xref: /openbmc/linux/drivers/md/bcache/bset.h (revision dc9d98d621bdce0552997200ce855659875a5c9f)
1 #ifndef _BCACHE_BSET_H
2 #define _BCACHE_BSET_H
3 
4 #include <linux/slab.h>
5 
6 #include "util.h" /* for time_stats */
7 
8 /*
9  * BKEYS:
10  *
11  * A bkey contains a key, a size field, a variable number of pointers, and some
12  * ancillary flag bits.
13  *
14  * We use two different functions for validating bkeys, bch_ptr_invalid and
15  * bch_ptr_bad().
16  *
17  * bch_ptr_invalid() primarily filters out keys and pointers that would be
18  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
19  * pointer that occur in normal practice but don't point to real data.
20  *
21  * The one exception to the rule that ptr_invalid() filters out invalid keys is
22  * that it also filters out keys of size 0 - these are keys that have been
23  * completely overwritten. It'd be safe to delete these in memory while leaving
24  * them on disk, just unnecessary work - so we filter them out when resorting
25  * instead.
26  *
27  * We can't filter out stale keys when we're resorting, because garbage
28  * collection needs to find them to ensure bucket gens don't wrap around -
29  * unless we're rewriting the btree node those stale keys still exist on disk.
30  *
31  * We also implement functions here for removing some number of sectors from the
32  * front or the back of a bkey - this is mainly used for fixing overlapping
33  * extents, by removing the overlapping sectors from the older key.
34  *
35  * BSETS:
36  *
37  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
38  * along with a header. A btree node is made up of a number of these, written at
39  * different times.
40  *
41  * There could be many of them on disk, but we never allow there to be more than
42  * 4 in memory - we lazily resort as needed.
43  *
44  * We implement code here for creating and maintaining auxiliary search trees
45  * (described below) for searching an individial bset, and on top of that we
46  * implement a btree iterator.
47  *
48  * BTREE ITERATOR:
49  *
50  * Most of the code in bcache doesn't care about an individual bset - it needs
51  * to search entire btree nodes and iterate over them in sorted order.
52  *
53  * The btree iterator code serves both functions; it iterates through the keys
54  * in a btree node in sorted order, starting from either keys after a specific
55  * point (if you pass it a search key) or the start of the btree node.
56  *
57  * AUXILIARY SEARCH TREES:
58  *
59  * Since keys are variable length, we can't use a binary search on a bset - we
60  * wouldn't be able to find the start of the next key. But binary searches are
61  * slow anyways, due to terrible cache behaviour; bcache originally used binary
62  * searches and that code topped out at under 50k lookups/second.
63  *
64  * So we need to construct some sort of lookup table. Since we only insert keys
65  * into the last (unwritten) set, most of the keys within a given btree node are
66  * usually in sets that are mostly constant. We use two different types of
67  * lookup tables to take advantage of this.
68  *
69  * Both lookup tables share in common that they don't index every key in the
70  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
71  * is used for the rest.
72  *
73  * For sets that have been written to disk and are no longer being inserted
74  * into, we construct a binary search tree in an array - traversing a binary
75  * search tree in an array gives excellent locality of reference and is very
76  * fast, since both children of any node are adjacent to each other in memory
77  * (and their grandchildren, and great grandchildren...) - this means
78  * prefetching can be used to great effect.
79  *
80  * It's quite useful performance wise to keep these nodes small - not just
81  * because they're more likely to be in L2, but also because we can prefetch
82  * more nodes on a single cacheline and thus prefetch more iterations in advance
83  * when traversing this tree.
84  *
85  * Nodes in the auxiliary search tree must contain both a key to compare against
86  * (we don't want to fetch the key from the set, that would defeat the purpose),
87  * and a pointer to the key. We use a few tricks to compress both of these.
