1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/efi.h> 16 #include <linux/interrupt.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 48 49 #define RD_LOCAL_LPI_ENABLED BIT(0) 50 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 51 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 52 53 static u32 lpi_id_bits; 54 55 /* 56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 57 * deal with (one configuration byte per interrupt). PENDBASE has to 58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 59 */ 60 #define LPI_NRBITS lpi_id_bits 61 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 62 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 63 64 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 65 66 /* 67 * Collection structure - just an ID, and a redistributor address to 68 * ping. We use one per CPU as a bag of interrupts assigned to this 69 * CPU. 70 */ 71 struct its_collection { 72 u64 target_address; 73 u16 col_id; 74 }; 75 76 /* 77 * The ITS_BASER structure - contains memory information, cached 78 * value of BASER register configuration and ITS page size. 79 */ 80 struct its_baser { 81 void *base; 82 u64 val; 83 u32 order; 84 u32 psz; 85 }; 86 87 struct its_device; 88 89 /* 90 * The ITS structure - contains most of the infrastructure, with the 91 * top-level MSI domain, the command queue, the collections, and the 92 * list of devices writing to it. 93 * 94 * dev_alloc_lock has to be taken for device allocations, while the 95 * spinlock must be taken to parse data structures such as the device 96 * list. 97 */ 98 struct its_node { 99 raw_spinlock_t lock; 100 struct mutex dev_alloc_lock; 101 struct list_head entry; 102 void __iomem *base; 103 void __iomem *sgir_base; 104 phys_addr_t phys_base; 105 struct its_cmd_block *cmd_base; 106 struct its_cmd_block *cmd_write; 107 struct its_baser tables[GITS_BASER_NR_REGS]; 108 struct its_collection *collections; 109 struct fwnode_handle *fwnode_handle; 110 u64 (*get_msi_base)(struct its_device *its_dev); 111 u64 typer; 112 u64 cbaser_save; 113 u32 ctlr_save; 114 u32 mpidr; 115 struct list_head its_device_list; 116 u64 flags; 117 unsigned long list_nr; 118 int numa_node; 119 unsigned int msi_domain_flags; 120 u32 pre_its_base; /* for Socionext Synquacer */ 121 int vlpi_redist_offset; 122 }; 123 124 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 125 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 126 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 127 128 #define ITS_ITT_ALIGN SZ_256 129 130 /* The maximum number of VPEID bits supported by VLPI commands */ 131 #define ITS_MAX_VPEID_BITS \ 132 ({ \ 133 int nvpeid = 16; \ 134 if (gic_rdists->has_rvpeid && \ 135 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 136 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 137 GICD_TYPER2_VID); \ 138 \ 139 nvpeid; \ 140 }) 141 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 142 143 /* Convert page order to size in bytes */ 144 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 145 146 struct event_lpi_map { 147 unsigned long *lpi_map; 148 u16 *col_map; 149 irq_hw_number_t lpi_base; 150 int nr_lpis; 151 raw_spinlock_t vlpi_lock; 152 struct its_vm *vm; 153 struct its_vlpi_map *vlpi_maps; 154 int nr_vlpis; 155 }; 156 157 /* 158 * The ITS view of a device - belongs to an ITS, owns an interrupt 159 * translation table, and a list of interrupts. If it some of its 160 * LPIs are injected into a guest (GICv4), the event_map.vm field 161 * indicates which one. 162 */ 163 struct its_device { 164 struct list_head entry; 165 struct its_node *its; 166 struct event_lpi_map event_map; 167 void *itt; 168 u32 nr_ites; 169 u32 device_id; 170 bool shared; 171 }; 172 173 static struct { 174 raw_spinlock_t lock; 175 struct its_device *dev; 176 struct its_vpe **vpes; 177 int next_victim; 178 } vpe_proxy; 179 180 struct cpu_lpi_count { 181 atomic_t managed; 182 atomic_t unmanaged; 183 }; 184 185 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 186 187 static LIST_HEAD(its_nodes); 188 static DEFINE_RAW_SPINLOCK(its_lock); 189 static struct rdists *gic_rdists; 190 static struct irq_domain *its_parent; 191 192 static unsigned long its_list_map; 193 static u16 vmovp_seq_num; 194 static DEFINE_RAW_SPINLOCK(vmovp_lock); 195 196 static DEFINE_IDA(its_vpeid_ida); 197 198 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 199 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 200 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 201 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 202 203 /* 204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 205 * always have vSGIs mapped. 206 */ 207 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 208 { 209 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 210 } 211 212 static u16 get_its_list(struct its_vm *vm) 213 { 214 struct its_node *its; 215 unsigned long its_list = 0; 216 217 list_for_each_entry(its, &its_nodes, entry) { 218 if (!is_v4(its)) 219 continue; 220 221 if (require_its_list_vmovp(vm, its)) 222 __set_bit(its->list_nr, &its_list); 223 } 224 225 return (u16)its_list; 226 } 227 228 static inline u32 its_get_event_id(struct irq_data *d) 229 { 230 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 231 return d->hwirq - its_dev->event_map.lpi_base; 232 } 233 234 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 235 u32 event) 236 { 237 struct its_node *its = its_dev->its; 238 239 return its->collections + its_dev->event_map.col_map[event]; 240 } 241 242 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 243 u32 event) 244 { 245 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 246 return NULL; 247 248 return &its_dev->event_map.vlpi_maps[event]; 249 } 250 251 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 252 { 253 if (irqd_is_forwarded_to_vcpu(d)) { 254 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 255 u32 event = its_get_event_id(d); 256 257 return dev_event_to_vlpi_map(its_dev, event); 258 } 259 260 return NULL; 261 } 262 263 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 264 { 265 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 266 return vpe->col_idx; 267 } 268 269 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 270 { 271 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 272 } 273 274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 275 { 276 struct its_vlpi_map *map = get_vlpi_map(d); 277 int cpu; 278 279 if (map) { 280 cpu = vpe_to_cpuid_lock(map->vpe, flags); 281 } else { 282 /* Physical LPIs are already locked via the irq_desc lock */ 283 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 284 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 285 /* Keep GCC quiet... */ 286 *flags = 0; 287 } 288 289 return cpu; 290 } 291 292 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 293 { 294 struct its_vlpi_map *map = get_vlpi_map(d); 295 296 if (map) 297 vpe_to_cpuid_unlock(map->vpe, flags); 298 } 299 300 static struct its_collection *valid_col(struct its_collection *col) 301 { 302 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 303 return NULL; 304 305 return col; 306 } 307 308 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 309 { 310 if (valid_col(its->collections + vpe->col_idx)) 311 return vpe; 312 313 return NULL; 314 } 315 316 /* 317 * ITS command descriptors - parameters to be encoded in a command 318 * block. 