xref: /openbmc/linux/drivers/irqchip/irq-gic-v3-its.c (revision 65ac3a4fee03ade83c62644f600a3fc70754b263)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
46 
47 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
50 
51 static u32 lpi_id_bits;
52 
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS		lpi_id_bits
59 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 
62 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
63 
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70 	u64			target_address;
71 	u16			col_id;
72 };
73 
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79 	void		*base;
80 	u64		val;
81 	u32		order;
82 	u32		psz;
83 };
84 
85 struct its_device;
86 
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97 	raw_spinlock_t		lock;
98 	struct mutex		dev_alloc_lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	void __iomem		*sgir_base;
102 	phys_addr_t		phys_base;
103 	struct its_cmd_block	*cmd_base;
104 	struct its_cmd_block	*cmd_write;
105 	struct its_baser	tables[GITS_BASER_NR_REGS];
106 	struct its_collection	*collections;
107 	struct fwnode_handle	*fwnode_handle;
108 	u64			(*get_msi_base)(struct its_device *its_dev);
109 	u64			typer;
110 	u64			cbaser_save;
111 	u32			ctlr_save;
112 	u32			mpidr;
113 	struct list_head	its_device_list;
114 	u64			flags;
115 	unsigned long		list_nr;
116 	int			numa_node;
117 	unsigned int		msi_domain_flags;
118 	u32			pre_its_base; /* for Socionext Synquacer */
119 	int			vlpi_redist_offset;
120 };
121 
122 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS						\
130 	({								\
131 		int nvpeid = 16;					\
132 		if (gic_rdists->has_rvpeid &&				\
133 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
134 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
135 				      GICD_TYPER2_VID);			\
136 									\
137 		nvpeid;							\
138 	})
139 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
140 
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
143 
144 struct event_lpi_map {
145 	unsigned long		*lpi_map;
146 	u16			*col_map;
147 	irq_hw_number_t		lpi_base;
148 	int			nr_lpis;
149 	raw_spinlock_t		vlpi_lock;
150 	struct its_vm		*vm;
151 	struct its_vlpi_map	*vlpi_maps;
152 	int			nr_vlpis;
153 };
154 
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162 	struct list_head	entry;
163 	struct its_node		*its;
164 	struct event_lpi_map	event_map;
165 	void			*itt;
166 	u32			nr_ites;
167 	u32			device_id;
168 	bool			shared;
169 };
170 
171 static struct {
172 	raw_spinlock_t		lock;
173 	struct its_device	*dev;
174 	struct its_vpe		**vpes;
175 	int			next_victim;
176 } vpe_proxy;
177 
178 struct cpu_lpi_count {
179 	atomic_t	managed;
180 	atomic_t	unmanaged;
181 };
182 
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184 
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189 
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193 
194 static DEFINE_IDA(its_vpeid_ida);
195 
196 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
200 
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209 
210 static bool rdists_support_shareable(void)
211 {
212 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
213 }
214 
215 static u16 get_its_list(struct its_vm *vm)
216 {
217 	struct its_node *its;
218 	unsigned long its_list = 0;
219 
220 	list_for_each_entry(its, &its_nodes, entry) {
221 		if (!is_v4(its))
222 			continue;
223 
224 		if (require_its_list_vmovp(vm, its))
225 			__set_bit(its->list_nr, &its_list);
226 	}
227 
228 	return (u16)its_list;
229 }
230 
231 static inline u32 its_get_event_id(struct irq_data *d)
232 {
233 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
234 	return d->hwirq - its_dev->event_map.lpi_base;
235 }
236 
237 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
238 					       u32 event)
239 {
240 	struct its_node *its = its_dev->its;
241 
242 	return its->collections + its_dev->event_map.col_map[event];
243 }
244 
245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
246 					       u32 event)
247 {
248 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
249 		return NULL;
250 
251 	return &its_dev->event_map.vlpi_maps[event];
252 }
253 
254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
255 {
256 	if (irqd_is_forwarded_to_vcpu(d)) {
257 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
258 		u32 event = its_get_event_id(d);
259 
260 		return dev_event_to_vlpi_map(its_dev, event);
261 	}
262 
263 	return NULL;
264 }
265 
266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
267 {
268 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
269 	return vpe->col_idx;
270 }
271 
272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
273 {
274 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
275 }
276 
277 static struct irq_chip its_vpe_irq_chip;
278 
279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
280 {
281 	struct its_vpe *vpe = NULL;
282 	int cpu;
283 
284 	if (d->chip == &its_vpe_irq_chip) {
285 		vpe = irq_data_get_irq_chip_data(d);
286 	} else {
287 		struct its_vlpi_map *map = get_vlpi_map(d);
288 		if (map)
289 			vpe = map->vpe;
290 	}
291 
292 	if (vpe) {
293 		cpu = vpe_to_cpuid_lock(vpe, flags);
294 	} else {
295 		/* Physical LPIs are already locked via the irq_desc lock */
296 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
297 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
298 		/* Keep GCC quiet... */
299 		*flags = 0;
300 	}
301 
302 	return cpu;
303 }
304 
305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
306 {
307 	struct its_vpe *vpe = NULL;
308 
309 	if (d->chip == &its_vpe_irq_chip) {
310 		vpe = irq_data_get_irq_chip_data(d);
311 	} else {
312 		struct its_vlpi_map *map = get_vlpi_map(d);
313 		if (map)
314 			vpe = map->vpe;
315 	}
316 
317 	if (vpe)
318 		vpe_to_cpuid_unlock(vpe, flags);
319 }
320 
321 static struct its_collection *valid_col(struct its_collection *col)
322 {
323 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
324 		return NULL;
325 
326 	return col;
327 }
328 
329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
330 {
331 	if (valid_col(its->collections + vpe->col_idx))
332 		return vpe;
333 
334 	return NULL;
335 }
336 
337 /*
338  * ITS command descriptors - parameters to be encoded in a command
339  * block.
340  */
341 struct its_cmd_desc {
342 	union {
343 		struct {
344 			struct its_device *dev;
345 			u32 event_id;
346 		} its_inv_cmd;
347 
348 		struct {
349 			struct its_device *dev;
350 			u32 event_id;
351 		} its_clear_cmd;
352 
353 		struct {
354 			struct its_device *dev;
355 			u32 event_id;
356 		} its_int_cmd;
357 
358 		struct {
359 			struct its_device *dev;
360 			int valid;
361 		} its_mapd_cmd;
362 
363 		struct {
364 			struct its_collection *col;
365 			int valid;
366 		} its_mapc_cmd;
367 
368 		struct {
369 			struct its_device *dev;
370 			u32 phys_id;
371 			u32 event_id;
372 		} its_mapti_cmd;
373 
374 		struct {
375 			struct its_device *dev;
376 			struct its_collection *col;
377 			u32 event_id;
378 		} its_movi_cmd;
379 
380 		struct {
381 			struct its_device *dev;
382 			u32 event_id;
383 		} its_discard_cmd;
384 
385 		struct {
386 			struct its_collection *col;
387 		} its_invall_cmd;
388 
389 		struct {
390 			struct its_vpe *vpe;
391 		} its_vinvall_cmd;
392 
393 		struct {
394 			struct its_vpe *vpe;
395 			struct its_collection *col;
396 			bool valid;
397 		} its_vmapp_cmd;
398 
399 		struct {
400 			struct its_vpe *vpe;
401 			struct its_device *dev;
402 			u32 virt_id;
403 			u32 event_id;
404 			bool db_enabled;
405 		} its_vmapti_cmd;
406 
407 		struct {
408 			struct its_vpe *vpe;
409 			struct its_device *dev;
410 			u32 event_id;
411 			bool db_enabled;
412 		} its_vmovi_cmd;
413 
414 		struct {
415 			struct its_vpe *vpe;
416 			struct its_collection *col;
417 			u16 seq_num;
418 			u16 its_list;
419 		} its_vmovp_cmd;
420 
421 		struct {
422 			struct its_vpe *vpe;
423 		} its_invdb_cmd;
424 
425 		struct {
426 			struct its_vpe *vpe;
427 			u8 sgi;
428 			u8 priority;
429 			bool enable;
430 			bool group;
431 			bool clear;
432 		} its_vsgi_cmd;
433 	};
434 };
435 
436 /*
437  * The ITS command block, which is what the ITS actually parses.
438  */
439 struct its_cmd_block {
440 	union {
441 		u64	raw_cmd[4];
442 		__le64	raw_cmd_le[4];
443 	};
444 };
445 
446 #define ITS_CMD_QUEUE_SZ		SZ_64K
447 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
448 
449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
450 						    struct its_cmd_block *,
451 						    struct its_cmd_desc *);
452 
453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
454 					      struct its_cmd_block *,
455 					      struct its_cmd_desc *);
456 
457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
458 {
459 	u64 mask = GENMASK_ULL(h, l);
460 	*raw_cmd &= ~mask;
461 	*raw_cmd |= (val << l) & mask;
462 }
463 
464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
465 {
466 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
467 }
468 
469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
470 {
471 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
472 }
473 
474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
475 {
476 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
477 }
478 
479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
480 {
481 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
482 }
483 
484 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
485 {
486 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
487 }
488 
489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
490 {
491 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
492 }
493 
494 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
495 {
496 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
497 }
498 
499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
500 {
501 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
502 }
503 
504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
505 {
506 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
507 }
508 
509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
510 {
511 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
512 }
513 
514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
515 {
516 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
517 }
518 
519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
520 {
521 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
522 }
523 
524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
525 {
526 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
527 }
528 
529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
530 {
531 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
532 }
533 
534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
535 {
536 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
537 }
538 
539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
540 {
541 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
542 }
543 
544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
545 {
546 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
547 }
548 
549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
550 {
551 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
552 }
553 
554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
557 }
558 
559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
560 {
561 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
562 }
563 
564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
565 					u32 vpe_db_lpi)
566 {
567 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
568 }
569 
570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
571 					u32 vpe_db_lpi)
572 {
573 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
574 }
575 
576 static void its_encode_db(struct its_cmd_block *cmd, bool db)
577 {
578 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
579 }
580 
581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
582 {
583 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
584 }
585 
586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
587 {
588 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
589 }
590 
591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
592 {
593 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
594 }
595 
596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
597 {
598 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
599 }
600 
601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
602 {
603 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
604 }
605 
606 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
607 {
608 	/* Let's fixup BE commands */
609 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
610 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
611 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
612 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
613 }
614 
615 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
616 						 struct its_cmd_block *cmd,
617 						 struct its_cmd_desc *desc)
618 {
619 	unsigned long itt_addr;
620 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
621 
622 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
623 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
624 
625 	its_encode_cmd(cmd, GITS_CMD_MAPD);
626 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
627 	its_encode_size(cmd, size - 1);
628 	its_encode_itt(cmd, itt_addr);
629 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
630 
631 	its_fixup_cmd(cmd);
632 
633 	return NULL;
634 }
635 
636 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
637 						 struct its_cmd_block *cmd,
638 						 struct its_cmd_desc *desc)
639 {
640 	its_encode_cmd(cmd, GITS_CMD_MAPC);
641 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
642 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
643 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
644 
645 	its_fixup_cmd(cmd);
646 
647 	return desc->its_mapc_cmd.col;
648 }
649 
650 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
651 						  struct its_cmd_block *cmd,
652 						  struct its_cmd_desc *desc)
653 {
654 	struct its_collection *col;
655 
656 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
657 			       desc->its_mapti_cmd.event_id);
658 
659 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
660 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
661 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
662 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
663 	its_encode_collection(cmd, col->col_id);
664 
665 	its_fixup_cmd(cmd);
666 
667 	return valid_col(col);
668 }
669 
670 static struct its_collection *its_build_movi_cmd(struct its_node *its,
671 						 struct its_cmd_block *cmd,
672 						 struct its_cmd_desc *desc)
673 {
674 	struct its_collection *col;
675 
676 	col = dev_event_to_col(desc->its_movi_cmd.dev,
677 			       desc->its_movi_cmd.event_id);
678 
679 	its_encode_cmd(cmd, GITS_CMD_MOVI);
680 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
681 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
682 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
683 
684 	its_fixup_cmd(cmd);
685 
686 	return valid_col(col);
687 }
688 
689 static struct its_collection *its_build_discard_cmd(struct its_node *its,
690 						    struct its_cmd_block *cmd,
691 						    struct its_cmd_desc *desc)
692 {
693 	struct its_collection *col;
694 
695 	col = dev_event_to_col(desc->its_discard_cmd.dev,
696 			       desc->its_discard_cmd.event_id);
697 
698 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
699 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
700 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
701 
702 	its_fixup_cmd(cmd);
703 
704 	return valid_col(col);
705 }
706 
707 static struct its_collection *its_build_inv_cmd(struct its_node *its,
708 						struct its_cmd_block *cmd,
709 						struct its_cmd_desc *desc)
710 {
711 	struct its_collection *col;
712 
713 	col = dev_event_to_col(desc->its_inv_cmd.dev,
714 			       desc->its_inv_cmd.event_id);
715 
716 	its_encode_cmd(cmd, GITS_CMD_INV);
717 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
718 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
719 
720 	its_fixup_cmd(cmd);
721 
722 	return valid_col(col);
723 }
724 
725 static struct its_collection *its_build_int_cmd(struct its_node *its,
726 						struct its_cmd_block *cmd,
727 						struct its_cmd_desc *desc)
728 {
729 	struct its_collection *col;
730 
731 	col = dev_event_to_col(desc->its_int_cmd.dev,
732 			       desc->its_int_cmd.event_id);
733 
734 	its_encode_cmd(cmd, GITS_CMD_INT);
735 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
736 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
737 
738 	its_fixup_cmd(cmd);
739 
740 	return valid_col(col);
741 }
742 
743 static struct its_collection *its_build_clear_cmd(struct its_node *its,
744 						  struct its_cmd_block *cmd,
745 						  struct its_cmd_desc *desc)
746 {
747 	struct its_collection *col;
748 
749 	col = dev_event_to_col(desc->its_clear_cmd.dev,
750 			       desc->its_clear_cmd.event_id);
751 
752 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
753 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
754 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
755 
756 	its_fixup_cmd(cmd);
757 
758 	return valid_col(col);
759 }
760 
761 static struct its_collection *its_build_invall_cmd(struct its_node *its,
762 						   struct its_cmd_block *cmd,
763 						   struct its_cmd_desc *desc)
764 {
765 	its_encode_cmd(cmd, GITS_CMD_INVALL);
766 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
767 
768 	its_fixup_cmd(cmd);
769 
770 	return desc->its_invall_cmd.col;
771 }
772 
773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
774 					     struct its_cmd_block *cmd,
775 					     struct its_cmd_desc *desc)
776 {
777 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
778 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
779 
780 	its_fixup_cmd(cmd);
781 
782 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
783 }
784 
785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
786 					   struct its_cmd_block *cmd,
787 					   struct its_cmd_desc *desc)
788 {
789 	unsigned long vpt_addr, vconf_addr;
790 	u64 target;
791 	bool alloc;
792 
793 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
794 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
795 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
796 
797 	if (!desc->its_vmapp_cmd.valid) {
798 		if (is_v4_1(its)) {
799 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
800 			its_encode_alloc(cmd, alloc);
801 		}
802 
803 		goto out;
804 	}
805 
806 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
807 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
808 
809 	its_encode_target(cmd, target);
810 	its_encode_vpt_addr(cmd, vpt_addr);
811 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
812 
813 	if (!is_v4_1(its))
814 		goto out;
815 
816 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
817 
818 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
819 
820 	its_encode_alloc(cmd, alloc);
821 
822 	/*
823 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
824 	 * to be unmapped first, and in this case, we may remap the vPE
825 	 * back while the VPT is not empty. So we can't assume that the
826 	 * VPT is empty on map. This is why we never advertise PTZ.
827 	 */
828 	its_encode_ptz(cmd, false);
829 	its_encode_vconf_addr(cmd, vconf_addr);
830 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
831 
832 out:
833 	its_fixup_cmd(cmd);
834 
835 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
836 }
837 
838 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
839 					    struct its_cmd_block *cmd,
840 					    struct its_cmd_desc *desc)
841 {
842 	u32 db;
843 
844 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
845 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
846 	else
847 		db = 1023;
848 
849 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
850 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
851 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
852 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
853 	its_encode_db_phys_id(cmd, db);
854 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
855 
856 	its_fixup_cmd(cmd);
857 
858 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
859 }
860 
861 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
862 					   struct its_cmd_block *cmd,
863 					   struct its_cmd_desc *desc)
864 {
865 	u32 db;
866 
867 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
868 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
869 	else
870 		db = 1023;
871 
872 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
873 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
874 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
875 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
876 	its_encode_db_phys_id(cmd, db);
877 	its_encode_db_valid(cmd, true);
878 
879 	its_fixup_cmd(cmd);
880 
881 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
882 }
883 
884 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
885 					   struct its_cmd_block *cmd,
886 					   struct its_cmd_desc *desc)
887 {
888 	u64 target;
889 
890 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
891 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
892 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
893 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
894 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
895 	its_encode_target(cmd, target);
896 
897 	if (is_v4_1(its)) {
898 		its_encode_db(cmd, true);
899 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
900 	}
901 
902 	its_fixup_cmd(cmd);
903 
904 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
905 }
906 
907 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
908 					  struct its_cmd_block *cmd,
909 					  struct its_cmd_desc *desc)
910 {
911 	struct its_vlpi_map *map;
912 
913 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
914 				    desc->its_inv_cmd.event_id);
915 
916 	its_encode_cmd(cmd, GITS_CMD_INV);
917 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
918 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
919 
920 	its_fixup_cmd(cmd);
921 
922 	return valid_vpe(its, map->vpe);
923 }
924 
925 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
926 					  struct its_cmd_block *cmd,
927 					  struct its_cmd_desc *desc)
928 {
929 	struct its_vlpi_map *map;
930 
931 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
932 				    desc->its_int_cmd.event_id);
933 
934 	its_encode_cmd(cmd, GITS_CMD_INT);
935 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
936 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
937 
938 	its_fixup_cmd(cmd);
939 
940 	return valid_vpe(its, map->vpe);
941 }
942 
943 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
944 					    struct its_cmd_block *cmd,
945 					    struct its_cmd_desc *desc)
946 {
947 	struct its_vlpi_map *map;
948 
949 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
950 				    desc->its_clear_cmd.event_id);
951 
952 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
953 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
954 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
955 
956 	its_fixup_cmd(cmd);
957 
958 	return valid_vpe(its, map->vpe);
959 }
960 
961 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
962 					   struct its_cmd_block *cmd,
963 					   struct its_cmd_desc *desc)
964 {
965 	if (WARN_ON(!is_v4_1(its)))
966 		return NULL;
967 
968 	its_encode_cmd(cmd, GITS_CMD_INVDB);
969 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
970 
971 	its_fixup_cmd(cmd);
972 
973 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
974 }
975 
976 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
977 					  struct its_cmd_block *cmd,
978 					  struct its_cmd_desc *desc)
979 {
980 	if (WARN_ON(!is_v4_1(its)))
981 		return NULL;
982 
983 	its_encode_cmd(cmd, GITS_CMD_VSGI);
984 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
985 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
986 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
987 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
988 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
989 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
990 
991 	its_fixup_cmd(cmd);
992 
993 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
994 }
995 
996 static u64 its_cmd_ptr_to_offset(struct its_node *its,
997 				 struct its_cmd_block *ptr)
998 {
999 	return (ptr - its->cmd_base) * sizeof(*ptr);
1000 }
1001 
1002 static int its_queue_full(struct its_node *its)
1003 {
1004 	int widx;
1005 	int ridx;
1006 
1007 	widx = its->cmd_write - its->cmd_base;
1008 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1009 
1010 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1011 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1012 		return 1;
1013 
1014 	return 0;
1015 }
1016 
1017 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1018 {
1019 	struct its_cmd_block *cmd;
1020 	u32 count = 1000000;	/* 1s! */
1021 
1022 	while (its_queue_full(its)) {
1023 		count--;
1024 		if (!count) {
1025 			pr_err_ratelimited("ITS queue not draining\n");
1026 			return NULL;
1027 		}
1028 		cpu_relax();
1029 		udelay(1);
1030 	}
1031 
1032 	cmd = its->cmd_write++;
1033 
1034 	/* Handle queue wrapping */
1035 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1036 		its->cmd_write = its->cmd_base;
1037 
1038 	/* Clear command  */
1039 	cmd->raw_cmd[0] = 0;
1040 	cmd->raw_cmd[1] = 0;
1041 	cmd->raw_cmd[2] = 0;
1042 	cmd->raw_cmd[3] = 0;
1043 
1044 	return cmd;
1045 }
1046 
1047 static struct its_cmd_block *its_post_commands(struct its_node *its)
1048 {
1049 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1050 
1051 	writel_relaxed(wr, its->base + GITS_CWRITER);
1052 
1053 	return its->cmd_write;
1054 }
1055 
1056 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1057 {
1058 	/*
1059 	 * Make sure the commands written to memory are observable by
1060 	 * the ITS.