88  *
89  * To compress the pointer, we take advantage of the fact that one node in the
90  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
91  * a function (to_inorder()) that takes the index of a node in a binary tree and
92  * returns what its index would be in an inorder traversal, so we only have to
93  * store the low bits of the offset.
94  *
95  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
96  * compress that,  we take advantage of the fact that when we're traversing the
97  * search tree at every iteration we know that both our search key and the key
98  * we're looking for lie within some range - bounded by our previous
99  * comparisons. (We special case the start of a search so that this is true even
100  * at the root of the tree).
101  *
102  * So we know the key we're looking for is between a and b, and a and b don't
103  * differ higher than bit 50, we don't need to check anything higher than bit
104  * 50.
105  *
106  * We don't usually need the rest of the bits, either; we only need enough bits
107  * to partition the key range we're currently checking.  Consider key n - the
108  * key our auxiliary search tree node corresponds to, and key p, the key
109  * immediately preceding n.  The lowest bit we need to store in the auxiliary
110  * search tree is the highest bit that differs between n and p.
111  *
112  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
113  * comparison. But we'd really like our nodes in the auxiliary search tree to be
114  * of fixed size.
115  *
116  * The solution is to make them fixed size, and when we're constructing a node
117  * check if p and n differed in the bits we needed them to. If they don't we
118  * flag that node, and when doing lookups we fallback to comparing against the
119  * real key. As long as this doesn't happen to often (and it seems to reliably
120  * happen a bit less than 1% of the time), we win - even on failures, that key
121  * is then more likely to be in cache than if we were doing binary searches all
122  * the way, since we're touching so much less memory.
123  *
124  * The keys in the auxiliary search tree are stored in (software) floating
125  * point, with an exponent and a mantissa. The exponent needs to be big enough
126  * to address all the bits in the original key, but the number of bits in the
127  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
128  *
129  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
130  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
131  * We need one node per 128 bytes in the btree node, which means the auxiliary
132  * search trees take up 3% as much memory as the btree itself.
133  *
134  * Constructing these auxiliary search trees is moderately expensive, and we
135  * don't want to be constantly rebuilding the search tree for the last set
136  * whenever we insert another key into it. For the unwritten set, we use a much
137  * simpler lookup table - it's just a flat array, so index i in the lookup table
138  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
139  * within each byte range works the same as with the auxiliary search trees.
140  *
141  * These are much easier to keep up to date when we insert a key - we do it
142  * somewhat lazily; when we shift a key up we usually just increment the pointer
143  * to it, only when it would overflow do we go to the trouble of finding the
144  * first key in that range of bytes again.
145  */
146 
147 struct btree;
148 struct btree_keys;
149 struct btree_iter;
150 struct btree_iter_set;
151 struct bkey_float;
152 
153 #define MAX_BSETS		4U
154 
155 struct bset_tree {
156 	/*
157 	 * We construct a binary tree in an array as if the array
158 	 * started at 1, so that things line up on the same cachelines
159 	 * better: see comments in bset.c at cacheline_to_bkey() for
160 	 * details
161 	 */
162 
163 	/* size of the binary tree and prev array */
164 	unsigned		size;
165 
166 	/* function of size - precalculated for to_inorder() */
167 	unsigned		extra;
168 
169 	/* copy of the last key in the set */
170 	struct bkey		end;
171 	struct bkey_float	*tree;
172 
173 	/*
174 	 * The nodes in the bset tree point to specific keys - this
175 	 * array holds the sizes of the previous key.
176 	 *
177 	 * Conceptually it's a member of struct bkey_float, but we want
178 	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
179 	 * path.