319 */ 320 struct its_cmd_desc { 321 union { 322 struct { 323 struct its_device *dev; 324 u32 event_id; 325 } its_inv_cmd; 326 327 struct { 328 struct its_device *dev; 329 u32 event_id; 330 } its_clear_cmd; 331 332 struct { 333 struct its_device *dev; 334 u32 event_id; 335 } its_int_cmd; 336 337 struct { 338 struct its_device *dev; 339 int valid; 340 } its_mapd_cmd; 341 342 struct { 343 struct its_collection *col; 344 int valid; 345 } its_mapc_cmd; 346 347 struct { 348 struct its_device *dev; 349 u32 phys_id; 350 u32 event_id; 351 } its_mapti_cmd; 352 353 struct { 354 struct its_device *dev; 355 struct its_collection *col; 356 u32 event_id; 357 } its_movi_cmd; 358 359 struct { 360 struct its_device *dev; 361 u32 event_id; 362 } its_discard_cmd; 363 364 struct { 365 struct its_collection *col; 366 } its_invall_cmd; 367 368 struct { 369 struct its_vpe *vpe; 370 } its_vinvall_cmd; 371 372 struct { 373 struct its_vpe *vpe; 374 struct its_collection *col; 375 bool valid; 376 } its_vmapp_cmd; 377 378 struct { 379 struct its_vpe *vpe; 380 struct its_device *dev; 381 u32 virt_id; 382 u32 event_id; 383 bool db_enabled; 384 } its_vmapti_cmd; 385 386 struct { 387 struct its_vpe *vpe; 388 struct its_device *dev; 389 u32 event_id; 390 bool db_enabled; 391 } its_vmovi_cmd; 392 393 struct { 394 struct its_vpe *vpe; 395 struct its_collection *col; 396 u16 seq_num; 397 u16 its_list; 398 } its_vmovp_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 } its_invdb_cmd; 403 404 struct { 405 struct its_vpe *vpe; 406 u8 sgi; 407 u8 priority; 408 bool enable; 409 bool group; 410 bool clear; 411 } its_vsgi_cmd; 412 }; 413 }; 414 415 /* 416 * The ITS command block, which is what the ITS actually parses. 417 */ 418 struct its_cmd_block { 419 union { 420 u64 raw_cmd[4]; 421 __le64 raw_cmd_le[4]; 422 }; 423 }; 424 425 #define ITS_CMD_QUEUE_SZ SZ_64K 426 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 427 428 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 429 struct its_cmd_block *, 430 struct its_cmd_desc *); 431 432 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 433 struct its_cmd_block *, 434 struct its_cmd_desc *); 435 436 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 437 { 438 u64 mask = GENMASK_ULL(h, l); 439 *raw_cmd &= ~mask; 440 *raw_cmd |= (val << l) & mask; 441 } 442 443 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 444 { 445 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 446 } 447 448 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 449 { 450 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 451 } 452 453 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 454 { 455 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 456 } 457 458 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 459 { 460 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 461 } 462 463 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 464 { 465 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 466 } 467 468 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 469 { 470 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 471 } 472 473 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 474 { 475 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 476 } 477 478 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 479 { 480 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 481 } 482 483 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 484 { 485 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 486 } 487 488 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 489 { 490 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 491 } 492 493 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 494 { 495 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 496 } 497 498 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 499 { 500 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 501 } 502 503 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 504 { 505 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 506 } 507 508 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 509 { 510 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 511 } 512 513 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 514 { 515 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 516 } 517 518 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 519 { 520 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 521 } 522 523 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 524 { 525 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 526 } 527 528 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 529 { 530 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 531 } 532 533 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 534 { 535 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 536 } 537 538 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 539 { 540 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 541 } 542 543 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 544 u32 vpe_db_lpi) 545 { 546 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 547 } 548 549 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 550 u32 vpe_db_lpi) 551 { 552 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 553 } 554 555 static void its_encode_db(struct its_cmd_block *cmd, bool db) 556 { 557 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 558 } 559 560 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 561 { 562 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 563 } 564 565 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 566 { 567 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 568 } 569 570 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 571 { 572 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 573 } 574 575 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 576 { 577 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 578 } 579 580 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 581 { 582 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 583 } 584 585 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 586 { 587 /* Let's fixup BE commands */ 588 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 589 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 590 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 591 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 592 } 593 594 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 595 struct its_cmd_block *cmd, 596 struct its_cmd_desc *desc) 597 { 598 unsigned long itt_addr; 599 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 600 601 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 602 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 603 604 its_encode_cmd(cmd, GITS_CMD_MAPD); 605 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 606 its_encode_size(cmd, size - 1); 607 its_encode_itt(cmd, itt_addr); 608 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 609 610 its_fixup_cmd(cmd); 611 612 return NULL; 613 } 614 615 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 its_encode_cmd(cmd, GITS_CMD_MAPC); 620 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 621 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 622 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 623 624 its_fixup_cmd(cmd); 625 626 return desc->its_mapc_cmd.col; 627 } 628 629 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 630 struct its_cmd_block *cmd, 631 struct its_cmd_desc *desc) 632 { 633 struct its_collection *col; 634 635 col = dev_event_to_col(desc->its_mapti_cmd.dev, 636 desc->its_mapti_cmd.event_id); 637 638 its_encode_cmd(cmd, GITS_CMD_MAPTI); 639 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 640 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 641 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 642 its_encode_collection(cmd, col->col_id); 643 644 its_fixup_cmd(cmd); 645 646 return valid_col(col); 647 } 648 649 static struct its_collection *its_build_movi_cmd(struct its_node *its, 650 struct its_cmd_block *cmd, 651 struct its_cmd_desc *desc) 652 { 653 struct its_collection *col; 654 655 col = dev_event_to_col(desc->its_movi_cmd.dev, 656 desc->its_movi_cmd.event_id); 657 658 its_encode_cmd(cmd, GITS_CMD_MOVI); 659 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 660 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 