1061 	 */
1062 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1063 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1064 	else
1065 		dsb(ishst);
1066 }
1067 
1068 static int its_wait_for_range_completion(struct its_node *its,
1069 					 u64	prev_idx,
1070 					 struct its_cmd_block *to)
1071 {
1072 	u64 rd_idx, to_idx, linear_idx;
1073 	u32 count = 1000000;	/* 1s! */
1074 
1075 	/* Linearize to_idx if the command set has wrapped around */
1076 	to_idx = its_cmd_ptr_to_offset(its, to);
1077 	if (to_idx < prev_idx)
1078 		to_idx += ITS_CMD_QUEUE_SZ;
1079 
1080 	linear_idx = prev_idx;
1081 
1082 	while (1) {
1083 		s64 delta;
1084 
1085 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1086 
1087 		/*
1088 		 * Compute the read pointer progress, taking the
1089 		 * potential wrap-around into account.
1090 		 */
1091 		delta = rd_idx - prev_idx;
1092 		if (rd_idx < prev_idx)
1093 			delta += ITS_CMD_QUEUE_SZ;
1094 
1095 		linear_idx += delta;
1096 		if (linear_idx >= to_idx)
1097 			break;
1098 
1099 		count--;
1100 		if (!count) {
1101 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1102 					   to_idx, linear_idx);
1103 			return -1;
1104 		}
1105 		prev_idx = rd_idx;
1106 		cpu_relax();
1107 		udelay(1);
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 /* Warning, macro hell follows */
1114 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1115 void name(struct its_node *its,						\
1116 	  buildtype builder,						\
1117 	  struct its_cmd_desc *desc)					\
1118 {									\
1119 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1120 	synctype *sync_obj;						\
1121 	unsigned long flags;						\
1122 	u64 rd_idx;							\
1123 									\
1124 	raw_spin_lock_irqsave(&its->lock, flags);			\
1125 									\
1126 	cmd = its_allocate_entry(its);					\
1127 	if (!cmd) {		/* We're soooooo screewed... */		\
1128 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1129 		return;							\
1130 	}								\
1131 	sync_obj = builder(its, cmd, desc);				\
1132 	its_flush_cmd(its, cmd);					\
1133 									\
1134 	if (sync_obj) {							\
1135 		sync_cmd = its_allocate_entry(its);			\
1136 		if (!sync_cmd)						\
1137 			goto post;					\
1138 									\
1139 		buildfn(its, sync_cmd, sync_obj);			\
1140 		its_flush_cmd(its, sync_cmd);				\
1141 	}								\
1142 									\
1143 post:									\
1144 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1145 	next_cmd = its_post_commands(its);				\
1146 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1147 									\
1148 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1149 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1150 }
1151 
1152 static void its_build_sync_cmd(struct its_node *its,
1153 			       struct its_cmd_block *sync_cmd,
1154 			       struct its_collection *sync_col)
1155 {
1156 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1157 	its_encode_target(sync_cmd, sync_col->target_address);
1158 
1159 	its_fixup_cmd(sync_cmd);
1160 }
1161 
1162 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1163 			     struct its_collection, its_build_sync_cmd)
1164 
1165 static void its_build_vsync_cmd(struct its_node *its,
1166 				struct its_cmd_block *sync_cmd,
1167 				struct its_vpe *sync_vpe)
1168 {
1169 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1170 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1171 
1172 	its_fixup_cmd(sync_cmd);
1173 }
1174 
1175 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1176 			     struct its_vpe, its_build_vsync_cmd)
1177 
1178 static void its_send_int(struct its_device *dev, u32 event_id)
1179 {
1180 	struct its_cmd_desc desc;
1181 
1182 	desc.its_int_cmd.dev = dev;
1183 	desc.its_int_cmd.event_id = event_id;
1184 
1185 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1186 }
1187 
1188 static void its_send_clear(struct its_device *dev, u32 event_id)
1189 {
1190 	struct its_cmd_desc desc;
1191 
1192 	desc.its_clear_cmd.dev = dev;
1193 	desc.its_clear_cmd.event_id = event_id;
1194 
1195 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1196 }
1197 
1198 static void its_send_inv(struct its_device *dev, u32 event_id)
1199 {
1200 	struct its_cmd_desc desc;
1201 
1202 	desc.its_inv_cmd.dev = dev;
1203 	desc.its_inv_cmd.event_id = event_id;
1204 
1205 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1206 }
1207 
1208 static void its_send_mapd(struct its_device *dev, int valid)
1209 {
1210 	struct its_cmd_desc desc;
1211 
1212 	desc.its_mapd_cmd.dev = dev;
1213 	desc.its_mapd_cmd.valid = !!valid;
1214 
1215 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1216 }
1217 
1218 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1219 			  int valid)
1220 {
1221 	struct its_cmd_desc desc;
1222 
1223 	desc.its_mapc_cmd.col = col;
1224 	desc.its_mapc_cmd.valid = !!valid;
1225 
1226 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1227 }
1228 
1229 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1230 {
1231 	struct its_cmd_desc desc;
1232 
1233 	desc.its_mapti_cmd.dev = dev;
1234 	desc.its_mapti_cmd.phys_id = irq_id;
1235 	desc.its_mapti_cmd.event_id = id;
1236 
1237 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1238 }
1239 
1240 static void its_send_movi(struct its_device *dev,
1241 			  struct its_collection *col, u32 id)
1242 {
1243 	struct its_cmd_desc desc;
1244 
1245 	desc.its_movi_cmd.dev = dev;
1246 	desc.its_movi_cmd.col = col;
1247 	desc.its_movi_cmd.event_id = id;
1248 
1249 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1250 }
1251 
1252 static void its_send_discard(struct its_device *dev, u32 id)
1253 {
1254 	struct its_cmd_desc desc;
1255 
1256 	desc.its_discard_cmd.dev = dev;
1257 	desc.its_discard_cmd.event_id = id;
1258 
1259 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1260 }
1261 
1262 static void its_send_invall(struct its_node *its, struct its_collection *col)
1263 {
1264 	struct its_cmd_desc desc;
1265 
1266 	desc.its_invall_cmd.col = col;
1267 
1268 	its_send_single_command(its, its_build_invall_cmd, &desc);
1269 }
1270 
1271 static void its_send_vmapti(struct its_device *dev, u32 id)
1272 {
1273 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1274 	struct its_cmd_desc desc;
1275 
1276 	desc.its_vmapti_cmd.vpe = map->vpe;
1277 	desc.its_vmapti_cmd.dev = dev;
1278 	desc.its_vmapti_cmd.virt_id = map->vintid;
1279 	desc.its_vmapti_cmd.event_id = id;
1280 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1281 
1282 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1283 }
1284 
1285 static void its_send_vmovi(struct its_device *dev, u32 id)
1286 {
1287 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1288 	struct its_cmd_desc desc;
1289 
1290 	desc.its_vmovi_cmd.vpe = map->vpe;
1291 	desc.its_vmovi_cmd.dev = dev;
1292 	desc.its_vmovi_cmd.event_id = id;
1293 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1294 
1295 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1296 }
1297 
1298 static void its_send_vmapp(struct its_node *its,
1299 			   struct its_vpe *vpe, bool valid)
1300 {
1301 	struct its_cmd_desc desc;
1302 
1303 	desc.its_vmapp_cmd.vpe = vpe;
1304 	desc.its_vmapp_cmd.valid = valid;
1305 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1306 
1307 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1308 }
1309 
1310 static void its_send_vmovp(struct its_vpe *vpe)
1311 {
1312 	struct its_cmd_desc desc = {};
1313 	struct its_node *its;
1314 	unsigned long flags;
1315 	int col_id = vpe->col_idx;
1316 
1317 	desc.its_vmovp_cmd.vpe = vpe;
1318 
1319 	if (!its_list_map) {
1320 		its = list_first_entry(&its_nodes, struct its_node, entry);
1321 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1322 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * Yet another marvel of the architecture. If using the
1328 	 * its_list "feature", we need to make sure that all ITSs
1329 	 * receive all VMOVP commands in the same order. The only way
1330 	 * to guarantee this is to make vmovp a serialization point.
1331 	 *
1332 	 * Wall <-- Head.
1333 	 */
1334 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1335 
1336 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1337 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1338 
1339 	/* Emit VMOVPs */
1340 	list_for_each_entry(its, &its_nodes, entry) {
1341 		if (!is_v4(its))
1342 			continue;
1343 
1344 		if (!require_its_list_vmovp(vpe->its_vm, its))
1345 			continue;
1346 
1347 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1348 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1349 	}
1350 
1351 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1352 }
1353 
1354 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1355 {
1356 	struct its_cmd_desc desc;
1357 
1358 	desc.its_vinvall_cmd.vpe = vpe;
1359 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1360 }
1361 
1362 static void its_send_vinv(struct its_device *dev, u32 event_id)
1363 {
1364 	struct its_cmd_desc desc;
1365 
1366 	/*
1367 	 * There is no real VINV command. This is just a normal INV,
1368 	 * with a VSYNC instead of a SYNC.
1369 	 */
1370 	desc.its_inv_cmd.dev = dev;
1371 	desc.its_inv_cmd.event_id = event_id;
1372 
1373 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1374 }
1375 
1376 static void its_send_vint(struct its_device *dev, u32 event_id)
1377 {
1378 	struct its_cmd_desc desc;
1379 
1380 	/*
1381 	 * There is no real VINT command. This is just a normal INT,
1382 	 * with a VSYNC instead of a SYNC.
1383 	 */
1384 	desc.its_int_cmd.dev = dev;
1385 	desc.its_int_cmd.event_id = event_id;
1386 
1387 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1388 }
1389 
1390 static void its_send_vclear(struct its_device *dev, u32 event_id)
1391 {
1392 	struct its_cmd_desc desc;
1393 
1394 	/*
1395 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1396 	 * with a VSYNC instead of a SYNC.
1397 	 */
1398 	desc.its_clear_cmd.dev = dev;
1399 	desc.its_clear_cmd.event_id = event_id;
1400 
1401 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1402 }
1403 
1404 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1405 {
1406 	struct its_cmd_desc desc;
1407 
1408 	desc.its_invdb_cmd.vpe = vpe;
1409 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1410 }
1411 
1412 /*
1413  * irqchip functions - assumes MSI, mostly.
1414  */
1415 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1416 {
1417 	struct its_vlpi_map *map = get_vlpi_map(d);
1418 	irq_hw_number_t hwirq;
1419 	void *va;
1420 	u8 *cfg;
1421 
1422 	if (map) {
1423 		va = page_address(map->vm->vprop_page);
1424 		hwirq = map->vintid;
1425 
1426 		/* Remember the updated property */
1427 		map->properties &= ~clr;
1428 		map->properties |= set | LPI_PROP_GROUP1;
1429 	} else {
1430 		va = gic_rdists->prop_table_va;
1431 		hwirq = d->hwirq;
1432 	}
1433 
1434 	cfg = va + hwirq - 8192;
1435 	*cfg &= ~clr;
1436 	*cfg |= set | LPI_PROP_GROUP1;
1437 
1438 	/*
1439 	 * Make the above write visible to the redistributors.
1440 	 * And yes, we're flushing exactly: One. Single. Byte.
1441 	 * Humpf...
1442 	 */
1443 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1444 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1445 	else
1446 		dsb(ishst);
1447 }
1448 
1449 static void wait_for_syncr(void __iomem *rdbase)
1450 {
1451 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1452 		cpu_relax();
1453 }
1454 
1455 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1456 {
1457 	void __iomem *rdbase;
1458 	unsigned long flags;
1459 	int cpu;
1460 
1461 	/* Target the redistributor this LPI is currently routed to */
1462 	cpu = irq_to_cpuid_lock(d, &flags);
1463 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464 
1465 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1466 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1467 	wait_for_syncr(rdbase);
1468 
1469 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470 	irq_to_cpuid_unlock(d, flags);
1471 }
1472 
1473 static void direct_lpi_inv(struct irq_data *d)
1474 {
1475 	struct its_vlpi_map *map = get_vlpi_map(d);
1476 	u64 val;
1477 
1478 	if (map) {
1479 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480 
1481 		WARN_ON(!is_v4_1(its_dev->its));
1482 
1483 		val  = GICR_INVLPIR_V;
1484 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1485 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1486 	} else {
1487 		val = d->hwirq;
1488 	}
1489 
1490 	__direct_lpi_inv(d, val);
1491 }
1492 
1493 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1494 {
1495 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496 
1497 	lpi_write_config(d, clr, set);
1498 	if (gic_rdists->has_direct_lpi &&
1499 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1500 		direct_lpi_inv(d);
1501 	else if (!irqd_is_forwarded_to_vcpu(d))
1502 		its_send_inv(its_dev, its_get_event_id(d));
1503 	else
1504 		its_send_vinv(its_dev, its_get_event_id(d));
1505 }
1506 
1507 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1508 {
1509 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1510 	u32 event = its_get_event_id(d);
1511 	struct its_vlpi_map *map;
1512 
1513 	/*
1514 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1515 	 * here.
1516 	 */
1517 	if (is_v4_1(its_dev->its))
1518 		return;
1519 
1520 	map = dev_event_to_vlpi_map(its_dev, event);
1521 
1522 	if (map->db_enabled == enable)
1523 		return;
1524 
1525 	map->db_enabled = enable;
1526 
1527 	/*
1528 	 * More fun with the architecture:
1529 	 *
1530 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1531 	 * value or to 1023, depending on the enable bit. But that
1532 	 * would be issuing a mapping for an /existing/ DevID+EventID
1533 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1534 	 * to the /same/ vPE, using this opportunity to adjust the
1535 	 * doorbell. Mouahahahaha. We loves it, Precious.
1536 	 */
1537 	its_send_vmovi(its_dev, event);
1538 }
1539 
1540 static void its_mask_irq(struct irq_data *d)
1541 {
1542 	if (irqd_is_forwarded_to_vcpu(d))
1543 		its_vlpi_set_doorbell(d, false);
1544 
1545 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1546 }
1547 
1548 static void its_unmask_irq(struct irq_data *d)
1549 {
1550 	if (irqd_is_forwarded_to_vcpu(d))
1551 		its_vlpi_set_doorbell(d, true);
1552 
1553 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1554 }
1555 
1556 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1557 {
1558 	if (irqd_affinity_is_managed(d))
1559 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1560 
1561 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1562 }
1563 
1564 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1565 {
1566 	if (irqd_affinity_is_managed(d))
1567 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1568 	else
1569 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1570 }
1571 
1572 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1573 {
1574 	if (irqd_affinity_is_managed(d))
1575 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1576 	else
1577 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1578 }
1579 
1580 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1581 					      const struct cpumask *cpu_mask)
1582 {
1583 	unsigned int cpu = nr_cpu_ids, tmp;
1584 	int count = S32_MAX;
1585 
1586 	for_each_cpu(tmp, cpu_mask) {
1587 		int this_count = its_read_lpi_count(d, tmp);
1588 		if (this_count < count) {
1589 			cpu = tmp;
1590 		        count = this_count;
1591 		}
1592 	}
1593 
1594 	return cpu;
1595 }
1596 
1597 /*
1598  * As suggested by Thomas Gleixner in:
1599  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1600  */
1601 static int its_select_cpu(struct irq_data *d,
1602 			  const struct cpumask *aff_mask)
1603 {
1604 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1605 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1606 	static struct cpumask __tmpmask;
1607 	struct cpumask *tmpmask;
1608 	unsigned long flags;
1609 	int cpu, node;
1610 	node = its_dev->its->numa_node;
1611 	tmpmask = &__tmpmask;
1612 
1613 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1614 
1615 	if (!irqd_affinity_is_managed(d)) {
1616 		/* First try the NUMA node */
1617 		if (node != NUMA_NO_NODE) {
1618 			/*
1619 			 * Try the intersection of the affinity mask and the
1620 			 * node mask (and the online mask, just to be safe).
1621 			 */
1622 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1623 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1624 
1625 			/*
1626 			 * Ideally, we would check if the mask is empty, and
1627 			 * try again on the full node here.
1628 			 *
1629 			 * But it turns out that the way ACPI describes the
1630 			 * affinity for ITSs only deals about memory, and
1631 			 * not target CPUs, so it cannot describe a single
1632 			 * ITS placed next to two NUMA nodes.
1633 			 *
1634 			 * Instead, just fallback on the online mask. This
1635 			 * diverges from Thomas' suggestion above.
