xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision c0cdc89072a3e1ae3981437f385de14b7bba8fd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
50 
51 static u32 lpi_id_bits;
52 
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS		lpi_id_bits
59 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 
62 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
63 
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70 	u64			target_address;
71 	u16			col_id;
72 };
73 
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79 	void		*base;
80 	u64		val;
81 	u32		order;
82 	u32		psz;
83 };
84 
85 struct its_device;
86 
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97 	raw_spinlock_t		lock;
98 	struct mutex		dev_alloc_lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	void __iomem		*sgir_base;
102 	phys_addr_t		phys_base;
103 	struct its_cmd_block	*cmd_base;
104 	struct its_cmd_block	*cmd_write;
105 	struct its_baser	tables[GITS_BASER_NR_REGS];
106 	struct its_collection	*collections;
107 	struct fwnode_handle	*fwnode_handle;
108 	u64			(*get_msi_base)(struct its_device *its_dev);
109 	u64			typer;
110 	u64			cbaser_save;
111 	u32			ctlr_save;
112 	u32			mpidr;
113 	struct list_head	its_device_list;
114 	u64			flags;
115 	unsigned long		list_nr;
116 	int			numa_node;
117 	unsigned int		msi_domain_flags;
118 	u32			pre_its_base; /* for Socionext Synquacer */
119 	int			vlpi_redist_offset;
120 };
121 
122 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS						\
130 	({								\
131 		int nvpeid = 16;					\
132 		if (gic_rdists->has_rvpeid &&				\
133 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
134 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
135 				      GICD_TYPER2_VID);			\
136 									\
137 		nvpeid;							\
138 	})
139 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
140 
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
143 
144 struct event_lpi_map {
145 	unsigned long		*lpi_map;
146 	u16			*col_map;
147 	irq_hw_number_t		lpi_base;
148 	int			nr_lpis;
149 	raw_spinlock_t		vlpi_lock;
150 	struct its_vm		*vm;
151 	struct its_vlpi_map	*vlpi_maps;
152 	int			nr_vlpis;
153 };
154 
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162 	struct list_head	entry;
163 	struct its_node		*its;
164 	struct event_lpi_map	event_map;
165 	void			*itt;
166 	u32			nr_ites;
167 	u32			device_id;
168 	bool			shared;
169 };
170 
171 static struct {
172 	raw_spinlock_t		lock;
173 	struct its_device	*dev;
174 	struct its_vpe		**vpes;
175 	int			next_victim;
176 } vpe_proxy;
177 
178 struct cpu_lpi_count {
179 	atomic_t	managed;
180 	atomic_t	unmanaged;
181 };
182 
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184 
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189 
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193 
194 static DEFINE_IDA(its_vpeid_ida);
195 
196 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
200 
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209 
210 static u16 get_its_list(struct its_vm *vm)
211 {
212 	struct its_node *its;
213 	unsigned long its_list = 0;
214 
215 	list_for_each_entry(its, &its_nodes, entry) {
216 		if (!is_v4(its))
217 			continue;
218 
219 		if (require_its_list_vmovp(vm, its))
220 			__set_bit(its->list_nr, &its_list);
221 	}
222 
223 	return (u16)its_list;
224 }
225 
226 static inline u32 its_get_event_id(struct irq_data *d)
227 {
228 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
229 	return d->hwirq - its_dev->event_map.lpi_base;
230 }
231 
232 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
233 					       u32 event)
234 {
235 	struct its_node *its = its_dev->its;
236 
237 	return its->collections + its_dev->event_map.col_map[event];
238 }
239 
240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
241 					       u32 event)
242 {
243 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
244 		return NULL;
245 
246 	return &its_dev->event_map.vlpi_maps[event];
247 }
248 
249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
250 {
251 	if (irqd_is_forwarded_to_vcpu(d)) {
252 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
253 		u32 event = its_get_event_id(d);
254 
255 		return dev_event_to_vlpi_map(its_dev, event);
256 	}
257 
258 	return NULL;
259 }
260 
261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
262 {
263 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
264 	return vpe->col_idx;
265 }
266 
267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
268 {
269 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
270 }
271 
272 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
273 {
274 	struct its_vlpi_map *map = get_vlpi_map(d);
275 	int cpu;
276 
277 	if (map) {
278 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
279 	} else {
280 		/* Physical LPIs are already locked via the irq_desc lock */
281 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
282 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
283 		/* Keep GCC quiet... */
284 		*flags = 0;
285 	}
286 
287 	return cpu;
288 }
289 
290 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
291 {
292 	struct its_vlpi_map *map = get_vlpi_map(d);
293 
294 	if (map)
295 		vpe_to_cpuid_unlock(map->vpe, flags);
296 }
297 
298 static struct its_collection *valid_col(struct its_collection *col)
299 {
300 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
301 		return NULL;
302 
303 	return col;
304 }
305 
306 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
307 {
308 	if (valid_col(its->collections + vpe->col_idx))
309 		return vpe;
310 
311 	return NULL;
312 }
313 
314 /*
315  * ITS command descriptors - parameters to be encoded in a command
316  * block.
317  */
318 struct its_cmd_desc {
319 	union {
320 		struct {
321 			struct its_device *dev;
322 			u32 event_id;
323 		} its_inv_cmd;
324 
325 		struct {
326 			struct its_device *dev;
327 			u32 event_id;
328 		} its_clear_cmd;
329 
330 		struct {
331 			struct its_device *dev;
332 			u32 event_id;
333 		} its_int_cmd;
334 
335 		struct {
336 			struct its_device *dev;
337 			int valid;
338 		} its_mapd_cmd;
339 
340 		struct {
341 			struct its_collection *col;
342 			int valid;
343 		} its_mapc_cmd;
344 
345 		struct {
346 			struct its_device *dev;
347 			u32 phys_id;
348 			u32 event_id;
349 		} its_mapti_cmd;
350 
351 		struct {
352 			struct its_device *dev;
353 			struct its_collection *col;
354 			u32 event_id;
355 		} its_movi_cmd;
356 
357 		struct {
358 			struct its_device *dev;
359 			u32 event_id;
360 		} its_discard_cmd;
361 
362 		struct {
363 			struct its_collection *col;
364 		} its_invall_cmd;
365 
366 		struct {
367 			struct its_vpe *vpe;
368 		} its_vinvall_cmd;
369 
370 		struct {
371 			struct its_vpe *vpe;
372 			struct its_collection *col;
373 			bool valid;
374 		} its_vmapp_cmd;
375 
376 		struct {
377 			struct its_vpe *vpe;
378 			struct its_device *dev;
379 			u32 virt_id;
380 			u32 event_id;
381 			bool db_enabled;
382 		} its_vmapti_cmd;
383 
384 		struct {
385 			struct its_vpe *vpe;
386 			struct its_device *dev;
387 			u32 event_id;
388 			bool db_enabled;
389 		} its_vmovi_cmd;
390 
391 		struct {
392 			struct its_vpe *vpe;
393 			struct its_collection *col;
394 			u16 seq_num;
395 			u16 its_list;
396 		} its_vmovp_cmd;
397 
398 		struct {
399 			struct its_vpe *vpe;
400 		} its_invdb_cmd;
401 
402 		struct {
403 			struct its_vpe *vpe;
404 			u8 sgi;
405 			u8 priority;
406 			bool enable;
407 			bool group;
408 			bool clear;
409 		} its_vsgi_cmd;
410 	};
411 };
412 
413 /*
414  * The ITS command block, which is what the ITS actually parses.
415  */
416 struct its_cmd_block {
417 	union {
418 		u64	raw_cmd[4];
419 		__le64	raw_cmd_le[4];
420 	};
421 };
422 
423 #define ITS_CMD_QUEUE_SZ		SZ_64K
424 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
425 
426 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
427 						    struct its_cmd_block *,
428 						    struct its_cmd_desc *);
429 
430 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
431 					      struct its_cmd_block *,
432 					      struct its_cmd_desc *);
433 
434 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
435 {
436 	u64 mask = GENMASK_ULL(h, l);
437 	*raw_cmd &= ~mask;
438 	*raw_cmd |= (val << l) & mask;
439 }
440 
441 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
442 {
443 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
444 }
445 
446 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
447 {
448 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
449 }
450 
451 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
452 {
453 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
454 }
455 
456 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
457 {
458 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
459 }
460 
461 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
462 {
463 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
464 }
465 
466 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
467 {
468 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
469 }
470 
471 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
472 {
473 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
474 }
475 
476 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
477 {
478 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
479 }
480 
481 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
482 {
483 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
484 }
485 
486 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
487 {
488 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
489 }
490 
491 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
492 {
493 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
494 }
495 
496 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
497 {
498 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
499 }
500 
501 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
502 {
503 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
504 }
505 
506 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
507 {
508 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
509 }
510 
511 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
512 {
513 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
514 }
515 
516 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
517 {
518 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
519 }
520 
521 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
522 {
523 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
524 }
525 
526 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
527 {
528 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
529 }
530 
531 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
532 {
533 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
534 }
535 
536 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
537 {
538 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
539 }
540 
541 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
542 					u32 vpe_db_lpi)
543 {
544 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
545 }
546 
547 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
548 					u32 vpe_db_lpi)
549 {
550 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
551 }
552 
553 static void its_encode_db(struct its_cmd_block *cmd, bool db)
554 {
555 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
556 }
557 
558 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
559 {
560 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
561 }
562 
563 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
564 {
565 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
566 }
567 
568 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
569 {
570 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
571 }
572 
573 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
574 {
575 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
576 }
577 
578 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
579 {
580 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
581 }
582 
583 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
584 {
585 	/* Let's fixup BE commands */
586 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
587 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
588 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
589 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
590 }
591 
592 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
593 						 struct its_cmd_block *cmd,
594 						 struct its_cmd_desc *desc)
595 {
596 	unsigned long itt_addr;
597 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
598 
599 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
600 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
601 
602 	its_encode_cmd(cmd, GITS_CMD_MAPD);
603 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
604 	its_encode_size(cmd, size - 1);
605 	its_encode_itt(cmd, itt_addr);
606 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
607 
608 	its_fixup_cmd(cmd);
609 
610 	return NULL;
611 }
612 
613 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
614 						 struct its_cmd_block *cmd,
615 						 struct its_cmd_desc *desc)
616 {
617 	its_encode_cmd(cmd, GITS_CMD_MAPC);
618 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
619 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
620 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
621 
622 	its_fixup_cmd(cmd);
623 
624 	return desc->its_mapc_cmd.col;
625 }
626 
627 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
628 						  struct its_cmd_block *cmd,
629 						  struct its_cmd_desc *desc)
630 {
631 	struct its_collection *col;
632 
633 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
634 			       desc->its_mapti_cmd.event_id);
635 
636 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
637 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
638 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
639 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
640 	its_encode_collection(cmd, col->col_id);
641 
642 	its_fixup_cmd(cmd);
643 
644 	return valid_col(col);
645 }
646 
647 static struct its_collection *its_build_movi_cmd(struct its_node *its,
648 						 struct its_cmd_block *cmd,
649 						 struct its_cmd_desc *desc)
650 {
651 	struct its_collection *col;
652 
653 	col = dev_event_to_col(desc->its_movi_cmd.dev,
654 			       desc->its_movi_cmd.event_id);
655 
656 	its_encode_cmd(cmd, GITS_CMD_MOVI);
657 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
658 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
659 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
660 
661 	its_fixup_cmd(cmd);
662 
663 	return valid_col(col);
664 }
665 
666 static struct its_collection *its_build_discard_cmd(struct its_node *its,
667 						    struct its_cmd_block *cmd,
668 						    struct its_cmd_desc *desc)
669 {
670 	struct its_collection *col;
671 
672 	col = dev_event_to_col(desc->its_discard_cmd.dev,
673 			       desc->its_discard_cmd.event_id);
674 
675 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
676 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
677 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
678 
679 	its_fixup_cmd(cmd);
680 
681 	return valid_col(col);
682 }
683 
684 static struct its_collection *its_build_inv_cmd(struct its_node *its,
685 						struct its_cmd_block *cmd,
686 						struct its_cmd_desc *desc)
687 {
688 	struct its_collection *col;
689 
690 	col = dev_event_to_col(desc->its_inv_cmd.dev,
691 			       desc->its_inv_cmd.event_id);
692 
693 	its_encode_cmd(cmd, GITS_CMD_INV);
694 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
695 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
696 
697 	its_fixup_cmd(cmd);
698 
699 	return valid_col(col);
700 }
701 
702 static struct its_collection *its_build_int_cmd(struct its_node *its,
703 						struct its_cmd_block *cmd,
704 						struct its_cmd_desc *desc)
705 {
706 	struct its_collection *col;
707 
708 	col = dev_event_to_col(desc->its_int_cmd.dev,
709 			       desc->its_int_cmd.event_id);
710 
711 	its_encode_cmd(cmd, GITS_CMD_INT);
712 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
713 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
714 
715 	its_fixup_cmd(cmd);
716 
717 	return valid_col(col);
718 }
719 
720 static struct its_collection *its_build_clear_cmd(struct its_node *its,
721 						  struct its_cmd_block *cmd,
722 						  struct its_cmd_desc *desc)
723 {
724 	struct its_collection *col;
725 
726 	col = dev_event_to_col(desc->its_clear_cmd.dev,
727 			       desc->its_clear_cmd.event_id);
728 
729 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
730 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
731 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
732 
733 	its_fixup_cmd(cmd);
734 
735 	return valid_col(col);
736 }
737 
738 static struct its_collection *its_build_invall_cmd(struct its_node *its,
739 						   struct its_cmd_block *cmd,
740 						   struct its_cmd_desc *desc)
741 {
742 	its_encode_cmd(cmd, GITS_CMD_INVALL);
743 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
744 
745 	its_fixup_cmd(cmd);
746 
747 	return NULL;
748 }
749 
750 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
751 					     struct its_cmd_block *cmd,
752 					     struct its_cmd_desc *desc)
753 {
754 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
755 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
756 
757 	its_fixup_cmd(cmd);
758 
759 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
760 }
761 
762 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
763 					   struct its_cmd_block *cmd,
764 					   struct its_cmd_desc *desc)
765 {
766 	unsigned long vpt_addr, vconf_addr;
767 	u64 target;
768 	bool alloc;
769 
770 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
771 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
772 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
773 
774 	if (!desc->its_vmapp_cmd.valid) {
775 		if (is_v4_1(its)) {
776 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
777 			its_encode_alloc(cmd, alloc);
778 		}
779 
780 		goto out;
781 	}
782 
783 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
784 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
785 
786 	its_encode_target(cmd, target);
787 	its_encode_vpt_addr(cmd, vpt_addr);
788 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
789 
790 	if (!is_v4_1(its))
791 		goto out;
792 
793 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
794 
795 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
796 
797 	its_encode_alloc(cmd, alloc);
798 
799 	/*
800 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
801 	 * to be unmapped first, and in this case, we may remap the vPE
802 	 * back while the VPT is not empty. So we can't assume that the
803 	 * VPT is empty on map. This is why we never advertise PTZ.
804 	 */
805 	its_encode_ptz(cmd, false);
806 	its_encode_vconf_addr(cmd, vconf_addr);
807 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
808 
809 out:
810 	its_fixup_cmd(cmd);
811 
812 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
813 }
814 
815 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
816 					    struct its_cmd_block *cmd,
817 					    struct its_cmd_desc *desc)
818 {
819 	u32 db;
820 
821 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
822 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
823 	else
824 		db = 1023;
825 
826 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
827 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
828 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
829 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
830 	its_encode_db_phys_id(cmd, db);
831 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
832 
833 	its_fixup_cmd(cmd);
834 
835 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
836 }
837 
838 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
839 					   struct its_cmd_block *cmd,
840 					   struct its_cmd_desc *desc)
841 {
842 	u32 db;
843 
844 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
845 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
846 	else
847 		db = 1023;
848 
849 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
850 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
851 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
852 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
853 	its_encode_db_phys_id(cmd, db);
854 	its_encode_db_valid(cmd, true);
855 
856 	its_fixup_cmd(cmd);
857 
858 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
859 }
860 
861 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
862 					   struct its_cmd_block *cmd,
863 					   struct its_cmd_desc *desc)
864 {
865 	u64 target;
866 
867 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
868 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
869 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
870 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
871 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
872 	its_encode_target(cmd, target);
873 
874 	if (is_v4_1(its)) {
875 		its_encode_db(cmd, true);
876 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
877 	}
878 
879 	its_fixup_cmd(cmd);
880 
881 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
882 }
883 
884 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
885 					  struct its_cmd_block *cmd,
886 					  struct its_cmd_desc *desc)
887 {
888 	struct its_vlpi_map *map;
889 
890 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
891 				    desc->its_inv_cmd.event_id);
892 
893 	its_encode_cmd(cmd, GITS_CMD_INV);
894 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
895 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
896 
897 	its_fixup_cmd(cmd);
898 
899 	return valid_vpe(its, map->vpe);
900 }
901 
902 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
903 					  struct its_cmd_block *cmd,
904 					  struct its_cmd_desc *desc)
905 {
906 	struct its_vlpi_map *map;
907 
908 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
909 				    desc->its_int_cmd.event_id);
910 
911 	its_encode_cmd(cmd, GITS_CMD_INT);
912 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
913 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
914 
915 	its_fixup_cmd(cmd);
916 
917 	return valid_vpe(its, map->vpe);
918 }
919 
920 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
921 					    struct its_cmd_block *cmd,
922 					    struct its_cmd_desc *desc)
923 {
924 	struct its_vlpi_map *map;
925 
926 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
927 				    desc->its_clear_cmd.event_id);
928 
929 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
930 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
931 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
932 
933 	its_fixup_cmd(cmd);
934 
935 	return valid_vpe(its, map->vpe);
936 }
937 
938 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
939 					   struct its_cmd_block *cmd,
940 					   struct its_cmd_desc *desc)
941 {
942 	if (WARN_ON(!is_v4_1(its)))
943 		return NULL;
944 
945 	its_encode_cmd(cmd, GITS_CMD_INVDB);
946 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
947 
948 	its_fixup_cmd(cmd);
949 
950 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
951 }
952 
953 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
954 					  struct its_cmd_block *cmd,
955 					  struct its_cmd_desc *desc)
956 {
957 	if (WARN_ON(!is_v4_1(its)))
958 		return NULL;
959 
960 	its_encode_cmd(cmd, GITS_CMD_VSGI);
961 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
962 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
963 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
964 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
965 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
966 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
967 
968 	its_fixup_cmd(cmd);
969 
970 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
971 }
972 
973 static u64 its_cmd_ptr_to_offset(struct its_node *its,
974 				 struct its_cmd_block *ptr)
975 {
976 	return (ptr - its->cmd_base) * sizeof(*ptr);
977 }
978 
979 static int its_queue_full(struct its_node *its)
980 {
981 	int widx;
982 	int ridx;
983 
984 	widx = its->cmd_write - its->cmd_base;
985 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
986 
987 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
988 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
989 		return 1;
990 
991 	return 0;
992 }
993 
994 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
995 {
996 	struct its_cmd_block *cmd;
997 	u32 count = 1000000;	/* 1s! */
998 
999 	while (its_queue_full(its)) {
1000 		count--;
1001 		if (!count) {
1002 			pr_err_ratelimited("ITS queue not draining\n");
1003 			return NULL;
1004 		}
1005 		cpu_relax();
1006 		udelay(1);
1007 	}
1008 
1009 	cmd = its->cmd_write++;
1010 
1011 	/* Handle queue wrapping */
1012 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1013 		its->cmd_write = its->cmd_base;
1014 
1015 	/* Clear command  */
1016 	cmd->raw_cmd[0] = 0;
1017 	cmd->raw_cmd[1] = 0;
1018 	cmd->raw_cmd[2] = 0;
1019 	cmd->raw_cmd[3] = 0;
1020 
1021 	return cmd;
1022 }
1023 
1024 static struct its_cmd_block *its_post_commands(struct its_node *its)
1025 {
1026 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1027 
1028 	writel_relaxed(wr, its->base + GITS_CWRITER);
1029 
1030 	return its->cmd_write;
1031 }
1032 
1033 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1034 {
1035 	/*
1036 	 * Make sure the commands written to memory are observable by
1037 	 * the ITS.