661 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 662 663 its_fixup_cmd(cmd); 664 665 return valid_col(col); 666 } 667 668 static struct its_collection *its_build_discard_cmd(struct its_node *its, 669 struct its_cmd_block *cmd, 670 struct its_cmd_desc *desc) 671 { 672 struct its_collection *col; 673 674 col = dev_event_to_col(desc->its_discard_cmd.dev, 675 desc->its_discard_cmd.event_id); 676 677 its_encode_cmd(cmd, GITS_CMD_DISCARD); 678 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 679 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 680 681 its_fixup_cmd(cmd); 682 683 return valid_col(col); 684 } 685 686 static struct its_collection *its_build_inv_cmd(struct its_node *its, 687 struct its_cmd_block *cmd, 688 struct its_cmd_desc *desc) 689 { 690 struct its_collection *col; 691 692 col = dev_event_to_col(desc->its_inv_cmd.dev, 693 desc->its_inv_cmd.event_id); 694 695 its_encode_cmd(cmd, GITS_CMD_INV); 696 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 697 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 698 699 its_fixup_cmd(cmd); 700 701 return valid_col(col); 702 } 703 704 static struct its_collection *its_build_int_cmd(struct its_node *its, 705 struct its_cmd_block *cmd, 706 struct its_cmd_desc *desc) 707 { 708 struct its_collection *col; 709 710 col = dev_event_to_col(desc->its_int_cmd.dev, 711 desc->its_int_cmd.event_id); 712 713 its_encode_cmd(cmd, GITS_CMD_INT); 714 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 715 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 716 717 its_fixup_cmd(cmd); 718 719 return valid_col(col); 720 } 721 722 static struct its_collection *its_build_clear_cmd(struct its_node *its, 723 struct its_cmd_block *cmd, 724 struct its_cmd_desc *desc) 725 { 726 struct its_collection *col; 727 728 col = dev_event_to_col(desc->its_clear_cmd.dev, 729 desc->its_clear_cmd.event_id); 730 731 its_encode_cmd(cmd, GITS_CMD_CLEAR); 732 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 733 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 734 735 its_fixup_cmd(cmd); 736 737 return valid_col(col); 738 } 739 740 static struct its_collection *its_build_invall_cmd(struct its_node *its, 741 struct its_cmd_block *cmd, 742 struct its_cmd_desc *desc) 743 { 744 its_encode_cmd(cmd, GITS_CMD_INVALL); 745 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 746 747 its_fixup_cmd(cmd); 748 749 return desc->its_invall_cmd.col; 750 } 751 752 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 753 struct its_cmd_block *cmd, 754 struct its_cmd_desc *desc) 755 { 756 its_encode_cmd(cmd, GITS_CMD_VINVALL); 757 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 758 759 its_fixup_cmd(cmd); 760 761 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 762 } 763 764 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 765 struct its_cmd_block *cmd, 766 struct its_cmd_desc *desc) 767 { 768 unsigned long vpt_addr, vconf_addr; 769 u64 target; 770 bool alloc; 771 772 its_encode_cmd(cmd, GITS_CMD_VMAPP); 773 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 774 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 775 776 if (!desc->its_vmapp_cmd.valid) { 777 if (is_v4_1(its)) { 778 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 779 its_encode_alloc(cmd, alloc); 780 } 781 782 goto out; 783 } 784 785 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 786 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 787 788 its_encode_target(cmd, target); 789 its_encode_vpt_addr(cmd, vpt_addr); 790 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 791 792 if (!is_v4_1(its)) 793 goto out; 794 795 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 796 797 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 798 799 its_encode_alloc(cmd, alloc); 800 801 /* 802 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 803 * to be unmapped first, and in this case, we may remap the vPE 804 * back while the VPT is not empty. So we can't assume that the 805 * VPT is empty on map. This is why we never advertise PTZ. 806 */ 807 its_encode_ptz(cmd, false); 808 its_encode_vconf_addr(cmd, vconf_addr); 809 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 810 811 out: 812 its_fixup_cmd(cmd); 813 814 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 815 } 816 817 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 818 struct its_cmd_block *cmd, 819 struct its_cmd_desc *desc) 820 { 821 u32 db; 822 823 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 824 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 825 else 826 db = 1023; 827 828 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 829 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 830 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 831 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 832 its_encode_db_phys_id(cmd, db); 833 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 834 835 its_fixup_cmd(cmd); 836 837 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 838 } 839 840 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 841 struct its_cmd_block *cmd, 842 struct its_cmd_desc *desc) 843 { 844 u32 db; 845 846 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 847 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 848 else 849 db = 1023; 850 851 its_encode_cmd(cmd, GITS_CMD_VMOVI); 852 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 853 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 854 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 855 its_encode_db_phys_id(cmd, db); 856 its_encode_db_valid(cmd, true); 857 858 its_fixup_cmd(cmd); 859 860 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 861 } 862 863 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 864 struct its_cmd_block *cmd, 865 struct its_cmd_desc *desc) 866 { 867 u64 target; 868 869 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 870 its_encode_cmd(cmd, GITS_CMD_VMOVP); 871 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 872 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 873 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 874 its_encode_target(cmd, target); 875 876 if (is_v4_1(its)) { 877 its_encode_db(cmd, true); 878 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 879 } 880 881 its_fixup_cmd(cmd); 882 883 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 884 } 885 886 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 887 struct its_cmd_block *cmd, 888 struct its_cmd_desc *desc) 889 { 890 struct its_vlpi_map *map; 891 892 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 893 desc->its_inv_cmd.event_id); 894 895 its_encode_cmd(cmd, GITS_CMD_INV); 896 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 897 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 898 899 its_fixup_cmd(cmd); 900 901 return valid_vpe(its, map->vpe); 902 } 903 904 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 905 struct its_cmd_block *cmd, 906 struct its_cmd_desc *desc) 907 { 908 struct its_vlpi_map *map; 909 910 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 911 desc->its_int_cmd.event_id); 912 913 its_encode_cmd(cmd, GITS_CMD_INT); 914 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 915 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 916 917 its_fixup_cmd(cmd); 918 919 return valid_vpe(its, map->vpe); 920 } 921 922 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 923 struct its_cmd_block *cmd, 924 struct its_cmd_desc *desc) 925 { 926 struct its_vlpi_map *map; 927 928 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 929 desc->its_clear_cmd.event_id); 930 931 its_encode_cmd(cmd, GITS_CMD_CLEAR); 932 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 933 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 934 935 its_fixup_cmd(cmd); 936 937 return valid_vpe(its, map->vpe); 938 } 939 940 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 941 