xref: /openbmc/linux/drivers/md/bcache/journal.c (revision 0878ae2db83a10894724cdeaba7ef9f1ac1c9ac8)
1 /*
2  * bcache journalling code, for btree insertions
3  *
4  * Copyright 2012 Google, Inc.
5  */
6 
7 #include "bcache.h"
8 #include "btree.h"
9 #include "debug.h"
10 #include "request.h"
11 
12 #include <trace/events/bcache.h>
13 
14 /*
15  * Journal replay/recovery:
16  *
17  * This code is all driven from run_cache_set(); we first read the journal
18  * entries, do some other stuff, then we mark all the keys in the journal
19  * entries (same as garbage collection would), then we replay them - reinserting
20  * them into the cache in precisely the same order as they appear in the
21  * journal.
22  *
23  * We only journal keys that go in leaf nodes, which simplifies things quite a
24  * bit.
25  */
26 
27 static void journal_read_endio(struct bio *bio, int error)
28 {
29 	struct closure *cl = bio->bi_private;
30 	closure_put(cl);
31 }
32 
33 static int journal_read_bucket(struct cache *ca, struct list_head *list,
34 			       struct btree_op *op, unsigned bucket_index)
35 {
36 	struct journal_device *ja = &ca->journal;
37 	struct bio *bio = &ja->bio;
38 
39 	struct journal_replay *i;
40 	struct jset *j, *data = ca->set->journal.w[0].data;
41 	unsigned len, left, offset = 0;
42 	int ret = 0;
43 	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
44 
45 	pr_debug("reading %llu", (uint64_t) bucket);
46 
47 	while (offset < ca->sb.bucket_size) {
48 reread:		left = ca->sb.bucket_size - offset;
49 		len = min_t(unsigned, left, PAGE_SECTORS * 8);
50 
51 		bio_reset(bio);
52 		bio->bi_sector	= bucket + offset;
53 		bio->bi_bdev	= ca->bdev;
54 		bio->bi_rw	= READ;
55 		bio->bi_size	= len << 9;
56 
57 		bio->bi_end_io	= journal_read_endio;
58 		bio->bi_private = &op->cl;
59 		bch_bio_map(bio, data);
60 
61 		closure_bio_submit(bio, &op->cl, ca);
62 		closure_sync(&op->cl);
63 
64 		/* This function could be simpler now since we no longer write
65 		 * journal entries that overlap bucket boundaries; this means
66 		 * the start of a bucket will always have a valid journal entry
67 		 * if it has any journal entries at all.
68 		 */
69 
70 		j = data;
71 		while (len) {
72 			struct list_head *where;
73 			size_t blocks, bytes = set_bytes(j);
74 
75 			if (j->magic != jset_magic(ca->set))
76 				return ret;
77 
78 			if (bytes > left << 9)
79 				return ret;
80 
81 			if (bytes > len << 9)
82 				goto reread;
83 
84 			if (j->csum != csum_set(j))
85 				return ret;
86 
87 			blocks = set_blocks(j, ca->set);
88 
89 			while (!list_empty(list)) {
90 				i = list_first_entry(list,
91 					struct journal_replay, list);
92 				if (i->j.seq >= j->last_seq)
93 					break;
94 				list_del(&i->list);
95 				kfree(i);
96 			}
97 
98 			list_for_each_entry_reverse(i, list, list) {
99 				if (j->seq == i->j.seq)
100 					goto next_set;
101 
102 				if (j->seq < i->j.last_seq)
103 					goto next_set;
104 
105 				if (j->seq > i->j.seq) {
106 					where = &i->list;
107 					goto add;
108 				}
109 			}
110 
111 			where = list;
112 add:
113 			i = kmalloc(offsetof(struct journal_replay, j) +
114 				    bytes, GFP_KERNEL);
115 			if (!i)
116 				return -ENOMEM;
117 			memcpy(&i->j, j, bytes);
118 			list_add(&i->list, where);
119 			ret = 1;
120 
121 			ja->seq[bucket_index] = j->seq;