1636 			 */
1637 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1638 			if (cpu < nr_cpu_ids)
1639 				goto out;
1640 
1641 			/* If we can't cross sockets, give up */
1642 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1643 				goto out;
1644 
1645 			/* If the above failed, expand the search */
1646 		}
1647 
1648 		/* Try the intersection of the affinity and online masks */
1649 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1650 
1651 		/* If that doesn't fly, the online mask is the last resort */
1652 		if (cpumask_empty(tmpmask))
1653 			cpumask_copy(tmpmask, cpu_online_mask);
1654 
1655 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1656 	} else {
1657 		cpumask_copy(tmpmask, aff_mask);
1658 
1659 		/* If we cannot cross sockets, limit the search to that node */
1660 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1661 		    node != NUMA_NO_NODE)
1662 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1663 
1664 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1665 	}
1666 out:
1667 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1668 
1669 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1670 	return cpu;
1671 }
1672 
1673 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1674 			    bool force)
1675 {
1676 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1677 	struct its_collection *target_col;
1678 	u32 id = its_get_event_id(d);
1679 	int cpu, prev_cpu;
1680 
1681 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1682 	if (irqd_is_forwarded_to_vcpu(d))
1683 		return -EINVAL;
1684 
1685 	prev_cpu = its_dev->event_map.col_map[id];
1686 	its_dec_lpi_count(d, prev_cpu);
1687 
1688 	if (!force)
1689 		cpu = its_select_cpu(d, mask_val);
1690 	else
1691 		cpu = cpumask_pick_least_loaded(d, mask_val);
1692 
1693 	if (cpu < 0 || cpu >= nr_cpu_ids)
1694 		goto err;
1695 
1696 	/* don't set the affinity when the target cpu is same as current one */
1697 	if (cpu != prev_cpu) {
1698 		target_col = &its_dev->its->collections[cpu];
1699 		its_send_movi(its_dev, target_col, id);
1700 		its_dev->event_map.col_map[id] = cpu;
1701 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1702 	}
1703 
1704 	its_inc_lpi_count(d, cpu);
1705 
1706 	return IRQ_SET_MASK_OK_DONE;
1707 
1708 err:
1709 	its_inc_lpi_count(d, prev_cpu);
1710 	return -EINVAL;
1711 }
1712 
1713 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1714 {
1715 	struct its_node *its = its_dev->its;
1716 
1717 	return its->phys_base + GITS_TRANSLATER;
1718 }
1719 
1720 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1721 {
1722 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1723 	struct its_node *its;
1724 	u64 addr;
1725 
1726 	its = its_dev->its;
1727 	addr = its->get_msi_base(its_dev);
1728 
1729 	msg->address_lo		= lower_32_bits(addr);
1730 	msg->address_hi		= upper_32_bits(addr);
1731 	msg->data		= its_get_event_id(d);
1732 
1733 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1734 }
1735 
1736 static int its_irq_set_irqchip_state(struct irq_data *d,
1737 				     enum irqchip_irq_state which,
1738 				     bool state)
1739 {
1740 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1741 	u32 event = its_get_event_id(d);
1742 
1743 	if (which != IRQCHIP_STATE_PENDING)
1744 		return -EINVAL;
1745 
1746 	if (irqd_is_forwarded_to_vcpu(d)) {
1747 		if (state)
1748 			its_send_vint(its_dev, event);
1749 		else
1750 			its_send_vclear(its_dev, event);
1751 	} else {
1752 		if (state)
1753 			its_send_int(its_dev, event);
1754 		else
1755 			its_send_clear(its_dev, event);
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static int its_irq_retrigger(struct irq_data *d)
1762 {
1763 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1764 }
1765 
1766 /*
1767  * Two favourable cases:
1768  *
1769  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1770  *     for vSGI delivery
1771  *
1772  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1773  *     and we're better off mapping all VPEs always
1774  *
1775  * If neither (a) nor (b) is true, then we map vPEs on demand.
1776  *
1777  */
1778 static bool gic_requires_eager_mapping(void)
1779 {
1780 	if (!its_list_map || gic_rdists->has_rvpeid)
1781 		return true;
1782 
1783 	return false;
1784 }
1785 
1786 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1787 {
1788 	unsigned long flags;
1789 
1790 	if (gic_requires_eager_mapping())
1791 		return;
1792 
1793 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1794 
1795 	/*
1796 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1797 	 * them mapped now.
1798 	 */
1799 	vm->vlpi_count[its->list_nr]++;
1800 
1801 	if (vm->vlpi_count[its->list_nr] == 1) {
1802 		int i;
1803 
1804 		for (i = 0; i < vm->nr_vpes; i++) {
1805 			struct its_vpe *vpe = vm->vpes[i];
1806 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1807 
1808 			/* Map the VPE to the first possible CPU */
1809 			vpe->col_idx = cpumask_first(cpu_online_mask);
1810 			its_send_vmapp(its, vpe, true);
1811 			its_send_vinvall(its, vpe);
1812 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1813 		}
1814 	}
1815 
1816 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1817 }
1818 
1819 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1820 {
1821 	unsigned long flags;
1822 
1823 	/* Not using the ITS list? Everything is always mapped. */
1824 	if (gic_requires_eager_mapping())
1825 		return;
1826 
1827 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1828 
1829 	if (!--vm->vlpi_count[its->list_nr]) {
1830 		int i;
1831 
1832 		for (i = 0; i < vm->nr_vpes; i++)
1833 			its_send_vmapp(its, vm->vpes[i], false);
1834 	}
1835 
1836 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1837 }
1838 
1839 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1840 {
1841 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1842 	u32 event = its_get_event_id(d);
1843 	int ret = 0;
1844 
1845 	if (!info->map)
1846 		return -EINVAL;
1847 
1848 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1849 
1850 	if (!its_dev->event_map.vm) {
1851 		struct its_vlpi_map *maps;
1852 
1853 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1854 			       GFP_ATOMIC);
1855 		if (!maps) {
1856 			ret = -ENOMEM;
1857 			goto out;
1858 		}
1859 
1860 		its_dev->event_map.vm = info->map->vm;
1861 		its_dev->event_map.vlpi_maps = maps;
1862 	} else if (its_dev->event_map.vm != info->map->vm) {
1863 		ret = -EINVAL;
1864 		goto out;
1865 	}
1866 
1867 	/* Get our private copy of the mapping information */
1868 	its_dev->event_map.vlpi_maps[event] = *info->map;
1869 
1870 	if (irqd_is_forwarded_to_vcpu(d)) {
1871 		/* Already mapped, move it around */
1872 		its_send_vmovi(its_dev, event);
1873 	} else {
1874 		/* Ensure all the VPEs are mapped on this ITS */
1875 		its_map_vm(its_dev->its, info->map->vm);
1876 
1877 		/*
1878 		 * Flag the interrupt as forwarded so that we can
1879 		 * start poking the virtual property table.
1880 		 */
1881 		irqd_set_forwarded_to_vcpu(d);
1882 
1883 		/* Write out the property to the prop table */
1884 		lpi_write_config(d, 0xff, info->map->properties);
1885 
1886 		/* Drop the physical mapping */
1887 		its_send_discard(its_dev, event);
1888 
1889 		/* and install the virtual one */
1890 		its_send_vmapti(its_dev, event);
1891 
1892 		/* Increment the number of VLPIs */
1893 		its_dev->event_map.nr_vlpis++;
1894 	}
1895 
1896 out:
1897 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1898 	return ret;
1899 }
1900 
1901 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1902 {
1903 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1904 	struct its_vlpi_map *map;
1905 	int ret = 0;
1906 
1907 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1908 
1909 	map = get_vlpi_map(d);
1910 
1911 	if (!its_dev->event_map.vm || !map) {
1912 		ret = -EINVAL;
1913 		goto out;
1914 	}
1915 
1916 	/* Copy our mapping information to the incoming request */
1917 	*info->map = *map;
1918 
1919 out:
1920 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1921 	return ret;
1922 }
1923 
1924 static int its_vlpi_unmap(struct irq_data *d)
1925 {
1926 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1927 	u32 event = its_get_event_id(d);
1928 	int ret = 0;
1929 
1930 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1931 
1932 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1933 		ret = -EINVAL;
1934 		goto out;
1935 	}
1936 
1937 	/* Drop the virtual mapping */
1938 	its_send_discard(its_dev, event);
1939 
1940 	/* and restore the physical one */
1941 	irqd_clr_forwarded_to_vcpu(d);
1942 	its_send_mapti(its_dev, d->hwirq, event);
1943 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1944 				    LPI_PROP_ENABLED |
1945 				    LPI_PROP_GROUP1));
1946 
1947 	/* Potentially unmap the VM from this ITS */
1948 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1949 
1950 	/*
1951 	 * Drop the refcount and make the device available again if
1952 	 * this was the last VLPI.
1953 	 */
1954 	if (!--its_dev->event_map.nr_vlpis) {
1955 		its_dev->event_map.vm = NULL;
1956 		kfree(its_dev->event_map.vlpi_maps);
1957 	}
1958 
1959 out:
1960 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1961 	return ret;
1962 }
1963 
1964 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1965 {
1966 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1967 
1968 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1969 		return -EINVAL;
1970 
1971 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1972 		lpi_update_config(d, 0xff, info->config);
1973 	else
1974 		lpi_write_config(d, 0xff, info->config);
1975 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1976 
1977 	return 0;
1978 }
1979 
1980 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1981 {
1982 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1983 	struct its_cmd_info *info = vcpu_info;
1984 
1985 	/* Need a v4 ITS */
1986 	if (!is_v4(its_dev->its))
1987 		return -EINVAL;
1988 
1989 	/* Unmap request? */
1990 	if (!info)
1991 		return its_vlpi_unmap(d);
1992 
1993 	switch (info->cmd_type) {
1994 	case MAP_VLPI:
1995 		return its_vlpi_map(d, info);
1996 
1997 	case GET_VLPI:
1998 		return its_vlpi_get(d, info);
1999 
2000 	case PROP_UPDATE_VLPI:
2001 	case PROP_UPDATE_AND_INV_VLPI:
2002 		return its_vlpi_prop_update(d, info);
2003 
2004 	default:
2005 		return -EINVAL;
2006 	}
2007 }
2008 
2009 static struct irq_chip its_irq_chip = {
2010 	.name			= "ITS",
2011 	.irq_mask		= its_mask_irq,
2012 	.irq_unmask		= its_unmask_irq,
2013 	.irq_eoi		= irq_chip_eoi_parent,
2014 	.irq_set_affinity	= its_set_affinity,
2015 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2016 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2017 	.irq_retrigger		= its_irq_retrigger,
2018 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2019 };
2020 
2021 
2022 /*
2023  * How we allocate LPIs:
2024  *
2025  * lpi_range_list contains ranges of LPIs that are to available to
2026  * allocate from. To allocate LPIs, just pick the first range that
2027  * fits the required allocation, and reduce it by the required
2028  * amount. Once empty, remove the range from the list.
2029  *
2030  * To free a range of LPIs, add a free range to the list, sort it and
2031  * merge the result if the new range happens to be adjacent to an
2032  * already free block.
2033  *
2034  * The consequence of the above is that allocation is cost is low, but
2035  * freeing is expensive. We assumes that freeing rarely occurs.
2036  */
2037 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2038 
2039 static DEFINE_MUTEX(lpi_range_lock);
2040 static LIST_HEAD(lpi_range_list);
2041 
2042 struct lpi_range {
2043 	struct list_head	entry;
2044 	u32			base_id;
2045 	u32			span;
2046 };
2047 
2048 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2049 {
2050 	struct lpi_range *range;
2051 
2052 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2053 	if (range) {
2054 		range->base_id = base;
2055 		range->span = span;
2056 	}
2057 
2058 	return range;
2059 }
2060 
2061 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2062 {
2063 	struct lpi_range *range, *tmp;
2064 	int err = -ENOSPC;
2065 
2066 	mutex_lock(&lpi_range_lock);
2067 
2068 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2069 		if (range->span >= nr_lpis) {
2070 			*base = range->base_id;
2071 			range->base_id += nr_lpis;
2072 			range->span -= nr_lpis;
2073 
2074 			if (range->span == 0) {
2075 				list_del(&range->entry);
2076 				kfree(range);
2077 			}
2078 
2079 			err = 0;
2080 			break;
2081 		}
2082 	}
2083 
2084 	mutex_unlock(&lpi_range_lock);
2085 
2086 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2087 	return err;
2088 }
2089 
2090 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2091 {
2092 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2093 		return;
2094 	if (a->base_id + a->span != b->base_id)
2095 		return;
2096 	b->base_id = a->base_id;
2097 	b->span += a->span;
2098 	list_del(&a->entry);
2099 	kfree(a);
2100 }
2101 
2102 static int free_lpi_range(u32 base, u32 nr_lpis)
2103 {
2104 	struct lpi_range *new, *old;
2105 
2106 	new = mk_lpi_range(base, nr_lpis);
2107 	if (!new)
2108 		return -ENOMEM;
2109 
2110 	mutex_lock(&lpi_range_lock);
2111 
2112 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2113 		if (old->base_id < base)
2114 			break;
2115 	}
2116 	/*
2117 	 * old is the last element with ->base_id smaller than base,
2118 	 * so new goes right after it. If there are no elements with
2119 	 * ->base_id smaller than base, &old->entry ends up pointing
2120 	 * at the head of the list, and inserting new it the start of
2121 	 * the list is the right thing to do in that case as well.
2122 	 */
2123 	list_add(&new->entry, &old->entry);
2124 	/*
2125 	 * Now check if we can merge with the preceding and/or
2126 	 * following ranges.
2127 	 */
2128 	merge_lpi_ranges(old, new);
2129 	merge_lpi_ranges(new, list_next_entry(new, entry));
2130 
2131 	mutex_unlock(&lpi_range_lock);
2132 	return 0;
2133 }
2134 
2135 static int __init its_lpi_init(u32 id_bits)
2136 {
2137 	u32 lpis = (1UL << id_bits) - 8192;
2138 	u32 numlpis;
2139 	int err;
2140 
2141 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2142 
2143 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2144 		lpis = numlpis;
2145 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2146 			lpis);
2147 	}
2148 
2149 	/*
2150 	 * Initializing the allocator is just the same as freeing the
2151 	 * full range of LPIs.
2152 	 */
2153 	err = free_lpi_range(8192, lpis);
2154 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2155 	return err;
2156 }
2157 
2158 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2159 {
2160 	unsigned long *bitmap = NULL;
2161 	int err = 0;
2162 
2163 	do {
2164 		err = alloc_lpi_range(nr_irqs, base);
2165 		if (!err)
2166 			break;
2167 
2168 		nr_irqs /= 2;
2169 	} while (nr_irqs > 0);
2170 
2171 	if (!nr_irqs)
2172 		err = -ENOSPC;
2173 
2174 	if (err)
2175 		goto out;
2176 
2177 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2178 	if (!bitmap)
2179 		goto out;
2180 
2181 	*nr_ids = nr_irqs;
2182 
2183 out:
2184 	if (!bitmap)
2185 		*base = *nr_ids = 0;
2186 
2187 	return bitmap;
2188 }
2189 
2190 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2191 {
2192 	WARN_ON(free_lpi_range(base, nr_ids));
2193 	bitmap_free(bitmap);
2194 }
2195 
2196 static void gic_reset_prop_table(void *va)
2197 {
2198 	/* Priority 0xa0, Group-1, disabled */
2199 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2200 
2201 	/* Make sure the GIC will observe the written configuration */
2202 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2203 }
2204 
2205 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2206 {
2207 	struct page *prop_page;
2208 
2209 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2210 	if (!prop_page)
2211 		return NULL;
2212 
2213 	gic_reset_prop_table(page_address(prop_page));
2214 
2215 	return prop_page;
2216 }
2217 
2218 static void its_free_prop_table(struct page *prop_page)
2219 {
2220 	free_pages((unsigned long)page_address(prop_page),
2221 		   get_order(LPI_PROPBASE_SZ));
2222 }
2223 
2224 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2225 {
2226 	phys_addr_t start, end, addr_end;
2227 	u64 i;
2228 
2229 	/*
2230 	 * We don't bother checking for a kdump kernel as by
2231 	 * construction, the LPI tables are out of this kernel's
2232 	 * memory map.
2233 	 */
2234 	if (is_kdump_kernel())
2235 		return true;
2236 
2237 	addr_end = addr + size - 1;
2238 
2239 	for_each_reserved_mem_range(i, &start, &end) {
2240 		if (addr >= start && addr_end <= end)
2241 			return true;
2242 	}
2243 
2244 	/* Not found, not a good sign... */
2245 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2246 		&addr, &addr_end);
2247 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2248 	return false;
2249 }
2250 
2251 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2252 {
2253 	if (efi_enabled(EFI_CONFIG_TABLES))
2254 		return efi_mem_reserve_persistent(addr, size);
2255 
2256 	return 0;
2257 }
2258 
2259 static int __init its_setup_lpi_prop_table(void)
2260 {
2261 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2262 		u64 val;
2263 
2264 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2265 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2266 
2267 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2268 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2269 						     LPI_PROPBASE_SZ,
2270 						     MEMREMAP_WB);
2271 		gic_reset_prop_table(gic_rdists->prop_table_va);
2272 	} else {
2273 		struct page *page;
2274 
2275 		lpi_id_bits = min_t(u32,
2276 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2277 				    ITS_MAX_LPI_NRBITS);
2278 		page = its_allocate_prop_table(GFP_NOWAIT);
2279 		if (!page) {
2280 			pr_err("Failed to allocate PROPBASE\n");
2281 			return -ENOMEM;
2282 		}
2283 
2284 		gic_rdists->prop_table_pa = page_to_phys(page);
2285 		gic_rdists->prop_table_va = page_address(page);
2286 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2287 					  LPI_PROPBASE_SZ));
2288 	}
2289 
2290 	pr_info("GICv3: using LPI property table @%pa\n",
2291 		&gic_rdists->prop_table_pa);
2292 
2293 	return its_lpi_init(lpi_id_bits);
2294 }
2295 
2296 static const char *its_base_type_string[] = {
2297 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2298 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2299 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2300 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2301 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2302 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2303 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2304 };
2305 
2306 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2307 {
2308 	u32 idx = baser - its->tables;
2309 
2310 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2311 }
2312 
2313 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2314 			    u64 val)
2315 {
2316 	u32 idx = baser - its->tables;
2317 
2318 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2319 	baser->val = its_read_baser(its, baser);
2320 }
2321 
2322 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2323 			   u64 cache, u64 shr, u32 order, bool indirect)
2324 {
2325 	u64 val = its_read_baser(its, baser);
2326 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2327 	u64 type = GITS_BASER_TYPE(val);
2328 	u64 baser_phys, tmp;
2329 	u32 alloc_pages, psz;
2330 	struct page *page;
2331 	void *base;
2332 
2333 	psz = baser->psz;
2334 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2335 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2336 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2337 			&its->phys_base, its_base_type_string[type],
2338 			alloc_pages, GITS_BASER_PAGES_MAX);
2339 		alloc_pages = GITS_BASER_PAGES_MAX;
2340 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2341 	}
2342 
2343 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2344 	if (!page)
2345 		return -ENOMEM;
2346 
2347 	base = (void *)page_address(page);
2348 	baser_phys = virt_to_phys(base);
2349 
2350 	/* Check if the physical address of the memory is above 48bits */
2351 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2352 
2353 		/* 52bit PA is supported only when PageSize=64K */
2354 		if (psz != SZ_64K) {
2355 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2356 			free_pages((unsigned long)base, order);
2357 			return -ENXIO;
2358 		}
2359 
2360 		/* Convert 52bit PA to 48bit field */
2361 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2362 	}
2363 
2364 retry_baser:
2365 	val = (baser_phys					 |
2366 		(type << GITS_BASER_TYPE_SHIFT)			 |
2367 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2368 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2369 		cache						 |
2370 		shr						 |
2371 		GITS_BASER_VALID);
2372 
2373 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2374 
2375 	switch (psz) {
2376 	case SZ_4K:
2377 		val |= GITS_BASER_PAGE_SIZE_4K;
2378 		break;
2379 	case SZ_16K:
2380 		val |= GITS_BASER_PAGE_SIZE_16K;
2381 		break;
2382 	case SZ_64K:
2383 		val |= GITS_BASER_PAGE_SIZE_64K;
2384 		break;
2385 	}
2386 
2387 	if (!shr)
2388 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2389 
2390 	its_write_baser(its, baser, val);
2391 	tmp = baser->val;
2392 
2393 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2394 		/*
2395 		 * Shareability didn't stick. Just use
2396 		 * whatever the read reported, which is likely
2397 		 * to be the only thing this redistributor
2398 		 * supports. If that's zero, make it
2399 		 * non-cacheable as well.