struct its_cmd_block *cmd, 942 struct its_cmd_desc *desc) 943 { 944 if (WARN_ON(!is_v4_1(its))) 945 return NULL; 946 947 its_encode_cmd(cmd, GITS_CMD_INVDB); 948 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 949 950 its_fixup_cmd(cmd); 951 952 return valid_vpe(its, desc->its_invdb_cmd.vpe); 953 } 954 955 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 956 struct its_cmd_block *cmd, 957 struct its_cmd_desc *desc) 958 { 959 if (WARN_ON(!is_v4_1(its))) 960 return NULL; 961 962 its_encode_cmd(cmd, GITS_CMD_VSGI); 963 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 964 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 965 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 966 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 967 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 968 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 969 970 its_fixup_cmd(cmd); 971 972 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 973 } 974 975 static u64 its_cmd_ptr_to_offset(struct its_node *its, 976 struct its_cmd_block *ptr) 977 { 978 return (ptr - its->cmd_base) * sizeof(*ptr); 979 } 980 981 static int its_queue_full(struct its_node *its) 982 { 983 int widx; 984 int ridx; 985 986 widx = its->cmd_write - its->cmd_base; 987 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 988 989 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 990 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 991 return 1; 992 993 return 0; 994 } 995 996 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 997 { 998 struct its_cmd_block *cmd; 999 u32 count = 1000000; /* 1s! */ 1000 1001 while (its_queue_full(its)) { 1002 count--; 1003 if (!count) { 1004 pr_err_ratelimited("ITS queue not draining\n"); 1005 return NULL; 1006 } 1007 cpu_relax(); 1008 udelay(1); 1009 } 1010 1011 cmd = its->cmd_write++; 1012 1013 /* Handle queue wrapping */ 1014 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1015 its->cmd_write = its->cmd_base; 1016 1017 /* Clear command */ 1018 cmd->raw_cmd[0] = 0; 1019 cmd->raw_cmd[1] = 0; 1020 cmd->raw_cmd[2] = 0; 1021 cmd->raw_cmd[3] = 0; 1022 1023 return cmd; 1024 } 1025 1026 static struct its_cmd_block *its_post_commands(struct its_node *its) 1027 { 1028 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1029 1030 writel_relaxed(wr, its->base + GITS_CWRITER); 1031 1032 return its->cmd_write; 1033 } 1034 1035 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1036 { 1037 /* 1038 * Make sure the commands written to memory are observable by 1039 * the ITS. 1040 */ 1041 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1042 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1043 else 1044 dsb(ishst); 1045 } 1046 1047 static int its_wait_for_range_completion(struct its_node *its, 1048 u64 prev_idx, 1049 struct its_cmd_block *to) 1050 { 1051 u64 rd_idx, to_idx, linear_idx; 1052 u32 count = 1000000; /* 1s! */ 1053 1054 /* Linearize to_idx if the command set has wrapped around */ 1055 to_idx = its_cmd_ptr_to_offset(its, to); 1056 if (to_idx < prev_idx) 1057 to_idx += ITS_CMD_QUEUE_SZ; 1058 1059 linear_idx = prev_idx; 1060 1061 while (1) { 1062 s64 delta; 1063 1064 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1065 1066 /* 1067 * Compute the read pointer progress, taking the 1068 * potential wrap-around into account. 1069 */ 1070 delta = rd_idx - prev_idx; 1071 if (rd_idx < prev_idx) 1072 delta += ITS_CMD_QUEUE_SZ; 1073 1074 linear_idx += delta; 1075 if (linear_idx >= to_idx) 1076 break; 1077 1078 count--; 1079 if (!count) { 1080 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1081 to_idx, linear_idx); 1082 return -1; 1083 } 1084 prev_idx = rd_idx; 1085 cpu_relax(); 1086 udelay(1); 1087 } 1088 1089 return 0; 1090 } 1091 1092 /* Warning, macro hell follows */ 1093 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1094 void name(struct its_node *its, \ 1095 buildtype builder, \ 1096 struct its_cmd_desc *desc) \ 1097 { \ 1098 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1099 synctype *sync_obj; \ 1100 unsigned long flags; \ 1101 u64 rd_idx; \ 1102 \ 1103 raw_spin_lock_irqsave(&its->lock, flags); \ 1104 \ 1105 cmd = its_allocate_entry(its); \ 1106 if (!cmd) { /* We're soooooo screewed... */ \ 1107 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1108 return; \ 1109 } \ 1110 sync_obj = builder(its, cmd, desc); \ 1111 its_flush_cmd(its, cmd); \ 1112 \ 1113 if (sync_obj) { \ 1114 sync_cmd = its_allocate_entry(its); \ 1115 if (!sync_cmd) \ 1116 goto post; \ 1117 \ 1118 buildfn(its, sync_cmd, sync_obj); \ 1119 its_flush_cmd(its, sync_cmd); \ 1120 } \ 1121 \ 1122 post: \ 1123 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1124 next_cmd = its_post_commands(its); \ 1125 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1126 \ 1127 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1128 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1129 } 1130 1131 static void its_build_sync_cmd(struct its_node *its, 1132 struct its_cmd_block *sync_cmd, 1133 struct its_collection *sync_col) 1134 { 1135 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1136 its_encode_target(sync_cmd, sync_col->target_address); 1137 1138 its_fixup_cmd(sync_cmd); 1139 } 1140 1141 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1142 struct its_collection, its_build_sync_cmd) 1143 1144 static void its_build_vsync_cmd(struct its_node *its, 1145 struct its_cmd_block *sync_cmd, 1146 struct its_vpe *sync_vpe) 1147 { 1148 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1149 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1150 1151 its_fixup_cmd(sync_cmd); 1152 } 1153 1154 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1155 struct its_vpe, its_build_vsync_cmd) 1156 1157 static void its_send_int(struct its_device *dev, u32 event_id) 1158 { 1159 struct its_cmd_desc desc; 1160 1161 desc.its_int_cmd.dev = dev; 1162 desc.its_int_cmd.event_id = event_id; 1163 1164 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1165 } 1166 1167 static void its_send_clear(struct its_device *dev, u32 event_id) 1168 { 1169 struct its_cmd_desc desc; 1170 1171 desc.its_clear_cmd.dev = dev; 1172 desc.its_clear_cmd.event_id = event_id; 1173 1174 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1175 } 1176 1177 static void its_send_inv(struct its_device *dev, u32 event_id) 1178 { 1179 struct its_cmd_desc desc; 1180 1181 desc.its_inv_cmd.dev = dev; 1182 desc.its_inv_cmd.event_id = event_id; 1183 1184 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1185 } 1186 1187 static void its_send_mapd(struct its_device *dev, int valid) 1188 { 1189 struct its_cmd_desc desc; 1190 1191 desc.its_mapd_cmd.dev = dev; 1192 desc.its_mapd_cmd.valid = !!valid; 1193 1194 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1195 } 1196 1197 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1198 int valid) 1199 { 1200 struct its_cmd_desc desc; 1201 1202 desc.its_mapc_cmd.col = col; 1203 desc.its_mapc_cmd.valid = !!valid; 1204 1205 its_send_single_command(its, its_build_mapc_cmd, &desc); 1206 } 1207 1208 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1209 { 1210 struct its_cmd_desc desc; 1211 1212 desc.its_mapti_cmd.dev = dev; 1213 desc.its_mapti_cmd.phys_id = irq_id; 1214 desc.its_mapti_cmd.event_id = id; 1215 1216 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1217 } 1218 1219 static void its_send_movi(struct its_device *dev, 1220 struct its_collection *col, u32 id) 1221 { 1222 struct its_cmd_desc desc; 1223 1224 desc.its_movi_cmd.dev = dev; 1225 desc.its_movi_cmd.col = col; 1226 desc.its_movi_cmd.event_id = id; 1227 1228 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1229 } 1230 1231 static void its_send_discard(struct its_device *dev, u32 id) 1232 { 1233 struct its_cmd_desc desc; 1234 1235 desc.its_discard_cmd.dev = dev; 1236 desc.its_discard_cmd.event_id = id; 1237 1238 