122 next_set:
123 			offset	+= blocks * ca->sb.block_size;
124 			len	-= blocks * ca->sb.block_size;
125 			j = ((void *) j) + blocks * block_bytes(ca);
126 		}
127 	}
128 
129 	return ret;
130 }
131 
132 int bch_journal_read(struct cache_set *c, struct list_head *list,
133 			struct btree_op *op)
134 {
135 #define read_bucket(b)							\
136 	({								\
137 		int ret = journal_read_bucket(ca, list, op, b);		\
138 		__set_bit(b, bitmap);					\
139 		if (ret < 0)						\
140 			return ret;					\
141 		ret;							\
142 	})
143 
144 	struct cache *ca;
145 	unsigned iter;
146 
147 	for_each_cache(ca, c, iter) {
148 		struct journal_device *ja = &ca->journal;
149 		unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG];
150 		unsigned i, l, r, m;
151 		uint64_t seq;
152 
153 		bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
154 		pr_debug("%u journal buckets", ca->sb.njournal_buckets);
155 
156 		/* Read journal buckets ordered by golden ratio hash to quickly
157 		 * find a sequence of buckets with valid journal entries
158 		 */
159 		for (i = 0; i < ca->sb.njournal_buckets; i++) {
160 			l = (i * 2654435769U) % ca->sb.njournal_buckets;
161 
162 			if (test_bit(l, bitmap))
163 				break;
164 
165 			if (read_bucket(l))
166 				goto bsearch;
167 		}
168 
169 		/* If that fails, check all the buckets we haven't checked
170 		 * already
171 		 */
172 		pr_debug("falling back to linear search");
173 
174 		for (l = 0; l < ca->sb.njournal_buckets; l++) {
175 			if (test_bit(l, bitmap))
176 				continue;
177 
178 			if (read_bucket(l))
179 				goto bsearch;
180 		}
181 bsearch:
182 		/* Binary search */
183 		m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
184 		pr_debug("starting binary search, l %u r %u", l, r);
185 
186 		while (l + 1 < r) {
187 			seq = list_entry(list->prev, struct journal_replay,
188 					 list)->j.seq;
189 
190 			m = (l + r) >> 1;
191 			read_bucket(m);
192 
193 			if (seq != list_entry(list->prev, struct journal_replay,
194 					      list)->j.seq)
195 				l = m;
196 			else
197 				r = m;
198 		}
199 
200 		/* Read buckets in reverse order until we stop finding more
201 		 * journal entries
202 		 */
203 		pr_debug("finishing up");
204 		l = m;
205 
206 		while (1) {
207 			if (!l--)
208 				l = ca->sb.njournal_buckets - 1;
209 
210 			if (l == m)
211 				break;
212 
213 			if (test_bit(l, bitmap))
214 				continue;
215 
216 			if (!read_bucket(l))
217 				break;
218 		}
219 
220 		seq = 0;
221 
222 		for (i = 0; i < ca->sb.njournal_buckets; i++)
223 			if (ja->seq[i] > seq) {
224 				seq = ja->seq[i];
225 				ja->cur_idx = ja->discard_idx =
226 					ja->last_idx = i;
227 
228 			}
229 	}
230 
231 	c->journal.seq = list_entry(list->prev,
232 				    struct journal_replay,
233 				    list)->j.seq;
234 
235 	return 0;
236 #undef read_bucket
237 }
238 
239 void bch_journal_mark(struct cache_set *c, struct list_head *list)
240 {
241 	atomic_t p = { 0 };
242 	struct bkey *k;
243 	struct journal_replay *i;
244 	struct journal *j = &c->journal;
245 	uint64_t last = j->seq;
246 
247 	/*
248 	 * journal.pin should never fill up - we never write a journal
249 	 * entry when it would fill up. But if for some reason it does, we
250 	 * iterate over the list in reverse order so that we can just skip that
251 	 * refcount instead of bugging.