180 	 */
181 	uint8_t			*prev;
182 
183 	/* The actual btree node, with pointers to each sorted set */
184 	struct bset		*data;
185 };
186 
187 struct btree_keys_ops {
188 	bool		(*sort_cmp)(struct btree_iter_set,
189 				    struct btree_iter_set);
190 	struct bkey	*(*sort_fixup)(struct btree_iter *, struct bkey *);
191 	bool		(*key_invalid)(struct btree_keys *,
192 				       const struct bkey *);
193 	bool		(*key_bad)(struct btree_keys *, const struct bkey *);
194 	bool		(*key_merge)(struct btree_keys *,
195 				     struct bkey *, struct bkey *);
196 	void		(*key_to_text)(char *, size_t, const struct bkey *);
197 	void		(*key_dump)(struct btree_keys *, const struct bkey *);
198 
199 	/*
200 	 * Only used for deciding whether to use START_KEY(k) or just the key
201 	 * itself in a couple places
202 	 */
203 	bool		is_extents;
204 };
205 
206 struct btree_keys {
207 	const struct btree_keys_ops	*ops;
208 	uint8_t			page_order;
209 	uint8_t			nsets;
210 	unsigned		last_set_unwritten:1;
211 	bool			*expensive_debug_checks;
212 
213 	/*
214 	 * Sets of sorted keys - the real btree node - plus a binary search tree
215 	 *
216 	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
217 	 * to the memory we have allocated for this btree node. Additionally,
218 	 * set[0]->data points to the entire btree node as it exists on disk.
219 	 */
220 	struct bset_tree	set[MAX_BSETS];
221 };
222 
223 static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
224 {
225 	return b->set + b->nsets;
226 }
227 
228 static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
229 {
230 	return t <= b->set + b->nsets - b->last_set_unwritten;
231 }
232 
233 static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
234 {
235 	return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
236 }
237 
238 static inline unsigned bset_byte_offset(struct btree_keys *b, struct bset *i)
239 {
240 	return ((size_t) i) - ((size_t) b->set->data);
241 }
242 
243 static inline unsigned bset_sector_offset(struct btree_keys *b, struct bset *i)
244 {
245 	return bset_byte_offset(b, i) >> 9;
246 }
247 
248 #define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
249 #define set_bytes(i)		__set_bytes(i, i->keys)
250 
251 #define __set_blocks(i, k, block_bytes)				\
252 	DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
253 #define set_blocks(i, block_bytes)				\
254 	__set_blocks(i, (i)->keys, block_bytes)
255 
256 static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
257 {
258 	struct bset_tree *t = bset_tree_last(b);
259 
260 	BUG_ON((PAGE_SIZE << b->page_order) <
261 	       (bset_byte_offset(b, t->data) + set_bytes(t->data)));
262 
263 	if (!b->last_set_unwritten)
264 		return 0;
265 
266 	return ((PAGE_SIZE << b->page_order) -
267 		(bset_byte_offset(b, t->data) + set_bytes(t->data))) /
268 		sizeof(u64);
269 }
270 
271 static inline struct bset *bset_next_set(struct btree_keys *b,
272 					 unsigned block_bytes)
273 {
274 	struct bset *i = bset_tree_last(b)->data;
275 
276 	return ((void *) i) + roundup(set_bytes(i), block_bytes);
277 }
278 
279 void bch_btree_keys_free(struct btree_keys *);
280 int bch_btree_keys_alloc(struct btree_keys *, unsigned, gfp_t);
281 void bch_btree_keys_init(struct btree_keys *, const struct btree_keys_ops *,
282 			 bool *);
283 
284 void bch_bset_init_next(struct btree_keys *, struct bset *, uint64_t);
285 void bch_bset_build_written_tree(struct btree_keys *);
286 void bch_bset_fix_invalidated_key(struct btree_keys *, struct bkey *);
287 void bch_bset_insert(struct btree_keys *, struct bkey *, struct bkey *);
288 
289 /*
290  * Tries to merge l and r: l should be lower than r
291  * Returns true if we were able to merge. If we did merge, l will be the merged
292  * key, r will be untouched.