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1239 } 1240 1241 static void its_send_invall(struct its_node *its, struct its_collection *col) 1242 { 1243 struct its_cmd_desc desc; 1244 1245 desc.its_invall_cmd.col = col; 1246 1247 its_send_single_command(its, its_build_invall_cmd, &desc); 1248 } 1249 1250 static void its_send_vmapti(struct its_device *dev, u32 id) 1251 { 1252 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1253 struct its_cmd_desc desc; 1254 1255 desc.its_vmapti_cmd.vpe = map->vpe; 1256 desc.its_vmapti_cmd.dev = dev; 1257 desc.its_vmapti_cmd.virt_id = map->vintid; 1258 desc.its_vmapti_cmd.event_id = id; 1259 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1260 1261 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1262 } 1263 1264 static void its_send_vmovi(struct its_device *dev, u32 id) 1265 { 1266 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1267 struct its_cmd_desc desc; 1268 1269 desc.its_vmovi_cmd.vpe = map->vpe; 1270 desc.its_vmovi_cmd.dev = dev; 1271 desc.its_vmovi_cmd.event_id = id; 1272 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1273 1274 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1275 } 1276 1277 static void its_send_vmapp(struct its_node *its, 1278 struct its_vpe *vpe, bool valid) 1279 { 1280 struct its_cmd_desc desc; 1281 1282 desc.its_vmapp_cmd.vpe = vpe; 1283 desc.its_vmapp_cmd.valid = valid; 1284 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1285 1286 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1287 } 1288 1289 static void its_send_vmovp(struct its_vpe *vpe) 1290 { 1291 struct its_cmd_desc desc = {}; 1292 struct its_node *its; 1293 unsigned long flags; 1294 int col_id = vpe->col_idx; 1295 1296 desc.its_vmovp_cmd.vpe = vpe; 1297 1298 if (!its_list_map) { 1299 its = list_first_entry(&its_nodes, struct its_node, entry); 1300 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1301 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1302 return; 1303 } 1304 1305 /* 1306 * Yet another marvel of the architecture. If using the 1307 * its_list "feature", we need to make sure that all ITSs 1308 * receive all VMOVP commands in the same order. The only way 1309 * to guarantee this is to make vmovp a serialization point. 1310 * 1311 * Wall <-- Head. 1312 */ 1313 raw_spin_lock_irqsave(&vmovp_lock, flags); 1314 1315 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1316 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1317 1318 /* Emit VMOVPs */ 1319 list_for_each_entry(its, &its_nodes, entry) { 1320 if (!is_v4(its)) 1321 continue; 1322 1323 if (!require_its_list_vmovp(vpe->its_vm, its)) 1324 continue; 1325 1326 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1327 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1328 } 1329 1330 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1331 } 1332 1333 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1334 { 1335 struct its_cmd_desc desc; 1336 1337 desc.its_vinvall_cmd.vpe = vpe; 1338 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1339 } 1340 1341 static void its_send_vinv(struct its_device *dev, u32 event_id) 1342 { 1343 struct its_cmd_desc desc; 1344 1345 /* 1346 * There is no real VINV command. This is just a normal INV, 1347 * with a VSYNC instead of a SYNC. 1348 */ 1349 desc.its_inv_cmd.dev = dev; 1350 desc.its_inv_cmd.event_id = event_id; 1351 1352 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1353 } 1354 1355 static void its_send_vint(struct its_device *dev, u32 event_id) 1356 { 1357 struct its_cmd_desc desc; 1358 1359 /* 1360 * There is no real VINT command. This is just a normal INT, 1361 * with a VSYNC instead of a SYNC. 1362 */ 1363 desc.its_int_cmd.dev = dev; 1364 desc.its_int_cmd.event_id = event_id; 1365 1366 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1367 } 1368 1369 static void its_send_vclear(struct its_device *dev, u32 event_id) 1370 { 1371 struct its_cmd_desc desc; 1372 1373 /* 1374 * There is no real VCLEAR command. This is just a normal CLEAR, 1375 * with a VSYNC instead of a SYNC. 1376 */ 1377 desc.its_clear_cmd.dev = dev; 1378 desc.its_clear_cmd.event_id = event_id; 1379 1380 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1381 } 1382 1383 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1384 { 1385 struct its_cmd_desc desc; 1386 1387 desc.its_invdb_cmd.vpe = vpe; 1388 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1389 } 1390 1391 /* 1392 * irqchip functions - assumes MSI, mostly. 1393 */ 1394 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1395 { 1396 struct its_vlpi_map *map = get_vlpi_map(d); 1397 irq_hw_number_t hwirq; 1398 void *va; 1399 u8 *cfg; 1400 1401 if (map) { 1402 va = page_address(map->vm->vprop_page); 1403 hwirq = map->vintid; 1404 1405 /* Remember the updated property */ 1406 map->properties &= ~clr; 1407 map->properties |= set | LPI_PROP_GROUP1; 1408 } else { 1409 va = gic_rdists->prop_table_va; 1410 hwirq = d->hwirq; 1411 } 1412 1413 cfg = va + hwirq - 8192; 1414 *cfg &= ~clr; 1415 *cfg |= set | LPI_PROP_GROUP1; 1416 1417 /* 1418 * Make the above write visible to the redistributors. 1419 * And yes, we're flushing exactly: One. Single. Byte. 1420 * Humpf... 1421 */ 1422 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1423 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1424 else 1425 dsb(ishst); 1426 } 1427 1428 static void wait_for_syncr(void __iomem *rdbase) 1429 { 1430 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1431 cpu_relax(); 1432 } 1433 1434 static void direct_lpi_inv(struct irq_data *d) 1435 { 1436 struct its_vlpi_map *map = get_vlpi_map(d); 1437 void __iomem *rdbase; 1438 unsigned long flags; 1439 u64 val; 1440 int cpu; 1441 1442 if (map) { 1443 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1444 1445 WARN_ON(!is_v4_1(its_dev->its)); 1446 1447 val = GICR_INVLPIR_V; 1448 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1449 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1450 } else { 1451 val = d->hwirq; 1452 } 1453 1454 /* Target the redistributor this LPI is currently routed to */ 1455 cpu = irq_to_cpuid_lock(d, &flags); 1456 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1457 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1458 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1459 1460 wait_for_syncr(rdbase); 1461 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1462 irq_to_cpuid_unlock(d, flags); 1463 } 1464 1465 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1466 { 1467 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1468 1469 lpi_write_config(d, clr, set); 1470 if (gic_rdists->has_direct_lpi && 1471 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1472 direct_lpi_inv(d); 1473 else if (!irqd_is_forwarded_to_vcpu(d)) 1474 its_send_inv(its_dev, its_get_event_id(d)); 1475 else 1476 its_send_vinv(its_dev, its_get_event_id(d)); 1477 } 1478 1479 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1480 { 1481 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1482 u32 event = its_get_event_id(d); 1483 struct its_vlpi_map *map; 1484 1485 /* 1486 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1487 * here. 1488 */ 1489 if (is_v4_1(its_dev->its)) 1490 return; 1491 1492 map = dev_event_to_vlpi_map(its_dev, event); 1493 1494 if (map->db_enabled == enable) 1495 return; 1496 1497 map->db_enabled = enable; 1498 1499 /* 1500 * More fun with the architecture: 1501 * 1502 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1503 * value or to 1023, depending on the enable bit. But that 1504 * would be issuing a mapping for an /existing/ DevID+EventID 1505 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1506 * to the /same/ vPE, using this opportunity to adjust the 1507 * doorbell. Mouahahahaha. We loves it, Precious. 