2400 		 */
2401 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2402 		if (!shr)
2403 			cache = GITS_BASER_nC;
2404 
2405 		goto retry_baser;
2406 	}
2407 
2408 	if (val != tmp) {
2409 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410 		       &its->phys_base, its_base_type_string[type],
2411 		       val, tmp);
2412 		free_pages((unsigned long)base, order);
2413 		return -ENXIO;
2414 	}
2415 
2416 	baser->order = order;
2417 	baser->base = base;
2418 	baser->psz = psz;
2419 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420 
2421 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423 		its_base_type_string[type],
2424 		(unsigned long)virt_to_phys(base),
2425 		indirect ? "indirect" : "flat", (int)esz,
2426 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427 
2428 	return 0;
2429 }
2430 
2431 static bool its_parse_indirect_baser(struct its_node *its,
2432 				     struct its_baser *baser,
2433 				     u32 *order, u32 ids)
2434 {
2435 	u64 tmp = its_read_baser(its, baser);
2436 	u64 type = GITS_BASER_TYPE(tmp);
2437 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439 	u32 new_order = *order;
2440 	u32 psz = baser->psz;
2441 	bool indirect = false;
2442 
2443 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444 	if ((esz << ids) > (psz * 2)) {
2445 		/*
2446 		 * Find out whether hw supports a single or two-level table by
2447 		 * table by reading bit at offset '62' after writing '1' to it.
2448 		 */
2449 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451 
2452 		if (indirect) {
2453 			/*
2454 			 * The size of the lvl2 table is equal to ITS page size
2455 			 * which is 'psz'. For computing lvl1 table size,
2456 			 * subtract ID bits that sparse lvl2 table from 'ids'
2457 			 * which is reported by ITS hardware times lvl1 table
2458 			 * entry size.
2459 			 */
2460 			ids -= ilog2(psz / (int)esz);
2461 			esz = GITS_LVL1_ENTRY_SIZE;
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * Allocate as many entries as required to fit the
2467 	 * range of device IDs that the ITS can grok... The ID
2468 	 * space being incredibly sparse, this results in a
2469 	 * massive waste of memory if two-level device table
2470 	 * feature is not supported by hardware.
2471 	 */
2472 	new_order = max_t(u32, get_order(esz << ids), new_order);
2473 	if (new_order > MAX_ORDER) {
2474 		new_order = MAX_ORDER;
2475 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477 			&its->phys_base, its_base_type_string[type],
2478 			device_ids(its), ids);
2479 	}
2480 
2481 	*order = new_order;
2482 
2483 	return indirect;
2484 }
2485 
2486 static u32 compute_common_aff(u64 val)
2487 {
2488 	u32 aff, clpiaff;
2489 
2490 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492 
2493 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494 }
2495 
2496 static u32 compute_its_aff(struct its_node *its)
2497 {
2498 	u64 val;
2499 	u32 svpet;
2500 
2501 	/*
2502 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503 	 * the resulting affinity. We then use that to see if this match
2504 	 * our own affinity.
2505 	 */
2506 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509 	return compute_common_aff(val);
2510 }
2511 
2512 static struct its_node *find_sibling_its(struct its_node *cur_its)
2513 {
2514 	struct its_node *its;
2515 	u32 aff;
2516 
2517 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518 		return NULL;
2519 
2520 	aff = compute_its_aff(cur_its);
2521 
2522 	list_for_each_entry(its, &its_nodes, entry) {
2523 		u64 baser;
2524 
2525 		if (!is_v4_1(its) || its == cur_its)
2526 			continue;
2527 
2528 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529 			continue;
2530 
2531 		if (aff != compute_its_aff(its))
2532 			continue;
2533 
2534 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535 		baser = its->tables[2].val;
2536 		if (!(baser & GITS_BASER_VALID))
2537 			continue;
2538 
2539 		return its;
2540 	}
2541 
2542 	return NULL;
2543 }
2544 
2545 static void its_free_tables(struct its_node *its)
2546 {
2547 	int i;
2548 
2549 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550 		if (its->tables[i].base) {
2551 			free_pages((unsigned long)its->tables[i].base,
2552 				   its->tables[i].order);
2553 			its->tables[i].base = NULL;
2554 		}
2555 	}
2556 }
2557 
2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559 {
2560 	u64 psz = SZ_64K;
2561 
2562 	while (psz) {
2563 		u64 val, gpsz;
2564 
2565 		val = its_read_baser(its, baser);
2566 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567 
2568 		switch (psz) {
2569 		case SZ_64K:
2570 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2571 			break;
2572 		case SZ_16K:
2573 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2574 			break;
2575 		case SZ_4K:
2576 		default:
2577 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2578 			break;
2579 		}
2580 
2581 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582 
2583 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584 		its_write_baser(its, baser, val);
2585 
2586 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587 			break;
2588 
2589 		switch (psz) {
2590 		case SZ_64K:
2591 			psz = SZ_16K;
2592 			break;
2593 		case SZ_16K:
2594 			psz = SZ_4K;
2595 			break;
2596 		case SZ_4K:
2597 		default:
2598 			return -1;
2599 		}
2600 	}
2601 
2602 	baser->psz = psz;
2603 	return 0;
2604 }
2605 
2606 static int its_alloc_tables(struct its_node *its)
2607 {
2608 	u64 shr = GITS_BASER_InnerShareable;
2609 	u64 cache = GITS_BASER_RaWaWb;
2610 	int err, i;
2611 
2612 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613 		/* erratum 24313: ignore memory access type */
2614 		cache = GITS_BASER_nCnB;
2615 
2616 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2617 		cache = GITS_BASER_nC;
2618 		shr = 0;
2619 	}
2620 
2621 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2622 		struct its_baser *baser = its->tables + i;
2623 		u64 val = its_read_baser(its, baser);
2624 		u64 type = GITS_BASER_TYPE(val);
2625 		bool indirect = false;
2626 		u32 order;
2627 
2628 		if (type == GITS_BASER_TYPE_NONE)
2629 			continue;
2630 
2631 		if (its_probe_baser_psz(its, baser)) {
2632 			its_free_tables(its);
2633 			return -ENXIO;
2634 		}
2635 
2636 		order = get_order(baser->psz);
2637 
2638 		switch (type) {
2639 		case GITS_BASER_TYPE_DEVICE:
2640 			indirect = its_parse_indirect_baser(its, baser, &order,
2641 							    device_ids(its));
2642 			break;
2643 
2644 		case GITS_BASER_TYPE_VCPU:
2645 			if (is_v4_1(its)) {
2646 				struct its_node *sibling;
2647 
2648 				WARN_ON(i != 2);
2649 				if ((sibling = find_sibling_its(its))) {
2650 					*baser = sibling->tables[2];
2651 					its_write_baser(its, baser, baser->val);
2652 					continue;
2653 				}
2654 			}
2655 
2656 			indirect = its_parse_indirect_baser(its, baser, &order,
2657 							    ITS_MAX_VPEID_BITS);
2658 			break;
2659 		}
2660 
2661 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2662 		if (err < 0) {
2663 			its_free_tables(its);
2664 			return err;
2665 		}
2666 
2667 		/* Update settings which will be used for next BASERn */
2668 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2669 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 static u64 inherit_vpe_l1_table_from_its(void)
2676 {
2677 	struct its_node *its;
2678 	u64 val;
2679 	u32 aff;
2680 
2681 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2682 	aff = compute_common_aff(val);
2683 
2684 	list_for_each_entry(its, &its_nodes, entry) {
2685 		u64 baser, addr;
2686 
2687 		if (!is_v4_1(its))
2688 			continue;
2689 
2690 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2691 			continue;
2692 
2693 		if (aff != compute_its_aff(its))
2694 			continue;
2695 
2696 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2697 		baser = its->tables[2].val;
2698 		if (!(baser & GITS_BASER_VALID))
2699 			continue;
2700 
2701 		/* We have a winner! */
2702 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2703 
2704 		val  = GICR_VPROPBASER_4_1_VALID;
2705 		if (baser & GITS_BASER_INDIRECT)
2706 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2707 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2708 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2709 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2710 		case GIC_PAGE_SIZE_64K:
2711 			addr = GITS_BASER_ADDR_48_to_52(baser);
2712 			break;
2713 		default:
2714 			addr = baser & GENMASK_ULL(47, 12);
2715 			break;
2716 		}
2717 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2718 		if (rdists_support_shareable()) {
2719 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2720 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2721 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2722 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2723 		}
2724 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2725 
2726 		return val;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2733 {
2734 	u32 aff;
2735 	u64 val;
2736 	int cpu;
2737 
2738 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739 	aff = compute_common_aff(val);
2740 
2741 	for_each_possible_cpu(cpu) {
2742 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2743 
2744 		if (!base || cpu == smp_processor_id())
2745 			continue;
2746 
2747 		val = gic_read_typer(base + GICR_TYPER);
2748 		if (aff != compute_common_aff(val))
2749 			continue;
2750 
2751 		/*
2752 		 * At this point, we have a victim. This particular CPU
2753 		 * has already booted, and has an affinity that matches
2754 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2755 		 * Make sure we don't write the Z bit in that case.
2756 		 */
2757 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2758 		val &= ~GICR_VPROPBASER_4_1_Z;
2759 
2760 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2761 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2762 
2763 		return val;
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 static bool allocate_vpe_l2_table(int cpu, u32 id)
2770 {
2771 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2772 	unsigned int psz, esz, idx, npg, gpsz;
2773 	u64 val;
2774 	struct page *page;
2775 	__le64 *table;
2776 
2777 	if (!gic_rdists->has_rvpeid)
2778 		return true;
2779 
2780 	/* Skip non-present CPUs */
2781 	if (!base)
2782 		return true;
2783 
2784 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2785 
2786 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2787 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2788 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2789 
2790 	switch (gpsz) {
2791 	default:
2792 		WARN_ON(1);
2793 		fallthrough;
2794 	case GIC_PAGE_SIZE_4K:
2795 		psz = SZ_4K;
2796 		break;
2797 	case GIC_PAGE_SIZE_16K:
2798 		psz = SZ_16K;
2799 		break;
2800 	case GIC_PAGE_SIZE_64K:
2801 		psz = SZ_64K;
2802 		break;
2803 	}
2804 
2805 	/* Don't allow vpe_id that exceeds single, flat table limit */
2806 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2807 		return (id < (npg * psz / (esz * SZ_8)));
2808 
2809 	/* Compute 1st level table index & check if that exceeds table limit */
2810 	idx = id >> ilog2(psz / (esz * SZ_8));
2811 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2812 		return false;
2813 
2814 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2815 
2816 	/* Allocate memory for 2nd level table */
2817 	if (!table[idx]) {
2818 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2819 		if (!page)
2820 			return false;
2821 
2822 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2823 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2824 			gic_flush_dcache_to_poc(page_address(page), psz);
2825 
2826 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2827 
2828 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2829 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2831 
2832 		/* Ensure updated table contents are visible to RD hardware */
2833 		dsb(sy);
2834 	}
2835 
2836 	return true;
2837 }
2838 
2839 static int allocate_vpe_l1_table(void)
2840 {
2841 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2842 	u64 val, gpsz, npg, pa;
2843 	unsigned int psz = SZ_64K;
2844 	unsigned int np, epp, esz;
2845 	struct page *page;
2846 
2847 	if (!gic_rdists->has_rvpeid)
2848 		return 0;
2849 
2850 	/*
2851 	 * if VPENDBASER.Valid is set, disable any previously programmed
2852 	 * VPE by setting PendingLast while clearing Valid. This has the
2853 	 * effect of making sure no doorbell will be generated and we can
2854 	 * then safely clear VPROPBASER.Valid.
2855 	 */
2856 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2857 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2858 				      vlpi_base + GICR_VPENDBASER);
2859 
2860 	/*
2861 	 * If we can inherit the configuration from another RD, let's do
2862 	 * so. Otherwise, we have to go through the allocation process. We
2863 	 * assume that all RDs have the exact same requirements, as
2864 	 * nothing will work otherwise.
2865 	 */
2866 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2867 	if (val & GICR_VPROPBASER_4_1_VALID)
2868 		goto out;
2869 
2870 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2871 	if (!gic_data_rdist()->vpe_table_mask)
2872 		return -ENOMEM;
2873 
2874 	val = inherit_vpe_l1_table_from_its();
2875 	if (val & GICR_VPROPBASER_4_1_VALID)
2876 		goto out;
2877 
2878 	/* First probe the page size */
2879 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2880 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2881 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2882 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2883 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2884 
2885 	switch (gpsz) {
2886 	default:
2887 		gpsz = GIC_PAGE_SIZE_4K;
2888 		fallthrough;
2889 	case GIC_PAGE_SIZE_4K:
2890 		psz = SZ_4K;
2891 		break;
2892 	case GIC_PAGE_SIZE_16K:
2893 		psz = SZ_16K;
2894 		break;
2895 	case GIC_PAGE_SIZE_64K:
2896 		psz = SZ_64K;
2897 		break;
2898 	}
2899 
2900 	/*
2901 	 * Start populating the register from scratch, including RO fields
2902 	 * (which we want to print in debug cases...)
2903 	 */
2904 	val = 0;
2905 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2906 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2907 
2908 	/* How many entries per GIC page? */
2909 	esz++;
2910 	epp = psz / (esz * SZ_8);
2911 
2912 	/*
2913 	 * If we need more than just a single L1 page, flag the table
2914 	 * as indirect and compute the number of required L1 pages.
2915 	 */
2916 	if (epp < ITS_MAX_VPEID) {
2917 		int nl2;
2918 
2919 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2920 
2921 		/* Number of L2 pages required to cover the VPEID space */
2922 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2923 
2924 		/* Number of L1 pages to point to the L2 pages */
2925 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2926 	} else {
2927 		npg = 1;
2928 	}
2929 
2930 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2931 
2932 	/* Right, that's the number of CPU pages we need for L1 */
2933 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2934 
2935 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2936 		 np, npg, psz, epp, esz);
2937 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2938 	if (!page)
2939 		return -ENOMEM;
2940 
2941 	gic_data_rdist()->vpe_l1_base = page_address(page);
2942 	pa = virt_to_phys(page_address(page));
2943 	WARN_ON(!IS_ALIGNED(pa, psz));
2944 
2945 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2946 	if (rdists_support_shareable()) {
2947 		val |= GICR_VPROPBASER_RaWb;
2948 		val |= GICR_VPROPBASER_InnerShareable;
2949 	}
2950 	val |= GICR_VPROPBASER_4_1_Z;
2951 	val |= GICR_VPROPBASER_4_1_VALID;
2952 
2953 out:
2954 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2955 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2956 
2957 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2958 		 smp_processor_id(), val,
2959 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2960 
2961 	return 0;
2962 }
2963 
2964 static int its_alloc_collections(struct its_node *its)
2965 {
2966 	int i;
2967 
2968 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2969 				   GFP_KERNEL);
2970 	if (!its->collections)
2971 		return -ENOMEM;
2972 
2973 	for (i = 0; i < nr_cpu_ids; i++)
2974 		its->collections[i].target_address = ~0ULL;
2975 
2976 	return 0;
2977 }
2978 
2979 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2980 {
2981 	struct page *pend_page;
2982 
2983 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2984 				get_order(LPI_PENDBASE_SZ));
2985 	if (!pend_page)
2986 		return NULL;
2987 
2988 	/* Make sure the GIC will observe the zero-ed page */
2989 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2990 
2991 	return pend_page;
2992 }
2993 
2994 static void its_free_pending_table(struct page *pt)
2995 {
2996 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2997 }
2998 
2999 /*
3000  * Booting with kdump and LPIs enabled is generally fine. Any other
3001  * case is wrong in the absence of firmware/EFI support.
3002  */
3003 static bool enabled_lpis_allowed(void)
3004 {
3005 	phys_addr_t addr;
3006 	u64 val;
3007 
3008 	/* Check whether the property table is in a reserved region */
3009 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3010 	addr = val & GENMASK_ULL(51, 12);
3011 
3012 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3013 }
3014 
3015 static int __init allocate_lpi_tables(void)
3016 {
3017 	u64 val;
3018 	int err, cpu;
3019 
3020 	/*
3021 	 * If LPIs are enabled while we run this from the boot CPU,
3022 	 * flag the RD tables as pre-allocated if the stars do align.
3023 	 */
3024 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3025 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3026 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3027 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3028 		pr_info("GICv3: Using preallocated redistributor tables\n");
3029 	}
3030 
3031 	err = its_setup_lpi_prop_table();
3032 	if (err)
3033 		return err;
3034 
3035 	/*
3036 	 * We allocate all the pending tables anyway, as we may have a
3037 	 * mix of RDs that have had LPIs enabled, and some that
3038 	 * don't. We'll free the unused ones as each CPU comes online.
