 BUG_ON(!w->data->keys); 748 749 BUG_ON(!closure_wait(&w->wait, cl)); 750 751 closure_flush(&c->journal.io); 752 753 journal_try_write(c); 754 continue_at(cl, bch_journal, bcache_wq); 755 } 756 757 memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t)); 758 w->data->keys += n; 759 760 op->journal = &fifo_back(&c->journal.pin); 761 atomic_inc(op->journal); 762 763 if (op->flush_journal) { 764 closure_flush(&c->journal.io); 765 closure_wait(&w->wait, cl->parent); 766 } 767 768 journal_try_write(c); 769 out: 770 bch_btree_insert_async(cl); 771 } 772 773 void bch_journal_free(struct cache_set *c) 774 { 775 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 776 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 777 free_fifo(&c->journal.pin); 778 } 779 780 int bch_journal_alloc(struct cache_set *c) 781 { 782 struct journal *j = &c->journal; 783 784 closure_init_unlocked(&j->io); 785 spin_lock_init(&j->lock); 786 787 c->journal_delay_ms = 100; 788 789 j->w[0].c = c; 790 j->w[1].c = c; 791 792 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 793 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 794 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 795 return -ENOMEM; 796 797 return 0; 798 } 799