293  */
294 static inline bool bch_bkey_try_merge(struct btree_keys *b,
295 				      struct bkey *l, struct bkey *r)
296 {
297 	return b->ops->key_merge ?  b->ops->key_merge(b, l, r) : false;
298 }
299 
300 /* Btree key iteration */
301 
302 struct btree_iter {
303 	size_t size, used;
304 #ifdef CONFIG_BCACHE_DEBUG
305 	struct btree_keys *b;
306 #endif
307 	struct btree_iter_set {
308 		struct bkey *k, *end;
309 	} data[MAX_BSETS];
310 };
311 
312 typedef bool (*ptr_filter_fn)(struct btree_keys *, const struct bkey *);
313 
314 struct bkey *bch_btree_iter_next(struct btree_iter *);
315 struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
316 					struct btree_keys *, ptr_filter_fn);
317 
318 void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
319 struct bkey *bch_btree_iter_init(struct btree_keys *, struct btree_iter *,
320 				 struct bkey *);
321 
322 struct bkey *__bch_bset_search(struct btree_keys *, struct bset_tree *,
323 			       const struct bkey *);
324 
325 /*
326  * Returns the first key that is strictly greater than search
327  */
328 static inline struct bkey *bch_bset_search(struct btree_keys *b,
329 					   struct bset_tree *t,
330 					   const struct bkey *search)
331 {
332 	return search ? __bch_bset_search(b, t, search) : t->data->start;
333 }
334 
335 #define for_each_key_filter(b, k, iter, filter)				\
336 	for (bch_btree_iter_init((b), (iter), NULL);			\
337 	     ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
338 
339 #define for_each_key(b, k, iter)					\
340 	for (bch_btree_iter_init((b), (iter), NULL);			\
341 	     ((k) = bch_btree_iter_next(iter));)
342 
343 /* Sorting */
344 
345 struct bset_sort_state {
346 	mempool_t		*pool;
347 
348 	unsigned		page_order;
349 	unsigned		crit_factor;
350 
351 	struct time_stats	time;
352 };
353 
354 void bch_bset_sort_state_free(struct bset_sort_state *);
355 int bch_bset_sort_state_init(struct bset_sort_state *, unsigned);
356 void bch_btree_sort_lazy(struct btree *, struct bset_sort_state *);
357 void bch_btree_sort_into(struct btree *, struct btree *,
358 			 struct bset_sort_state *);
359 void bch_btree_sort_and_fix_extents(struct btree_keys *, struct btree_iter *,
360 				    struct bset_sort_state *);
361 void bch_btree_sort_partial(struct btree *, unsigned,
362 			    struct bset_sort_state *);
363 
364 static inline void bch_btree_sort(struct btree *b,
365 				  struct bset_sort_state *state)
366 {
367 	bch_btree_sort_partial(b, 0, state);
368 }
369 
370 struct bset_stats {
371 	size_t sets_written, sets_unwritten;
372 	size_t bytes_written, bytes_unwritten;
373 	size_t floats, failed;
374 };
375 
376 void bch_btree_keys_stats(struct btree_keys *, struct bset_stats *);
377 
378 /* Bkey utility code */
379 
380 #define bset_bkey_last(i)	bkey_idx((struct bkey *) (i)->d, (i)->keys)
381 
382 static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned idx)
383 {
384 	return bkey_idx(i->start, idx);
385 }
386 
387 static inline void bkey_init(struct bkey *k)
388 {
389 	*k = ZERO_KEY;
390 }
391 
392 static __always_inline int64_t bkey_cmp(const struct bkey *l,
393 					const struct bkey *r)
394 {
395 	return unlikely(KEY_INODE(l) != KEY_INODE(r))
396 		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
397 		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
398 }
399 
400 void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
401 			      unsigned);
402 bool __bch_cut_front(const struct bkey *, struct bkey *);
403 bool __bch_cut_back(const struct bkey *, struct bkey *);
404 
405 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
406 {