3039 	 */
3040 	for_each_possible_cpu(cpu) {
3041 		struct page *pend_page;
3042 
3043 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3044 		if (!pend_page) {
3045 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3046 			return -ENOMEM;
3047 		}
3048 
3049 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3056 {
3057 	u32 count = 1000000;	/* 1s! */
3058 	bool clean;
3059 	u64 val;
3060 
3061 	do {
3062 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3063 		clean = !(val & GICR_VPENDBASER_Dirty);
3064 		if (!clean) {
3065 			count--;
3066 			cpu_relax();
3067 			udelay(1);
3068 		}
3069 	} while (!clean && count);
3070 
3071 	if (unlikely(!clean))
3072 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3073 
3074 	return val;
3075 }
3076 
3077 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3078 {
3079 	u64 val;
3080 
3081 	/* Make sure we wait until the RD is done with the initial scan */
3082 	val = read_vpend_dirty_clear(vlpi_base);
3083 	val &= ~GICR_VPENDBASER_Valid;
3084 	val &= ~clr;
3085 	val |= set;
3086 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3087 
3088 	val = read_vpend_dirty_clear(vlpi_base);
3089 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3090 		val |= GICR_VPENDBASER_PendingLast;
3091 
3092 	return val;
3093 }
3094 
3095 static void its_cpu_init_lpis(void)
3096 {
3097 	void __iomem *rbase = gic_data_rdist_rd_base();
3098 	struct page *pend_page;
3099 	phys_addr_t paddr;
3100 	u64 val, tmp;
3101 
3102 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3103 		return;
3104 
3105 	val = readl_relaxed(rbase + GICR_CTLR);
3106 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3107 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3108 		/*
3109 		 * Check that we get the same property table on all
3110 		 * RDs. If we don't, this is hopeless.
3111 		 */
3112 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3113 		paddr &= GENMASK_ULL(51, 12);
3114 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3115 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3116 
3117 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3118 		paddr &= GENMASK_ULL(51, 16);
3119 
3120 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3121 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3122 
3123 		goto out;
3124 	}
3125 
3126 	pend_page = gic_data_rdist()->pend_page;
3127 	paddr = page_to_phys(pend_page);
3128 
3129 	/* set PROPBASE */
3130 	val = (gic_rdists->prop_table_pa |
3131 	       GICR_PROPBASER_InnerShareable |
3132 	       GICR_PROPBASER_RaWaWb |
3133 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3134 
3135 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3136 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3137 
3138 	if (!rdists_support_shareable())
3139 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3140 
3141 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3142 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3143 			/*
3144 			 * The HW reports non-shareable, we must
3145 			 * remove the cacheability attributes as
3146 			 * well.
3147 			 */
3148 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3149 				 GICR_PROPBASER_CACHEABILITY_MASK);
3150 			val |= GICR_PROPBASER_nC;
3151 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3152 		}
3153 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3154 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3155 	}
3156 
3157 	/* set PENDBASE */
3158 	val = (page_to_phys(pend_page) |
3159 	       GICR_PENDBASER_InnerShareable |
3160 	       GICR_PENDBASER_RaWaWb);
3161 
3162 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3163 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3164 
3165 	if (!rdists_support_shareable())
3166 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3167 
3168 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3169 		/*
3170 		 * The HW reports non-shareable, we must remove the
3171 		 * cacheability attributes as well.
3172 		 */
3173 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3174 			 GICR_PENDBASER_CACHEABILITY_MASK);
3175 		val |= GICR_PENDBASER_nC;
3176 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3177 	}
3178 
3179 	/* Enable LPIs */
3180 	val = readl_relaxed(rbase + GICR_CTLR);
3181 	val |= GICR_CTLR_ENABLE_LPIS;
3182 	writel_relaxed(val, rbase + GICR_CTLR);
3183 
3184 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3185 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3186 
3187 		/*
3188 		 * It's possible for CPU to receive VLPIs before it is
3189 		 * scheduled as a vPE, especially for the first CPU, and the
3190 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3191 		 * as out of range and dropped by GIC.
3192 		 * So we initialize IDbits to known value to avoid VLPI drop.
3193 		 */
3194 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3195 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3196 			smp_processor_id(), val);
3197 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3198 
3199 		/*
3200 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3201 		 * ancient programming gets left in and has possibility of
3202 		 * corrupting memory.
3203 		 */
3204 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3205 	}
3206 
3207 	if (allocate_vpe_l1_table()) {
3208 		/*
3209 		 * If the allocation has failed, we're in massive trouble.
3210 		 * Disable direct injection, and pray that no VM was
3211 		 * already running...
3212 		 */
3213 		gic_rdists->has_rvpeid = false;
3214 		gic_rdists->has_vlpis = false;
3215 	}
3216 
3217 	/* Make sure the GIC has seen the above */
3218 	dsb(sy);
3219 out:
3220 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3221 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3222 		smp_processor_id(),
3223 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3224 		"reserved" : "allocated",
3225 		&paddr);
3226 }
3227 
3228 static void its_cpu_init_collection(struct its_node *its)
3229 {
3230 	int cpu = smp_processor_id();
3231 	u64 target;
3232 
3233 	/* avoid cross node collections and its mapping */
3234 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3235 		struct device_node *cpu_node;
3236 
3237 		cpu_node = of_get_cpu_node(cpu, NULL);
3238 		if (its->numa_node != NUMA_NO_NODE &&
3239 			its->numa_node != of_node_to_nid(cpu_node))
3240 			return;
3241 	}
3242 
3243 	/*
3244 	 * We now have to bind each collection to its target
3245 	 * redistributor.
3246 	 */
3247 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3248 		/*
3249 		 * This ITS wants the physical address of the
3250 		 * redistributor.
3251 		 */
3252 		target = gic_data_rdist()->phys_base;
3253 	} else {
3254 		/* This ITS wants a linear CPU number. */
3255 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3256 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3257 	}
3258 
3259 	/* Perform collection mapping */
3260 	its->collections[cpu].target_address = target;
3261 	its->collections[cpu].col_id = cpu;
3262 
3263 	its_send_mapc(its, &its->collections[cpu], 1);
3264 	its_send_invall(its, &its->collections[cpu]);
3265 }
3266 
3267 static void its_cpu_init_collections(void)
3268 {
3269 	struct its_node *its;
3270 
3271 	raw_spin_lock(&its_lock);
3272 
3273 	list_for_each_entry(its, &its_nodes, entry)
3274 		its_cpu_init_collection(its);
3275 
3276 	raw_spin_unlock(&its_lock);
3277 }
3278 
3279 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3280 {
3281 	struct its_device *its_dev = NULL, *tmp;
3282 	unsigned long flags;
3283 
3284 	raw_spin_lock_irqsave(&its->lock, flags);
3285 
3286 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3287 		if (tmp->device_id == dev_id) {
3288 			its_dev = tmp;
3289 			break;
3290 		}
3291 	}
3292 
3293 	raw_spin_unlock_irqrestore(&its->lock, flags);
3294 
3295 	return its_dev;
3296 }
3297 
3298 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3299 {
3300 	int i;
3301 
3302 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3303 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3304 			return &its->tables[i];
3305 	}
3306 
3307 	return NULL;
3308 }
3309 
3310 static bool its_alloc_table_entry(struct its_node *its,
3311 				  struct its_baser *baser, u32 id)
3312 {
3313 	struct page *page;
3314 	u32 esz, idx;
3315 	__le64 *table;
3316 
3317 	/* Don't allow device id that exceeds single, flat table limit */
3318 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3319 	if (!(baser->val & GITS_BASER_INDIRECT))
3320 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3321 
3322 	/* Compute 1st level table index & check if that exceeds table limit */
3323 	idx = id >> ilog2(baser->psz / esz);
3324 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3325 		return false;
3326 
3327 	table = baser->base;
3328 
3329 	/* Allocate memory for 2nd level table */
3330 	if (!table[idx]) {
3331 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3332 					get_order(baser->psz));
3333 		if (!page)
3334 			return false;
3335 
3336 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3337 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3338 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3339 
3340 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3341 
3342 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3343 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3345 
3346 		/* Ensure updated table contents are visible to ITS hardware */
3347 		dsb(sy);
3348 	}
3349 
3350 	return true;
3351 }
3352 
3353 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3354 {
3355 	struct its_baser *baser;
3356 
3357 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3358 
3359 	/* Don't allow device id that exceeds ITS hardware limit */
3360 	if (!baser)
3361 		return (ilog2(dev_id) < device_ids(its));
3362 
3363 	return its_alloc_table_entry(its, baser, dev_id);
3364 }
3365 
3366 static bool its_alloc_vpe_table(u32 vpe_id)
3367 {
3368 	struct its_node *its;
3369 	int cpu;
3370 
3371 	/*
3372 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3373 	 * could try and only do it on ITSs corresponding to devices
3374 	 * that have interrupts targeted at this VPE, but the
3375 	 * complexity becomes crazy (and you have tons of memory
3376 	 * anyway, right?).
3377 	 */
3378 	list_for_each_entry(its, &its_nodes, entry) {
3379 		struct its_baser *baser;
3380 
3381 		if (!is_v4(its))
3382 			continue;
3383 
3384 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3385 		if (!baser)
3386 			return false;
3387 
3388 		if (!its_alloc_table_entry(its, baser, vpe_id))
3389 			return false;
3390 	}
3391 
3392 	/* Non v4.1? No need to iterate RDs and go back early. */
3393 	if (!gic_rdists->has_rvpeid)
3394 		return true;
3395 
3396 	/*
3397 	 * Make sure the L2 tables are allocated for all copies of
3398 	 * the L1 table on *all* v4.1 RDs.
3399 	 */
3400 	for_each_possible_cpu(cpu) {
3401 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3402 			return false;
3403 	}
3404 
3405 	return true;
3406 }
3407 
3408 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3409 					    int nvecs, bool alloc_lpis)
3410 {
3411 	struct its_device *dev;
3412 	unsigned long *lpi_map = NULL;
3413 	unsigned long flags;
3414 	u16 *col_map = NULL;
3415 	void *itt;
3416 	int lpi_base;
3417 	int nr_lpis;
3418 	int nr_ites;
3419 	int sz;
3420 
3421 	if (!its_alloc_device_table(its, dev_id))
3422 		return NULL;
3423 
3424 	if (WARN_ON(!is_power_of_2(nvecs)))
3425 		nvecs = roundup_pow_of_two(nvecs);
3426 
3427 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3428 	/*
3429 	 * Even if the device wants a single LPI, the ITT must be
3430 	 * sized as a power of two (and you need at least one bit...).
3431 	 */
3432 	nr_ites = max(2, nvecs);
3433 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3434 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3435 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3436 	if (alloc_lpis) {
3437 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3438 		if (lpi_map)
3439 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3440 					  GFP_KERNEL);
3441 	} else {
3442 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3443 		nr_lpis = 0;
3444 		lpi_base = 0;
3445 	}
3446 
3447 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3448 		kfree(dev);
3449 		kfree(itt);
3450 		bitmap_free(lpi_map);
3451 		kfree(col_map);
3452 		return NULL;
3453 	}
3454 
3455 	gic_flush_dcache_to_poc(itt, sz);
3456 
3457 	dev->its = its;
3458 	dev->itt = itt;
3459 	dev->nr_ites = nr_ites;
3460 	dev->event_map.lpi_map = lpi_map;
3461 	dev->event_map.col_map = col_map;
3462 	dev->event_map.lpi_base = lpi_base;
3463 	dev->event_map.nr_lpis = nr_lpis;
3464 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3465 	dev->device_id = dev_id;
3466 	INIT_LIST_HEAD(&dev->entry);
3467 
3468 	raw_spin_lock_irqsave(&its->lock, flags);
3469 	list_add(&dev->entry, &its->its_device_list);
3470 	raw_spin_unlock_irqrestore(&its->lock, flags);
3471 
3472 	/* Map device to its ITT */
3473 	its_send_mapd(dev, 1);
3474 
3475 	return dev;
3476 }
3477 
3478 static void its_free_device(struct its_device *its_dev)
3479 {
3480 	unsigned long flags;
3481 
3482 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3483 	list_del(&its_dev->entry);
3484 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3485 	kfree(its_dev->event_map.col_map);
3486 	kfree(its_dev->itt);
3487 	kfree(its_dev);
3488 }
3489 
3490 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3491 {
3492 	int idx;
3493 
3494 	/* Find a free LPI region in lpi_map and allocate them. */
3495 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3496 				      dev->event_map.nr_lpis,
3497 				      get_count_order(nvecs));
3498 	if (idx < 0)
3499 		return -ENOSPC;
3500 
3501 	*hwirq = dev->event_map.lpi_base + idx;
3502 
3503 	return 0;
3504 }
3505 
3506 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3507 			   int nvec, msi_alloc_info_t *info)
3508 {
3509 	struct its_node *its;
3510 	struct its_device *its_dev;
3511 	struct msi_domain_info *msi_info;
3512 	u32 dev_id;
3513 	int err = 0;
3514 
3515 	/*
3516 	 * We ignore "dev" entirely, and rely on the dev_id that has
3517 	 * been passed via the scratchpad. This limits this domain's
3518 	 * usefulness to upper layers that definitely know that they
3519 	 * are built on top of the ITS.
3520 	 */
3521 	dev_id = info->scratchpad[0].ul;
3522 
3523 	msi_info = msi_get_domain_info(domain);
3524 	its = msi_info->data;
3525 
3526 	if (!gic_rdists->has_direct_lpi &&
3527 	    vpe_proxy.dev &&
3528 	    vpe_proxy.dev->its == its &&
3529 	    dev_id == vpe_proxy.dev->device_id) {
3530 		/* Bad luck. Get yourself a better implementation */
3531 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3532 			  dev_id);
3533 		return -EINVAL;
3534 	}
3535 
3536 	mutex_lock(&its->dev_alloc_lock);
3537 	its_dev = its_find_device(its, dev_id);
3538 	if (its_dev) {
3539 		/*
3540 		 * We already have seen this ID, probably through
3541 		 * another alias (PCI bridge of some sort). No need to
3542 		 * create the device.
3543 		 */
3544 		its_dev->shared = true;
3545 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3546 		goto out;
3547 	}
3548 
3549 	its_dev = its_create_device(its, dev_id, nvec, true);
3550 	if (!its_dev) {
3551 		err = -ENOMEM;
3552 		goto out;
3553 	}
3554 
3555 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3556 		its_dev->shared = true;
3557 
3558 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3559 out:
3560 	mutex_unlock(&its->dev_alloc_lock);
3561 	info->scratchpad[0].ptr = its_dev;
3562 	return err;
3563 }
3564 
3565 static struct msi_domain_ops its_msi_domain_ops = {
3566 	.msi_prepare	= its_msi_prepare,
3567 };
3568 
3569 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3570 				    unsigned int virq,
3571 				    irq_hw_number_t hwirq)
3572 {
3573 	struct irq_fwspec fwspec;
3574 
3575 	if (irq_domain_get_of_node(domain->parent)) {
3576 		fwspec.fwnode = domain->parent->fwnode;
3577 		fwspec.param_count = 3;
3578 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3579 		fwspec.param[1] = hwirq;
3580 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3581 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3582 		fwspec.fwnode = domain->parent->fwnode;
3583 		fwspec.param_count = 2;
3584 		fwspec.param[0] = hwirq;
3585 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3586 	} else {
3587 		return -EINVAL;
3588 	}
3589 
3590 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3591 }
3592 
3593 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3594 				unsigned int nr_irqs, void *args)
3595 {
3596 	msi_alloc_info_t *info = args;
3597 	struct its_device *its_dev = info->scratchpad[0].ptr;
3598 	struct its_node *its = its_dev->its;
3599 	struct irq_data *irqd;
3600 	irq_hw_number_t hwirq;
3601 	int err;
3602 	int i;
3603 
3604 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3605 	if (err)
3606 		return err;
3607 
3608 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3609 	if (err)
3610 		return err;
3611 
3612 	for (i = 0; i < nr_irqs; i++) {
3613 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3614 		if (err)
3615 			return err;
3616 
3617 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3618 					      hwirq + i, &its_irq_chip, its_dev);
3619 		irqd = irq_get_irq_data(virq + i);
3620 		irqd_set_single_target(irqd);
3621 		irqd_set_affinity_on_activate(irqd);
3622 		irqd_set_resend_when_in_progress(irqd);
3623 		pr_debug("ID:%d pID:%d vID:%d\n",
3624 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3625 			 (int)(hwirq + i), virq + i);
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 static int its_irq_domain_activate(struct irq_domain *domain,
3632 				   struct irq_data *d, bool reserve)
3633 {
3634 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3635 	u32 event = its_get_event_id(d);
3636 	int cpu;
3637 
3638 	cpu = its_select_cpu(d, cpu_online_mask);
3639 	if (cpu < 0 || cpu >= nr_cpu_ids)
3640 		return -EINVAL;
3641 
3642 	its_inc_lpi_count(d, cpu);
3643 	its_dev->event_map.col_map[event] = cpu;
3644 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3645 
3646 	/* Map the GIC IRQ and event to the device */
3647 	its_send_mapti(its_dev, d->hwirq, event);
3648 	return 0;
3649 }
3650 
3651 static void its_irq_domain_deactivate(struct irq_domain *domain,
3652 				      struct irq_data *d)
3653 {
3654 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3655 	u32 event = its_get_event_id(d);
3656 
3657 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3658 	/* Stop the delivery of interrupts */
3659 	its_send_discard(its_dev, event);
3660 }
3661 
3662 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3663 				unsigned int nr_irqs)
3664 {
3665 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3666 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3667 	struct its_node *its = its_dev->its;
3668 	int i;
3669 
3670 	bitmap_release_region(its_dev->event_map.lpi_map,
3671 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3672 			      get_count_order(nr_irqs));
3673 
3674 	for (i = 0; i < nr_irqs; i++) {
3675 		struct irq_data *data = irq_domain_get_irq_data(domain,
3676 								virq + i);
3677 		/* Nuke the entry in the domain */
3678 		irq_domain_reset_irq_data(data);
3679 	}
3680 
3681 	mutex_lock(&its->dev_alloc_lock);
3682 
3683 	/*
3684 	 * If all interrupts have been freed, start mopping the
3685 	 * floor. This is conditioned on the device not being shared.
3686 	 */
3687 	if (!its_dev->shared &&
3688 	    bitmap_empty(its_dev->event_map.lpi_map,
3689 			 its_dev->event_map.nr_lpis)) {
3690 		its_lpi_free(its_dev->event_map.lpi_map,
3691 			     its_dev->event_map.lpi_base,
3692 			     its_dev->event_map.nr_lpis);
3693 
3694 		/* Unmap device/itt */
3695 		its_send_mapd(its_dev, 0);
3696 		its_free_device(its_dev);
3697 	}
3698 
3699 	mutex_unlock(&its->dev_alloc_lock);
3700 
3701 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3702 }
3703 
3704 static const struct irq_domain_ops its_domain_ops = {
3705 	.alloc			= its_irq_domain_alloc,
3706 	.free			= its_irq_domain_free,
3707 	.activate		= its_irq_domain_activate,
3708 	.deactivate		= its_irq_domain_deactivate,
3709 };
3710 
3711 /*
3712  * This is insane.