252 	 */
253 
254 	list_for_each_entry_reverse(i, list, list) {
255 		BUG_ON(last < i->j.seq);
256 		i->pin = NULL;
257 
258 		while (last-- != i->j.seq)
259 			if (fifo_free(&j->pin) > 1) {
260 				fifo_push_front(&j->pin, p);
261 				atomic_set(&fifo_front(&j->pin), 0);
262 			}
263 
264 		if (fifo_free(&j->pin) > 1) {
265 			fifo_push_front(&j->pin, p);
266 			i->pin = &fifo_front(&j->pin);
267 			atomic_set(i->pin, 1);
268 		}
269 
270 		for (k = i->j.start;
271 		     k < end(&i->j);
272 		     k = bkey_next(k)) {
273 			unsigned j;
274 
275 			for (j = 0; j < KEY_PTRS(k); j++) {
276 				struct bucket *g = PTR_BUCKET(c, k, j);
277 				atomic_inc(&g->pin);
278 
279 				if (g->prio == BTREE_PRIO &&
280 				    !ptr_stale(c, k, j))
281 					g->prio = INITIAL_PRIO;
282 			}
283 
284 			__bch_btree_mark_key(c, 0, k);
285 		}
286 	}
287 }
288 
289 int bch_journal_replay(struct cache_set *s, struct list_head *list,
290 			  struct btree_op *op)
291 {
292 	int ret = 0, keys = 0, entries = 0;
293 	struct bkey *k;
294 	struct journal_replay *i =
295 		list_entry(list->prev, struct journal_replay, list);
296 
297 	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
298 
299 	list_for_each_entry(i, list, list) {
300 		BUG_ON(i->pin && atomic_read(i->pin) != 1);
301 
302 		if (n != i->j.seq)
303 			pr_err(
304 		"journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
305 		n, i->j.seq - 1, start, end);
306 
307 		for (k = i->j.start;
308 		     k < end(&i->j);
309 		     k = bkey_next(k)) {
310 			trace_bcache_journal_replay_key(k);
311 
312 			bkey_copy(op->keys.top, k);
313 			bch_keylist_push(&op->keys);
314 
315 			op->journal = i->pin;
316 			atomic_inc(op->journal);
317 
318 			ret = bch_btree_insert(op, s);
319 			if (ret)
320 				goto err;
321 
322 			BUG_ON(!bch_keylist_empty(&op->keys));
323 			keys++;
324 
325 			cond_resched();
326 		}
327 
328 		if (i->pin)
329 			atomic_dec(i->pin);
330 		n = i->j.seq + 1;
331 		entries++;
332 	}
333 
334 	pr_info("journal replay done, %i keys in %i entries, seq %llu",
335 		keys, entries, end);
336 
337 	while (!list_empty(list)) {
338 		i = list_first_entry(list, struct journal_replay, list);
339 		list_del(&i->list);
340 		kfree(i);
341 	}
342 err:
343 	closure_sync(&op->cl);
344 	return ret;
345 }
346 
347 /* Journalling */
348 
349 static void btree_flush_write(struct cache_set *c)
350 {
351 	/*
352 	 * Try to find the btree node with that references the oldest journal
353 	 * entry, best is our current candidate and is locked if non NULL:
354 	 */
355 	struct btree *b, *best = NULL;
356 	unsigned iter;
357 
358 	for_each_cached_btree(b, c, iter) {
359 		if (!down_write_trylock(&b->lock))
360 			continue;
361 
362 		if (!btree_node_dirty(b) ||
363 		    !btree_current_write(b)->journal) {
364 			rw_unlock(true, b);
365 			continue;
366 		}
367 
368 		if (!best)
369 			best = b;
370 		else if (journal_pin_cmp(c,
371 					 btree_current_write(best),
372 					 btree_current_write(b))) {
373 			rw_unlock(true, best);
374 			best = b;
375 		} else
376 			rw_unlock(true, b);
377 	}
378 
379 	if (best)
380 		goto out;
381 
382 	/* We can't find the best btree node, just pick the first */
383 	list_for_each_entry(b, &c->btree_cache, list)
384 		if (!b->level && btree_node_dirty(b)) {
385 			best = b;
386 			rw_lock(true, best, best->level);
387 			goto found;
388 		}
389 
390 out:
391 	if (!best)
392 		return;
393 found:
394 	if (btree_node_dirty(best))
395 		bch_btree_node_write(best, NULL);
396 	rw_unlock(true, best);
397 }
398 
399 #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
400 
401 static void journal_discard_endio(struct bio *bio, int error)
402 {