1038 	 */
1039 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1040 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1041 	else
1042 		dsb(ishst);
1043 }
1044 
1045 static int its_wait_for_range_completion(struct its_node *its,
1046 					 u64	prev_idx,
1047 					 struct its_cmd_block *to)
1048 {
1049 	u64 rd_idx, to_idx, linear_idx;
1050 	u32 count = 1000000;	/* 1s! */
1051 
1052 	/* Linearize to_idx if the command set has wrapped around */
1053 	to_idx = its_cmd_ptr_to_offset(its, to);
1054 	if (to_idx < prev_idx)
1055 		to_idx += ITS_CMD_QUEUE_SZ;
1056 
1057 	linear_idx = prev_idx;
1058 
1059 	while (1) {
1060 		s64 delta;
1061 
1062 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1063 
1064 		/*
1065 		 * Compute the read pointer progress, taking the
1066 		 * potential wrap-around into account.
1067 		 */
1068 		delta = rd_idx - prev_idx;
1069 		if (rd_idx < prev_idx)
1070 			delta += ITS_CMD_QUEUE_SZ;
1071 
1072 		linear_idx += delta;
1073 		if (linear_idx >= to_idx)
1074 			break;
1075 
1076 		count--;
1077 		if (!count) {
1078 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1079 					   to_idx, linear_idx);
1080 			return -1;
1081 		}
1082 		prev_idx = rd_idx;
1083 		cpu_relax();
1084 		udelay(1);
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 /* Warning, macro hell follows */
1091 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1092 void name(struct its_node *its,						\
1093 	  buildtype builder,						\
1094 	  struct its_cmd_desc *desc)					\
1095 {									\
1096 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1097 	synctype *sync_obj;						\
1098 	unsigned long flags;						\
1099 	u64 rd_idx;							\
1100 									\
1101 	raw_spin_lock_irqsave(&its->lock, flags);			\
1102 									\
1103 	cmd = its_allocate_entry(its);					\
1104 	if (!cmd) {		/* We're soooooo screewed... */		\
1105 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1106 		return;							\
1107 	}								\
1108 	sync_obj = builder(its, cmd, desc);				\
1109 	its_flush_cmd(its, cmd);					\
1110 									\
1111 	if (sync_obj) {							\
1112 		sync_cmd = its_allocate_entry(its);			\
1113 		if (!sync_cmd)						\
1114 			goto post;					\
1115 									\
1116 		buildfn(its, sync_cmd, sync_obj);			\
1117 		its_flush_cmd(its, sync_cmd);				\
1118 	}								\
1119 									\
1120 post:									\
1121 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1122 	next_cmd = its_post_commands(its);				\
1123 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1124 									\
1125 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1126 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1127 }
1128 
1129 static void its_build_sync_cmd(struct its_node *its,
1130 			       struct its_cmd_block *sync_cmd,
1131 			       struct its_collection *sync_col)
1132 {
1133 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1134 	its_encode_target(sync_cmd, sync_col->target_address);
1135 
1136 	its_fixup_cmd(sync_cmd);
1137 }
1138 
1139 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1140 			     struct its_collection, its_build_sync_cmd)
1141 
1142 static void its_build_vsync_cmd(struct its_node *its,
1143 				struct its_cmd_block *sync_cmd,
1144 				struct its_vpe *sync_vpe)
1145 {
1146 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1147 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1148 
1149 	its_fixup_cmd(sync_cmd);
1150 }
1151 
1152 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1153 			     struct its_vpe, its_build_vsync_cmd)
1154 
1155 static void its_send_int(struct its_device *dev, u32 event_id)
1156 {
1157 	struct its_cmd_desc desc;
1158 
1159 	desc.its_int_cmd.dev = dev;
1160 	desc.its_int_cmd.event_id = event_id;
1161 
1162 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1163 }
1164 
1165 static void its_send_clear(struct its_device *dev, u32 event_id)
1166 {
1167 	struct its_cmd_desc desc;
1168 
1169 	desc.its_clear_cmd.dev = dev;
1170 	desc.its_clear_cmd.event_id = event_id;
1171 
1172 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1173 }
1174 
1175 static void its_send_inv(struct its_device *dev, u32 event_id)
1176 {
1177 	struct its_cmd_desc desc;
1178 
1179 	desc.its_inv_cmd.dev = dev;
1180 	desc.its_inv_cmd.event_id = event_id;
1181 
1182 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1183 }
1184 
1185 static void its_send_mapd(struct its_device *dev, int valid)
1186 {
1187 	struct its_cmd_desc desc;
1188 
1189 	desc.its_mapd_cmd.dev = dev;
1190 	desc.its_mapd_cmd.valid = !!valid;
1191 
1192 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1193 }
1194 
1195 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1196 			  int valid)
1197 {
1198 	struct its_cmd_desc desc;
1199 
1200 	desc.its_mapc_cmd.col = col;
1201 	desc.its_mapc_cmd.valid = !!valid;
1202 
1203 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1204 }
1205 
1206 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1207 {
1208 	struct its_cmd_desc desc;
1209 
1210 	desc.its_mapti_cmd.dev = dev;
1211 	desc.its_mapti_cmd.phys_id = irq_id;
1212 	desc.its_mapti_cmd.event_id = id;
1213 
1214 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1215 }
1216 
1217 static void its_send_movi(struct its_device *dev,
1218 			  struct its_collection *col, u32 id)
1219 {
1220 	struct its_cmd_desc desc;
1221 
1222 	desc.its_movi_cmd.dev = dev;
1223 	desc.its_movi_cmd.col = col;
1224 	desc.its_movi_cmd.event_id = id;
1225 
1226 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1227 }
1228 
1229 static void its_send_discard(struct its_device *dev, u32 id)
1230 {
1231 	struct its_cmd_desc desc;
1232 
1233 	desc.its_discard_cmd.dev = dev;
1234 	desc.its_discard_cmd.event_id = id;
1235 
1236 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1237 }
1238 
1239 static void its_send_invall(struct its_node *its, struct its_collection *col)
1240 {
1241 	struct its_cmd_desc desc;
1242 
1243 	desc.its_invall_cmd.col = col;
1244 
1245 	its_send_single_command(its, its_build_invall_cmd, &desc);
1246 }
1247 
1248 static void its_send_vmapti(struct its_device *dev, u32 id)
1249 {
1250 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1251 	struct its_cmd_desc desc;
1252 
1253 	desc.its_vmapti_cmd.vpe = map->vpe;
1254 	desc.its_vmapti_cmd.dev = dev;
1255 	desc.its_vmapti_cmd.virt_id = map->vintid;
1256 	desc.its_vmapti_cmd.event_id = id;
1257 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1258 
1259 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1260 }
1261 
1262 static void its_send_vmovi(struct its_device *dev, u32 id)
1263 {
1264 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1265 	struct its_cmd_desc desc;
1266 
1267 	desc.its_vmovi_cmd.vpe = map->vpe;
1268 	desc.its_vmovi_cmd.dev = dev;
1269 	desc.its_vmovi_cmd.event_id = id;
1270 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1271 
1272 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1273 }
1274 
1275 static void its_send_vmapp(struct its_node *its,
1276 			   struct its_vpe *vpe, bool valid)
1277 {
1278 	struct its_cmd_desc desc;
1279 
1280 	desc.its_vmapp_cmd.vpe = vpe;
1281 	desc.its_vmapp_cmd.valid = valid;
1282 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1283 
1284 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1285 }
1286 
1287 static void its_send_vmovp(struct its_vpe *vpe)
1288 {
1289 	struct its_cmd_desc desc = {};
1290 	struct its_node *its;
1291 	unsigned long flags;
1292 	int col_id = vpe->col_idx;
1293 
1294 	desc.its_vmovp_cmd.vpe = vpe;
1295 
1296 	if (!its_list_map) {
1297 		its = list_first_entry(&its_nodes, struct its_node, entry);
1298 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1299 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1300 		return;
1301 	}
1302 
1303 	/*
1304 	 * Yet another marvel of the architecture. If using the
1305 	 * its_list "feature", we need to make sure that all ITSs
1306 	 * receive all VMOVP commands in the same order. The only way
1307 	 * to guarantee this is to make vmovp a serialization point.
1308 	 *
1309 	 * Wall <-- Head.
1310 	 */
1311 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1312 
1313 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1314 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1315 
1316 	/* Emit VMOVPs */
1317 	list_for_each_entry(its, &its_nodes, entry) {
1318 		if (!is_v4(its))
1319 			continue;
1320 
1321 		if (!require_its_list_vmovp(vpe->its_vm, its))
1322 			continue;
1323 
1324 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1325 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1326 	}
1327 
1328 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1329 }
1330 
1331 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1332 {
1333 	struct its_cmd_desc desc;
1334 
1335 	desc.its_vinvall_cmd.vpe = vpe;
1336 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1337 }
1338 
1339 static void its_send_vinv(struct its_device *dev, u32 event_id)
1340 {
1341 	struct its_cmd_desc desc;
1342 
1343 	/*
1344 	 * There is no real VINV command. This is just a normal INV,
1345 	 * with a VSYNC instead of a SYNC.
1346 	 */
1347 	desc.its_inv_cmd.dev = dev;
1348 	desc.its_inv_cmd.event_id = event_id;
1349 
1350 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1351 }
1352 
1353 static void its_send_vint(struct its_device *dev, u32 event_id)
1354 {
1355 	struct its_cmd_desc desc;
1356 
1357 	/*
1358 	 * There is no real VINT command. This is just a normal INT,
1359 	 * with a VSYNC instead of a SYNC.
1360 	 */
1361 	desc.its_int_cmd.dev = dev;
1362 	desc.its_int_cmd.event_id = event_id;
1363 
1364 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1365 }
1366 
1367 static void its_send_vclear(struct its_device *dev, u32 event_id)
1368 {
1369 	struct its_cmd_desc desc;
1370 
1371 	/*
1372 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1373 	 * with a VSYNC instead of a SYNC.
1374 	 */
1375 	desc.its_clear_cmd.dev = dev;
1376 	desc.its_clear_cmd.event_id = event_id;
1377 
1378 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1379 }
1380 
1381 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1382 {
1383 	struct its_cmd_desc desc;
1384 
1385 	desc.its_invdb_cmd.vpe = vpe;
1386 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1387 }
1388 
1389 /*
1390  * irqchip functions - assumes MSI, mostly.
1391  */
1392 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1393 {
1394 	struct its_vlpi_map *map = get_vlpi_map(d);
1395 	irq_hw_number_t hwirq;
1396 	void *va;
1397 	u8 *cfg;
1398 
1399 	if (map) {
1400 		va = page_address(map->vm->vprop_page);
1401 		hwirq = map->vintid;
1402 
1403 		/* Remember the updated property */
1404 		map->properties &= ~clr;
1405 		map->properties |= set | LPI_PROP_GROUP1;
1406 	} else {
1407 		va = gic_rdists->prop_table_va;
1408 		hwirq = d->hwirq;
1409 	}
1410 
1411 	cfg = va + hwirq - 8192;
1412 	*cfg &= ~clr;
1413 	*cfg |= set | LPI_PROP_GROUP1;
1414 
1415 	/*
1416 	 * Make the above write visible to the redistributors.
1417 	 * And yes, we're flushing exactly: One. Single. Byte.
1418 	 * Humpf...
1419 	 */
1420 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1421 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1422 	else
1423 		dsb(ishst);
1424 }
1425 
1426 static void wait_for_syncr(void __iomem *rdbase)
1427 {
1428 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1429 		cpu_relax();
1430 }
1431 
1432 static void direct_lpi_inv(struct irq_data *d)
1433 {
1434 	struct its_vlpi_map *map = get_vlpi_map(d);
1435 	void __iomem *rdbase;
1436 	unsigned long flags;
1437 	u64 val;
1438 	int cpu;
1439 
1440 	if (map) {
1441 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1442 
1443 		WARN_ON(!is_v4_1(its_dev->its));
1444 
1445 		val  = GICR_INVLPIR_V;
1446 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1447 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1448 	} else {
1449 		val = d->hwirq;
1450 	}
1451 
1452 	/* Target the redistributor this LPI is currently routed to */
1453 	cpu = irq_to_cpuid_lock(d, &flags);
1454 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1455 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1456 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1457 
1458 	wait_for_syncr(rdbase);
1459 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1460 	irq_to_cpuid_unlock(d, flags);
1461 }
1462 
1463 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1464 {
1465 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1466 
1467 	lpi_write_config(d, clr, set);
1468 	if (gic_rdists->has_direct_lpi &&
1469 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1470 		direct_lpi_inv(d);
1471 	else if (!irqd_is_forwarded_to_vcpu(d))
1472 		its_send_inv(its_dev, its_get_event_id(d));
1473 	else
1474 		its_send_vinv(its_dev, its_get_event_id(d));
1475 }
1476 
1477 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1478 {
1479 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480 	u32 event = its_get_event_id(d);
1481 	struct its_vlpi_map *map;
1482 
1483 	/*
1484 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1485 	 * here.
1486 	 */
1487 	if (is_v4_1(its_dev->its))
1488 		return;
1489 
1490 	map = dev_event_to_vlpi_map(its_dev, event);
1491 
1492 	if (map->db_enabled == enable)
1493 		return;
1494 
1495 	map->db_enabled = enable;
1496 
1497 	/*
1498 	 * More fun with the architecture:
1499 	 *
1500 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1501 	 * value or to 1023, depending on the enable bit. But that
1502 	 * would be issuing a mapping for an /existing/ DevID+EventID
1503 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1504 	 * to the /same/ vPE, using this opportunity to adjust the
1505 	 * doorbell. Mouahahahaha. We loves it, Precious.
1506 	 */
1507 	its_send_vmovi(its_dev, event);
1508 }
1509 
1510 static void its_mask_irq(struct irq_data *d)
1511 {
1512 	if (irqd_is_forwarded_to_vcpu(d))
1513 		its_vlpi_set_doorbell(d, false);
1514 
1515 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1516 }
1517 
1518 static void its_unmask_irq(struct irq_data *d)
1519 {
1520 	if (irqd_is_forwarded_to_vcpu(d))
1521 		its_vlpi_set_doorbell(d, true);
1522 
1523 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1524 }
1525 
1526 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1527 {
1528 	if (irqd_affinity_is_managed(d))
1529 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1530 
1531 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1532 }
1533 
1534 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1535 {
1536 	if (irqd_affinity_is_managed(d))
1537 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1538 	else
1539 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1540 }
1541 
1542 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1543 {
1544 	if (irqd_affinity_is_managed(d))
1545 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1546 	else
1547 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1548 }
1549 
1550 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1551 					      const struct cpumask *cpu_mask)
1552 {
1553 	unsigned int cpu = nr_cpu_ids, tmp;
1554 	int count = S32_MAX;
1555 
1556 	for_each_cpu(tmp, cpu_mask) {
1557 		int this_count = its_read_lpi_count(d, tmp);
1558 		if (this_count < count) {
1559 			cpu = tmp;
1560 		        count = this_count;
1561 		}
1562 	}
1563 
1564 	return cpu;
1565 }
1566 
1567 /*
1568  * As suggested by Thomas Gleixner in:
1569  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1570  */
1571 static int its_select_cpu(struct irq_data *d,
1572 			  const struct cpumask *aff_mask)
1573 {
1574 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1575 	cpumask_var_t tmpmask;
1576 	int cpu, node;
1577 
1578 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1579 		return -ENOMEM;
1580 
1581 	node = its_dev->its->numa_node;
1582 
1583 	if (!irqd_affinity_is_managed(d)) {
1584 		/* First try the NUMA node */
1585 		if (node != NUMA_NO_NODE) {
1586 			/*
1587 			 * Try the intersection of the affinity mask and the
1588 			 * node mask (and the online mask, just to be safe).