3713  *
3714  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3715  * likely), the only way to perform an invalidate is to use a fake
3716  * device to issue an INV command, implying that the LPI has first
3717  * been mapped to some event on that device. Since this is not exactly
3718  * cheap, we try to keep that mapping around as long as possible, and
3719  * only issue an UNMAP if we're short on available slots.
3720  *
3721  * Broken by design(tm).
3722  *
3723  * GICv4.1, on the other hand, mandates that we're able to invalidate
3724  * by writing to a MMIO register. It doesn't implement the whole of
3725  * DirectLPI, but that's good enough. And most of the time, we don't
3726  * even have to invalidate anything, as the redistributor can be told
3727  * whether to generate a doorbell or not (we thus leave it enabled,
3728  * always).
3729  */
3730 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3731 {
3732 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3733 	if (gic_rdists->has_rvpeid)
3734 		return;
3735 
3736 	/* Already unmapped? */
3737 	if (vpe->vpe_proxy_event == -1)
3738 		return;
3739 
3740 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3741 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3742 
3743 	/*
3744 	 * We don't track empty slots at all, so let's move the
3745 	 * next_victim pointer if we can quickly reuse that slot
3746 	 * instead of nuking an existing entry. Not clear that this is
3747 	 * always a win though, and this might just generate a ripple
3748 	 * effect... Let's just hope VPEs don't migrate too often.
3749 	 */
3750 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3751 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3752 
3753 	vpe->vpe_proxy_event = -1;
3754 }
3755 
3756 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3757 {
3758 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3759 	if (gic_rdists->has_rvpeid)
3760 		return;
3761 
3762 	if (!gic_rdists->has_direct_lpi) {
3763 		unsigned long flags;
3764 
3765 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3766 		its_vpe_db_proxy_unmap_locked(vpe);
3767 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3768 	}
3769 }
3770 
3771 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3772 {
3773 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3774 	if (gic_rdists->has_rvpeid)
3775 		return;
3776 
3777 	/* Already mapped? */
3778 	if (vpe->vpe_proxy_event != -1)
3779 		return;
3780 
3781 	/* This slot was already allocated. Kick the other VPE out. */
3782 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3783 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3784 
3785 	/* Map the new VPE instead */
3786 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3787 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3788 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3789 
3790 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3791 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3792 }
3793 
3794 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3795 {
3796 	unsigned long flags;
3797 	struct its_collection *target_col;
3798 
3799 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3800 	if (gic_rdists->has_rvpeid)
3801 		return;
3802 
3803 	if (gic_rdists->has_direct_lpi) {
3804 		void __iomem *rdbase;
3805 
3806 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3807 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3808 		wait_for_syncr(rdbase);
3809 
3810 		return;
3811 	}
3812 
3813 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3814 
3815 	its_vpe_db_proxy_map_locked(vpe);
3816 
3817 	target_col = &vpe_proxy.dev->its->collections[to];
3818 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3819 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3820 
3821 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3822 }
3823 
3824 static int its_vpe_set_affinity(struct irq_data *d,
3825 				const struct cpumask *mask_val,
3826 				bool force)
3827 {
3828 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3829 	struct cpumask common, *table_mask;
3830 	unsigned long flags;
3831 	int from, cpu;
3832 
3833 	/*
3834 	 * Changing affinity is mega expensive, so let's be as lazy as
3835 	 * we can and only do it if we really have to. Also, if mapped
3836 	 * into the proxy device, we need to move the doorbell
3837 	 * interrupt to its new location.
3838 	 *
3839 	 * Another thing is that changing the affinity of a vPE affects
3840 	 * *other interrupts* such as all the vLPIs that are routed to
3841 	 * this vPE. This means that the irq_desc lock is not enough to
3842 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3843 	 * during the update, hence the lock below which must also be
3844 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3845 	 */
3846 	from = vpe_to_cpuid_lock(vpe, &flags);
3847 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3848 
3849 	/*
3850 	 * If we are offered another CPU in the same GICv4.1 ITS
3851 	 * affinity, pick this one. Otherwise, any CPU will do.
3852 	 */
3853 	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3854 		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3855 	else
3856 		cpu = cpumask_first(mask_val);
3857 
3858 	if (from == cpu)
3859 		goto out;
3860 
3861 	vpe->col_idx = cpu;
3862 
3863 	its_send_vmovp(vpe);
3864 	its_vpe_db_proxy_move(vpe, from, cpu);
3865 
3866 out:
3867 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3868 	vpe_to_cpuid_unlock(vpe, flags);
3869 
3870 	return IRQ_SET_MASK_OK_DONE;
3871 }
3872 
3873 static void its_wait_vpt_parse_complete(void)
3874 {
3875 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3876 	u64 val;
3877 
3878 	if (!gic_rdists->has_vpend_valid_dirty)
3879 		return;
3880 
3881 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3882 						       val,
3883 						       !(val & GICR_VPENDBASER_Dirty),
3884 						       1, 500));
3885 }
3886 
3887 static void its_vpe_schedule(struct its_vpe *vpe)
3888 {
3889 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3890 	u64 val;
3891 
3892 	/* Schedule the VPE */
3893 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3894 		GENMASK_ULL(51, 12);
3895 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3896 	if (rdists_support_shareable()) {
3897 		val |= GICR_VPROPBASER_RaWb;
3898 		val |= GICR_VPROPBASER_InnerShareable;
3899 	}
3900 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3901 
3902 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3903 		GENMASK_ULL(51, 16);
3904 	if (rdists_support_shareable()) {
3905 		val |= GICR_VPENDBASER_RaWaWb;
3906 		val |= GICR_VPENDBASER_InnerShareable;
3907 	}
3908 	/*
3909 	 * There is no good way of finding out if the pending table is
3910 	 * empty as we can race against the doorbell interrupt very
3911 	 * easily. So in the end, vpe->pending_last is only an
3912 	 * indication that the vcpu has something pending, not one
3913 	 * that the pending table is empty. A good implementation
3914 	 * would be able to read its coarse map pretty quickly anyway,
3915 	 * making this a tolerable issue.
3916 	 */
3917 	val |= GICR_VPENDBASER_PendingLast;
3918 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3919 	val |= GICR_VPENDBASER_Valid;
3920 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3921 }
3922 
3923 static void its_vpe_deschedule(struct its_vpe *vpe)
3924 {
3925 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3926 	u64 val;
3927 
3928 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3929 
3930 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3931 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3932 }
3933 
3934 static void its_vpe_invall(struct its_vpe *vpe)
3935 {
3936 	struct its_node *its;
3937 
3938 	list_for_each_entry(its, &its_nodes, entry) {
3939 		if (!is_v4(its))
3940 			continue;
3941 
3942 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3943 			continue;
3944 
3945 		/*
3946 		 * Sending a VINVALL to a single ITS is enough, as all
3947 		 * we need is to reach the redistributors.
3948 		 */
3949 		its_send_vinvall(its, vpe);
3950 		return;
3951 	}
3952 }
3953 
3954 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3955 {
3956 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957 	struct its_cmd_info *info = vcpu_info;
3958 
3959 	switch (info->cmd_type) {
3960 	case SCHEDULE_VPE:
3961 		its_vpe_schedule(vpe);
3962 		return 0;
3963 
3964 	case DESCHEDULE_VPE:
3965 		its_vpe_deschedule(vpe);
3966 		return 0;
3967 
3968 	case COMMIT_VPE:
3969 		its_wait_vpt_parse_complete();
3970 		return 0;
3971 
3972 	case INVALL_VPE:
3973 		its_vpe_invall(vpe);
3974 		return 0;
3975 
3976 	default:
3977 		return -EINVAL;
3978 	}
3979 }
3980 
3981 static void its_vpe_send_cmd(struct its_vpe *vpe,
3982 			     void (*cmd)(struct its_device *, u32))
3983 {
3984 	unsigned long flags;
3985 
3986 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3987 
3988 	its_vpe_db_proxy_map_locked(vpe);
3989 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3990 
3991 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3992 }
3993 
3994 static void its_vpe_send_inv(struct irq_data *d)
3995 {
3996 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3997 
3998 	if (gic_rdists->has_direct_lpi)
3999 		__direct_lpi_inv(d, d->parent_data->hwirq);
4000 	else
4001 		its_vpe_send_cmd(vpe, its_send_inv);
4002 }
4003 
4004 static void its_vpe_mask_irq(struct irq_data *d)
4005 {
4006 	/*
4007 	 * We need to unmask the LPI, which is described by the parent
4008 	 * irq_data. Instead of calling into the parent (which won't
4009 	 * exactly do the right thing, let's simply use the
4010 	 * parent_data pointer. Yes, I'm naughty.
4011 	 */
4012 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4013 	its_vpe_send_inv(d);
4014 }
4015 
4016 static void its_vpe_unmask_irq(struct irq_data *d)
4017 {
4018 	/* Same hack as above... */
4019 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4020 	its_vpe_send_inv(d);
4021 }
4022 
4023 static int its_vpe_set_irqchip_state(struct irq_data *d,
4024 				     enum irqchip_irq_state which,
4025 				     bool state)
4026 {
4027 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4028 
4029 	if (which != IRQCHIP_STATE_PENDING)
4030 		return -EINVAL;
4031 
4032 	if (gic_rdists->has_direct_lpi) {
4033 		void __iomem *rdbase;
4034 
4035 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4036 		if (state) {
4037 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4038 		} else {
4039 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4040 			wait_for_syncr(rdbase);
4041 		}
4042 	} else {
4043 		if (state)
4044 			its_vpe_send_cmd(vpe, its_send_int);
4045 		else
4046 			its_vpe_send_cmd(vpe, its_send_clear);
4047 	}
4048 
4049 	return 0;
4050 }
4051 
4052 static int its_vpe_retrigger(struct irq_data *d)
4053 {
4054 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4055 }
4056 
4057 static struct irq_chip its_vpe_irq_chip = {
4058 	.name			= "GICv4-vpe",
4059 	.irq_mask		= its_vpe_mask_irq,
4060 	.irq_unmask		= its_vpe_unmask_irq,
4061 	.irq_eoi		= irq_chip_eoi_parent,
4062 	.irq_set_affinity	= its_vpe_set_affinity,
4063 	.irq_retrigger		= its_vpe_retrigger,
4064 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4065 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4066 };
4067 
4068 static struct its_node *find_4_1_its(void)
4069 {
4070 	static struct its_node *its = NULL;
4071 
4072 	if (!its) {
4073 		list_for_each_entry(its, &its_nodes, entry) {
4074 			if (is_v4_1(its))
4075 				return its;
4076 		}
4077 
4078 		/* Oops? */
4079 		its = NULL;
4080 	}
4081 
4082 	return its;
4083 }
4084 
4085 static void its_vpe_4_1_send_inv(struct irq_data *d)
4086 {
4087 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4088 	struct its_node *its;
4089 
4090 	/*
4091 	 * GICv4.1 wants doorbells to be invalidated using the
4092 	 * INVDB command in order to be broadcast to all RDs. Send
4093 	 * it to the first valid ITS, and let the HW do its magic.
4094 	 */
4095 	its = find_4_1_its();
4096 	if (its)
4097 		its_send_invdb(its, vpe);
4098 }
4099 
4100 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4101 {
4102 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4103 	its_vpe_4_1_send_inv(d);
4104 }
4105 
4106 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4107 {
4108 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4109 	its_vpe_4_1_send_inv(d);
4110 }
4111 
4112 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4113 				 struct its_cmd_info *info)
4114 {
4115 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4116 	u64 val = 0;
4117 
4118 	/* Schedule the VPE */
4119 	val |= GICR_VPENDBASER_Valid;
4120 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4121 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4122 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4123 
4124 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4125 }
4126 
4127 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4128 				   struct its_cmd_info *info)
4129 {
4130 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4131 	u64 val;
4132 
4133 	if (info->req_db) {
4134 		unsigned long flags;
4135 
4136 		/*
4137 		 * vPE is going to block: make the vPE non-resident with
4138 		 * PendingLast clear and DB set. The GIC guarantees that if
4139 		 * we read-back PendingLast clear, then a doorbell will be
4140 		 * delivered when an interrupt comes.
4141 		 *
4142 		 * Note the locking to deal with the concurrent update of
4143 		 * pending_last from the doorbell interrupt handler that can
4144 		 * run concurrently.
4145 		 */
4146 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4147 		val = its_clear_vpend_valid(vlpi_base,
4148 					    GICR_VPENDBASER_PendingLast,
4149 					    GICR_VPENDBASER_4_1_DB);
4150 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4151 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4152 	} else {
4153 		/*
4154 		 * We're not blocking, so just make the vPE non-resident
4155 		 * with PendingLast set, indicating that we'll be back.
4156 		 */
4157 		val = its_clear_vpend_valid(vlpi_base,
4158 					    0,
4159 					    GICR_VPENDBASER_PendingLast);
4160 		vpe->pending_last = true;
4161 	}
4162 }
4163 
4164 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4165 {
4166 	void __iomem *rdbase;
4167 	unsigned long flags;
4168 	u64 val;
4169 	int cpu;
4170 
4171 	val  = GICR_INVALLR_V;
4172 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4173 
4174 	/* Target the redistributor this vPE is currently known on */
4175 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4176 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4177 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4178 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4179 
4180 	wait_for_syncr(rdbase);
4181 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4182 	vpe_to_cpuid_unlock(vpe, flags);
4183 }
4184 
4185 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4186 {
4187 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4188 	struct its_cmd_info *info = vcpu_info;
4189 
4190 	switch (info->cmd_type) {
4191 	case SCHEDULE_VPE:
4192 		its_vpe_4_1_schedule(vpe, info);
4193 		return 0;
4194 
4195 	case DESCHEDULE_VPE:
4196 		its_vpe_4_1_deschedule(vpe, info);
4197 		return 0;
4198 
4199 	case COMMIT_VPE:
4200 		its_wait_vpt_parse_complete();
4201 		return 0;
4202 
4203 	case INVALL_VPE:
4204 		its_vpe_4_1_invall(vpe);
4205 		return 0;
4206 
4207 	default:
4208 		return -EINVAL;
4209 	}
4210 }
4211 
4212 static struct irq_chip its_vpe_4_1_irq_chip = {
4213 	.name			= "GICv4.1-vpe",
4214 	.irq_mask		= its_vpe_4_1_mask_irq,
4215 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4216 	.irq_eoi		= irq_chip_eoi_parent,
4217 	.irq_set_affinity	= its_vpe_set_affinity,
4218 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4219 };
4220 
4221 static void its_configure_sgi(struct irq_data *d, bool clear)
4222 {
4223 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4224 	struct its_cmd_desc desc;
4225 
4226 	desc.its_vsgi_cmd.vpe = vpe;
4227 	desc.its_vsgi_cmd.sgi = d->hwirq;
4228 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4229 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4230 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4231 	desc.its_vsgi_cmd.clear = clear;
4232 
4233 	/*
4234 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4235 	 * destination VPE is mapped there. Since we map them eagerly at
4236 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4237 	 */
4238 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4239 }
4240 
4241 static void its_sgi_mask_irq(struct irq_data *d)
4242 {
4243 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244 
4245 	vpe->sgi_config[d->hwirq].enabled = false;
4246 	its_configure_sgi(d, false);
4247 }
4248 
4249 static void its_sgi_unmask_irq(struct irq_data *d)
4250 {
4251 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4252 
4253 	vpe->sgi_config[d->hwirq].enabled = true;
4254 	its_configure_sgi(d, false);
4255 }
4256 
4257 static int its_sgi_set_affinity(struct irq_data *d,
4258 				const struct cpumask *mask_val,
4259 				bool force)
4260 {
4261 	/*
4262 	 * There is no notion of affinity for virtual SGIs, at least
4263 	 * not on the host (since they can only be targeting a vPE).
4264 	 * Tell the kernel we've done whatever it asked for.
4265 	 */
4266 	irq_data_update_effective_affinity(d, mask_val);
4267 	return IRQ_SET_MASK_OK;
4268 }
4269 
4270 static int its_sgi_set_irqchip_state(struct irq_data *d,
4271 				     enum irqchip_irq_state which,
4272 				     bool state)
4273 {
4274 	if (which != IRQCHIP_STATE_PENDING)
4275 		return -EINVAL;
4276 
4277 	if (state) {
4278 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279 		struct its_node *its = find_4_1_its();
4280 		u64 val;
4281 
4282 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4283 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4284 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4285 	} else {
4286 		its_configure_sgi(d, true);
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 static int its_sgi_get_irqchip_state(struct irq_data *d,
4293 				     enum irqchip_irq_state which, bool *val)
4294 {
4295 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296 	void __iomem *base;
4297 	unsigned long flags;
4298 	u32 count = 1000000;	/* 1s! */
4299 	u32 status;
4300 	int cpu;
4301 
4302 	if (which != IRQCHIP_STATE_PENDING)
4303 		return -EINVAL;
4304 
4305 	/*
4306 	 * Locking galore! We can race against two different events:
4307 	 *
4308 	 * - Concurrent vPE affinity change: we must make sure it cannot
4309 	 *   happen, or we'll talk to the wrong redistributor. This is
4310 	 *   identical to what happens with vLPIs.
4311 	 *
4312 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4313 	 *   MMIO registers, this must be made atomic one way or another.
4314 	 */
4315 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4316 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4317 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4318 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4319 	do {
4320 		status = readl_relaxed(base + GICR_VSGIPENDR);
4321 		if (!(status & GICR_VSGIPENDR_BUSY))
4322 			goto out;
4323 
4324 		count--;
4325 		if (!count) {
4326 			pr_err_ratelimited("Unable to get SGI status\n");
4327 			goto out;
4328 		}
4329 		cpu_relax();
4330 		udelay(1);
4331 	} while (count);
4332 
4333 out:
4334 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4335 	vpe_to_cpuid_unlock(vpe, flags);
4336 
4337 	if (!count)
4338 		return -ENXIO;
4339 
4340 	*val = !!(status & (1 << d->hwirq));
4341 
4342 	return 0;
4343 }
4344 
4345 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4346 {
4347 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348 	struct its_cmd_info *info = vcpu_info;
4349 
4350 	switch (info->cmd_type) {
4351 	case PROP_UPDATE_VSGI:
4352 		vpe->sgi_config[d->hwirq].priority = info->priority;
4353 		vpe->sgi_config[d->hwirq].group = info->group;
4354 		its_configure_sgi(d, false);
4355 		return 0;
4356 
4357 	default:
4358 		return -EINVAL;
4359 	}
4360 }
4361 
4362 static struct irq_chip its_sgi_irq_chip = {
4363 	.name			= "GICv4.1-sgi",
4364 	.irq_mask		= its_sgi_mask_irq,
4365 	.irq_unmask		= its_sgi_unmask_irq,
4366 	.irq_set_affinity	= its_sgi_set_affinity,
4367 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4368 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4369 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4370 };
4371 
4372 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4373 				    unsigned int virq, unsigned int nr_irqs,
4374 				    void *args)
4375 {
4376 	struct its_vpe *vpe = args;
4377 	int i;
4378 
4379 	/* Yes, we do want 16 SGIs */
4380 	WARN_ON(nr_irqs != 16);
4381 
4382 	for (i = 0; i < 16; i++) {
4383 		vpe->sgi_config[i].priority = 0;
4384 		vpe->sgi_config[i].enabled = false;
4385 		vpe->sgi_config[i].group = false;
4386 
4387 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4388 					      &its_sgi_irq_chip, vpe);
4389 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4396 				    unsigned int virq,
4397 				    unsigned int nr_irqs)
4398 {
4399 	/* Nothing to do */
4400 }
4401 
4402 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4403 				       struct irq_data *d, bool reserve)
4404 {
4405 	/* Write out the initial SGI configuration */
4406 	its_configure_sgi(d, false);
4407 	return 0;
4408 }
4409 
4410 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4411 					  struct irq_data *d)
4412 {
4413 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4414 
4415 	/*
4416 	 * The VSGI command is awkward:
4417 	 *
4418 	 * - To change the configuration, CLEAR must be set to false,
4419 	 *   leaving the pending bit unchanged.