403 	struct journal_device *ja =
404 		container_of(bio, struct journal_device, discard_bio);
405 	struct cache *ca = container_of(ja, struct cache, journal);
406 
407 	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
408 
409 	closure_wake_up(&ca->set->journal.wait);
410 	closure_put(&ca->set->cl);
411 }
412 
413 static void journal_discard_work(struct work_struct *work)
414 {
415 	struct journal_device *ja =
416 		container_of(work, struct journal_device, discard_work);
417 
418 	submit_bio(0, &ja->discard_bio);
419 }
420 
421 static void do_journal_discard(struct cache *ca)
422 {
423 	struct journal_device *ja = &ca->journal;
424 	struct bio *bio = &ja->discard_bio;
425 
426 	if (!ca->discard) {
427 		ja->discard_idx = ja->last_idx;
428 		return;
429 	}
430 
431 	switch (atomic_read(&ja->discard_in_flight) == DISCARD_IN_FLIGHT) {
432 	case DISCARD_IN_FLIGHT:
433 		return;
434 
435 	case DISCARD_DONE:
436 		ja->discard_idx = (ja->discard_idx + 1) %
437 			ca->sb.njournal_buckets;
438 
439 		atomic_set(&ja->discard_in_flight, DISCARD_READY);
440 		/* fallthrough */
441 
442 	case DISCARD_READY:
443 		if (ja->discard_idx == ja->last_idx)
444 			return;
445 
446 		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
447 
448 		bio_init(bio);
449 		bio->bi_sector		= bucket_to_sector(ca->set,
450 						ca->sb.d[ja->discard_idx]);
451 		bio->bi_bdev		= ca->bdev;
452 		bio->bi_rw		= REQ_WRITE|REQ_DISCARD;
453 		bio->bi_max_vecs	= 1;
454 		bio->bi_io_vec		= bio->bi_inline_vecs;
455 		bio->bi_size		= bucket_bytes(ca);
456 		bio->bi_end_io		= journal_discard_endio;
457 
458 		closure_get(&ca->set->cl);
459 		INIT_WORK(&ja->discard_work, journal_discard_work);
460 		schedule_work(&ja->discard_work);
461 	}
462 }
463 
464 static void journal_reclaim(struct cache_set *c)
465 {
466 	struct bkey *k = &c->journal.key;
467 	struct cache *ca;
468 	uint64_t last_seq;
469 	unsigned iter, n = 0;
470 	atomic_t p;
471 
472 	while (!atomic_read(&fifo_front(&c->journal.pin)))
473 		fifo_pop(&c->journal.pin, p);
474 
475 	last_seq = last_seq(&c->journal);
476 
477 	/* Update last_idx */
478 
479 	for_each_cache(ca, c, iter) {
480 		struct journal_device *ja = &ca->journal;
481 
482 		while (ja->last_idx != ja->cur_idx &&
483 		       ja->seq[ja->last_idx] < last_seq)
484 			ja->last_idx = (ja->last_idx + 1) %
485 				ca->sb.njournal_buckets;
486 	}
487 
488 	for_each_cache(ca, c, iter)
489 		do_journal_discard(ca);
490 
491 	if (c->journal.blocks_free)
492 		return;
493 
494 	/*
495 	 * Allocate:
496 	 * XXX: Sort by free journal space
497 	 */
498 
499 	for_each_cache(ca, c, iter) {
500 		struct journal_device *ja = &ca->journal;
501 		unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
502 
503 		/* No space available on this device */
504 		if (next == ja->discard_idx)
505 			continue;
506 
507 		ja->cur_idx = next;
508 		k->ptr[n++] = PTR(0,
509 				  bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
510 				  ca->sb.nr_this_dev);
511 	}
512 
513 	bkey_init(k);
514 	SET_KEY_PTRS(k, n);
515 
516 	if (n)
517 		c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
518 
519 	if (!journal_full(&c->journal))
520 		__closure_wake_up(&c->journal.wait);
521 }
522 
523 void bch_journal_next(struct journal *j)
524 {
525 	atomic_t p = { 1 };
526 
527 	j->cur = (j->cur == j->w)
528 		? &j->w[1]
529 		: &j->w[0];
530 
531 	/*
532 	 * The fifo_push() needs to happen at the same time as j->seq is
533 	 * incremented for last_seq() to be calculated correctly
534 	 */
535 	BUG_ON(!fifo_push(&j->pin, p));
536 	atomic_set(&fifo_back(&j->pin), 1);
537 
538 	j->cur->data->seq	= ++j->seq;
539 	j->cur->need_write	= false;
540 	j->cur->data->keys	= 0;