1589 			 */
1590 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1591 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1592 
1593 			/*
1594 			 * Ideally, we would check if the mask is empty, and
1595 			 * try again on the full node here.
1596 			 *
1597 			 * But it turns out that the way ACPI describes the
1598 			 * affinity for ITSs only deals about memory, and
1599 			 * not target CPUs, so it cannot describe a single
1600 			 * ITS placed next to two NUMA nodes.
1601 			 *
1602 			 * Instead, just fallback on the online mask. This
1603 			 * diverges from Thomas' suggestion above.
1604 			 */
1605 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1606 			if (cpu < nr_cpu_ids)
1607 				goto out;
1608 
1609 			/* If we can't cross sockets, give up */
1610 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1611 				goto out;
1612 
1613 			/* If the above failed, expand the search */
1614 		}
1615 
1616 		/* Try the intersection of the affinity and online masks */
1617 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1618 
1619 		/* If that doesn't fly, the online mask is the last resort */
1620 		if (cpumask_empty(tmpmask))
1621 			cpumask_copy(tmpmask, cpu_online_mask);
1622 
1623 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1624 	} else {
1625 		cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1626 
1627 		/* If we cannot cross sockets, limit the search to that node */
1628 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1629 		    node != NUMA_NO_NODE)
1630 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1631 
1632 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1633 	}
1634 out:
1635 	free_cpumask_var(tmpmask);
1636 
1637 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1638 	return cpu;
1639 }
1640 
1641 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1642 			    bool force)
1643 {
1644 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1645 	struct its_collection *target_col;
1646 	u32 id = its_get_event_id(d);
1647 	int cpu, prev_cpu;
1648 
1649 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1650 	if (irqd_is_forwarded_to_vcpu(d))
1651 		return -EINVAL;
1652 
1653 	prev_cpu = its_dev->event_map.col_map[id];
1654 	its_dec_lpi_count(d, prev_cpu);
1655 
1656 	if (!force)
1657 		cpu = its_select_cpu(d, mask_val);
1658 	else
1659 		cpu = cpumask_pick_least_loaded(d, mask_val);
1660 
1661 	if (cpu < 0 || cpu >= nr_cpu_ids)
1662 		goto err;
1663 
1664 	/* don't set the affinity when the target cpu is same as current one */
1665 	if (cpu != prev_cpu) {
1666 		target_col = &its_dev->its->collections[cpu];
1667 		its_send_movi(its_dev, target_col, id);
1668 		its_dev->event_map.col_map[id] = cpu;
1669 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1670 	}
1671 
1672 	its_inc_lpi_count(d, cpu);
1673 
1674 	return IRQ_SET_MASK_OK_DONE;
1675 
1676 err:
1677 	its_inc_lpi_count(d, prev_cpu);
1678 	return -EINVAL;
1679 }
1680 
1681 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1682 {
1683 	struct its_node *its = its_dev->its;
1684 
1685 	return its->phys_base + GITS_TRANSLATER;
1686 }
1687 
1688 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1689 {
1690 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1691 	struct its_node *its;
1692 	u64 addr;
1693 
1694 	its = its_dev->its;
1695 	addr = its->get_msi_base(its_dev);
1696 
1697 	msg->address_lo		= lower_32_bits(addr);
1698 	msg->address_hi		= upper_32_bits(addr);
1699 	msg->data		= its_get_event_id(d);
1700 
1701 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1702 }
1703 
1704 static int its_irq_set_irqchip_state(struct irq_data *d,
1705 				     enum irqchip_irq_state which,
1706 				     bool state)
1707 {
1708 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1709 	u32 event = its_get_event_id(d);
1710 
1711 	if (which != IRQCHIP_STATE_PENDING)
1712 		return -EINVAL;
1713 
1714 	if (irqd_is_forwarded_to_vcpu(d)) {
1715 		if (state)
1716 			its_send_vint(its_dev, event);
1717 		else
1718 			its_send_vclear(its_dev, event);
1719 	} else {
1720 		if (state)
1721 			its_send_int(its_dev, event);
1722 		else
1723 			its_send_clear(its_dev, event);
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static int its_irq_retrigger(struct irq_data *d)
1730 {
1731 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1732 }
1733 
1734 /*
1735  * Two favourable cases:
1736  *
1737  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1738  *     for vSGI delivery
1739  *
1740  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1741  *     and we're better off mapping all VPEs always
1742  *
1743  * If neither (a) nor (b) is true, then we map vPEs on demand.
1744  *
1745  */
1746 static bool gic_requires_eager_mapping(void)
1747 {
1748 	if (!its_list_map || gic_rdists->has_rvpeid)
1749 		return true;
1750 
1751 	return false;
1752 }
1753 
1754 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1755 {
1756 	unsigned long flags;
1757 
1758 	if (gic_requires_eager_mapping())
1759 		return;
1760 
1761 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1762 
1763 	/*
1764 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1765 	 * them mapped now.
1766 	 */
1767 	vm->vlpi_count[its->list_nr]++;
1768 
1769 	if (vm->vlpi_count[its->list_nr] == 1) {
1770 		int i;
1771 
1772 		for (i = 0; i < vm->nr_vpes; i++) {
1773 			struct its_vpe *vpe = vm->vpes[i];
1774 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1775 
1776 			/* Map the VPE to the first possible CPU */
1777 			vpe->col_idx = cpumask_first(cpu_online_mask);
1778 			its_send_vmapp(its, vpe, true);
1779 			its_send_vinvall(its, vpe);
1780 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1781 		}
1782 	}
1783 
1784 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1785 }
1786 
1787 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1788 {
1789 	unsigned long flags;
1790 
1791 	/* Not using the ITS list? Everything is always mapped. */
1792 	if (gic_requires_eager_mapping())
1793 		return;
1794 
1795 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1796 
1797 	if (!--vm->vlpi_count[its->list_nr]) {
1798 		int i;
1799 
1800 		for (i = 0; i < vm->nr_vpes; i++)
1801 			its_send_vmapp(its, vm->vpes[i], false);
1802 	}
1803 
1804 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1805 }
1806 
1807 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1808 {
1809 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1810 	u32 event = its_get_event_id(d);
1811 	int ret = 0;
1812 
1813 	if (!info->map)
1814 		return -EINVAL;
1815 
1816 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1817 
1818 	if (!its_dev->event_map.vm) {
1819 		struct its_vlpi_map *maps;
1820 
1821 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1822 			       GFP_ATOMIC);
1823 		if (!maps) {
1824 			ret = -ENOMEM;
1825 			goto out;
1826 		}
1827 
1828 		its_dev->event_map.vm = info->map->vm;
1829 		its_dev->event_map.vlpi_maps = maps;
1830 	} else if (its_dev->event_map.vm != info->map->vm) {
1831 		ret = -EINVAL;
1832 		goto out;
1833 	}
1834 
1835 	/* Get our private copy of the mapping information */
1836 	its_dev->event_map.vlpi_maps[event] = *info->map;
1837 
1838 	if (irqd_is_forwarded_to_vcpu(d)) {
1839 		/* Already mapped, move it around */
1840 		its_send_vmovi(its_dev, event);
1841 	} else {
1842 		/* Ensure all the VPEs are mapped on this ITS */
1843 		its_map_vm(its_dev->its, info->map->vm);
1844 
1845 		/*
1846 		 * Flag the interrupt as forwarded so that we can
1847 		 * start poking the virtual property table.
1848 		 */
1849 		irqd_set_forwarded_to_vcpu(d);
1850 
1851 		/* Write out the property to the prop table */
1852 		lpi_write_config(d, 0xff, info->map->properties);
1853 
1854 		/* Drop the physical mapping */
1855 		its_send_discard(its_dev, event);
1856 
1857 		/* and install the virtual one */
1858 		its_send_vmapti(its_dev, event);
1859 
1860 		/* Increment the number of VLPIs */
1861 		its_dev->event_map.nr_vlpis++;
1862 	}
1863 
1864 out:
1865 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1866 	return ret;
1867 }
1868 
1869 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1870 {
1871 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1872 	struct its_vlpi_map *map;
1873 	int ret = 0;
1874 
1875 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1876 
1877 	map = get_vlpi_map(d);
1878 
1879 	if (!its_dev->event_map.vm || !map) {
1880 		ret = -EINVAL;
1881 		goto out;
1882 	}
1883 
1884 	/* Copy our mapping information to the incoming request */
1885 	*info->map = *map;
1886 
1887 out:
1888 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1889 	return ret;
1890 }
1891 
1892 static int its_vlpi_unmap(struct irq_data *d)
1893 {
1894 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1895 	u32 event = its_get_event_id(d);
1896 	int ret = 0;
1897 
1898 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1899 
1900 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1901 		ret = -EINVAL;
1902 		goto out;
1903 	}
1904 
1905 	/* Drop the virtual mapping */
1906 	its_send_discard(its_dev, event);
1907 
1908 	/* and restore the physical one */
1909 	irqd_clr_forwarded_to_vcpu(d);
1910 	its_send_mapti(its_dev, d->hwirq, event);
1911 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1912 				    LPI_PROP_ENABLED |
1913 				    LPI_PROP_GROUP1));
1914 
1915 	/* Potentially unmap the VM from this ITS */
1916 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1917 
1918 	/*
1919 	 * Drop the refcount and make the device available again if
1920 	 * this was the last VLPI.
1921 	 */
1922 	if (!--its_dev->event_map.nr_vlpis) {
1923 		its_dev->event_map.vm = NULL;
1924 		kfree(its_dev->event_map.vlpi_maps);
1925 	}
1926 
1927 out:
1928 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1929 	return ret;
1930 }
1931 
1932 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1933 {
1934 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1935 
1936 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1937 		return -EINVAL;
1938 
1939 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1940 		lpi_update_config(d, 0xff, info->config);
1941 	else
1942 		lpi_write_config(d, 0xff, info->config);
1943 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1944 
1945 	return 0;
1946 }
1947 
1948 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1949 {
1950 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1951 	struct its_cmd_info *info = vcpu_info;
1952 
1953 	/* Need a v4 ITS */
1954 	if (!is_v4(its_dev->its))
1955 		return -EINVAL;
1956 
1957 	/* Unmap request? */
1958 	if (!info)
1959 		return its_vlpi_unmap(d);
1960 
1961 	switch (info->cmd_type) {
1962 	case MAP_VLPI:
1963 		return its_vlpi_map(d, info);
1964 
1965 	case GET_VLPI:
1966 		return its_vlpi_get(d, info);
1967 
1968 	case PROP_UPDATE_VLPI:
1969 	case PROP_UPDATE_AND_INV_VLPI:
1970 		return its_vlpi_prop_update(d, info);
1971 
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 }
1976 
1977 static struct irq_chip its_irq_chip = {
1978 	.name			= "ITS",
1979 	.irq_mask		= its_mask_irq,
1980 	.irq_unmask		= its_unmask_irq,
1981 	.irq_eoi		= irq_chip_eoi_parent,
1982 	.irq_set_affinity	= its_set_affinity,
1983 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1984 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1985 	.irq_retrigger		= its_irq_retrigger,
1986 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1987 };
1988 
1989 
1990 /*
1991  * How we allocate LPIs:
1992  *
1993  * lpi_range_list contains ranges of LPIs that are to available to
1994  * allocate from. To allocate LPIs, just pick the first range that
1995  * fits the required allocation, and reduce it by the required
1996  * amount. Once empty, remove the range from the list.
1997  *
1998  * To free a range of LPIs, add a free range to the list, sort it and
1999  * merge the result if the new range happens to be adjacent to an
2000  * already free block.
2001  *
2002  * The consequence of the above is that allocation is cost is low, but
2003  * freeing is expensive. We assumes that freeing rarely occurs.
2004  */
2005 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2006 
2007 static DEFINE_MUTEX(lpi_range_lock);
2008 static LIST_HEAD(lpi_range_list);
2009 
2010 struct lpi_range {
2011 	struct list_head	entry;
2012 	u32			base_id;
2013 	u32			span;
2014 };
2015 
2016 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2017 {
2018 	struct lpi_range *range;
2019 
2020 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2021 	if (range) {
2022 		range->base_id = base;
2023 		range->span = span;
2024 	}
2025 
2026 	return range;
2027 }
2028 
2029 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2030 {
2031 	struct lpi_range *range, *tmp;
2032 	int err = -ENOSPC;
2033 
2034 	mutex_lock(&lpi_range_lock);
2035 
2036 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2037 		if (range->span >= nr_lpis) {
2038 			*base = range->base_id;
2039 			range->base_id += nr_lpis;
2040 			range->span -= nr_lpis;
2041 
2042 			if (range->span == 0) {
2043 				list_del(&range->entry);
2044 				kfree(range);
2045 			}
2046 
2047 			err = 0;
2048 			break;
2049 		}
2050 	}
2051 
2052 	mutex_unlock(&lpi_range_lock);
2053 
2054 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2055 	return err;
2056 }
2057 
2058 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2059 {
2060 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2061 		return;
2062 	if (a->base_id + a->span != b->base_id)
2063 		return;
2064 	b->base_id = a->base_id;
2065 	b->span += a->span;
2066 	list_del(&a->entry);
2067 	kfree(a);
2068 }
2069 
2070 static int free_lpi_range(u32 base, u32 nr_lpis)
2071 {
2072 	struct lpi_range *new, *old;
2073 
2074 	new = mk_lpi_range(base, nr_lpis);
2075 	if (!new)
2076 		return -ENOMEM;
2077 
2078 	mutex_lock(&lpi_range_lock);
2079 
2080 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2081 		if (old->base_id < base)
2082 			break;
2083 	}
2084 	/*
2085 	 * old is the last element with ->base_id smaller than base,
2086 	 * so new goes right after it. If there are no elements with
2087 	 * ->base_id smaller than base, &old->entry ends up pointing
2088 	 * at the head of the list, and inserting new it the start of
2089 	 * the list is the right thing to do in that case as well.
2090 	 */
2091 	list_add(&new->entry, &old->entry);
2092 	/*
2093 	 * Now check if we can merge with the preceding and/or
2094 	 * following ranges.
2095 	 */
2096 	merge_lpi_ranges(old, new);
2097 	merge_lpi_ranges(new, list_next_entry(new, entry));
2098 
2099 	mutex_unlock(&lpi_range_lock);
2100 	return 0;
2101 }
2102 
2103 static int __init its_lpi_init(u32 id_bits)
2104 {
2105 	u32 lpis = (1UL << id_bits) - 8192;
2106 	u32 numlpis;
2107 	int err;
2108 
2109 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2110 
2111 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2112 		lpis = numlpis;
2113 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2114 			lpis);
2115 	}
2116 
2117 	/*
2118 	 * Initializing the allocator is just the same as freeing the
2119 	 * full range of LPIs.
2120 	 */
2121 	err = free_lpi_range(8192, lpis);
2122 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2123 	return err;
2124 }
2125 
2126 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2127 {
2128 	unsigned long *bitmap = NULL;
2129 	int err = 0;
2130 
2131 	do {
2132 		err = alloc_lpi_range(nr_irqs, base);
2133 		if (!err)
2134 			break;
2135 
2136 		nr_irqs /= 2;
2137 	} while (nr_irqs > 0);
2138 
2139 	if (!nr_irqs)
2140 		err = -ENOSPC;
2141 
2142 	if (err)
2143 		goto out;
2144 
2145 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2146 	if (!bitmap)
2147 		goto out;
2148 
2149 	*nr_ids = nr_irqs;
2150 
2151 out:
2152 	if (!bitmap)
2153 		*base = *nr_ids = 0;
2154 
2155 	return bitmap;
2156 }
2157 
2158 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2159 {
2160 	WARN_ON(free_lpi_range(base, nr_ids));
2161 	bitmap_free(bitmap);
2162 }
2163 
2164 static void gic_reset_prop_table(void *va)
2165 {
2166 	/* Priority 0xa0, Group-1, disabled */
2167 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2168 
2169 	/* Make sure the GIC will observe the written configuration */
2170 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2171 }
2172 
2173 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2174 {
2175 	struct page *prop_page;
2176 
2177 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2178 	if (!prop_page)
2179 		return NULL;
2180 
2181 	gic_reset_prop_table(page_address(prop_page));
2182 
2183 	return prop_page;
2184 }
2185 
2186 static void its_free_prop_table(struct page *prop_page)
2187 {
2188 	free_pages((unsigned long)page_address(prop_page),
2189 		   get_order(LPI_PROPBASE_SZ));
2190 }
2191 
2192 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2193 {
2194 	phys_addr_t start, end, addr_end;
2195 	u64 i;
2196 
2197 	/*
2198 	 * We don't bother checking for a kdump kernel as by
2199 	 * construction, the LPI tables are out of this kernel's
2200 	 * memory map.