1508 */ 1509 its_send_vmovi(its_dev, event); 1510 } 1511 1512 static void its_mask_irq(struct irq_data *d) 1513 { 1514 if (irqd_is_forwarded_to_vcpu(d)) 1515 its_vlpi_set_doorbell(d, false); 1516 1517 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1518 } 1519 1520 static void its_unmask_irq(struct irq_data *d) 1521 { 1522 if (irqd_is_forwarded_to_vcpu(d)) 1523 its_vlpi_set_doorbell(d, true); 1524 1525 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1526 } 1527 1528 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1529 { 1530 if (irqd_affinity_is_managed(d)) 1531 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1532 1533 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1534 } 1535 1536 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1537 { 1538 if (irqd_affinity_is_managed(d)) 1539 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1540 else 1541 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1542 } 1543 1544 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1545 { 1546 if (irqd_affinity_is_managed(d)) 1547 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1548 else 1549 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1550 } 1551 1552 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1553 const struct cpumask *cpu_mask) 1554 { 1555 unsigned int cpu = nr_cpu_ids, tmp; 1556 int count = S32_MAX; 1557 1558 for_each_cpu(tmp, cpu_mask) { 1559 int this_count = its_read_lpi_count(d, tmp); 1560 if (this_count < count) { 1561 cpu = tmp; 1562 count = this_count; 1563 } 1564 } 1565 1566 return cpu; 1567 } 1568 1569 /* 1570 * As suggested by Thomas Gleixner in: 1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1572 */ 1573 static int its_select_cpu(struct irq_data *d, 1574 const struct cpumask *aff_mask) 1575 { 1576 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1577 cpumask_var_t tmpmask; 1578 int cpu, node; 1579 1580 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) 1581 return -ENOMEM; 1582 1583 node = its_dev->its->numa_node; 1584 1585 if (!irqd_affinity_is_managed(d)) { 1586 /* First try the NUMA node */ 1587 if (node != NUMA_NO_NODE) { 1588 /* 1589 * Try the intersection of the affinity mask and the 1590 * node mask (and the online mask, just to be safe). 1591 */ 1592 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1593 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1594 1595 /* 1596 * Ideally, we would check if the mask is empty, and 1597 * try again on the full node here. 1598 * 1599 * But it turns out that the way ACPI describes the 1600 * affinity for ITSs only deals about memory, and 1601 * not target CPUs, so it cannot describe a single 1602 * ITS placed next to two NUMA nodes. 1603 * 1604 * Instead, just fallback on the online mask. This 1605 * diverges from Thomas' suggestion above. 1606 */ 1607 cpu = cpumask_pick_least_loaded(d, tmpmask); 1608 if (cpu < nr_cpu_ids) 1609 goto out; 1610 1611 /* If we can't cross sockets, give up */ 1612 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1613 goto out; 1614 1615 /* If the above failed, expand the search */ 1616 } 1617 1618 /* Try the intersection of the affinity and online masks */ 1619 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1620 1621 /* If that doesn't fly, the online mask is the last resort */ 1622 if (cpumask_empty(tmpmask)) 1623 cpumask_copy(tmpmask, cpu_online_mask); 1624 1625 cpu = cpumask_pick_least_loaded(d, tmpmask); 1626 } else { 1627 cpumask_copy(tmpmask, aff_mask); 1628 1629 /* If we cannot cross sockets, limit the search to that node */ 1630 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1631 node != NUMA_NO_NODE) 1632 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1633 1634 cpu = cpumask_pick_least_loaded(d, tmpmask); 1635 } 1636 out: 1637 free_cpumask_var(tmpmask); 1638 1639 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1640 return cpu; 1641 } 1642 1643 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1644 bool force) 1645 { 1646 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1647 struct its_collection *target_col; 1648 u32 id = its_get_event_id(d); 1649 int cpu, prev_cpu; 1650 1651 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1652 if (irqd_is_forwarded_to_vcpu(d)) 1653 return -EINVAL; 1654 1655 prev_cpu = its_dev->event_map.col_map[id]; 1656 its_dec_lpi_count(d, prev_cpu); 1657 1658 if (!force) 1659 cpu = its_select_cpu(d, mask_val); 1660 else 1661 cpu = cpumask_pick_least_loaded(d, mask_val); 1662 1663 if (cpu < 0 || cpu >= nr_cpu_ids) 1664 goto err; 1665 1666 /* don't set the affinity when the target cpu is same as current one */ 1667 if (cpu != prev_cpu) { 1668 target_col = &its_dev->its->collections[cpu]; 1669 its_send_movi(its_dev, target_col, id); 1670 its_dev->event_map.col_map[id] = cpu; 1671 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1672 } 1673 1674 its_inc_lpi_count(d, cpu); 1675 1676 return IRQ_SET_MASK_OK_DONE; 1677 1678 err: 1679 its_inc_lpi_count(d, prev_cpu); 1680 return -EINVAL; 1681 } 1682 1683 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1684 { 1685 struct its_node *its = its_dev->its; 1686 1687 return its->phys_base + GITS_TRANSLATER; 1688 } 1689 1690 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1691 { 1692 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1693 struct its_node *its; 1694 u64 addr; 1695 1696 its = its_dev->its; 1697 addr = its->get_msi_base(its_dev); 1698 1699 msg->address_lo = lower_32_bits(addr); 1700 msg->address_hi = upper_32_bits(addr); 1701 msg->data = its_get_event_id(d); 1702 1703 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1704 } 1705 1706 static int its_irq_set_irqchip_state(struct irq_data *d, 1707 enum irqchip_irq_state which, 1708 bool state) 1709 { 1710 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1711 u32 event = its_get_event_id(d); 1712 1713 if (which != IRQCHIP_STATE_PENDING) 1714 return -EINVAL; 1715 1716 if (irqd_is_forwarded_to_vcpu(d)) { 1717 if (state) 1718 its_send_vint(its_dev, event); 1719 else 1720 its_send_vclear(its_dev, event); 1721 } else { 1722 if (state) 1723 its_send_int(its_dev, event); 1724 else 1725 its_send_clear(its_dev, event); 1726 } 1727 1728 return 0; 1729 } 1730 1731 static int its_irq_retrigger(struct irq_data *d) 1732 { 1733 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1734 } 1735 1736 /* 1737 * Two favourable cases: 1738 * 1739 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1740 * for vSGI delivery 1741 * 1742 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1743 * and we're better off mapping all VPEs always 1744 * 1745 * If neither (a) nor (b) is true, then we map vPEs on demand. 1746 * 1747 */ 1748 static bool gic_requires_eager_mapping(void) 1749 { 1750 if (!its_list_map || gic_rdists->has_rvpeid) 1751 return true; 1752 1753 return false; 1754 } 1755 1756 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1757 { 1758 unsigned long flags; 1759 1760 if (gic_requires_eager_mapping()) 1761 return; 1762 1763 raw_spin_lock_irqsave(&vmovp_lock, flags); 1764 1765 /* 1766 * If the VM wasn't mapped yet, iterate over the vpes and get 1767 * them mapped now. 1768 */ 1769 vm->vlpi_count[its->list_nr]++; 1770 1771 if (vm->vlpi_count[its->list_nr] == 1) { 1772 int i; 1773 1774 for (i = 0; i < vm->nr_vpes; i++) { 1775 struct its_vpe *vpe = vm->vpes[i]; 1776 struct irq_data *d = irq_get_irq_data(vpe->irq); 1777 1778 /* Map the VPE to the first possible CPU */ 1779 vpe->col_idx = cpumask_first(cpu_online_mask); 1780 its_send_vmapp(its, vpe, true); 1781 its_send_vinvall(its, vpe); 1782 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1783 } 1784 } 1785 1786 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1787 } 1788 1789 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1790 { 1791 unsigned long flags; 1792 1793 /* Not using the ITS list? Everything is always mapped. */ 1794 if (gic_requires_eager_mapping()) 1795 return; 1796 1797 raw_spin_lock_irqsave(&vmovp_lock, flags); 1798 1799 if (!