541 
542 	if (fifo_full(&j->pin))
543 		pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
544 }
545 
546 static void journal_write_endio(struct bio *bio, int error)
547 {
548 	struct journal_write *w = bio->bi_private;
549 
550 	cache_set_err_on(error, w->c, "journal io error");
551 	closure_put(&w->c->journal.io.cl);
552 }
553 
554 static void journal_write(struct closure *);
555 
556 static void journal_write_done(struct closure *cl)
557 {
558 	struct journal *j = container_of(cl, struct journal, io.cl);
559 	struct cache_set *c = container_of(j, struct cache_set, journal);
560 
561 	struct journal_write *w = (j->cur == j->w)
562 		? &j->w[1]
563 		: &j->w[0];
564 
565 	__closure_wake_up(&w->wait);
566 
567 	if (c->journal_delay_ms)
568 		closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms));
569 
570 	continue_at(cl, journal_write, system_wq);
571 }
572 
573 static void journal_write_unlocked(struct closure *cl)
574 	__releases(c->journal.lock)
575 {
576 	struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl);
577 	struct cache *ca;
578 	struct journal_write *w = c->journal.cur;
579 	struct bkey *k = &c->journal.key;
580 	unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size;
581 
582 	struct bio *bio;
583 	struct bio_list list;
584 	bio_list_init(&list);
585 
586 	if (!w->need_write) {
587 		/*
588 		 * XXX: have to unlock closure before we unlock journal lock,
589 		 * else we race with bch_journal(). But this way we race
590 		 * against cache set unregister. Doh.
591 		 */
592 		set_closure_fn(cl, NULL, NULL);
593 		closure_sub(cl, CLOSURE_RUNNING + 1);
594 		spin_unlock(&c->journal.lock);
595 		return;
596 	} else if (journal_full(&c->journal)) {
597 		journal_reclaim(c);
598 		spin_unlock(&c->journal.lock);
599 
600 		btree_flush_write(c);
601 		continue_at(cl, journal_write, system_wq);
602 	}
603 
604 	c->journal.blocks_free -= set_blocks(w->data, c);
605 
606 	w->data->btree_level = c->root->level;
607 
608 	bkey_copy(&w->data->btree_root, &c->root->key);
609 	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
610 
611 	for_each_cache(ca, c, i)
612 		w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
613 
614 	w->data->magic		= jset_magic(c);
615 	w->data->version	= BCACHE_JSET_VERSION;
616 	w->data->last_seq	= last_seq(&c->journal);
617 	w->data->csum		= csum_set(w->data);
618 
619 	for (i = 0; i < KEY_PTRS(k); i++) {
620 		ca = PTR_CACHE(c, k, i);
621 		bio = &ca->journal.bio;
622 
623 		atomic_long_add(sectors, &ca->meta_sectors_written);
624 
625 		bio_reset(bio);
626 		bio->bi_sector	= PTR_OFFSET(k, i);
627 		bio->bi_bdev	= ca->bdev;
628 		bio->bi_rw	= REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH|REQ_FUA;
629 		bio->bi_size	= sectors << 9;
630 
631 		bio->bi_end_io	= journal_write_endio;
632 		bio->bi_private = w;
633 		bch_bio_map(bio, w->data);
634 
635 		trace_bcache_journal_write(bio);
636 		bio_list_add(&list, bio);
637 
638 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
639 
640 		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
641 	}
642 
643 	atomic_dec_bug(&fifo_back(&c->journal.pin));
644 	bch_journal_next(&c->journal);
645 	journal_reclaim(c);
646 
647 	spin_unlock(&c->journal.lock);
648 
649 	while ((bio = bio_list_pop(&list)))
650 		closure_bio_submit(bio, cl, c->cache[0]);
651 
652 	continue_at(cl, journal_write_done, NULL);
653 }
654 
655 static void journal_write(struct closure *cl)
656 {
657 	struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl);
658 
659 	spin_lock(&c->journal.lock);
660 	journal_write_unlocked(cl);
661 }
662 
663 static void __journal_try_write(struct cache_set *c, bool noflush)