2201 	 */
2202 	if (is_kdump_kernel())
2203 		return true;
2204 
2205 	addr_end = addr + size - 1;
2206 
2207 	for_each_reserved_mem_range(i, &start, &end) {
2208 		if (addr >= start && addr_end <= end)
2209 			return true;
2210 	}
2211 
2212 	/* Not found, not a good sign... */
2213 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2214 		&addr, &addr_end);
2215 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2216 	return false;
2217 }
2218 
2219 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2220 {
2221 	if (efi_enabled(EFI_CONFIG_TABLES))
2222 		return efi_mem_reserve_persistent(addr, size);
2223 
2224 	return 0;
2225 }
2226 
2227 static int __init its_setup_lpi_prop_table(void)
2228 {
2229 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2230 		u64 val;
2231 
2232 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2233 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2234 
2235 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2236 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2237 						     LPI_PROPBASE_SZ,
2238 						     MEMREMAP_WB);
2239 		gic_reset_prop_table(gic_rdists->prop_table_va);
2240 	} else {
2241 		struct page *page;
2242 
2243 		lpi_id_bits = min_t(u32,
2244 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2245 				    ITS_MAX_LPI_NRBITS);
2246 		page = its_allocate_prop_table(GFP_NOWAIT);
2247 		if (!page) {
2248 			pr_err("Failed to allocate PROPBASE\n");
2249 			return -ENOMEM;
2250 		}
2251 
2252 		gic_rdists->prop_table_pa = page_to_phys(page);
2253 		gic_rdists->prop_table_va = page_address(page);
2254 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2255 					  LPI_PROPBASE_SZ));
2256 	}
2257 
2258 	pr_info("GICv3: using LPI property table @%pa\n",
2259 		&gic_rdists->prop_table_pa);
2260 
2261 	return its_lpi_init(lpi_id_bits);
2262 }
2263 
2264 static const char *its_base_type_string[] = {
2265 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2266 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2267 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2268 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2269 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2270 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2271 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2272 };
2273 
2274 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2275 {
2276 	u32 idx = baser - its->tables;
2277 
2278 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2279 }
2280 
2281 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2282 			    u64 val)
2283 {
2284 	u32 idx = baser - its->tables;
2285 
2286 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2287 	baser->val = its_read_baser(its, baser);
2288 }
2289 
2290 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2291 			   u64 cache, u64 shr, u32 order, bool indirect)
2292 {
2293 	u64 val = its_read_baser(its, baser);
2294 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2295 	u64 type = GITS_BASER_TYPE(val);
2296 	u64 baser_phys, tmp;
2297 	u32 alloc_pages, psz;
2298 	struct page *page;
2299 	void *base;
2300 
2301 	psz = baser->psz;
2302 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2303 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2304 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2305 			&its->phys_base, its_base_type_string[type],
2306 			alloc_pages, GITS_BASER_PAGES_MAX);
2307 		alloc_pages = GITS_BASER_PAGES_MAX;
2308 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2309 	}
2310 
2311 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2312 	if (!page)
2313 		return -ENOMEM;
2314 
2315 	base = (void *)page_address(page);
2316 	baser_phys = virt_to_phys(base);
2317 
2318 	/* Check if the physical address of the memory is above 48bits */
2319 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2320 
2321 		/* 52bit PA is supported only when PageSize=64K */
2322 		if (psz != SZ_64K) {
2323 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2324 			free_pages((unsigned long)base, order);
2325 			return -ENXIO;
2326 		}
2327 
2328 		/* Convert 52bit PA to 48bit field */
2329 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2330 	}
2331 
2332 retry_baser:
2333 	val = (baser_phys					 |
2334 		(type << GITS_BASER_TYPE_SHIFT)			 |
2335 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2336 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2337 		cache						 |
2338 		shr						 |
2339 		GITS_BASER_VALID);
2340 
2341 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2342 
2343 	switch (psz) {
2344 	case SZ_4K:
2345 		val |= GITS_BASER_PAGE_SIZE_4K;
2346 		break;
2347 	case SZ_16K:
2348 		val |= GITS_BASER_PAGE_SIZE_16K;
2349 		break;
2350 	case SZ_64K:
2351 		val |= GITS_BASER_PAGE_SIZE_64K;
2352 		break;
2353 	}
2354 
2355 	its_write_baser(its, baser, val);
2356 	tmp = baser->val;
2357 
2358 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2359 		/*
2360 		 * Shareability didn't stick. Just use
2361 		 * whatever the read reported, which is likely
2362 		 * to be the only thing this redistributor
2363 		 * supports. If that's zero, make it
2364 		 * non-cacheable as well.
2365 		 */
2366 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2367 		if (!shr) {
2368 			cache = GITS_BASER_nC;
2369 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2370 		}
2371 		goto retry_baser;
2372 	}
2373 
2374 	if (val != tmp) {
2375 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2376 		       &its->phys_base, its_base_type_string[type],
2377 		       val, tmp);
2378 		free_pages((unsigned long)base, order);
2379 		return -ENXIO;
2380 	}
2381 
2382 	baser->order = order;
2383 	baser->base = base;
2384 	baser->psz = psz;
2385 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2386 
2387 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2388 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2389 		its_base_type_string[type],
2390 		(unsigned long)virt_to_phys(base),
2391 		indirect ? "indirect" : "flat", (int)esz,
2392 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2393 
2394 	return 0;
2395 }
2396 
2397 static bool its_parse_indirect_baser(struct its_node *its,
2398 				     struct its_baser *baser,
2399 				     u32 *order, u32 ids)
2400 {
2401 	u64 tmp = its_read_baser(its, baser);
2402 	u64 type = GITS_BASER_TYPE(tmp);
2403 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2404 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2405 	u32 new_order = *order;
2406 	u32 psz = baser->psz;
2407 	bool indirect = false;
2408 
2409 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2410 	if ((esz << ids) > (psz * 2)) {
2411 		/*
2412 		 * Find out whether hw supports a single or two-level table by
2413 		 * table by reading bit at offset '62' after writing '1' to it.
2414 		 */
2415 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2416 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2417 
2418 		if (indirect) {
2419 			/*
2420 			 * The size of the lvl2 table is equal to ITS page size
2421 			 * which is 'psz'. For computing lvl1 table size,
2422 			 * subtract ID bits that sparse lvl2 table from 'ids'
2423 			 * which is reported by ITS hardware times lvl1 table
2424 			 * entry size.
2425 			 */
2426 			ids -= ilog2(psz / (int)esz);
2427 			esz = GITS_LVL1_ENTRY_SIZE;
2428 		}
2429 	}
2430 
2431 	/*
2432 	 * Allocate as many entries as required to fit the
2433 	 * range of device IDs that the ITS can grok... The ID
2434 	 * space being incredibly sparse, this results in a
2435 	 * massive waste of memory if two-level device table
2436 	 * feature is not supported by hardware.
2437 	 */
2438 	new_order = max_t(u32, get_order(esz << ids), new_order);
2439 	if (new_order >= MAX_ORDER) {
2440 		new_order = MAX_ORDER - 1;
2441 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2442 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2443 			&its->phys_base, its_base_type_string[type],
2444 			device_ids(its), ids);
2445 	}
2446 
2447 	*order = new_order;
2448 
2449 	return indirect;
2450 }
2451 
2452 static u32 compute_common_aff(u64 val)
2453 {
2454 	u32 aff, clpiaff;
2455 
2456 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2457 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2458 
2459 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2460 }
2461 
2462 static u32 compute_its_aff(struct its_node *its)
2463 {
2464 	u64 val;
2465 	u32 svpet;
2466 
2467 	/*
2468 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2469 	 * the resulting affinity. We then use that to see if this match
2470 	 * our own affinity.
2471 	 */
2472 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2473 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2474 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2475 	return compute_common_aff(val);
2476 }
2477 
2478 static struct its_node *find_sibling_its(struct its_node *cur_its)
2479 {
2480 	struct its_node *its;
2481 	u32 aff;
2482 
2483 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2484 		return NULL;
2485 
2486 	aff = compute_its_aff(cur_its);
2487 
2488 	list_for_each_entry(its, &its_nodes, entry) {
2489 		u64 baser;
2490 
2491 		if (!is_v4_1(its) || its == cur_its)
2492 			continue;
2493 
2494 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2495 			continue;
2496 
2497 		if (aff != compute_its_aff(its))
2498 			continue;
2499 
2500 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2501 		baser = its->tables[2].val;
2502 		if (!(baser & GITS_BASER_VALID))
2503 			continue;
2504 
2505 		return its;
2506 	}
2507 
2508 	return NULL;
2509 }
2510 
2511 static void its_free_tables(struct its_node *its)
2512 {
2513 	int i;
2514 
2515 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2516 		if (its->tables[i].base) {
2517 			free_pages((unsigned long)its->tables[i].base,
2518 				   its->tables[i].order);
2519 			its->tables[i].base = NULL;
2520 		}
2521 	}
2522 }
2523 
2524 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2525 {
2526 	u64 psz = SZ_64K;
2527 
2528 	while (psz) {
2529 		u64 val, gpsz;
2530 
2531 		val = its_read_baser(its, baser);
2532 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2533 
2534 		switch (psz) {
2535 		case SZ_64K:
2536 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2537 			break;
2538 		case SZ_16K:
2539 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2540 			break;
2541 		case SZ_4K:
2542 		default:
2543 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2544 			break;
2545 		}
2546 
2547 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2548 
2549 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2550 		its_write_baser(its, baser, val);
2551 
2552 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2553 			break;
2554 
2555 		switch (psz) {
2556 		case SZ_64K:
2557 			psz = SZ_16K;
2558 			break;
2559 		case SZ_16K:
2560 			psz = SZ_4K;
2561 			break;
2562 		case SZ_4K:
2563 		default:
2564 			return -1;
2565 		}
2566 	}
2567 
2568 	baser->psz = psz;
2569 	return 0;
2570 }
2571 
2572 static int its_alloc_tables(struct its_node *its)
2573 {
2574 	u64 shr = GITS_BASER_InnerShareable;
2575 	u64 cache = GITS_BASER_RaWaWb;
2576 	int err, i;
2577 
2578 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2579 		/* erratum 24313: ignore memory access type */
2580 		cache = GITS_BASER_nCnB;
2581 
2582 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2583 		struct its_baser *baser = its->tables + i;
2584 		u64 val = its_read_baser(its, baser);
2585 		u64 type = GITS_BASER_TYPE(val);
2586 		bool indirect = false;
2587 		u32 order;
2588 
2589 		if (type == GITS_BASER_TYPE_NONE)
2590 			continue;
2591 
2592 		if (its_probe_baser_psz(its, baser)) {
2593 			its_free_tables(its);
2594 			return -ENXIO;
2595 		}
2596 
2597 		order = get_order(baser->psz);
2598 
2599 		switch (type) {
2600 		case GITS_BASER_TYPE_DEVICE:
2601 			indirect = its_parse_indirect_baser(its, baser, &order,
2602 							    device_ids(its));
2603 			break;
2604 
2605 		case GITS_BASER_TYPE_VCPU:
2606 			if (is_v4_1(its)) {
2607 				struct its_node *sibling;
2608 
2609 				WARN_ON(i != 2);
2610 				if ((sibling = find_sibling_its(its))) {
2611 					*baser = sibling->tables[2];
2612 					its_write_baser(its, baser, baser->val);
2613 					continue;
2614 				}
2615 			}
2616 
2617 			indirect = its_parse_indirect_baser(its, baser, &order,
2618 							    ITS_MAX_VPEID_BITS);
2619 			break;
2620 		}
2621 
2622 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2623 		if (err < 0) {
2624 			its_free_tables(its);
2625 			return err;
2626 		}
2627 
2628 		/* Update settings which will be used for next BASERn */
2629 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2630 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static u64 inherit_vpe_l1_table_from_its(void)
2637 {
2638 	struct its_node *its;
2639 	u64 val;
2640 	u32 aff;
2641 
2642 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2643 	aff = compute_common_aff(val);
2644 
2645 	list_for_each_entry(its, &its_nodes, entry) {
2646 		u64 baser, addr;
2647 
2648 		if (!is_v4_1(its))
2649 			continue;
2650 
2651 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2652 			continue;
2653 
2654 		if (aff != compute_its_aff(its))
2655 			continue;
2656 
2657 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2658 		baser = its->tables[2].val;
2659 		if (!(baser & GITS_BASER_VALID))
2660 			continue;
2661 
2662 		/* We have a winner! */
2663 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2664 
2665 		val  = GICR_VPROPBASER_4_1_VALID;
2666 		if (baser & GITS_BASER_INDIRECT)
2667 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2668 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2669 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2670 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2671 		case GIC_PAGE_SIZE_64K:
2672 			addr = GITS_BASER_ADDR_48_to_52(baser);
2673 			break;
2674 		default:
2675 			addr = baser & GENMASK_ULL(47, 12);
2676 			break;
2677 		}
2678 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2679 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2680 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2681 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2682 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2683 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2684 
2685 		return val;
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2692 {
2693 	u32 aff;
2694 	u64 val;
2695 	int cpu;
2696 
2697 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2698 	aff = compute_common_aff(val);
2699 
2700 	for_each_possible_cpu(cpu) {
2701 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2702 
2703 		if (!base || cpu == smp_processor_id())
2704 			continue;
2705 
2706 		val = gic_read_typer(base + GICR_TYPER);
2707 		if (aff != compute_common_aff(val))
2708 			continue;
2709 
2710 		/*
2711 		 * At this point, we have a victim. This particular CPU
2712 		 * has already booted, and has an affinity that matches
2713 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2714 		 * Make sure we don't write the Z bit in that case.
2715 		 */
2716 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2717 		val &= ~GICR_VPROPBASER_4_1_Z;
2718 
2719 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2720 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2721 
2722 		return val;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static bool allocate_vpe_l2_table(int cpu, u32 id)
2729 {
2730 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2731 	unsigned int psz, esz, idx, npg, gpsz;
2732 	u64 val;
2733 	struct page *page;
2734 	__le64 *table;
2735 
2736 	if (!gic_rdists->has_rvpeid)
2737 		return true;
2738 
2739 	/* Skip non-present CPUs */
2740 	if (!base)
2741 		return true;
2742 
2743 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2744 
2745 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2746 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2747 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2748 
2749 	switch (gpsz) {
2750 	default:
2751 		WARN_ON(1);
2752 		fallthrough;
2753 	case GIC_PAGE_SIZE_4K:
2754 		psz = SZ_4K;
2755 		break;
2756 	case GIC_PAGE_SIZE_16K:
2757 		psz = SZ_16K;
2758 		break;
2759 	case GIC_PAGE_SIZE_64K:
2760 		psz = SZ_64K;
2761 		break;
2762 	}
2763 
2764 	/* Don't allow vpe_id that exceeds single, flat table limit */
2765 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2766 		return (id < (npg * psz / (esz * SZ_8)));
2767 
2768 	/* Compute 1st level table index & check if that exceeds table limit */
2769 	idx = id >> ilog2(psz / (esz * SZ_8));
2770 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2771 		return false;
2772 
2773 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2774 
2775 	/* Allocate memory for 2nd level table */
2776 	if (!table[idx]) {
2777 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2778 		if (!page)
2779 			return false;
2780 
2781 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2782 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2783 			gic_flush_dcache_to_poc(page_address(page), psz);
2784 
2785 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2786 
2787 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2788 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2789 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2790 
2791 		/* Ensure updated table contents are visible to RD hardware */
2792 		dsb(sy);
2793 	}
2794 
2795 	return true;
2796 }
2797 
2798 static int allocate_vpe_l1_table(void)
2799 {
2800 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2801 	u64 val, gpsz, npg, pa;
2802 	unsigned int psz = SZ_64K;
2803 	unsigned int np, epp, esz;
2804 	struct page *page;
2805 
2806 	if (!gic_rdists->has_rvpeid)
2807 		return 0;
2808 
2809 	/*
2810 	 * if VPENDBASER.Valid is set, disable any previously programmed
2811 	 * VPE by setting PendingLast while clearing Valid. This has the
2812 	 * effect of making sure no doorbell will be generated and we can
2813 	 * then safely clear VPROPBASER.Valid.
2814 	 */
2815 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2816 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2817 				      vlpi_base + GICR_VPENDBASER);
2818 
2819 	/*
2820 	 * If we can inherit the configuration from another RD, let's do
2821 	 * so. Otherwise, we have to go through the allocation process. We
2822 	 * assume that all RDs have the exact same requirements, as
2823 	 * nothing will work otherwise.
2824 	 */
2825 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2826 	if (val & GICR_VPROPBASER_4_1_VALID)
2827 		goto out;
2828 
2829 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2830 	if (!gic_data_rdist()->vpe_table_mask)
2831 		return -ENOMEM;
2832 
2833 	val = inherit_vpe_l1_table_from_its();
2834 	if (val & GICR_VPROPBASER_4_1_VALID)
2835 		goto out;
2836 
2837 	/* First probe the page size */
2838 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2839 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2840 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2841 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2842 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2843 
2844 	switch (gpsz) {
2845 	default:
2846 		gpsz = GIC_PAGE_SIZE_4K;
2847 		fallthrough;
2848 	case GIC_PAGE_SIZE_4K:
2849 		psz = SZ_4K;
2850 		break;
2851 	case GIC_PAGE_SIZE_16K:
2852 		psz = SZ_16K;
2853 		break;
2854 	case GIC_PAGE_SIZE_64K:
2855 		psz = SZ_64K;
2856 		break;
2857 	}
2858 
2859 	/*
2860 	 * Start populating the register from scratch, including RO fields
2861 	 * (which we want to print in debug cases...)
2862 	 */
2863 	val = 0;
2864 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2865 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2866 
2867 	/* How many entries per GIC page? */
2868 	esz++;
2869 	epp = psz / (esz * SZ_8);
2870 
2871 	/*
2872 	 * If we need more than just a single L1 page, flag the table
2873 	 * as indirect and compute the number of required L1 pages.
2874 	 */
2875 	if (epp < ITS_MAX_VPEID) {
2876 		int nl2;
2877 
2878 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2879 
2880 		/* Number of L2 pages required to cover the VPEID space */
2881 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2882 
2883 		/* Number of L1 pages to point to the L2 pages */
2884 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2885 	} else {
2886 		npg = 1;
2887 	}
2888 
2889 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2890 
2891 	/* Right, that's the number of CPU pages we need for L1 */
2892 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2893 
2894 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2895 		 np, npg, psz, epp, esz);
2896 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2897 	if (!page)
2898 		return -ENOMEM;
2899 
2900 	gic_data_rdist()->vpe_l1_base = page_address(page);
2901 	pa = virt_to_phys(page_address(page));
2902 	WARN_ON(!IS_ALIGNED(pa, psz));
2903 
2904 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2905 	val |= GICR_VPROPBASER_RaWb;
2906 	val |= GICR_VPROPBASER_InnerShareable;
2907 	val |= GICR_VPROPBASER_4_1_Z;
2908 	val |= GICR_VPROPBASER_4_1_VALID;
2909 
2910 out:
2911 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2912 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2913 
2914 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2915 		 smp_processor_id(), val,
2916 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2917 
2918 	return 0;
2919 }
2920 
2921 static int its_alloc_collections(struct its_node *its)
2922 {
2923 	int i;
2924 
2925 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2926 				   GFP_KERNEL);
2927 	if (!its->collections)
2928 		return -ENOMEM;
2929 
2930 	for (i = 0; i < nr_cpu_ids; i++)
2931 		its->collections[i].target_address = ~0ULL;
2932 
2933 	return 0;
2934 }
2935 
2936 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2937 {
2938 	struct page *pend_page;
2939 
2940 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2941 				get_order(LPI_PENDBASE_SZ));
2942 	if (!pend_page)
2943 		return NULL;
2944 
2945 	/* Make sure the GIC will observe the zero-ed page */
2946 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2947 
2948 	return pend_page;
2949 }
2950 
2951 static void its_free_pending_table(struct page *pt)
2952 {
2953 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2954 }
2955 
2956 /*
2957  * Booting with kdump and LPIs enabled is generally fine. Any other
2958  * case is wrong in the absence of firmware/EFI support.