407 	BUG_ON(bkey_cmp(where, k) > 0);
408 	return __bch_cut_front(where, k);
409 }
410 
411 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
412 {
413 	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
414 	return __bch_cut_back(where, k);
415 }
416 
417 #define PRECEDING_KEY(_k)					\
418 ({								\
419 	struct bkey *_ret = NULL;				\
420 								\
421 	if (KEY_INODE(_k) || KEY_OFFSET(_k)) {			\
422 		_ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0);	\
423 								\
424 		if (!_ret->low)					\
425 			_ret->high--;				\
426 		_ret->low--;					\
427 	}							\
428 								\
429 	_ret;							\
430 })
431 
432 static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
433 {
434 	return b->ops->key_invalid(b, k);
435 }
436 
437 static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
438 {
439 	return b->ops->key_bad(b, k);
440 }
441 
442 static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
443 				    size_t size, const struct bkey *k)
444 {
445 	return b->ops->key_to_text(buf, size, k);
446 }
447 
448 /* Keylists */
449 
450 struct keylist {
451 	union {
452 		struct bkey		*keys;
453 		uint64_t		*keys_p;
454 	};
455 	union {
456 		struct bkey		*top;
457 		uint64_t		*top_p;
458 	};
459 
460 	/* Enough room for btree_split's keys without realloc */
461 #define KEYLIST_INLINE		16
462 	uint64_t		inline_keys[KEYLIST_INLINE];
463 };
464 
465 static inline void bch_keylist_init(struct keylist *l)
466 {
467 	l->top_p = l->keys_p = l->inline_keys;
468 }
469 
470 static inline void bch_keylist_push(struct keylist *l)
471 {
472 	l->top = bkey_next(l->top);
473 }
474 
475 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
476 {
477 	bkey_copy(l->top, k);
478 	bch_keylist_push(l);
479 }
480 
481 static inline bool bch_keylist_empty(struct keylist *l)
482 {
483 	return l->top == l->keys;
484 }
485 
486 static inline void bch_keylist_reset(struct keylist *l)
487 {
488 	l->top = l->keys;
489 }
490 
491 static inline void bch_keylist_free(struct keylist *l)
492 {
493 	if (l->keys_p != l->inline_keys)
494 		kfree(l->keys_p);
495 }
496 
497 static inline size_t bch_keylist_nkeys(struct keylist *l)
498 {
499 	return l->top_p - l->keys_p;
500 }
501 
502 static inline size_t bch_keylist_bytes(struct keylist *l)
503 {
504 	return bch_keylist_nkeys(l) * sizeof(uint64_t);
505 }
506 
507 struct bkey *bch_keylist_pop(struct keylist *);
508 void bch_keylist_pop_front(struct keylist *);
509 int __bch_keylist_realloc(struct keylist *, unsigned);
510 
511 /* Debug stuff */
512 
513 #ifdef CONFIG_BCACHE_DEBUG
514 
515 int __bch_count_data(struct btree_keys *);
516 void __bch_check_keys(struct btree_keys *, const char *, ...);
517 void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
518 void bch_dump_bucket(struct btree_keys *);
519 
520 #else
521 
522 static inline int __bch_count_data(struct btree_keys *b) { return -1; }
523 static inline void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
524 static inline void bch_dump_bucket(struct btree_keys *b) {}
525 void bch_dump_bset(struct btree_keys *, struct bset *, unsigned);
526 
527 #endif
528 
529 static inline bool btree_keys_expensive_checks(struct btree_keys *b)
530 {
531 #ifdef CONFIG_BCACHE_DEBUG
532 	return *b->expensive_debug_checks;
533 #else
534 	return false;
535 #endif
536 }
537 
538 static inline int bch_count_data(struct btree_keys *b)
539 {
540 	return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
541 }
542 
543 #define bch_check_keys(b, ...)						\
544 do {									\
545 	if (btree_keys_expensive_checks(b))				\
546 		__bch_check_keys(b, __VA_ARGS__);			\
547 } while (0)
548 
549 #endif
550