4420 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4421 	 *   the configuration unchanged.
4422 	 *
4423 	 * You just can't do both at once, hence the two commands below.
4424 	 */
4425 	vpe->sgi_config[d->hwirq].enabled = false;
4426 	its_configure_sgi(d, false);
4427 	its_configure_sgi(d, true);
4428 }
4429 
4430 static const struct irq_domain_ops its_sgi_domain_ops = {
4431 	.alloc		= its_sgi_irq_domain_alloc,
4432 	.free		= its_sgi_irq_domain_free,
4433 	.activate	= its_sgi_irq_domain_activate,
4434 	.deactivate	= its_sgi_irq_domain_deactivate,
4435 };
4436 
4437 static int its_vpe_id_alloc(void)
4438 {
4439 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4440 }
4441 
4442 static void its_vpe_id_free(u16 id)
4443 {
4444 	ida_simple_remove(&its_vpeid_ida, id);
4445 }
4446 
4447 static int its_vpe_init(struct its_vpe *vpe)
4448 {
4449 	struct page *vpt_page;
4450 	int vpe_id;
4451 
4452 	/* Allocate vpe_id */
4453 	vpe_id = its_vpe_id_alloc();
4454 	if (vpe_id < 0)
4455 		return vpe_id;
4456 
4457 	/* Allocate VPT */
4458 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4459 	if (!vpt_page) {
4460 		its_vpe_id_free(vpe_id);
4461 		return -ENOMEM;
4462 	}
4463 
4464 	if (!its_alloc_vpe_table(vpe_id)) {
4465 		its_vpe_id_free(vpe_id);
4466 		its_free_pending_table(vpt_page);
4467 		return -ENOMEM;
4468 	}
4469 
4470 	raw_spin_lock_init(&vpe->vpe_lock);
4471 	vpe->vpe_id = vpe_id;
4472 	vpe->vpt_page = vpt_page;
4473 	if (gic_rdists->has_rvpeid)
4474 		atomic_set(&vpe->vmapp_count, 0);
4475 	else
4476 		vpe->vpe_proxy_event = -1;
4477 
4478 	return 0;
4479 }
4480 
4481 static void its_vpe_teardown(struct its_vpe *vpe)
4482 {
4483 	its_vpe_db_proxy_unmap(vpe);
4484 	its_vpe_id_free(vpe->vpe_id);
4485 	its_free_pending_table(vpe->vpt_page);
4486 }
4487 
4488 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4489 				    unsigned int virq,
4490 				    unsigned int nr_irqs)
4491 {
4492 	struct its_vm *vm = domain->host_data;
4493 	int i;
4494 
4495 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4496 
4497 	for (i = 0; i < nr_irqs; i++) {
4498 		struct irq_data *data = irq_domain_get_irq_data(domain,
4499 								virq + i);
4500 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4501 
4502 		BUG_ON(vm != vpe->its_vm);
4503 
4504 		clear_bit(data->hwirq, vm->db_bitmap);
4505 		its_vpe_teardown(vpe);
4506 		irq_domain_reset_irq_data(data);
4507 	}
4508 
4509 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4510 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4511 		its_free_prop_table(vm->vprop_page);
4512 	}
4513 }
4514 
4515 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4516 				    unsigned int nr_irqs, void *args)
4517 {
4518 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4519 	struct its_vm *vm = args;
4520 	unsigned long *bitmap;
4521 	struct page *vprop_page;
4522 	int base, nr_ids, i, err = 0;
4523 
4524 	BUG_ON(!vm);
4525 
4526 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4527 	if (!bitmap)
4528 		return -ENOMEM;
4529 
4530 	if (nr_ids < nr_irqs) {
4531 		its_lpi_free(bitmap, base, nr_ids);
4532 		return -ENOMEM;
4533 	}
4534 
4535 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4536 	if (!vprop_page) {
4537 		its_lpi_free(bitmap, base, nr_ids);
4538 		return -ENOMEM;
4539 	}
4540 
4541 	vm->db_bitmap = bitmap;
4542 	vm->db_lpi_base = base;
4543 	vm->nr_db_lpis = nr_ids;
4544 	vm->vprop_page = vprop_page;
4545 
4546 	if (gic_rdists->has_rvpeid)
4547 		irqchip = &its_vpe_4_1_irq_chip;
4548 
4549 	for (i = 0; i < nr_irqs; i++) {
4550 		vm->vpes[i]->vpe_db_lpi = base + i;
4551 		err = its_vpe_init(vm->vpes[i]);
4552 		if (err)
4553 			break;
4554 		err = its_irq_gic_domain_alloc(domain, virq + i,
4555 					       vm->vpes[i]->vpe_db_lpi);
4556 		if (err)
4557 			break;
4558 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4559 					      irqchip, vm->vpes[i]);
4560 		set_bit(i, bitmap);
4561 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4562 	}
4563 
4564 	if (err) {
4565 		if (i > 0)
4566 			its_vpe_irq_domain_free(domain, virq, i);
4567 
4568 		its_lpi_free(bitmap, base, nr_ids);
4569 		its_free_prop_table(vprop_page);
4570 	}
4571 
4572 	return err;
4573 }
4574 
4575 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4576 				       struct irq_data *d, bool reserve)
4577 {
4578 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4579 	struct its_node *its;
4580 
4581 	/*
4582 	 * If we use the list map, we issue VMAPP on demand... Unless
4583 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4584 	 * so that VSGIs can work.
4585 	 */
4586 	if (!gic_requires_eager_mapping())
4587 		return 0;
4588 
4589 	/* Map the VPE to the first possible CPU */
4590 	vpe->col_idx = cpumask_first(cpu_online_mask);
4591 
4592 	list_for_each_entry(its, &its_nodes, entry) {
4593 		if (!is_v4(its))
4594 			continue;
4595 
4596 		its_send_vmapp(its, vpe, true);
4597 		its_send_vinvall(its, vpe);
4598 	}
4599 
4600 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4601 
4602 	return 0;
4603 }
4604 
4605 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4606 					  struct irq_data *d)
4607 {
4608 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4609 	struct its_node *its;
4610 
4611 	/*
4612 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4613 	 * VLPIs are associated with the VM.
4614 	 */
4615 	if (!gic_requires_eager_mapping())
4616 		return;
4617 
4618 	list_for_each_entry(its, &its_nodes, entry) {
4619 		if (!is_v4(its))
4620 			continue;
4621 
4622 		its_send_vmapp(its, vpe, false);
4623 	}
4624 
4625 	/*
4626 	 * There may be a direct read to the VPT after unmapping the
4627 	 * vPE, to guarantee the validity of this, we make the VPT
4628 	 * memory coherent with the CPU caches here.
4629 	 */
4630 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4631 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4632 					LPI_PENDBASE_SZ);
4633 }
4634 
4635 static const struct irq_domain_ops its_vpe_domain_ops = {
4636 	.alloc			= its_vpe_irq_domain_alloc,
4637 	.free			= its_vpe_irq_domain_free,
4638 	.activate		= its_vpe_irq_domain_activate,
4639 	.deactivate		= its_vpe_irq_domain_deactivate,
4640 };
4641 
4642 static int its_force_quiescent(void __iomem *base)
4643 {
4644 	u32 count = 1000000;	/* 1s */
4645 	u32 val;
4646 
4647 	val = readl_relaxed(base + GITS_CTLR);
4648 	/*
4649 	 * GIC architecture specification requires the ITS to be both
4650 	 * disabled and quiescent for writes to GITS_BASER<n> or
4651 	 * GITS_CBASER to not have UNPREDICTABLE results.
4652 	 */
4653 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4654 		return 0;
4655 
4656 	/* Disable the generation of all interrupts to this ITS */
4657 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4658 	writel_relaxed(val, base + GITS_CTLR);
4659 
4660 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4661 	while (1) {
4662 		val = readl_relaxed(base + GITS_CTLR);
4663 		if (val & GITS_CTLR_QUIESCENT)
4664 			return 0;
4665 
4666 		count--;
4667 		if (!count)
4668 			return -EBUSY;
4669 
4670 		cpu_relax();
4671 		udelay(1);
4672 	}
4673 }
4674 
4675 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4676 {
4677 	struct its_node *its = data;
4678 
4679 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4680 	its->typer &= ~GITS_TYPER_DEVBITS;
4681 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4682 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4683 
4684 	return true;
4685 }
4686 
4687 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4688 {
4689 	struct its_node *its = data;
4690 
4691 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4692 
4693 	return true;
4694 }
4695 
4696 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4697 {
4698 	struct its_node *its = data;
4699 
4700 	/* On QDF2400, the size of the ITE is 16Bytes */
4701 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4702 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4703 
4704 	return true;
4705 }
4706 
4707 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4708 {
4709 	struct its_node *its = its_dev->its;
4710 
4711 	/*
4712 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4713 	 * which maps 32-bit writes targeted at a separate window of
4714 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4715 	 * with device ID taken from bits [device_id_bits + 1:2] of
4716 	 * the window offset.
4717 	 */
4718 	return its->pre_its_base + (its_dev->device_id << 2);
4719 }
4720 
4721 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4722 {
4723 	struct its_node *its = data;
4724 	u32 pre_its_window[2];
4725 	u32 ids;
4726 
4727 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4728 					   "socionext,synquacer-pre-its",
4729 					   pre_its_window,
4730 					   ARRAY_SIZE(pre_its_window))) {
4731 
4732 		its->pre_its_base = pre_its_window[0];
4733 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4734 
4735 		ids = ilog2(pre_its_window[1]) - 2;
4736 		if (device_ids(its) > ids) {
4737 			its->typer &= ~GITS_TYPER_DEVBITS;
4738 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4739 		}
4740 
4741 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4742 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4743 		return true;
4744 	}
4745 	return false;
4746 }
4747 
4748 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4749 {
4750 	struct its_node *its = data;
4751 
4752 	/*
4753 	 * Hip07 insists on using the wrong address for the VLPI
4754 	 * page. Trick it into doing the right thing...
4755 	 */
4756 	its->vlpi_redist_offset = SZ_128K;
4757 	return true;
4758 }
4759 
4760 static bool __maybe_unused its_enable_rk3588001(void *data)
4761 {
4762 	struct its_node *its = data;
4763 
4764 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4765 	    !of_machine_is_compatible("rockchip,rk3588s"))
4766 		return false;
4767 
4768 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4769 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4770 
4771 	return true;
4772 }
4773 
4774 static bool its_set_non_coherent(void *data)
4775 {
4776 	struct its_node *its = data;
4777 
4778 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4779 	return true;
4780 }
4781 
4782 static const struct gic_quirk its_quirks[] = {
4783 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4784 	{
4785 		.desc	= "ITS: Cavium errata 22375, 24313",
4786 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4787 		.mask	= 0xffff0fff,
4788 		.init	= its_enable_quirk_cavium_22375,
4789 	},
4790 #endif
4791 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4792 	{
4793 		.desc	= "ITS: Cavium erratum 23144",
4794 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4795 		.mask	= 0xffff0fff,
4796 		.init	= its_enable_quirk_cavium_23144,
4797 	},
4798 #endif
4799 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4800 	{
4801 		.desc	= "ITS: QDF2400 erratum 0065",
4802 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4803 		.mask	= 0xffffffff,
4804 		.init	= its_enable_quirk_qdf2400_e0065,
4805 	},
4806 #endif
4807 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4808 	{
4809 		/*
4810 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4811 		 * implementation, but with a 'pre-ITS' added that requires
4812 		 * special handling in software.
4813 		 */
4814 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4815 		.iidr	= 0x0001143b,
4816 		.mask	= 0xffffffff,
4817 		.init	= its_enable_quirk_socionext_synquacer,
4818 	},
4819 #endif
4820 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4821 	{
4822 		.desc	= "ITS: Hip07 erratum 161600802",
4823 		.iidr	= 0x00000004,
4824 		.mask	= 0xffffffff,
4825 		.init	= its_enable_quirk_hip07_161600802,
4826 	},
4827 #endif
4828 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4829 	{
4830 		.desc   = "ITS: Rockchip erratum RK3588001",
4831 		.iidr   = 0x0201743b,
4832 		.mask   = 0xffffffff,
4833 		.init   = its_enable_rk3588001,
4834 	},
4835 #endif
4836 	{
4837 		.desc   = "ITS: non-coherent attribute",
4838 		.property = "dma-noncoherent",
4839 		.init   = its_set_non_coherent,
4840 	},
4841 	{
4842 	}
4843 };
4844 
4845 static void its_enable_quirks(struct its_node *its)
4846 {
4847 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4848 
4849 	gic_enable_quirks(iidr, its_quirks, its);
4850 
4851 	if (is_of_node(its->fwnode_handle))
4852 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4853 				     its_quirks, its);
4854 }
4855 
4856 static int its_save_disable(void)
4857 {
4858 	struct its_node *its;
4859 	int err = 0;
4860 
4861 	raw_spin_lock(&its_lock);
4862 	list_for_each_entry(its, &its_nodes, entry) {
4863 		void __iomem *base;
4864 
4865 		base = its->base;
4866 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4867 		err = its_force_quiescent(base);
4868 		if (err) {
4869 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4870 			       &its->phys_base, err);
4871 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4872 			goto err;
4873 		}
4874 
4875 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4876 	}
4877 
4878 err:
4879 	if (err) {
4880 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4881 			void __iomem *base;
4882 
4883 			base = its->base;
4884 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885 		}
4886 	}
4887 	raw_spin_unlock(&its_lock);
4888 
4889 	return err;
4890 }
4891 
4892 static void its_restore_enable(void)
4893 {
4894 	struct its_node *its;
4895 	int ret;
4896 
4897 	raw_spin_lock(&its_lock);
4898 	list_for_each_entry(its, &its_nodes, entry) {
4899 		void __iomem *base;
4900 		int i;
4901 
4902 		base = its->base;
4903 
4904 		/*
4905 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4906 		 * don't restore it since writing to CBASER or BASER<n>
4907 		 * registers is undefined according to the GIC v3 ITS
4908 		 * Specification.
4909 		 *
4910 		 * Firmware resuming with the ITS enabled is terminally broken.
4911 		 */
4912 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4913 		ret = its_force_quiescent(base);
4914 		if (ret) {
4915 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4916 			       &its->phys_base, ret);
4917 			continue;
4918 		}
4919 
4920 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4921 
4922 		/*
4923 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4924 		 * cmd_write line up with it.
4925 		 */
4926 		its->cmd_write = its->cmd_base;
4927 		gits_write_cwriter(0, base + GITS_CWRITER);
4928 
4929 		/* Restore GITS_BASER from the value cache. */
4930 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4931 			struct its_baser *baser = &its->tables[i];
4932 
4933 			if (!(baser->val & GITS_BASER_VALID))
4934 				continue;
4935 
4936 			its_write_baser(its, baser, baser->val);
4937 		}
4938 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4939 
4940 		/*
4941 		 * Reinit the collection if it's stored in the ITS. This is
4942 		 * indicated by the col_id being less than the HCC field.
4943 		 * CID < HCC as specified in the GIC v3 Documentation.
4944 		 */
4945 		if (its->collections[smp_processor_id()].col_id <
4946 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4947 			its_cpu_init_collection(its);
4948 	}
4949 	raw_spin_unlock(&its_lock);
4950 }
4951 
4952 static struct syscore_ops its_syscore_ops = {
4953 	.suspend = its_save_disable,
4954 	.resume = its_restore_enable,
4955 };
4956 
4957 static void __init __iomem *its_map_one(struct resource *res, int *err)
4958 {
4959 	void __iomem *its_base;
4960 	u32 val;
4961 
4962 	its_base = ioremap(res->start, SZ_64K);
4963 	if (!its_base) {
4964 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4965 		*err = -ENOMEM;
4966 		return NULL;
4967 	}
4968 
4969 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4970 	if (val != 0x30 && val != 0x40) {
4971 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4972 		*err = -ENODEV;
4973 		goto out_unmap;
4974 	}
4975 
4976 	*err = its_force_quiescent(its_base);
4977 	if (*err) {
4978 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4979 		goto out_unmap;
4980 	}
4981 
4982 	return its_base;
4983 
4984 out_unmap:
4985 	iounmap(its_base);
4986 	return NULL;
4987 }
4988 
4989 static int its_init_domain(struct its_node *its)
4990 {
4991 	struct irq_domain *inner_domain;
4992 	struct msi_domain_info *info;
4993 
4994 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4995 	if (!info)
4996 		return -ENOMEM;
4997 
4998 	info->ops = &its_msi_domain_ops;
4999 	info->data = its;
5000 
5001 	inner_domain = irq_domain_create_hierarchy(its_parent,
5002 						   its->msi_domain_flags, 0,
5003 						   its->fwnode_handle, &its_domain_ops,
5004 						   info);
5005 	if (!inner_domain) {
5006 		kfree(info);
5007 		return -ENOMEM;
5008 	}
5009 
5010 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5011 
5012 	return 0;
5013 }
5014 
5015 static int its_init_vpe_domain(void)
5016 {
5017 	struct its_node *its;
5018 	u32 devid;
5019 	int entries;
5020 
5021 	if (gic_rdists->has_direct_lpi) {
5022 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5023 		return 0;
5024 	}
5025 
5026 	/* Any ITS will do, even if not v4 */
5027 	its = list_first_entry(&its_nodes, struct its_node, entry);
5028 
5029 	entries = roundup_pow_of_two(nr_cpu_ids);
5030 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5031 				 GFP_KERNEL);
5032 	if (!vpe_proxy.vpes)
5033 		return -ENOMEM;
5034 
5035 	/* Use the last possible DevID */
5036 	devid = GENMASK(device_ids(its) - 1, 0);
5037 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5038 	if (!vpe_proxy.dev) {
5039 		kfree(vpe_proxy.vpes);
5040 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5041 		return -ENOMEM;
5042 	}
5043 
5044 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5045 
5046 	raw_spin_lock_init(&vpe_proxy.lock);
5047 	vpe_proxy.next_victim = 0;
5048 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5049 		devid, vpe_proxy.dev->nr_ites);
5050 
5051 	return 0;
5052 }
5053 
5054 static int __init its_compute_its_list_map(struct its_node *its)
5055 {
5056 	int its_number;
5057 	u32 ctlr;
5058 
5059 	/*
5060 	 * This is assumed to be done early enough that we're
5061 	 * guaranteed to be single-threaded, hence no
5062 	 * locking. Should this change, we should address
5063 	 * this.