2959  */
2960 static bool enabled_lpis_allowed(void)
2961 {
2962 	phys_addr_t addr;
2963 	u64 val;
2964 
2965 	/* Check whether the property table is in a reserved region */
2966 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2967 	addr = val & GENMASK_ULL(51, 12);
2968 
2969 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2970 }
2971 
2972 static int __init allocate_lpi_tables(void)
2973 {
2974 	u64 val;
2975 	int err, cpu;
2976 
2977 	/*
2978 	 * If LPIs are enabled while we run this from the boot CPU,
2979 	 * flag the RD tables as pre-allocated if the stars do align.
2980 	 */
2981 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2982 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2983 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2984 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2985 		pr_info("GICv3: Using preallocated redistributor tables\n");
2986 	}
2987 
2988 	err = its_setup_lpi_prop_table();
2989 	if (err)
2990 		return err;
2991 
2992 	/*
2993 	 * We allocate all the pending tables anyway, as we may have a
2994 	 * mix of RDs that have had LPIs enabled, and some that
2995 	 * don't. We'll free the unused ones as each CPU comes online.
2996 	 */
2997 	for_each_possible_cpu(cpu) {
2998 		struct page *pend_page;
2999 
3000 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3001 		if (!pend_page) {
3002 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3003 			return -ENOMEM;
3004 		}
3005 
3006 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3007 	}
3008 
3009 	return 0;
3010 }
3011 
3012 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3013 {
3014 	u32 count = 1000000;	/* 1s! */
3015 	bool clean;
3016 	u64 val;
3017 
3018 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3019 	val &= ~GICR_VPENDBASER_Valid;
3020 	val &= ~clr;
3021 	val |= set;
3022 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3023 
3024 	do {
3025 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3026 		clean = !(val & GICR_VPENDBASER_Dirty);
3027 		if (!clean) {
3028 			count--;
3029 			cpu_relax();
3030 			udelay(1);
3031 		}
3032 	} while (!clean && count);
3033 
3034 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3035 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3036 		val |= GICR_VPENDBASER_PendingLast;
3037 	}
3038 
3039 	return val;
3040 }
3041 
3042 static void its_cpu_init_lpis(void)
3043 {
3044 	void __iomem *rbase = gic_data_rdist_rd_base();
3045 	struct page *pend_page;
3046 	phys_addr_t paddr;
3047 	u64 val, tmp;
3048 
3049 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3050 		return;
3051 
3052 	val = readl_relaxed(rbase + GICR_CTLR);
3053 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3054 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3055 		/*
3056 		 * Check that we get the same property table on all
3057 		 * RDs. If we don't, this is hopeless.
3058 		 */
3059 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3060 		paddr &= GENMASK_ULL(51, 12);
3061 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3062 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3063 
3064 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3065 		paddr &= GENMASK_ULL(51, 16);
3066 
3067 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3068 		its_free_pending_table(gic_data_rdist()->pend_page);
3069 		gic_data_rdist()->pend_page = NULL;
3070 
3071 		goto out;
3072 	}
3073 
3074 	pend_page = gic_data_rdist()->pend_page;
3075 	paddr = page_to_phys(pend_page);
3076 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3077 
3078 	/* set PROPBASE */
3079 	val = (gic_rdists->prop_table_pa |
3080 	       GICR_PROPBASER_InnerShareable |
3081 	       GICR_PROPBASER_RaWaWb |
3082 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3083 
3084 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3085 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3086 
3087 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3088 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3089 			/*
3090 			 * The HW reports non-shareable, we must
3091 			 * remove the cacheability attributes as
3092 			 * well.
3093 			 */
3094 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3095 				 GICR_PROPBASER_CACHEABILITY_MASK);
3096 			val |= GICR_PROPBASER_nC;
3097 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3098 		}
3099 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3100 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3101 	}
3102 
3103 	/* set PENDBASE */
3104 	val = (page_to_phys(pend_page) |
3105 	       GICR_PENDBASER_InnerShareable |
3106 	       GICR_PENDBASER_RaWaWb);
3107 
3108 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3109 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3110 
3111 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3112 		/*
3113 		 * The HW reports non-shareable, we must remove the
3114 		 * cacheability attributes as well.
3115 		 */
3116 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3117 			 GICR_PENDBASER_CACHEABILITY_MASK);
3118 		val |= GICR_PENDBASER_nC;
3119 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3120 	}
3121 
3122 	/* Enable LPIs */
3123 	val = readl_relaxed(rbase + GICR_CTLR);
3124 	val |= GICR_CTLR_ENABLE_LPIS;
3125 	writel_relaxed(val, rbase + GICR_CTLR);
3126 
3127 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3128 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3129 
3130 		/*
3131 		 * It's possible for CPU to receive VLPIs before it is
3132 		 * scheduled as a vPE, especially for the first CPU, and the
3133 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3134 		 * as out of range and dropped by GIC.
3135 		 * So we initialize IDbits to known value to avoid VLPI drop.
3136 		 */
3137 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3138 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3139 			smp_processor_id(), val);
3140 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3141 
3142 		/*
3143 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3144 		 * ancient programming gets left in and has possibility of
3145 		 * corrupting memory.
3146 		 */
3147 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3148 	}
3149 
3150 	if (allocate_vpe_l1_table()) {
3151 		/*
3152 		 * If the allocation has failed, we're in massive trouble.
3153 		 * Disable direct injection, and pray that no VM was
3154 		 * already running...
3155 		 */
3156 		gic_rdists->has_rvpeid = false;
3157 		gic_rdists->has_vlpis = false;
3158 	}
3159 
3160 	/* Make sure the GIC has seen the above */
3161 	dsb(sy);
3162 out:
3163 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3164 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3165 		smp_processor_id(),
3166 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3167 		&paddr);
3168 }
3169 
3170 static void its_cpu_init_collection(struct its_node *its)
3171 {
3172 	int cpu = smp_processor_id();
3173 	u64 target;
3174 
3175 	/* avoid cross node collections and its mapping */
3176 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3177 		struct device_node *cpu_node;
3178 
3179 		cpu_node = of_get_cpu_node(cpu, NULL);
3180 		if (its->numa_node != NUMA_NO_NODE &&
3181 			its->numa_node != of_node_to_nid(cpu_node))
3182 			return;
3183 	}
3184 
3185 	/*
3186 	 * We now have to bind each collection to its target
3187 	 * redistributor.
3188 	 */
3189 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3190 		/*
3191 		 * This ITS wants the physical address of the
3192 		 * redistributor.
3193 		 */
3194 		target = gic_data_rdist()->phys_base;
3195 	} else {
3196 		/* This ITS wants a linear CPU number. */
3197 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3198 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3199 	}
3200 
3201 	/* Perform collection mapping */
3202 	its->collections[cpu].target_address = target;
3203 	its->collections[cpu].col_id = cpu;
3204 
3205 	its_send_mapc(its, &its->collections[cpu], 1);
3206 	its_send_invall(its, &its->collections[cpu]);
3207 }
3208 
3209 static void its_cpu_init_collections(void)
3210 {
3211 	struct its_node *its;
3212 
3213 	raw_spin_lock(&its_lock);
3214 
3215 	list_for_each_entry(its, &its_nodes, entry)
3216 		its_cpu_init_collection(its);
3217 
3218 	raw_spin_unlock(&its_lock);
3219 }
3220 
3221 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3222 {
3223 	struct its_device *its_dev = NULL, *tmp;
3224 	unsigned long flags;
3225 
3226 	raw_spin_lock_irqsave(&its->lock, flags);
3227 
3228 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3229 		if (tmp->device_id == dev_id) {
3230 			its_dev = tmp;
3231 			break;
3232 		}
3233 	}
3234 
3235 	raw_spin_unlock_irqrestore(&its->lock, flags);
3236 
3237 	return its_dev;
3238 }
3239 
3240 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3241 {
3242 	int i;
3243 
3244 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3245 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3246 			return &its->tables[i];
3247 	}
3248 
3249 	return NULL;
3250 }
3251 
3252 static bool its_alloc_table_entry(struct its_node *its,
3253 				  struct its_baser *baser, u32 id)
3254 {
3255 	struct page *page;
3256 	u32 esz, idx;
3257 	__le64 *table;
3258 
3259 	/* Don't allow device id that exceeds single, flat table limit */
3260 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3261 	if (!(baser->val & GITS_BASER_INDIRECT))
3262 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3263 
3264 	/* Compute 1st level table index & check if that exceeds table limit */
3265 	idx = id >> ilog2(baser->psz / esz);
3266 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3267 		return false;
3268 
3269 	table = baser->base;
3270 
3271 	/* Allocate memory for 2nd level table */
3272 	if (!table[idx]) {
3273 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3274 					get_order(baser->psz));
3275 		if (!page)
3276 			return false;
3277 
3278 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3279 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3280 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3281 
3282 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3283 
3284 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3285 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3286 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3287 
3288 		/* Ensure updated table contents are visible to ITS hardware */
3289 		dsb(sy);
3290 	}
3291 
3292 	return true;
3293 }
3294 
3295 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3296 {
3297 	struct its_baser *baser;
3298 
3299 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3300 
3301 	/* Don't allow device id that exceeds ITS hardware limit */
3302 	if (!baser)
3303 		return (ilog2(dev_id) < device_ids(its));
3304 
3305 	return its_alloc_table_entry(its, baser, dev_id);
3306 }
3307 
3308 static bool its_alloc_vpe_table(u32 vpe_id)
3309 {
3310 	struct its_node *its;
3311 	int cpu;
3312 
3313 	/*
3314 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3315 	 * could try and only do it on ITSs corresponding to devices
3316 	 * that have interrupts targeted at this VPE, but the
3317 	 * complexity becomes crazy (and you have tons of memory
3318 	 * anyway, right?).
3319 	 */
3320 	list_for_each_entry(its, &its_nodes, entry) {
3321 		struct its_baser *baser;
3322 
3323 		if (!is_v4(its))
3324 			continue;
3325 
3326 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3327 		if (!baser)
3328 			return false;
3329 
3330 		if (!its_alloc_table_entry(its, baser, vpe_id))
3331 			return false;
3332 	}
3333 
3334 	/* Non v4.1? No need to iterate RDs and go back early. */
3335 	if (!gic_rdists->has_rvpeid)
3336 		return true;
3337 
3338 	/*
3339 	 * Make sure the L2 tables are allocated for all copies of
3340 	 * the L1 table on *all* v4.1 RDs.
3341 	 */
3342 	for_each_possible_cpu(cpu) {
3343 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3344 			return false;
3345 	}
3346 
3347 	return true;
3348 }
3349 
3350 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3351 					    int nvecs, bool alloc_lpis)
3352 {
3353 	struct its_device *dev;
3354 	unsigned long *lpi_map = NULL;
3355 	unsigned long flags;
3356 	u16 *col_map = NULL;
3357 	void *itt;
3358 	int lpi_base;
3359 	int nr_lpis;
3360 	int nr_ites;
3361 	int sz;
3362 
3363 	if (!its_alloc_device_table(its, dev_id))
3364 		return NULL;
3365 
3366 	if (WARN_ON(!is_power_of_2(nvecs)))
3367 		nvecs = roundup_pow_of_two(nvecs);
3368 
3369 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3370 	/*
3371 	 * Even if the device wants a single LPI, the ITT must be
3372 	 * sized as a power of two (and you need at least one bit...).
3373 	 */
3374 	nr_ites = max(2, nvecs);
3375 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3376 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3377 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3378 	if (alloc_lpis) {
3379 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3380 		if (lpi_map)
3381 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3382 					  GFP_KERNEL);
3383 	} else {
3384 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3385 		nr_lpis = 0;
3386 		lpi_base = 0;
3387 	}
3388 
3389 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3390 		kfree(dev);
3391 		kfree(itt);
3392 		bitmap_free(lpi_map);
3393 		kfree(col_map);
3394 		return NULL;
3395 	}
3396 
3397 	gic_flush_dcache_to_poc(itt, sz);
3398 
3399 	dev->its = its;
3400 	dev->itt = itt;
3401 	dev->nr_ites = nr_ites;
3402 	dev->event_map.lpi_map = lpi_map;
3403 	dev->event_map.col_map = col_map;
3404 	dev->event_map.lpi_base = lpi_base;
3405 	dev->event_map.nr_lpis = nr_lpis;
3406 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3407 	dev->device_id = dev_id;
3408 	INIT_LIST_HEAD(&dev->entry);
3409 
3410 	raw_spin_lock_irqsave(&its->lock, flags);
3411 	list_add(&dev->entry, &its->its_device_list);
3412 	raw_spin_unlock_irqrestore(&its->lock, flags);
3413 
3414 	/* Map device to its ITT */
3415 	its_send_mapd(dev, 1);
3416 
3417 	return dev;
3418 }
3419 
3420 static void its_free_device(struct its_device *its_dev)
3421 {
3422 	unsigned long flags;
3423 
3424 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3425 	list_del(&its_dev->entry);
3426 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3427 	kfree(its_dev->event_map.col_map);
3428 	kfree(its_dev->itt);
3429 	kfree(its_dev);
3430 }
3431 
3432 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3433 {
3434 	int idx;
3435 
3436 	/* Find a free LPI region in lpi_map and allocate them. */
3437 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3438 				      dev->event_map.nr_lpis,
3439 				      get_count_order(nvecs));
3440 	if (idx < 0)
3441 		return -ENOSPC;
3442 
3443 	*hwirq = dev->event_map.lpi_base + idx;
3444 
3445 	return 0;
3446 }
3447 
3448 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3449 			   int nvec, msi_alloc_info_t *info)
3450 {
3451 	struct its_node *its;
3452 	struct its_device *its_dev;
3453 	struct msi_domain_info *msi_info;
3454 	u32 dev_id;
3455 	int err = 0;
3456 
3457 	/*
3458 	 * We ignore "dev" entirely, and rely on the dev_id that has
3459 	 * been passed via the scratchpad. This limits this domain's
3460 	 * usefulness to upper layers that definitely know that they
3461 	 * are built on top of the ITS.
3462 	 */
3463 	dev_id = info->scratchpad[0].ul;
3464 
3465 	msi_info = msi_get_domain_info(domain);
3466 	its = msi_info->data;
3467 
3468 	if (!gic_rdists->has_direct_lpi &&
3469 	    vpe_proxy.dev &&
3470 	    vpe_proxy.dev->its == its &&
3471 	    dev_id == vpe_proxy.dev->device_id) {
3472 		/* Bad luck. Get yourself a better implementation */
3473 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3474 			  dev_id);
3475 		return -EINVAL;
3476 	}
3477 
3478 	mutex_lock(&its->dev_alloc_lock);
3479 	its_dev = its_find_device(its, dev_id);
3480 	if (its_dev) {
3481 		/*
3482 		 * We already have seen this ID, probably through
3483 		 * another alias (PCI bridge of some sort). No need to
3484 		 * create the device.