664 	__releases(c->journal.lock)
665 {
666 	struct closure *cl = &c->journal.io.cl;
667 
668 	if (!closure_trylock(cl, &c->cl))
669 		spin_unlock(&c->journal.lock);
670 	else if (noflush && journal_full(&c->journal)) {
671 		spin_unlock(&c->journal.lock);
672 		continue_at(cl, journal_write, system_wq);
673 	} else
674 		journal_write_unlocked(cl);
675 }
676 
677 #define journal_try_write(c)	__journal_try_write(c, false)
678 
679 void bch_journal_meta(struct cache_set *c, struct closure *cl)
680 {
681 	struct journal_write *w;
682 
683 	if (CACHE_SYNC(&c->sb)) {
684 		spin_lock(&c->journal.lock);
685 
686 		w = c->journal.cur;
687 		w->need_write = true;
688 
689 		if (cl)
690 			BUG_ON(!closure_wait(&w->wait, cl));
691 
692 		__journal_try_write(c, true);
693 	}
694 }
695 
696 /*
697  * Entry point to the journalling code - bio_insert() and btree_invalidate()
698  * pass bch_journal() a list of keys to be journalled, and then
699  * bch_journal() hands those same keys off to btree_insert_async()
700  */
701 
702 void bch_journal(struct closure *cl)
703 {
704 	struct btree_op *op = container_of(cl, struct btree_op, cl);
705 	struct cache_set *c = op->c;
706 	struct journal_write *w;
707 	size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list;
708 
709 	if (op->type != BTREE_INSERT ||
710 	    !CACHE_SYNC(&c->sb))
711 		goto out;
712 
713 	/*
714 	 * If we're looping because we errored, might already be waiting on
715 	 * another journal write:
716 	 */
717 	while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING)
718 		closure_sync(cl->parent);
719 
720 	spin_lock(&c->journal.lock);
721 
722 	if (journal_full(&c->journal)) {
723 		trace_bcache_journal_full(c);
724 
725 		closure_wait(&c->journal.wait, cl);
726 
727 		journal_reclaim(c);
728 		spin_unlock(&c->journal.lock);
729 
730 		btree_flush_write(c);
731 		continue_at(cl, bch_journal, bcache_wq);
732 	}
733 
734 	w = c->journal.cur;
735 	w->need_write = true;
736 	b = __set_blocks(w->data, w->data->keys + n, c);
737 
738 	if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS ||
739 	    b > c->journal.blocks_free) {
740 		trace_bcache_journal_entry_full(c);
741 
742 		/*
743 		 * XXX: If we were inserting so many keys that they won't fit in
744 		 * an _empty_ journal write, we'll deadlock. For now, handle
745 		 * this in bch_keylist_realloc() - but something to think about.
746 		 */
747 		BUG_ON(!w->data->keys);
748 
749 		BUG_ON(!closure_wait(&w->wait, cl));
750 
751 		closure_flush(&c->journal.io);
752 
753 		journal_try_write(c);
754 		continue_at(cl, bch_journal, bcache_wq);
755 	}
756 
757 	memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t));
758 	w->data->keys += n;
759 
760 	op->journal = &fifo_back(&c->journal.pin);
761 	atomic_inc(op->journal);
762 
763 	if (op->flush_journal) {
764 		closure_flush(&c->journal.io);
765 		closure_wait(&w->wait, cl->parent);
766 	}
767 
768 	journal_try_write(c);
769 out:
770 	bch_btree_insert_async(cl);
771 }
772 
773 void bch_journal_free(struct cache_set *c)
774 {
775 	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
776 	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
777 	free_fifo(&c->journal.pin);
778 }
779 
780 int bch_journal_alloc(struct cache_set *c)
781 {
782 	struct journal *j = &c->journal;
783 
784 	closure_init_unlocked(&j->io);
785 	spin_lock_init(&j->lock);
786 
787 	c->journal_delay_ms = 100;
788 
789 	j->w[0].c = c;
790 	j->w[1].c = c;
791 
792 	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
793 	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
794 	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
795 		return -ENOMEM;
796 
797 	return 0;
798 }
799