--vm->vlpi_count[its->list_nr]) { 1800 int i; 1801 1802 for (i = 0; i < vm->nr_vpes; i++) 1803 its_send_vmapp(its, vm->vpes[i], false); 1804 } 1805 1806 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1807 } 1808 1809 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1810 { 1811 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1812 u32 event = its_get_event_id(d); 1813 int ret = 0; 1814 1815 if (!info->map) 1816 return -EINVAL; 1817 1818 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1819 1820 if (!its_dev->event_map.vm) { 1821 struct its_vlpi_map *maps; 1822 1823 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1824 GFP_ATOMIC); 1825 if (!maps) { 1826 ret = -ENOMEM; 1827 goto out; 1828 } 1829 1830 its_dev->event_map.vm = info->map->vm; 1831 its_dev->event_map.vlpi_maps = maps; 1832 } else if (its_dev->event_map.vm != info->map->vm) { 1833 ret = -EINVAL; 1834 goto out; 1835 } 1836 1837 /* Get our private copy of the mapping information */ 1838 its_dev->event_map.vlpi_maps[event] = *info->map; 1839 1840 if (irqd_is_forwarded_to_vcpu(d)) { 1841 /* Already mapped, move it around */ 1842 its_send_vmovi(its_dev, event); 1843 } else { 1844 /* Ensure all the VPEs are mapped on this ITS */ 1845 its_map_vm(its_dev->its, info->map->vm); 1846 1847 /* 1848 * Flag the interrupt as forwarded so that we can 1849 * start poking the virtual property table. 1850 */ 1851 irqd_set_forwarded_to_vcpu(d); 1852 1853 /* Write out the property to the prop table */ 1854 lpi_write_config(d, 0xff, info->map->properties); 1855 1856 /* Drop the physical mapping */ 1857 its_send_discard(its_dev, event); 1858 1859 /* and install the virtual one */ 1860 its_send_vmapti(its_dev, event); 1861 1862 /* Increment the number of VLPIs */ 1863 its_dev->event_map.nr_vlpis++; 1864 } 1865 1866 out: 1867 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1868 return ret; 1869 } 1870 1871 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1872 { 1873 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1874 struct its_vlpi_map *map; 1875 int ret = 0; 1876 1877 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1878 1879 map = get_vlpi_map(d); 1880 1881 if (!its_dev->event_map.vm || !map) { 1882 ret = -EINVAL; 1883 goto out; 1884 } 1885 1886 /* Copy our mapping information to the incoming request */ 1887 *info->map = *map; 1888 1889 out: 1890 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1891 return ret; 1892 } 1893 1894 static int its_vlpi_unmap(struct irq_data *d) 1895 { 1896 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1897 u32 event = its_get_event_id(d); 1898 int ret = 0; 1899 1900 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1901 1902 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1903 ret = -EINVAL; 1904 goto out; 1905 } 1906 1907 /* Drop the virtual mapping */ 1908 its_send_discard(its_dev, event); 1909 1910 /* and restore the physical one */ 1911 irqd_clr_forwarded_to_vcpu(d); 1912 its_send_mapti(its_dev, d->hwirq, event); 1913 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1914 LPI_PROP_ENABLED | 1915 LPI_PROP_GROUP1)); 1916 1917 /* Potentially unmap the VM from this ITS */ 1918 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1919 1920 /* 1921 * Drop the refcount and make the device available again if 1922 * this was the last VLPI. 1923 */ 1924 if (!--its_dev->event_map.nr_vlpis) { 1925 its_dev->event_map.vm = NULL; 1926 kfree(its_dev->event_map.vlpi_maps); 1927 } 1928 1929 out: 1930 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1931 return ret; 1932 } 1933 1934 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1935 { 1936 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1937 1938 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1939 return -EINVAL; 1940 1941 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1942 lpi_update_config(d, 0xff, info->config); 1943 else 1944 lpi_write_config(d, 0xff, info->config); 1945 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1946 1947 return 0; 1948 } 1949 1950 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1951 { 1952 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1953 struct its_cmd_info *info = vcpu_info; 1954 1955 /* Need a v4 ITS */ 1956 if (!is_v4(its_dev->its)) 1957 return -EINVAL; 1958 1959 /* Unmap request? */ 1960 if (!info) 1961 return its_vlpi_unmap(d); 1962 1963 switch (info->cmd_type) { 1964 case MAP_VLPI: 1965 return its_vlpi_map(d, info); 1966 1967 case GET_VLPI: 1968 return its_vlpi_get(d, info); 1969 1970 case PROP_UPDATE_VLPI: 1971 case PROP_UPDATE_AND_INV_VLPI: 1972 return its_vlpi_prop_update(d, info); 1973 1974 default: 1975 return -EINVAL; 1976 } 1977 } 1978 1979 static struct irq_chip its_irq_chip = { 1980 .name = "ITS", 1981 .irq_mask = its_mask_irq, 1982 .irq_unmask = its_unmask_irq, 1983 .irq_eoi = irq_chip_eoi_parent, 1984 .irq_set_affinity = its_set_affinity, 1985 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1986 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1987 .irq_retrigger = its_irq_retrigger, 1988 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1989 }; 1990 1991 1992 /* 1993 * How we allocate LPIs: 1994 * 1995 * lpi_range_list contains ranges of LPIs that are to available to 1996 * allocate from. To allocate LPIs, just pick the first range that 1997 * fits the required allocation, and reduce it by the required 1998 * amount. Once empty, remove the range from the list. 1999 * 2000 * To free a range of LPIs, add a free range to the list, sort it and 2001 * merge the result if the new range happens to be adjacent to an 2002 * already free block. 2003 * 2004 * The consequence of the above is that allocation is cost is low, but 2005 * freeing is expensive. We assumes that freeing rarely occurs. 2006 */ 2007 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2008 2009 static DEFINE_MUTEX(lpi_range_lock); 2010 static LIST_HEAD(lpi_range_list); 2011 2012 struct lpi_range { 2013 struct list_head entry; 2014 u32 base_id; 2015 u32 span; 2016 }; 2017 2018 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2019 { 2020 struct lpi_range *range; 2021 2022 range = kmalloc(sizeof(*range), GFP_KERNEL); 2023 if (range) { 2024 range->base_id = base; 2025 range->span = span; 2026 } 2027 2028 return range; 2029 } 2030 2031 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2032 { 2033 struct lpi_range *range, *tmp; 2034 int err = -ENOSPC; 2035 2036 mutex_lock(&lpi_range_lock); 2037 2038 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2039 if (range->span >= nr_lpis) { 2040 *base = range->base_id; 2041 range->base_id += nr_lpis; 2042 range->span -= nr_lpis; 2043 2044 if (range->span == 0) { 2045 list_del(&range->entry); 2046 kfree(range); 2047 } 2048 2049 err = 0; 2050 break; 2051 } 2052 } 2053 2054 mutex_unlock(&lpi_range_lock); 2055 2056 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2057 return err; 2058 } 2059 2060 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2061 { 2062 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2063 return; 2064 if (a->base_id + a->span != b->base_id) 2065 return; 2066 b->base_id = a->base_id; 2067 b->span += a->span; 2068 list_del(&a->entry); 2069 kfree(a); 2070 } 2071 2072 static int free_lpi_range(u32 base, u32 nr_lpis) 2073 { 2074 struct lpi_range *new, *old; 2075 2076 new = mk_lpi_range(base, nr_lpis); 2077 if (!new) 2078 return -ENOMEM; 2079 2080 mutex_lock(&lpi_range_lock); 2081 2082 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2083 if (old->base_id < base) 2084 break; 2085 } 2086 /* 2087 * old is the last element with ->base_id smaller than base, 2088 * so new goes right after it. If there are no elements with 2089 * ->base_id smaller than base, &old->entry ends up pointing 2090 * at the head of the list, and inserting new it the start of 2091 * the list is the right thing to do in that case as well. 2092 */ 2093 list_add(&new->entry, &old->entry); 2094 /* 2095 * Now check if we can merge with the preceding and/or 2096 * following ranges. 