3485 		 */
3486 		its_dev->shared = true;
3487 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3488 		goto out;
3489 	}
3490 
3491 	its_dev = its_create_device(its, dev_id, nvec, true);
3492 	if (!its_dev) {
3493 		err = -ENOMEM;
3494 		goto out;
3495 	}
3496 
3497 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3498 		its_dev->shared = true;
3499 
3500 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3501 out:
3502 	mutex_unlock(&its->dev_alloc_lock);
3503 	info->scratchpad[0].ptr = its_dev;
3504 	return err;
3505 }
3506 
3507 static struct msi_domain_ops its_msi_domain_ops = {
3508 	.msi_prepare	= its_msi_prepare,
3509 };
3510 
3511 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3512 				    unsigned int virq,
3513 				    irq_hw_number_t hwirq)
3514 {
3515 	struct irq_fwspec fwspec;
3516 
3517 	if (irq_domain_get_of_node(domain->parent)) {
3518 		fwspec.fwnode = domain->parent->fwnode;
3519 		fwspec.param_count = 3;
3520 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3521 		fwspec.param[1] = hwirq;
3522 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3523 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3524 		fwspec.fwnode = domain->parent->fwnode;
3525 		fwspec.param_count = 2;
3526 		fwspec.param[0] = hwirq;
3527 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3528 	} else {
3529 		return -EINVAL;
3530 	}
3531 
3532 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3533 }
3534 
3535 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3536 				unsigned int nr_irqs, void *args)
3537 {
3538 	msi_alloc_info_t *info = args;
3539 	struct its_device *its_dev = info->scratchpad[0].ptr;
3540 	struct its_node *its = its_dev->its;
3541 	struct irq_data *irqd;
3542 	irq_hw_number_t hwirq;
3543 	int err;
3544 	int i;
3545 
3546 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3547 	if (err)
3548 		return err;
3549 
3550 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3551 	if (err)
3552 		return err;
3553 
3554 	for (i = 0; i < nr_irqs; i++) {
3555 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3556 		if (err)
3557 			return err;
3558 
3559 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3560 					      hwirq + i, &its_irq_chip, its_dev);
3561 		irqd = irq_get_irq_data(virq + i);
3562 		irqd_set_single_target(irqd);
3563 		irqd_set_affinity_on_activate(irqd);
3564 		pr_debug("ID:%d pID:%d vID:%d\n",
3565 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3566 			 (int)(hwirq + i), virq + i);
3567 	}
3568 
3569 	return 0;
3570 }
3571 
3572 static int its_irq_domain_activate(struct irq_domain *domain,
3573 				   struct irq_data *d, bool reserve)
3574 {
3575 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3576 	u32 event = its_get_event_id(d);
3577 	int cpu;
3578 
3579 	cpu = its_select_cpu(d, cpu_online_mask);
3580 	if (cpu < 0 || cpu >= nr_cpu_ids)
3581 		return -EINVAL;
3582 
3583 	its_inc_lpi_count(d, cpu);
3584 	its_dev->event_map.col_map[event] = cpu;
3585 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3586 
3587 	/* Map the GIC IRQ and event to the device */
3588 	its_send_mapti(its_dev, d->hwirq, event);
3589 	return 0;
3590 }
3591 
3592 static void its_irq_domain_deactivate(struct irq_domain *domain,
3593 				      struct irq_data *d)
3594 {
3595 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3596 	u32 event = its_get_event_id(d);
3597 
3598 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3599 	/* Stop the delivery of interrupts */
3600 	its_send_discard(its_dev, event);
3601 }
3602 
3603 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3604 				unsigned int nr_irqs)
3605 {
3606 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3607 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3608 	struct its_node *its = its_dev->its;
3609 	int i;
3610 
3611 	bitmap_release_region(its_dev->event_map.lpi_map,
3612 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3613 			      get_count_order(nr_irqs));
3614 
3615 	for (i = 0; i < nr_irqs; i++) {
3616 		struct irq_data *data = irq_domain_get_irq_data(domain,
3617 								virq + i);
3618 		/* Nuke the entry in the domain */
3619 		irq_domain_reset_irq_data(data);
3620 	}
3621 
3622 	mutex_lock(&its->dev_alloc_lock);
3623 
3624 	/*
3625 	 * If all interrupts have been freed, start mopping the
3626 	 * floor. This is conditioned on the device not being shared.
3627 	 */
3628 	if (!its_dev->shared &&
3629 	    bitmap_empty(its_dev->event_map.lpi_map,
3630 			 its_dev->event_map.nr_lpis)) {
3631 		its_lpi_free(its_dev->event_map.lpi_map,
3632 			     its_dev->event_map.lpi_base,
3633 			     its_dev->event_map.nr_lpis);
3634 
3635 		/* Unmap device/itt */
3636 		its_send_mapd(its_dev, 0);
3637 		its_free_device(its_dev);
3638 	}
3639 
3640 	mutex_unlock(&its->dev_alloc_lock);
3641 
3642 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3643 }
3644 
3645 static const struct irq_domain_ops its_domain_ops = {
3646 	.alloc			= its_irq_domain_alloc,
3647 	.free			= its_irq_domain_free,
3648 	.activate		= its_irq_domain_activate,
3649 	.deactivate		= its_irq_domain_deactivate,
3650 };
3651 
3652 /*
3653  * This is insane.
3654  *
3655  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3656  * likely), the only way to perform an invalidate is to use a fake
3657  * device to issue an INV command, implying that the LPI has first
3658  * been mapped to some event on that device. Since this is not exactly
3659  * cheap, we try to keep that mapping around as long as possible, and
3660  * only issue an UNMAP if we're short on available slots.
3661  *
3662  * Broken by design(tm).
3663  *
3664  * GICv4.1, on the other hand, mandates that we're able to invalidate
3665  * by writing to a MMIO register. It doesn't implement the whole of
3666  * DirectLPI, but that's good enough. And most of the time, we don't
3667  * even have to invalidate anything, as the redistributor can be told
3668  * whether to generate a doorbell or not (we thus leave it enabled,
3669  * always).
3670  */
3671 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3672 {
3673 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3674 	if (gic_rdists->has_rvpeid)
3675 		return;
3676 
3677 	/* Already unmapped? */
3678 	if (vpe->vpe_proxy_event == -1)
3679 		return;
3680 
3681 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3682 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3683 
3684 	/*
3685 	 * We don't track empty slots at all, so let's move the
3686 	 * next_victim pointer if we can quickly reuse that slot
3687 	 * instead of nuking an existing entry. Not clear that this is
3688 	 * always a win though, and this might just generate a ripple
3689 	 * effect... Let's just hope VPEs don't migrate too often.
3690 	 */
3691 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3692 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3693 
3694 	vpe->vpe_proxy_event = -1;
3695 }
3696 
3697 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3698 {
3699 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3700 	if (gic_rdists->has_rvpeid)
3701 		return;
3702 
3703 	if (!gic_rdists->has_direct_lpi) {
3704 		unsigned long flags;
3705 
3706 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3707 		its_vpe_db_proxy_unmap_locked(vpe);
3708 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3709 	}
3710 }
3711 
3712 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3713 {
3714 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3715 	if (gic_rdists->has_rvpeid)
3716 		return;
3717 
3718 	/* Already mapped? */
3719 	if (vpe->vpe_proxy_event != -1)
3720 		return;
3721 
3722 	/* This slot was already allocated. Kick the other VPE out. */
3723 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3724 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3725 
3726 	/* Map the new VPE instead */
3727 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3728 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3729 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3730 
3731 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3732 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3733 }
3734 
3735 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3736 {
3737 	unsigned long flags;
3738 	struct its_collection *target_col;
3739 
3740 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3741 	if (gic_rdists->has_rvpeid)
3742 		return;
3743 
3744 	if (gic_rdists->has_direct_lpi) {
3745 		void __iomem *rdbase;
3746 
3747 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3748 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3749 		wait_for_syncr(rdbase);
3750 
3751 		return;
3752 	}
3753 
3754 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3755 
3756 	its_vpe_db_proxy_map_locked(vpe);
3757 
3758 	target_col = &vpe_proxy.dev->its->collections[to];
3759 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3760 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3761 
3762 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3763 }
3764 
3765 static int its_vpe_set_affinity(struct irq_data *d,
3766 				const struct cpumask *mask_val,
3767 				bool force)
3768 {
3769 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3770 	int from, cpu = cpumask_first(mask_val);
3771 	unsigned long flags;
3772 
3773 	/*
3774 	 * Changing affinity is mega expensive, so let's be as lazy as
3775 	 * we can and only do it if we really have to. Also, if mapped
3776 	 * into the proxy device, we need to move the doorbell
3777 	 * interrupt to its new location.
3778 	 *
3779 	 * Another thing is that changing the affinity of a vPE affects
3780 	 * *other interrupts* such as all the vLPIs that are routed to
3781 	 * this vPE. This means that the irq_desc lock is not enough to
3782 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3783 	 * during the update, hence the lock below which must also be
3784 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3785 	 */
3786 	from = vpe_to_cpuid_lock(vpe, &flags);
3787 	if (from == cpu)
3788 		goto out;
3789 
3790 	vpe->col_idx = cpu;
3791 
3792 	/*
3793 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3794 	 * is sharing its VPE table with the current one.
3795 	 */
3796 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3797 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3798 		goto out;
3799 
3800 	its_send_vmovp(vpe);
3801 	its_vpe_db_proxy_move(vpe, from, cpu);
3802 
3803 out:
3804 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3805 	vpe_to_cpuid_unlock(vpe, flags);
3806 
3807 	return IRQ_SET_MASK_OK_DONE;
3808 }
3809 
3810 static void its_wait_vpt_parse_complete(void)
3811 {
3812 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3813 	u64 val;
3814 
3815 	if (!gic_rdists->has_vpend_valid_dirty)
3816 		return;
3817 
3818 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3819 						       val,
3820 						       !(val & GICR_VPENDBASER_Dirty),
3821 						       1, 500));
3822 }
3823 
3824 static void its_vpe_schedule(struct its_vpe *vpe)
3825 {
3826 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3827 	u64 val;
3828 
3829 	/* Schedule the VPE */
3830 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3831 		GENMASK_ULL(51, 12);
3832 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3833 	val |= GICR_VPROPBASER_RaWb;
3834 	val |= GICR_VPROPBASER_InnerShareable;
3835 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3836 
3837 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3838 		GENMASK_ULL(51, 16);
3839 	val |= GICR_VPENDBASER_RaWaWb;
3840 	val |= GICR_VPENDBASER_InnerShareable;
3841 	/*
3842 	 * There is no good way of finding out if the pending table is
3843 	 * empty as we can race against the doorbell interrupt very
3844 	 * easily. So in the end, vpe->pending_last is only an
3845 	 * indication that the vcpu has something pending, not one
3846 	 * that the pending table is empty. A good implementation
3847 	 * would be able to read its coarse map pretty quickly anyway,
3848 	 * making this a tolerable issue.
3849 	 */
3850 	val |= GICR_VPENDBASER_PendingLast;
3851 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3852 	val |= GICR_VPENDBASER_Valid;
3853 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3854 }
3855 
3856 static void its_vpe_deschedule(struct its_vpe *vpe)
3857 {
3858 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3859 	u64 val;
3860 
3861 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3862 
3863 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3864 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3865 }
3866 
3867 static void its_vpe_invall(struct its_vpe *vpe)
3868 {
3869 	struct its_node *its;
3870 
3871 	list_for_each_entry(its, &its_nodes, entry) {
3872 		if (!is_v4(its))
3873 			continue;
3874 
3875 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3876 			continue;
3877 
3878 		/*
3879 		 * Sending a VINVALL to a single ITS is enough, as all
3880 		 * we need is to reach the redistributors.
3881 		 */
3882 		its_send_vinvall(its, vpe);
3883 		return;
3884 	}
3885 }
3886 
3887 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3888 {
3889 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3890 	struct its_cmd_info *info = vcpu_info;
3891 
3892 	switch (info->cmd_type) {
3893 	case SCHEDULE_VPE:
3894 		its_vpe_schedule(vpe);
3895 		return 0;
3896 
3897 	case DESCHEDULE_VPE:
3898 		its_vpe_deschedule(vpe);
3899 		return 0;
3900 
3901 	case COMMIT_VPE:
3902 		its_wait_vpt_parse_complete();
3903 		return 0;
3904 
3905 	case INVALL_VPE:
3906 		its_vpe_invall(vpe);
3907 		return 0;
3908 
3909 	default:
3910 		return -EINVAL;
3911 	}
3912 }
3913 
3914 static void its_vpe_send_cmd(struct its_vpe *vpe,
3915 			     void (*cmd)(struct its_device *, u32))
3916 {
3917 	unsigned long flags;
3918 
3919 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3920 
3921 	its_vpe_db_proxy_map_locked(vpe);
3922 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3923 
3924 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3925 }
3926 
3927 static void its_vpe_send_inv(struct irq_data *d)
3928 {
3929 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3930 
3931 	if (gic_rdists->has_direct_lpi) {
3932 		void __iomem *rdbase;
3933 
3934 		/* Target the redistributor this VPE is currently known on */
3935 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3936 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3937 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3938 		wait_for_syncr(rdbase);
3939 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3940 	} else {
3941 		its_vpe_send_cmd(vpe, its_send_inv);
3942 	}
3943 }
3944 
3945 static void its_vpe_mask_irq(struct irq_data *d)
3946 {
3947 	/*
3948 	 * We need to unmask the LPI, which is described by the parent
3949 	 * irq_data. Instead of calling into the parent (which won't
3950 	 * exactly do the right thing, let's simply use the
3951 	 * parent_data pointer. Yes, I'm naughty.
3952 	 */
3953 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3954 	its_vpe_send_inv(d);
3955 }
3956 
3957 static void its_vpe_unmask_irq(struct irq_data *d)
3958 {
3959 	/* Same hack as above... */
3960 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3961 	its_vpe_send_inv(d);
3962 }
3963 
3964 static int its_vpe_set_irqchip_state(struct irq_data *d,
3965 				     enum irqchip_irq_state which,
3966 				     bool state)
3967 {
3968 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3969 
3970 	if (which != IRQCHIP_STATE_PENDING)
3971 		return -EINVAL;
3972 
3973 	if (gic_rdists->has_direct_lpi) {
3974 		void __iomem *rdbase;
3975 
3976 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3977 		if (state) {
3978 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3979 		} else {
3980 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3981 			wait_for_syncr(rdbase);
3982 		}
3983 	} else {
3984 		if (state)
3985 			its_vpe_send_cmd(vpe, its_send_int);
3986 		else
3987 			its_vpe_send_cmd(vpe, its_send_clear);
3988 	}
3989 
3990 	return 0;
3991 }
3992 
3993 static int its_vpe_retrigger(struct irq_data *d)
3994 {
3995 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3996 }
3997 
3998 static struct irq_chip its_vpe_irq_chip = {
3999 	.name			= "GICv4-vpe",
4000 	.irq_mask		= its_vpe_mask_irq,
4001 	.irq_unmask		= its_vpe_unmask_irq,
4002 	.irq_eoi		= irq_chip_eoi_parent,
4003 	.irq_set_affinity	= its_vpe_set_affinity,
4004 	.irq_retrigger		= its_vpe_retrigger,
4005 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4006 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4007 };
4008 
4009 static struct its_node *find_4_1_its(void)
4010 {
4011 	static struct its_node *its = NULL;
4012 
4013 	if (!its) {
4014 		list_for_each_entry(its, &its_nodes, entry) {
4015 			if (is_v4_1(its))
4016 				return its;
4017 		}
4018 
4019 		/* Oops? */
4020 		its = NULL;
4021 	}
4022 
4023 	return its;
4024 }
4025 
4026 static void its_vpe_4_1_send_inv(struct irq_data *d)
4027 {
4028 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4029 	struct its_node *its;
4030 
4031 	/*
4032 	 * GICv4.1 wants doorbells to be invalidated using the
4033 	 * INVDB command in order to be broadcast to all RDs. Send
4034 	 * it to the first valid ITS, and let the HW do its magic.
4035 	 */
4036 	its = find_4_1_its();
4037 	if (its)
4038 		its_send_invdb(its, vpe);
4039 }
4040 
4041 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4042 {
4043 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4044 	its_vpe_4_1_send_inv(d);
4045 }
4046 
4047 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4048 {
4049 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4050 	its_vpe_4_1_send_inv(d);
4051 }
4052 
4053 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4054 				 struct its_cmd_info *info)
4055 {
4056 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4057 	u64 val = 0;
4058 
4059 	/* Schedule the VPE */
4060 	val |= GICR_VPENDBASER_Valid;
4061 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4062 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4063 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4064 
4065 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4066 }
4067 
4068 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4069 				   struct its_cmd_info *info)
4070 {
4071 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4072 	u64 val;
4073 
4074 	if (info->req_db) {
4075 		unsigned long flags;
4076 
4077 		/*
4078 		 * vPE is going to block: make the vPE non-resident with
4079 		 * PendingLast clear and DB set. The GIC guarantees that if
4080 		 * we read-back PendingLast clear, then a doorbell will be
4081 		 * delivered when an interrupt comes.
4082 		 *
4083 		 * Note the locking to deal with the concurrent update of
4084 		 * pending_last from the doorbell interrupt handler that can
4085 		 * run concurrently.
4086 		 */
4087 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4088 		val = its_clear_vpend_valid(vlpi_base,
4089 					    GICR_VPENDBASER_PendingLast,
4090 					    GICR_VPENDBASER_4_1_DB);
4091 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4092 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4093 	} else {
4094 		/*
4095 		 * We're not blocking, so just make the vPE non-resident
4096 		 * with PendingLast set, indicating that we'll be back.
4097 		 */
4098 		val = its_clear_vpend_valid(vlpi_base,
4099 					    0,
4100 					    GICR_VPENDBASER_PendingLast);
4101 		vpe->pending_last = true;
4102 	}
4103 }
4104 
4105 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4106 {
4107 	void __iomem *rdbase;
4108 	unsigned long flags;
4109 	u64 val;
4110 	int cpu;
4111 
4112 	val  = GICR_INVALLR_V;
4113 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4114 
4115 	/* Target the redistributor this vPE is currently known on */
4116 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4117 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4118 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4119 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4120 
4121 	wait_for_syncr(rdbase);
4122 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4123 	vpe_to_cpuid_unlock(vpe, flags);
4124 }
4125 
4126 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4127 {
4128 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4129 	struct its_cmd_info *info = vcpu_info;
4130 
4131 	switch (info->cmd_type) {
4132 	case SCHEDULE_VPE:
4133 		its_vpe_4_1_schedule(vpe, info);
4134 		return 0;
4135 
4136 	case DESCHEDULE_VPE:
4137 		its_vpe_4_1_deschedule(vpe, info);
4138 		return 0;
4139 
4140 	case COMMIT_VPE:
4141 		its_wait_vpt_parse_complete();
4142 		return 0;
4143 
4144 	case INVALL_VPE:
4145 		its_vpe_4_1_invall(vpe);
4146 		return 0;
4147 
4148 	default:
4149 		return -EINVAL;
4150 	}
4151 }
4152 
4153 static struct irq_chip its_vpe_4_1_irq_chip = {
4154 	.name			= "GICv4.1-vpe",
4155 	.irq_mask		= its_vpe_4_1_mask_irq,
4156 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4157 	.irq_eoi		= irq_chip_eoi_parent,
4158 	.irq_set_affinity	= its_vpe_set_affinity,
4159 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4160 };
4161 
4162 static void its_configure_sgi(struct irq_data *d, bool clear)
4163 {
4164 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4165 	struct its_cmd_desc desc;
4166 
4167 	desc.its_vsgi_cmd.vpe = vpe;
4168 	desc.its_vsgi_cmd.sgi = d->hwirq;
4169 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4170 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4171 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4172 	desc.its_vsgi_cmd.clear = clear;
4173 
4174 	/*
4175 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4176 	 * destination VPE is mapped there. Since we map them eagerly at
4177 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4178 	 */
4179 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4180 }
4181 
4182 static void its_sgi_mask_irq(struct irq_data *d)
4183 {
4184 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4185 
4186 	vpe->sgi_config[d->hwirq].enabled = false;
4187 	its_configure_sgi(d, false);
4188 }
4189 
4190 static void its_sgi_unmask_irq(struct irq_data *d)
4191 {
4192 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4193 
4194 	vpe->sgi_config[d->hwirq].enabled = true;
4195 	its_configure_sgi(d, false);
4196 }
4197 
4198 static int its_sgi_set_affinity(struct irq_data *d,
4199 				const struct cpumask *mask_val,
4200 				bool force)
4201 {
4202 	/*
4203 	 * There is no notion of affinity for virtual SGIs, at least
4204 	 * not on the host (since they can only be targeting a vPE).