5064 	 */
5065 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5066 	if (its_number >= GICv4_ITS_LIST_MAX) {
5067 		pr_err("ITS@%pa: No ITSList entry available!\n",
5068 		       &its->phys_base);
5069 		return -EINVAL;
5070 	}
5071 
5072 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5073 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5074 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5075 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5076 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5077 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5078 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5079 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5080 	}
5081 
5082 	if (test_and_set_bit(its_number, &its_list_map)) {
5083 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5084 		       &its->phys_base, its_number);
5085 		return -EINVAL;
5086 	}
5087 
5088 	return its_number;
5089 }
5090 
5091 static int __init its_probe_one(struct its_node *its)
5092 {
5093 	u64 baser, tmp;
5094 	struct page *page;
5095 	u32 ctlr;
5096 	int err;
5097 
5098 	its_enable_quirks(its);
5099 
5100 	if (is_v4(its)) {
5101 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5102 			err = its_compute_its_list_map(its);
5103 			if (err < 0)
5104 				goto out;
5105 
5106 			its->list_nr = err;
5107 
5108 			pr_info("ITS@%pa: Using ITS number %d\n",
5109 				&its->phys_base, err);
5110 		} else {
5111 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5112 		}
5113 
5114 		if (is_v4_1(its)) {
5115 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5116 
5117 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5118 			if (!its->sgir_base) {
5119 				err = -ENOMEM;
5120 				goto out;
5121 			}
5122 
5123 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5124 
5125 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5126 				&its->phys_base, its->mpidr, svpet);
5127 		}
5128 	}
5129 
5130 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5131 				get_order(ITS_CMD_QUEUE_SZ));
5132 	if (!page) {
5133 		err = -ENOMEM;
5134 		goto out_unmap_sgir;
5135 	}
5136 	its->cmd_base = (void *)page_address(page);
5137 	its->cmd_write = its->cmd_base;
5138 
5139 	err = its_alloc_tables(its);
5140 	if (err)
5141 		goto out_free_cmd;
5142 
5143 	err = its_alloc_collections(its);
5144 	if (err)
5145 		goto out_free_tables;
5146 
5147 	baser = (virt_to_phys(its->cmd_base)	|
5148 		 GITS_CBASER_RaWaWb		|
5149 		 GITS_CBASER_InnerShareable	|
5150 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5151 		 GITS_CBASER_VALID);
5152 
5153 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5154 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5155 
5156 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5157 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5158 
5159 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5160 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5161 			/*
5162 			 * The HW reports non-shareable, we must
5163 			 * remove the cacheability attributes as
5164 			 * well.
5165 			 */
5166 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5167 				   GITS_CBASER_CACHEABILITY_MASK);
5168 			baser |= GITS_CBASER_nC;
5169 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5170 		}
5171 		pr_info("ITS: using cache flushing for cmd queue\n");
5172 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5173 	}
5174 
5175 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5176 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5177 	ctlr |= GITS_CTLR_ENABLE;
5178 	if (is_v4(its))
5179 		ctlr |= GITS_CTLR_ImDe;
5180 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5181 
5182 	err = its_init_domain(its);
5183 	if (err)
5184 		goto out_free_tables;
5185 
5186 	raw_spin_lock(&its_lock);
5187 	list_add(&its->entry, &its_nodes);
5188 	raw_spin_unlock(&its_lock);
5189 
5190 	return 0;
5191 
5192 out_free_tables:
5193 	its_free_tables(its);
5194 out_free_cmd:
5195 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5196 out_unmap_sgir:
5197 	if (its->sgir_base)
5198 		iounmap(its->sgir_base);
5199 out:
5200 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5201 	return err;
5202 }
5203 
5204 static bool gic_rdists_supports_plpis(void)
5205 {
5206 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5207 }
5208 
5209 static int redist_disable_lpis(void)
5210 {
5211 	void __iomem *rbase = gic_data_rdist_rd_base();
5212 	u64 timeout = USEC_PER_SEC;
5213 	u64 val;
5214 
5215 	if (!gic_rdists_supports_plpis()) {
5216 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5217 		return -ENXIO;
5218 	}
5219 
5220 	val = readl_relaxed(rbase + GICR_CTLR);
5221 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5222 		return 0;
5223 
5224 	/*
5225 	 * If coming via a CPU hotplug event, we don't need to disable
5226 	 * LPIs before trying to re-enable them. They are already
5227 	 * configured and all is well in the world.
5228 	 *
5229 	 * If running with preallocated tables, there is nothing to do.
5230 	 */
5231 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5232 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5233 		return 0;
5234 
5235 	/*
5236 	 * From that point on, we only try to do some damage control.
5237 	 */
5238 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5239 		smp_processor_id());
5240 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5241 
5242 	/* Disable LPIs */
5243 	val &= ~GICR_CTLR_ENABLE_LPIS;
5244 	writel_relaxed(val, rbase + GICR_CTLR);
5245 
5246 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5247 	dsb(sy);
5248 
5249 	/*
5250 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5251 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5252 	 * Error out if we time out waiting for RWP to clear.
5253 	 */
5254 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5255 		if (!timeout) {
5256 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5257 			       smp_processor_id());
5258 			return -ETIMEDOUT;
5259 		}
5260 		udelay(1);
5261 		timeout--;
5262 	}
5263 
5264 	/*
5265 	 * After it has been written to 1, it is IMPLEMENTATION
5266 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5267 	 * cleared to 0. Error out if clearing the bit failed.
5268 	 */
5269 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5270 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5271 		return -EBUSY;
5272 	}
5273 
5274 	return 0;
5275 }
5276 
5277 int its_cpu_init(void)
5278 {
5279 	if (!list_empty(&its_nodes)) {
5280 		int ret;
5281 
5282 		ret = redist_disable_lpis();
5283 		if (ret)
5284 			return ret;
5285 
5286 		its_cpu_init_lpis();
5287 		its_cpu_init_collections();
5288 	}
5289 
5290 	return 0;
5291 }
5292 
5293 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5294 {
5295 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5296 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5297 }
5298 
5299 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5300 		    rdist_memreserve_cpuhp_cleanup_workfn);
5301 
5302 static int its_cpu_memreserve_lpi(unsigned int cpu)
5303 {
5304 	struct page *pend_page;
5305 	int ret = 0;
5306 
5307 	/* This gets to run exactly once per CPU */
5308 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5309 		return 0;
5310 
5311 	pend_page = gic_data_rdist()->pend_page;
5312 	if (WARN_ON(!pend_page)) {
5313 		ret = -ENOMEM;
5314 		goto out;
5315 	}
5316 	/*
5317 	 * If the pending table was pre-programmed, free the memory we
5318 	 * preemptively allocated. Otherwise, reserve that memory for
5319 	 * later kexecs.
5320 	 */
5321 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5322 		its_free_pending_table(pend_page);
5323 		gic_data_rdist()->pend_page = NULL;
5324 	} else {
5325 		phys_addr_t paddr = page_to_phys(pend_page);
5326 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5327 	}
5328 
5329 out:
5330 	/* Last CPU being brought up gets to issue the cleanup */
5331 	if (!IS_ENABLED(CONFIG_SMP) ||
5332 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5333 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5334 
5335 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5336 	return ret;
5337 }
5338 
5339 /* Mark all the BASER registers as invalid before they get reprogrammed */
5340 static int __init its_reset_one(struct resource *res)
5341 {
5342 	void __iomem *its_base;
5343 	int err, i;
5344 
5345 	its_base = its_map_one(res, &err);
5346 	if (!its_base)
5347 		return err;
5348 
5349 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5350 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5351 
5352 	iounmap(its_base);
5353 	return 0;
5354 }
5355 
5356 static const struct of_device_id its_device_id[] = {
5357 	{	.compatible	= "arm,gic-v3-its",	},
5358 	{},
5359 };
5360 
5361 static struct its_node __init *its_node_init(struct resource *res,
5362 					     struct fwnode_handle *handle, int numa_node)
5363 {
5364 	void __iomem *its_base;
5365 	struct its_node *its;
5366 	int err;
5367 
5368 	its_base = its_map_one(res, &err);
5369 	if (!its_base)
5370 		return NULL;
5371 
5372 	pr_info("ITS %pR\n", res);
5373 
5374 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5375 	if (!its)
5376 		goto out_unmap;
5377 
5378 	raw_spin_lock_init(&its->lock);
5379 	mutex_init(&its->dev_alloc_lock);
5380 	INIT_LIST_HEAD(&its->entry);
5381 	INIT_LIST_HEAD(&its->its_device_list);
5382 
5383 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5384 	its->base = its_base;
5385 	its->phys_base = res->start;
5386 	its->get_msi_base = its_irq_get_msi_base;
5387 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5388 
5389 	its->numa_node = numa_node;
5390 	its->fwnode_handle = handle;
5391 
5392 	return its;
5393 
5394 out_unmap:
5395 	iounmap(its_base);
5396 	return NULL;
5397 }
5398 
5399 static void its_node_destroy(struct its_node *its)
5400 {
5401 	iounmap(its->base);
5402 	kfree(its);
5403 }
5404 
5405 static int __init its_of_probe(struct device_node *node)
5406 {
5407 	struct device_node *np;
5408 	struct resource res;
5409 	int err;
5410 
5411 	/*
5412 	 * Make sure *all* the ITS are reset before we probe any, as
5413 	 * they may be sharing memory. If any of the ITS fails to
5414 	 * reset, don't even try to go any further, as this could
5415 	 * result in something even worse.
5416 	 */
5417 	for (np = of_find_matching_node(node, its_device_id); np;
5418 	     np = of_find_matching_node(np, its_device_id)) {
5419 		if (!of_device_is_available(np) ||
5420 		    !of_property_read_bool(np, "msi-controller") ||
5421 		    of_address_to_resource(np, 0, &res))
5422 			continue;
5423 
5424 		err = its_reset_one(&res);
5425 		if (err)
5426 			return err;
5427 	}
5428 
5429 	for (np = of_find_matching_node(node, its_device_id); np;
5430 	     np = of_find_matching_node(np, its_device_id)) {
5431 		struct its_node *its;
5432 
5433 		if (!of_device_is_available(np))
5434 			continue;
5435 		if (!of_property_read_bool(np, "msi-controller")) {
5436 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5437 				np);
5438 			continue;
5439 		}
5440 
5441 		if (of_address_to_resource(np, 0, &res)) {
5442 			pr_warn("%pOF: no regs?\n", np);
5443 			continue;
5444 		}
5445 
5446 
5447 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5448 		if (!its)
5449 			return -ENOMEM;
5450 
5451 		err = its_probe_one(its);
5452 		if (err)  {
5453 			its_node_destroy(its);
5454 			return err;
5455 		}
5456 	}
5457 	return 0;
5458 }
5459 
5460 #ifdef CONFIG_ACPI
5461 
5462 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5463 
5464 #ifdef CONFIG_ACPI_NUMA
5465 struct its_srat_map {
5466 	/* numa node id */
5467 	u32	numa_node;
5468 	/* GIC ITS ID */
5469 	u32	its_id;
5470 };
5471 
5472 static struct its_srat_map *its_srat_maps __initdata;
5473 static int its_in_srat __initdata;
5474 
5475 static int __init acpi_get_its_numa_node(u32 its_id)
5476 {
5477 	int i;
5478 
5479 	for (i = 0; i < its_in_srat; i++) {
5480 		if (its_id == its_srat_maps[i].its_id)
5481 			return its_srat_maps[i].numa_node;
5482 	}
5483 	return NUMA_NO_NODE;
5484 }
5485 
5486 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5487 					  const unsigned long end)
5488 {
5489 	return 0;
5490 }
5491 
5492 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5493 			 const unsigned long end)
5494 {
5495 	int node;
5496 	struct acpi_srat_gic_its_affinity *its_affinity;
5497 
5498 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5499 	if (!its_affinity)
5500 		return -EINVAL;
5501 
5502 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5503 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5504 			its_affinity->header.length);
5505 		return -EINVAL;
5506 	}
5507 
5508 	/*
5509 	 * Note that in theory a new proximity node could be created by this
5510 	 * entry as it is an SRAT resource allocation structure.
5511 	 * We do not currently support doing so.
5512 	 */
5513 	node = pxm_to_node(its_affinity->proximity_domain);
5514 
5515 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5516 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5517 		return 0;
5518 	}
5519 
5520 	its_srat_maps[its_in_srat].numa_node = node;
5521 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5522 	its_in_srat++;
5523 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5524 		its_affinity->proximity_domain, its_affinity->its_id, node);
5525 
5526 	return 0;
5527 }
5528 
5529 static void __init acpi_table_parse_srat_its(void)
5530 {
5531 	int count;
5532 
5533 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5534 			sizeof(struct acpi_table_srat),
5535 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5536 			gic_acpi_match_srat_its, 0);
5537 	if (count <= 0)
5538 		return;
5539 
5540 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5541 				      GFP_KERNEL);
5542 	if (!its_srat_maps)
5543 		return;
5544 
5545 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5546 			sizeof(struct acpi_table_srat),
5547 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5548 			gic_acpi_parse_srat_its, 0);
5549 }
5550 
5551 /* free the its_srat_maps after ITS probing */
5552 static void __init acpi_its_srat_maps_free(void)
5553 {
5554 	kfree(its_srat_maps);
5555 }
5556 #else
5557 static void __init acpi_table_parse_srat_its(void)	{ }
5558 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5559 static void __init acpi_its_srat_maps_free(void) { }
5560 #endif
5561 
5562 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5563 					  const unsigned long end)
5564 {
5565 	struct acpi_madt_generic_translator *its_entry;
5566 	struct fwnode_handle *dom_handle;
5567 	struct its_node *its;
5568 	struct resource res;
5569 	int err;
5570 
5571 	its_entry = (struct acpi_madt_generic_translator *)header;
5572 	memset(&res, 0, sizeof(res));
5573 	res.start = its_entry->base_address;
5574 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5575 	res.flags = IORESOURCE_MEM;
5576 
5577 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5578 	if (!dom_handle) {
5579 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5580 		       &res.start);
5581 		return -ENOMEM;
5582 	}
5583 
5584 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5585 					 dom_handle);
5586 	if (err) {
5587 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5588 		       &res.start, its_entry->translation_id);
5589 		goto dom_err;
5590 	}
5591 
5592 	its = its_node_init(&res, dom_handle,
5593 			    acpi_get_its_numa_node(its_entry->translation_id));
5594 	if (!its) {
5595 		err = -ENOMEM;
5596 		goto node_err;
5597 	}
5598 
5599 	err = its_probe_one(its);
5600 	if (!err)
5601 		return 0;
5602 
5603 node_err:
5604 	iort_deregister_domain_token(its_entry->translation_id);
5605 dom_err:
5606 	irq_domain_free_fwnode(dom_handle);
5607 	return err;
5608 }
5609 
5610 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5611 				 const unsigned long end)
5612 {
5613 	struct acpi_madt_generic_translator *its_entry;
5614 	struct resource res;
5615 
5616 	its_entry = (struct acpi_madt_generic_translator *)header;
5617 	res = (struct resource) {
5618 		.start	= its_entry->base_address,
5619 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5620 		.flags	= IORESOURCE_MEM,
5621 	};
5622 
5623 	return its_reset_one(&res);
5624 }
5625 
5626 static void __init its_acpi_probe(void)
5627 {
5628 	acpi_table_parse_srat_its();
5629 	/*
5630 	 * Make sure *all* the ITS are reset before we probe any, as
5631 	 * they may be sharing memory. If any of the ITS fails to
5632 	 * reset, don't even try to go any further, as this could
5633 	 * result in something even worse.
5634 	 */
5635 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5636 				  its_acpi_reset, 0) > 0)
5637 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5638 				      gic_acpi_parse_madt_its, 0);
5639 	acpi_its_srat_maps_free();
5640 }
5641 #else
5642 static void __init its_acpi_probe(void) { }
5643 #endif
5644 
5645 int __init its_lpi_memreserve_init(void)
5646 {
5647 	int state;
5648 
5649 	if (!efi_enabled(EFI_CONFIG_TABLES))
5650 		return 0;
5651 
5652 	if (list_empty(&its_nodes))
5653 		return 0;
5654 
5655 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5656 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5657 				  "irqchip/arm/gicv3/memreserve:online",
5658 				  its_cpu_memreserve_lpi,
5659 				  NULL);
5660 	if (state < 0)
5661 		return state;
5662 
5663 	gic_rdists->cpuhp_memreserve_state = state;
5664 
5665 	return 0;
5666 }
5667 
5668 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5669 		    struct irq_domain *parent_domain)
5670 {
5671 	struct device_node *of_node;
5672 	struct its_node *its;
5673 	bool has_v4 = false;
5674 	bool has_v4_1 = false;
5675 	int err;
5676 
5677 	gic_rdists = rdists;
5678 
5679 	its_parent = parent_domain;
5680 	of_node = to_of_node(handle);
5681 	if (of_node)
5682 		its_of_probe(of_node);
5683 	else
5684 		its_acpi_probe();
5685 
5686 	if (list_empty(&its_nodes)) {
5687 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5688 		return -ENXIO;
5689 	}
5690 
5691 	err = allocate_lpi_tables();
5692 	if (err)
5693 		return err;
5694 
5695 	list_for_each_entry(its, &its_nodes, entry) {
5696 		has_v4 |= is_v4(its);
5697 		has_v4_1 |= is_v4_1(its);
5698 	}
5699 
5700 	/* Don't bother with inconsistent systems */
5701 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5702 		rdists->has_rvpeid = false;
5703 
5704 	if (has_v4 & rdists->has_vlpis) {
5705 		const struct irq_domain_ops *sgi_ops;
5706 
5707 		if (has_v4_1)
5708 			sgi_ops = &its_sgi_domain_ops;
5709 		else
5710 			sgi_ops = NULL;
5711 
5712 		if (its_init_vpe_domain() ||
5713 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5714 			rdists->has_vlpis = false;
5715 			pr_err("ITS: Disabling GICv4 support\n");
5716 		}
5717 	}
5718 
5719 	register_syscore_ops(&its_syscore_ops);
5720 
5721 	return 0;
5722 }
5723