4205 	 * Tell the kernel we've done whatever it asked for.
4206 	 */
4207 	irq_data_update_effective_affinity(d, mask_val);
4208 	return IRQ_SET_MASK_OK;
4209 }
4210 
4211 static int its_sgi_set_irqchip_state(struct irq_data *d,
4212 				     enum irqchip_irq_state which,
4213 				     bool state)
4214 {
4215 	if (which != IRQCHIP_STATE_PENDING)
4216 		return -EINVAL;
4217 
4218 	if (state) {
4219 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4220 		struct its_node *its = find_4_1_its();
4221 		u64 val;
4222 
4223 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4224 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4225 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4226 	} else {
4227 		its_configure_sgi(d, true);
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 static int its_sgi_get_irqchip_state(struct irq_data *d,
4234 				     enum irqchip_irq_state which, bool *val)
4235 {
4236 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4237 	void __iomem *base;
4238 	unsigned long flags;
4239 	u32 count = 1000000;	/* 1s! */
4240 	u32 status;
4241 	int cpu;
4242 
4243 	if (which != IRQCHIP_STATE_PENDING)
4244 		return -EINVAL;
4245 
4246 	/*
4247 	 * Locking galore! We can race against two different events:
4248 	 *
4249 	 * - Concurrent vPE affinity change: we must make sure it cannot
4250 	 *   happen, or we'll talk to the wrong redistributor. This is
4251 	 *   identical to what happens with vLPIs.
4252 	 *
4253 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4254 	 *   MMIO registers, this must be made atomic one way or another.
4255 	 */
4256 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4257 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4258 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4259 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4260 	do {
4261 		status = readl_relaxed(base + GICR_VSGIPENDR);
4262 		if (!(status & GICR_VSGIPENDR_BUSY))
4263 			goto out;
4264 
4265 		count--;
4266 		if (!count) {
4267 			pr_err_ratelimited("Unable to get SGI status\n");
4268 			goto out;
4269 		}
4270 		cpu_relax();
4271 		udelay(1);
4272 	} while (count);
4273 
4274 out:
4275 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4276 	vpe_to_cpuid_unlock(vpe, flags);
4277 
4278 	if (!count)
4279 		return -ENXIO;
4280 
4281 	*val = !!(status & (1 << d->hwirq));
4282 
4283 	return 0;
4284 }
4285 
4286 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4287 {
4288 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4289 	struct its_cmd_info *info = vcpu_info;
4290 
4291 	switch (info->cmd_type) {
4292 	case PROP_UPDATE_VSGI:
4293 		vpe->sgi_config[d->hwirq].priority = info->priority;
4294 		vpe->sgi_config[d->hwirq].group = info->group;
4295 		its_configure_sgi(d, false);
4296 		return 0;
4297 
4298 	default:
4299 		return -EINVAL;
4300 	}
4301 }
4302 
4303 static struct irq_chip its_sgi_irq_chip = {
4304 	.name			= "GICv4.1-sgi",
4305 	.irq_mask		= its_sgi_mask_irq,
4306 	.irq_unmask		= its_sgi_unmask_irq,
4307 	.irq_set_affinity	= its_sgi_set_affinity,
4308 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4309 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4310 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4311 };
4312 
4313 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4314 				    unsigned int virq, unsigned int nr_irqs,
4315 				    void *args)
4316 {
4317 	struct its_vpe *vpe = args;
4318 	int i;
4319 
4320 	/* Yes, we do want 16 SGIs */
4321 	WARN_ON(nr_irqs != 16);
4322 
4323 	for (i = 0; i < 16; i++) {
4324 		vpe->sgi_config[i].priority = 0;
4325 		vpe->sgi_config[i].enabled = false;
4326 		vpe->sgi_config[i].group = false;
4327 
4328 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4329 					      &its_sgi_irq_chip, vpe);
4330 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4331 	}
4332 
4333 	return 0;
4334 }
4335 
4336 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4337 				    unsigned int virq,
4338 				    unsigned int nr_irqs)
4339 {
4340 	/* Nothing to do */
4341 }
4342 
4343 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4344 				       struct irq_data *d, bool reserve)
4345 {
4346 	/* Write out the initial SGI configuration */
4347 	its_configure_sgi(d, false);
4348 	return 0;
4349 }
4350 
4351 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4352 					  struct irq_data *d)
4353 {
4354 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4355 
4356 	/*
4357 	 * The VSGI command is awkward:
4358 	 *
4359 	 * - To change the configuration, CLEAR must be set to false,
4360 	 *   leaving the pending bit unchanged.
4361 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4362 	 *   the configuration unchanged.
4363 	 *
4364 	 * You just can't do both at once, hence the two commands below.
4365 	 */
4366 	vpe->sgi_config[d->hwirq].enabled = false;
4367 	its_configure_sgi(d, false);
4368 	its_configure_sgi(d, true);
4369 }
4370 
4371 static const struct irq_domain_ops its_sgi_domain_ops = {
4372 	.alloc		= its_sgi_irq_domain_alloc,
4373 	.free		= its_sgi_irq_domain_free,
4374 	.activate	= its_sgi_irq_domain_activate,
4375 	.deactivate	= its_sgi_irq_domain_deactivate,
4376 };
4377 
4378 static int its_vpe_id_alloc(void)
4379 {
4380 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4381 }
4382 
4383 static void its_vpe_id_free(u16 id)
4384 {
4385 	ida_simple_remove(&its_vpeid_ida, id);
4386 }
4387 
4388 static int its_vpe_init(struct its_vpe *vpe)
4389 {
4390 	struct page *vpt_page;
4391 	int vpe_id;
4392 
4393 	/* Allocate vpe_id */
4394 	vpe_id = its_vpe_id_alloc();
4395 	if (vpe_id < 0)
4396 		return vpe_id;
4397 
4398 	/* Allocate VPT */
4399 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4400 	if (!vpt_page) {
4401 		its_vpe_id_free(vpe_id);
4402 		return -ENOMEM;
4403 	}
4404 
4405 	if (!its_alloc_vpe_table(vpe_id)) {
4406 		its_vpe_id_free(vpe_id);
4407 		its_free_pending_table(vpt_page);
4408 		return -ENOMEM;
4409 	}
4410 
4411 	raw_spin_lock_init(&vpe->vpe_lock);
4412 	vpe->vpe_id = vpe_id;
4413 	vpe->vpt_page = vpt_page;
4414 	if (gic_rdists->has_rvpeid)
4415 		atomic_set(&vpe->vmapp_count, 0);
4416 	else
4417 		vpe->vpe_proxy_event = -1;
4418 
4419 	return 0;
4420 }
4421 
4422 static void its_vpe_teardown(struct its_vpe *vpe)
4423 {
4424 	its_vpe_db_proxy_unmap(vpe);
4425 	its_vpe_id_free(vpe->vpe_id);
4426 	its_free_pending_table(vpe->vpt_page);
4427 }
4428 
4429 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4430 				    unsigned int virq,
4431 				    unsigned int nr_irqs)
4432 {
4433 	struct its_vm *vm = domain->host_data;
4434 	int i;
4435 
4436 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4437 
4438 	for (i = 0; i < nr_irqs; i++) {
4439 		struct irq_data *data = irq_domain_get_irq_data(domain,
4440 								virq + i);
4441 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4442 
4443 		BUG_ON(vm != vpe->its_vm);
4444 
4445 		clear_bit(data->hwirq, vm->db_bitmap);
4446 		its_vpe_teardown(vpe);
4447 		irq_domain_reset_irq_data(data);
4448 	}
4449 
4450 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4451 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4452 		its_free_prop_table(vm->vprop_page);
4453 	}
4454 }
4455 
4456 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4457 				    unsigned int nr_irqs, void *args)
4458 {
4459 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4460 	struct its_vm *vm = args;
4461 	unsigned long *bitmap;
4462 	struct page *vprop_page;
4463 	int base, nr_ids, i, err = 0;
4464 
4465 	BUG_ON(!vm);
4466 
4467 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4468 	if (!bitmap)
4469 		return -ENOMEM;
4470 
4471 	if (nr_ids < nr_irqs) {
4472 		its_lpi_free(bitmap, base, nr_ids);
4473 		return -ENOMEM;
4474 	}
4475 
4476 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4477 	if (!vprop_page) {
4478 		its_lpi_free(bitmap, base, nr_ids);
4479 		return -ENOMEM;
4480 	}
4481 
4482 	vm->db_bitmap = bitmap;
4483 	vm->db_lpi_base = base;
4484 	vm->nr_db_lpis = nr_ids;
4485 	vm->vprop_page = vprop_page;
4486 
4487 	if (gic_rdists->has_rvpeid)
4488 		irqchip = &its_vpe_4_1_irq_chip;
4489 
4490 	for (i = 0; i < nr_irqs; i++) {
4491 		vm->vpes[i]->vpe_db_lpi = base + i;
4492 		err = its_vpe_init(vm->vpes[i]);
4493 		if (err)
4494 			break;
4495 		err = its_irq_gic_domain_alloc(domain, virq + i,
4496 					       vm->vpes[i]->vpe_db_lpi);
4497 		if (err)
4498 			break;
4499 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4500 					      irqchip, vm->vpes[i]);
4501 		set_bit(i, bitmap);
4502 	}
4503 
4504 	if (err) {
4505 		if (i > 0)
4506 			its_vpe_irq_domain_free(domain, virq, i);
4507 
4508 		its_lpi_free(bitmap, base, nr_ids);
4509 		its_free_prop_table(vprop_page);
4510 	}
4511 
4512 	return err;
4513 }
4514 
4515 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4516 				       struct irq_data *d, bool reserve)
4517 {
4518 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4519 	struct its_node *its;
4520 
4521 	/*
4522 	 * If we use the list map, we issue VMAPP on demand... Unless
4523 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4524 	 * so that VSGIs can work.
4525 	 */
4526 	if (!gic_requires_eager_mapping())
4527 		return 0;
4528 
4529 	/* Map the VPE to the first possible CPU */
4530 	vpe->col_idx = cpumask_first(cpu_online_mask);
4531 
4532 	list_for_each_entry(its, &its_nodes, entry) {
4533 		if (!is_v4(its))
4534 			continue;
4535 
4536 		its_send_vmapp(its, vpe, true);
4537 		its_send_vinvall(its, vpe);
4538 	}
4539 
4540 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4541 
4542 	return 0;
4543 }
4544 
4545 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4546 					  struct irq_data *d)
4547 {
4548 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4549 	struct its_node *its;
4550 
4551 	/*
4552 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4553 	 * VLPIs are associated with the VM.
4554 	 */
4555 	if (!gic_requires_eager_mapping())
4556 		return;
4557 
4558 	list_for_each_entry(its, &its_nodes, entry) {
4559 		if (!is_v4(its))
4560 			continue;
4561 
4562 		its_send_vmapp(its, vpe, false);
4563 	}
4564 
4565 	/*
4566 	 * There may be a direct read to the VPT after unmapping the
4567 	 * vPE, to guarantee the validity of this, we make the VPT
4568 	 * memory coherent with the CPU caches here.
4569 	 */
4570 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4571 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4572 					LPI_PENDBASE_SZ);
4573 }
4574 
4575 static const struct irq_domain_ops its_vpe_domain_ops = {
4576 	.alloc			= its_vpe_irq_domain_alloc,
4577 	.free			= its_vpe_irq_domain_free,
4578 	.activate		= its_vpe_irq_domain_activate,
4579 	.deactivate		= its_vpe_irq_domain_deactivate,
4580 };
4581 
4582 static int its_force_quiescent(void __iomem *base)
4583 {
4584 	u32 count = 1000000;	/* 1s */
4585 	u32 val;
4586 
4587 	val = readl_relaxed(base + GITS_CTLR);
4588 	/*
4589 	 * GIC architecture specification requires the ITS to be both
4590 	 * disabled and quiescent for writes to GITS_BASER<n> or
4591 	 * GITS_CBASER to not have UNPREDICTABLE results.
4592 	 */
4593 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4594 		return 0;
4595 
4596 	/* Disable the generation of all interrupts to this ITS */
4597 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4598 	writel_relaxed(val, base + GITS_CTLR);
4599 
4600 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4601 	while (1) {
4602 		val = readl_relaxed(base + GITS_CTLR);
4603 		if (val & GITS_CTLR_QUIESCENT)
4604 			return 0;
4605 
4606 		count--;
4607 		if (!count)
4608 			return -EBUSY;
4609 
4610 		cpu_relax();
4611 		udelay(1);
4612 	}
4613 }
4614 
4615 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4616 {
4617 	struct its_node *its = data;
4618 
4619 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4620 	its->typer &= ~GITS_TYPER_DEVBITS;
4621 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4622 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4623 
4624 	return true;
4625 }
4626 
4627 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4628 {
4629 	struct its_node *its = data;
4630 
4631 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4632 
4633 	return true;
4634 }
4635 
4636 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4637 {
4638 	struct its_node *its = data;
4639 
4640 	/* On QDF2400, the size of the ITE is 16Bytes */
4641 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4642 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4643 
4644 	return true;
4645 }
4646 
4647 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4648 {
4649 	struct its_node *its = its_dev->its;
4650 
4651 	/*
4652 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4653 	 * which maps 32-bit writes targeted at a separate window of
4654 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4655 	 * with device ID taken from bits [device_id_bits + 1:2] of
4656 	 * the window offset.
4657 	 */
4658 	return its->pre_its_base + (its_dev->device_id << 2);
4659 }
4660 
4661 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4662 {
4663 	struct its_node *its = data;
4664 	u32 pre_its_window[2];
4665 	u32 ids;
4666 
4667 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4668 					   "socionext,synquacer-pre-its",
4669 					   pre_its_window,
4670 					   ARRAY_SIZE(pre_its_window))) {
4671 
4672 		its->pre_its_base = pre_its_window[0];
4673 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4674 
4675 		ids = ilog2(pre_its_window[1]) - 2;
4676 		if (device_ids(its) > ids) {
4677 			its->typer &= ~GITS_TYPER_DEVBITS;
4678 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4679 		}
4680 
4681 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4682 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4683 		return true;
4684 	}
4685 	return false;
4686 }
4687 
4688 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4689 {
4690 	struct its_node *its = data;
4691 
4692 	/*
4693 	 * Hip07 insists on using the wrong address for the VLPI
4694 	 * page. Trick it into doing the right thing...
4695 	 */
4696 	its->vlpi_redist_offset = SZ_128K;
4697 	return true;
4698 }
4699 
4700 static const struct gic_quirk its_quirks[] = {
4701 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4702 	{
4703 		.desc	= "ITS: Cavium errata 22375, 24313",
4704 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4705 		.mask	= 0xffff0fff,
4706 		.init	= its_enable_quirk_cavium_22375,
4707 	},
4708 #endif
4709 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4710 	{
4711 		.desc	= "ITS: Cavium erratum 23144",
4712 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4713 		.mask	= 0xffff0fff,
4714 		.init	= its_enable_quirk_cavium_23144,
4715 	},
4716 #endif
4717 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4718 	{
4719 		.desc	= "ITS: QDF2400 erratum 0065",
4720 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4721 		.mask	= 0xffffffff,
4722 		.init	= its_enable_quirk_qdf2400_e0065,
4723 	},
4724 #endif
4725 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4726 	{
4727 		/*
4728 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4729 		 * implementation, but with a 'pre-ITS' added that requires
4730 		 * special handling in software.
4731 		 */
4732 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4733 		.iidr	= 0x0001143b,
4734 		.mask	= 0xffffffff,
4735 		.init	= its_enable_quirk_socionext_synquacer,
4736 	},
4737 #endif
4738 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4739 	{
4740 		.desc	= "ITS: Hip07 erratum 161600802",
4741 		.iidr	= 0x00000004,
4742 		.mask	= 0xffffffff,
4743 		.init	= its_enable_quirk_hip07_161600802,
4744 	},
4745 #endif
4746 	{
4747 	}
4748 };
4749 
4750 static void its_enable_quirks(struct its_node *its)
4751 {
4752 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4753 
4754 	gic_enable_quirks(iidr, its_quirks, its);
4755 }
4756 
4757 static int its_save_disable(void)
4758 {
4759 	struct its_node *its;
4760 	int err = 0;
4761 
4762 	raw_spin_lock(&its_lock);
4763 	list_for_each_entry(its, &its_nodes, entry) {
4764 		void __iomem *base;
4765 
4766 		base = its->base;
4767 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4768 		err = its_force_quiescent(base);
4769 		if (err) {
4770 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4771 			       &its->phys_base, err);
4772 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4773 			goto err;
4774 		}
4775 
4776 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4777 	}
4778 
4779 err:
4780 	if (err) {
4781 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4782 			void __iomem *base;
4783 
4784 			base = its->base;
4785 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4786 		}
4787 	}
4788 	raw_spin_unlock(&its_lock);
4789 
4790 	return err;
4791 }
4792 
4793 static void its_restore_enable(void)
4794 {
4795 	struct its_node *its;
4796 	int ret;
4797 
4798 	raw_spin_lock(&its_lock);
4799 	list_for_each_entry(its, &its_nodes, entry) {
4800 		void __iomem *base;
4801 		int i;
4802 
4803 		base = its->base;
4804 
4805 		/*
4806 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4807 		 * don't restore it since writing to CBASER or BASER<n>
4808 		 * registers is undefined according to the GIC v3 ITS
4809 		 * Specification.
4810 		 *
4811 		 * Firmware resuming with the ITS enabled is terminally broken.
4812 		 */
4813 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4814 		ret = its_force_quiescent(base);
4815 		if (ret) {
4816 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4817 			       &its->phys_base, ret);
4818 			continue;
4819 		}
4820 
4821 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4822 
4823 		/*
4824 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4825 		 * cmd_write line up with it.
4826 		 */
4827 		its->cmd_write = its->cmd_base;
4828 		gits_write_cwriter(0, base + GITS_CWRITER);
4829 
4830 		/* Restore GITS_BASER from the value cache. */
4831 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4832 			struct its_baser *baser = &its->tables[i];
4833 
4834 			if (!(baser->val & GITS_BASER_VALID))
4835 				continue;
4836 
4837 			its_write_baser(its, baser, baser->val);
4838 		}
4839 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4840 
4841 		/*
4842 		 * Reinit the collection if it's stored in the ITS. This is
4843 		 * indicated by the col_id being less than the HCC field.
4844 		 * CID < HCC as specified in the GIC v3 Documentation.
4845 		 */
4846 		if (its->collections[smp_processor_id()].col_id <
4847 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4848 			its_cpu_init_collection(its);
4849 	}
4850 	raw_spin_unlock(&its_lock);
4851 }
4852 
4853 static struct syscore_ops its_syscore_ops = {
4854 	.suspend = its_save_disable,
4855 	.resume = its_restore_enable,
4856 };
4857 
4858 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4859 {
4860 	struct irq_domain *inner_domain;
4861 	struct msi_domain_info *info;
4862 
4863 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4864 	if (!info)
4865 		return -ENOMEM;
4866 
4867 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4868 	if (!inner_domain) {
4869 		kfree(info);
4870 		return -ENOMEM;
4871 	}
4872 
4873 	inner_domain->parent = its_parent;
4874 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4875 	inner_domain->flags |= its->msi_domain_flags;
4876 	info->ops = &its_msi_domain_ops;
4877 	info->data = its;
4878 	inner_domain->host_data = info;
4879 
4880 	return 0;
4881 }
4882 
4883 static int its_init_vpe_domain(void)
4884 {
4885 	struct its_node *its;
4886 	u32 devid;
4887 	int entries;
4888 
4889 	if (gic_rdists->has_direct_lpi) {
4890 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4891 		return 0;
4892 	}
4893 
4894 	/* Any ITS will do, even if not v4 */
4895 	its = list_first_entry(&its_nodes, struct its_node, entry);
4896 
4897 	entries = roundup_pow_of_two(nr_cpu_ids);
4898 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4899 				 GFP_KERNEL);
4900 	if (!vpe_proxy.vpes)
4901 		return -ENOMEM;
4902 
4903 	/* Use the last possible DevID */
4904 	devid = GENMASK(device_ids(its) - 1, 0);
4905 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4906 	if (!vpe_proxy.dev) {
4907 		kfree(vpe_proxy.vpes);
4908 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4909 		return -ENOMEM;
4910 	}
4911 
4912 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4913 
4914 	raw_spin_lock_init(&vpe_proxy.lock);
4915 	vpe_proxy.next_victim = 0;
4916 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4917 		devid, vpe_proxy.dev->nr_ites);
4918 
4919 	return 0;
4920 }
4921 
4922 static int __init its_compute_its_list_map(struct resource *res,
4923 					   void __iomem *its_base)
4924 {
4925 	int its_number;
4926 	u32 ctlr;
4927 
4928 	/*
4929 	 * This is assumed to be done early enough that we're
4930 	 * guaranteed to be single-threaded, hence no
4931 	 * locking. Should this change, we should address
4932 	 * this.
4933 	 */
4934 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4935 	if (its_number >= GICv4_ITS_LIST_MAX) {
4936 		pr_err("ITS@%pa: No ITSList entry available!\n",
4937 		       &res->start);
4938 		return -EINVAL;
4939 	}
4940 
4941 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4942 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4943 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4944 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4945 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4946 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4947 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4948 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4949 	}
4950 
4951 	if (test_and_set_bit(its_number, &its_list_map)) {
4952 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4953 		       &res->start, its_number);
4954 		return -EINVAL;
4955 	}
4956 
4957 	return its_number;
4958 }
4959 
4960 static int __init its_probe_one(struct resource *res,
4961 				struct fwnode_handle *handle, int numa_node)
4962 {
4963 	struct its_node *its;
4964 	void __iomem *its_base;
4965 	u32 val, ctlr;
4966 	u64 baser, tmp, typer;
4967 	struct page *page;
4968 	int err;
4969 
4970 	its_base = ioremap(res->start, SZ_64K);
4971 	if (!its_base) {
4972 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4973 		return -ENOMEM;
4974 	}
4975 
4976 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4977 	if (val != 0x30 && val != 0x40) {
4978 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4979 		err = -ENODEV;
4980 		goto out_unmap;
4981 	}
4982 
4983 	err = its_force_quiescent(its_base);
4984 	if (err) {
4985 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4986 		goto out_unmap;
4987 	}
4988 
4989 	pr_info("ITS %pR\n", res);
4990 
4991 	its = kzalloc(sizeof(*its), GFP_KERNEL);
4992 	if (!its) {
4993 		err = -ENOMEM;
4994 		goto out_unmap;
4995 	}
4996 
4997 	raw_spin_lock_init(&its->lock);
4998 	mutex_init(&its->dev_alloc_lock);
4999 	INIT_LIST_HEAD(&its->entry);
5000 	INIT_LIST_HEAD(&its->its_device_list);
5001 	typer = gic_read_typer(its_base + GITS_TYPER);
5002 	its->typer = typer;
5003 	its->base = its_base;
5004 	its->phys_base = res->start;
5005 	if (is_v4(its)) {
5006 		if (!(typer & GITS_TYPER_VMOVP)) {
5007 			err = its_compute_its_list_map(res, its_base);
5008 			if (err < 0)
5009 				goto out_free_its;
5010 
5011 			its->list_nr = err;
5012 
5013 			pr_info("ITS@%pa: Using ITS number %d\n",
5014 				&res->start, err);
5015 		} else {
5016 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5017 		}
5018 
5019 		if (is_v4_1(its)) {
5020 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5021 
5022 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5023 			if (!its->sgir_base) {
5024 				err = -ENOMEM;
5025 				goto out_free_its;
5026 			}
5027 
5028 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5029 
5030 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5031 				&res->start, its->mpidr, svpet);
5032 		}
5033 	}
5034 
5035 	its->numa_node = numa_node;
5036 
5037 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5038 				get_order(ITS_CMD_QUEUE_SZ));
5039 	if (!page) {
5040 		err = -ENOMEM;
5041 		goto out_unmap_sgir;
5042 	}
5043 	its->cmd_base = (void *)page_address(page);
5044 	its->cmd_write = its->cmd_base;
5045 	its->fwnode_handle = handle;
5046 	its->get_msi_base = its_irq_get_msi_base;
5047 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5048 
5049 	its_enable_quirks(its);
5050 
5051 	err = its_alloc_tables(its);
5052 	if (err)
5053 		goto out_free_cmd;
5054 
5055 	err = its_alloc_collections(its);
5056 	if (err)
5057 		goto out_free_tables;
5058 
5059 	baser = (virt_to_phys(its->cmd_base)	|
5060 		 GITS_CBASER_RaWaWb		|
5061 		 GITS_CBASER_InnerShareable	|
5062 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5063 		 GITS_CBASER_VALID);
5064 
5065 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5066 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5067 
5068 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5069 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5070 			/*
5071 			 * The HW reports non-shareable, we must
5072 			 * remove the cacheability attributes as
5073 			 * well.
5074 			 */
5075 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5076 				   GITS_CBASER_CACHEABILITY_MASK);
5077 			baser |= GITS_CBASER_nC;
5078 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5079 		}
5080 		pr_info("ITS: using cache flushing for cmd queue\n");
5081 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5082 	}
5083 
5084 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5085 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5086 	ctlr |= GITS_CTLR_ENABLE;
5087 	if (is_v4(its))
5088 		ctlr |= GITS_CTLR_ImDe;
5089 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5090 
5091 	err = its_init_domain(handle, its);
5092 	if (err)
5093 		goto out_free_tables;
5094 
5095 	raw_spin_lock(&its_lock);
5096 	list_add(&its->entry, &its_nodes);
5097 	raw_spin_unlock(&its_lock);
5098 
5099 	return 0;
5100 
5101 out_free_tables:
5102 	its_free_tables(its);
5103 out_free_cmd:
5104 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5105 out_unmap_sgir:
5106 	if (its->sgir_base)
5107 		iounmap(its->sgir_base);
5108 out_free_its:
5109 	kfree(its);
5110 out_unmap:
5111 	iounmap(its_base);
5112 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5113 	return err;
5114 }
5115 
5116 static bool gic_rdists_supports_plpis(void)
5117 {
5118 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5119 }
5120 
5121 static int redist_disable_lpis(void)
5122 {
5123 	void __iomem *rbase = gic_data_rdist_rd_base();
5124 	u64 timeout = USEC_PER_SEC;
5125 	u64 val;
5126 
5127 	if (!gic_rdists_supports_plpis()) {
5128 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5129 		return -ENXIO;
5130 	}
5131 
5132 	val = readl_relaxed(rbase + GICR_CTLR);
5133 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5134 		return 0;
5135 
5136 	/*
5137 	 * If coming via a CPU hotplug event, we don't need to disable
5138 	 * LPIs before trying to re-enable them. They are already
5139 	 * configured and all is well in the world.
5140 	 *
5141 	 * If running with preallocated tables, there is nothing to do.
5142 	 */
5143 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5144 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5145 		return 0;
5146 
5147 	/*
5148 	 * From that point on, we only try to do some damage control.
5149 	 */
5150 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5151 		smp_processor_id());
5152 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5153 
5154 	/* Disable LPIs */
5155 	val &= ~GICR_CTLR_ENABLE_LPIS;
5156 	writel_relaxed(val, rbase + GICR_CTLR);
5157 
5158 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5159 	dsb(sy);
5160 
5161 	/*
5162 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5163 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5164 	 * Error out if we time out waiting for RWP to clear.
5165 	 */
5166 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5167 		if (!timeout) {
5168 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5169 			       smp_processor_id());
5170 			return -ETIMEDOUT;
5171 		}
5172 		udelay(1);
5173 		timeout--;
5174 	}
5175 
5176 	/*
5177 	 * After it has been written to 1, it is IMPLEMENTATION
5178 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5179 	 * cleared to 0. Error out if clearing the bit failed.
5180 	 */
5181 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5182 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5183 		return -EBUSY;
5184 	}
5185 
5186 	return 0;
5187 }
5188 
5189 int its_cpu_init(void)
5190 {
5191 	if (!list_empty(&its_nodes)) {
5192 		int ret;
5193 
5194 		ret = redist_disable_lpis();
5195 		if (ret)
5196 			return ret;
5197 
5198 		its_cpu_init_lpis();
5199 		its_cpu_init_collections();
5200 	}
5201 
5202 	return 0;
5203 }
5204 
5205 static const struct of_device_id its_device_id[] = {
5206 	{	.compatible	= "arm,gic-v3-its",	},
5207 	{},
5208 };
5209 
5210 static int __init its_of_probe(struct device_node *node)
5211 {
5212 	struct device_node *np;
5213 	struct resource res;
5214 
5215 	for (np = of_find_matching_node(node, its_device_id); np;
5216 	     np = of_find_matching_node(np, its_device_id)) {
5217 		if (!of_device_is_available(np))
5218 			continue;
5219 		if (!of_property_read_bool(np, "msi-controller")) {
5220 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5221 				np);
5222 			continue;
5223 		}
5224 
5225 		if (of_address_to_resource(np, 0, &res)) {
5226 			pr_warn("%pOF: no regs?\n", np);
5227 			continue;
5228 		}
5229 
5230 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5231 	}
5232 	return 0;
5233 }
5234 
5235 #ifdef CONFIG_ACPI
5236 
5237 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5238 
5239 #ifdef CONFIG_ACPI_NUMA
5240 struct its_srat_map {
5241 	/* numa node id */
5242 	u32	numa_node;
5243 	/* GIC ITS ID */
5244 	u32	its_id;
5245 };
5246 
5247 static struct its_srat_map *its_srat_maps __initdata;
5248 static int its_in_srat __initdata;
5249 
5250 static int __init acpi_get_its_numa_node(u32 its_id)
5251 {
5252 	int i;
5253 
5254 	for (i = 0; i < its_in_srat; i++) {
5255 		if (its_id == its_srat_maps[i].its_id)
5256 			return its_srat_maps[i].numa_node;
5257 	}
5258 	return NUMA_NO_NODE;
5259 }
5260 
5261 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5262 					  const unsigned long end)
5263 {
5264 	return 0;
5265 }
5266 
5267 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5268 			 const unsigned long end)
5269 {
5270 	int node;
5271 	struct acpi_srat_gic_its_affinity *its_affinity;
5272 
5273 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5274 	if (!its_affinity)
5275 		return -EINVAL;
5276 
5277 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5278 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5279 			its_affinity->header.length);
5280 		return -EINVAL;
5281 	}
5282 
5283 	/*
5284 	 * Note that in theory a new proximity node could be created by this
5285 	 * entry as it is an SRAT resource allocation structure.
5286 	 * We do not currently support doing so.
5287 	 */
5288 	node = pxm_to_node(its_affinity->proximity_domain);
5289 
5290 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5291 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5292 		return 0;
5293 	}
5294 
5295 	its_srat_maps[its_in_srat].numa_node = node;
5296 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5297 	its_in_srat++;
5298 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5299 		its_affinity->proximity_domain, its_affinity->its_id, node);
5300 
5301 	return 0;
5302 }
5303 
5304 static void __init acpi_table_parse_srat_its(void)
5305 {
5306 	int count;
5307 
5308 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5309 			sizeof(struct acpi_table_srat),
5310 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5311 			gic_acpi_match_srat_its, 0);
5312 	if (count <= 0)
5313 		return;
5314 
5315 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5316 				      GFP_KERNEL);
5317 	if (!its_srat_maps)
5318 		return;
5319 
5320 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5321 			sizeof(struct acpi_table_srat),
5322 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5323 			gic_acpi_parse_srat_its, 0);
5324 }
5325 
5326 /* free the its_srat_maps after ITS probing */
5327 static void __init acpi_its_srat_maps_free(void)
5328 {
5329 	kfree(its_srat_maps);
5330 }
5331 #else
5332 static void __init acpi_table_parse_srat_its(void)	{ }
5333 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5334 static void __init acpi_its_srat_maps_free(void) { }
5335 #endif
5336 
5337 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5338 					  const unsigned long end)
5339 {
5340 	struct acpi_madt_generic_translator *its_entry;
5341 	struct fwnode_handle *dom_handle;
5342 	struct resource res;
5343 	int err;
5344 
5345 	its_entry = (struct acpi_madt_generic_translator *)header;
5346 	memset(&res, 0, sizeof(res));
5347 	res.start = its_entry->base_address;
5348 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5349 	res.flags = IORESOURCE_MEM;
5350 
5351 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5352 	if (!dom_handle) {
5353 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5354 		       &res.start);
5355 		return -ENOMEM;
5356 	}
5357 
5358 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5359 					 dom_handle);
5360 	if (err) {
5361 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5362 		       &res.start, its_entry->translation_id);
5363 		goto dom_err;
5364 	}
5365 
5366 	err = its_probe_one(&res, dom_handle,
5367 			acpi_get_its_numa_node(its_entry->translation_id));
5368 	if (!err)
5369 		return 0;
5370 
5371 	iort_deregister_domain_token(its_entry->translation_id);
5372 dom_err:
5373 	irq_domain_free_fwnode(dom_handle);
5374 	return err;
5375 }
5376 
5377 static void __init its_acpi_probe(void)
5378 {
5379 	acpi_table_parse_srat_its();
5380 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5381 			      gic_acpi_parse_madt_its, 0);
5382 	acpi_its_srat_maps_free();
5383 }
5384 #else
5385 static void __init its_acpi_probe(void) { }
5386 #endif
5387 
5388 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5389 		    struct irq_domain *parent_domain)
5390 {
5391 	struct device_node *of_node;
5392 	struct its_node *its;
5393 	bool has_v4 = false;
5394 	bool has_v4_1 = false;
5395 	int err;
5396 
5397 	gic_rdists = rdists;
5398 
5399 	its_parent = parent_domain;
5400 	of_node = to_of_node(handle);
5401 	if (of_node)
5402 		its_of_probe(of_node);
5403 	else
5404 		its_acpi_probe();
5405 
5406 	if (list_empty(&its_nodes)) {
5407 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5408 		return -ENXIO;
5409 	}
5410 
5411 	err = allocate_lpi_tables();
5412 	if (err)
5413 		return err;
5414 
5415 	list_for_each_entry(its, &its_nodes, entry) {
5416 		has_v4 |= is_v4(its);
5417 		has_v4_1 |= is_v4_1(its);
5418 	}
5419 
5420 	/* Don't bother with inconsistent systems */
5421 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5422 		rdists->has_rvpeid = false;
5423 
5424 	if (has_v4 & rdists->has_vlpis) {
5425 		const struct irq_domain_ops *sgi_ops;
5426 
5427 		if (has_v4_1)
5428 			sgi_ops = &its_sgi_domain_ops;
5429 		else
5430 			sgi_ops = NULL;
5431 
5432 		if (its_init_vpe_domain() ||
5433 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5434 			rdists->has_vlpis = false;
5435 			pr_err("ITS: Disabling GICv4 support\n");
5436 		}
5437 	}
5438 
5439 	register_syscore_ops(&its_syscore_ops);
5440 
5441 	return 0;
5442 }
5443