2097 */ 2098 merge_lpi_ranges(old, new); 2099 merge_lpi_ranges(new, list_next_entry(new, entry)); 2100 2101 mutex_unlock(&lpi_range_lock); 2102 return 0; 2103 } 2104 2105 static int __init its_lpi_init(u32 id_bits) 2106 { 2107 u32 lpis = (1UL << id_bits) - 8192; 2108 u32 numlpis; 2109 int err; 2110 2111 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2112 2113 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2114 lpis = numlpis; 2115 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2116 lpis); 2117 } 2118 2119 /* 2120 * Initializing the allocator is just the same as freeing the 2121 * full range of LPIs. 2122 */ 2123 err = free_lpi_range(8192, lpis); 2124 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2125 return err; 2126 } 2127 2128 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2129 { 2130 unsigned long *bitmap = NULL; 2131 int err = 0; 2132 2133 do { 2134 err = alloc_lpi_range(nr_irqs, base); 2135 if (!err) 2136 break; 2137 2138 nr_irqs /= 2; 2139 } while (nr_irqs > 0); 2140 2141 if (!nr_irqs) 2142 err = -ENOSPC; 2143 2144 if (err) 2145 goto out; 2146 2147 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2148 if (!bitmap) 2149 goto out; 2150 2151 *nr_ids = nr_irqs; 2152 2153 out: 2154 if (!bitmap) 2155 *base = *nr_ids = 0; 2156 2157 return bitmap; 2158 } 2159 2160 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2161 { 2162 WARN_ON(free_lpi_range(base, nr_ids)); 2163 bitmap_free(bitmap); 2164 } 2165 2166 static void gic_reset_prop_table(void *va) 2167 { 2168 /* Priority 0xa0, Group-1, disabled */ 2169 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2170 2171 /* Make sure the GIC will observe the written configuration */ 2172 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2173 } 2174 2175 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2176 { 2177 struct page *prop_page; 2178 2179 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2180 if (!prop_page) 2181 return NULL; 2182 2183 gic_reset_prop_table(page_address(prop_page)); 2184 2185 return prop_page; 2186 } 2187 2188 static void its_free_prop_table(struct page *prop_page) 2189 { 2190 free_pages((unsigned long)page_address(prop_page), 2191 get_order(LPI_PROPBASE_SZ)); 2192 } 2193 2194 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2195 { 2196 phys_addr_t start, end, addr_end; 2197 u64 i; 2198 2199 /* 2200 * We don't bother checking for a kdump kernel as by 2201 * construction, the LPI tables are out of this kernel's 2202 * memory map. 2203 */ 2204 if (is_kdump_kernel()) 2205 return true; 2206 2207 addr_end = addr + size - 1; 2208 2209 for_each_reserved_mem_range(i, &start, &end) { 2210 if (addr >= start && addr_end <= end) 2211 return true; 2212 } 2213 2214 /* Not found, not a good sign... */ 2215 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2216 &addr, &addr_end); 2217 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2218 return false; 2219 } 2220 2221 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2222 { 2223 if (efi_enabled(EFI_CONFIG_TABLES)) 2224 return efi_mem_reserve_persistent(addr, size); 2225 2226 return 0; 2227 } 2228 2229 static int __init its_setup_lpi_prop_table(void) 2230 { 2231 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2232 u64 val; 2233 2234 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2235 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2236 2237 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2238 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2239 LPI_PROPBASE_SZ, 2240 MEMREMAP_WB); 2241 gic_reset_prop_table(gic_rdists->prop_table_va); 2242 } else { 2243 struct page *page; 2244 2245 lpi_id_bits = min_t(u32, 2246 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2247 ITS_MAX_LPI_NRBITS); 2248 page = its_allocate_prop_table(GFP_NOWAIT); 2249 if (!page) { 2250 pr_err("Failed to allocate PROPBASE\n"); 2251 return -ENOMEM; 2252 } 2253 2254 gic_rdists->prop_table_pa = page_to_phys(page); 2255 gic_rdists->prop_table_va = page_address(page); 2256 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2257 LPI_PROPBASE_SZ)); 2258 } 2259 2260 pr_info("GICv3: using LPI property table @%pa\n", 2261 &gic_rdists->prop_table_pa); 2262 2263 return its_lpi_init(lpi_id_bits); 2264 } 2265 2266 static const char *its_base_type_string[] = { 2267 [GITS_BASER_TYPE_DEVICE] = "Devices", 2268 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2269 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2270 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2271 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2272 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2273 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2274 }; 2275 2276 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2277 { 2278 u32 idx = baser - its->tables; 2279 2280 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2281 } 2282 2283 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2284 u64 val) 2285 { 2286 u32 idx = baser - its->tables; 2287 2288 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2289 baser->val = its_read_baser(its, baser); 2290 } 2291 2292 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2293 u64 cache, u64 shr, u32 order, bool indirect) 2294 { 2295 u64 val = its_read_baser(its, baser); 2296 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2297 u64 type = GITS_BASER_TYPE(val); 2298 u64 baser_phys, tmp; 2299 u32 alloc_pages, psz; 2300 struct page *page; 2301 void *base; 2302 2303 psz = baser->psz; 2304 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2305 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2306 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2307 &its->phys_base, its_base_type_string[type], 2308 alloc_pages, GITS_BASER_PAGES_MAX); 2309 alloc_pages = GITS_BASER_PAGES_MAX; 2310 order = get_order(GITS_BASER_PAGES_MAX * psz); 2311 } 2312 2313 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2314 if (!page) 2315 return -ENOMEM; 2316 2317 base = (void *)page_address(page); 2318 baser_phys = virt_to_phys(base); 2319 2320 /* Check if the physical address of the memory is above 48bits */ 2321 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2322 2323 /* 52bit PA is supported only when PageSize=64K */ 2324 if (psz != SZ_64K) { 2325 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2326 free_pages((unsigned long)base, order); 2327 return -ENXIO; 2328 } 2329 2330 /* Convert 52bit PA to 48bit field */ 2331 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2332 } 2333 2334 retry_baser: 2335 val = (baser_phys | 2336 (type << GITS_BASER_TYPE_SHIFT) | 2337 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2338 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2339 cache | 2340 shr | 2341 GITS_BASER_VALID); 2342 2343 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2344 2345 switch (psz) { 2346 case SZ_4K: 2347 val |= GITS_BASER_PAGE_SIZE_4K; 2348 break; 2349 case SZ_16K: 2350 val |= GITS_BASER_PAGE_SIZE_16K; 2351 break; 2352 case SZ_64K: 2353 val |= GITS_BASER_PAGE_SIZE_64K; 2354 break; 2355 } 2356 2357 its_write_baser(its, baser, val); 2358 tmp = baser->val; 2359 2360 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2361 /* 2362 * Shareability didn't stick. Just use 2363 * whatever the read reported, which is likely 2364 * to be the only thing this redistributor 2365 * supports. If that's zero, make it 2366 * non-cacheable as well. 2367 */ 2368 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2369 if (!shr) { 2370 cache = GITS_BASER_nC; 2371 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2372 } 2373 goto retry_baser; 2374 } 2375 2376 if (val != tmp) { 2377 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2378 &its->phys_base, its_base_type_string[type], 2379 val, tmp); 2380 free_pages((unsigned long)base, order); 2381 return -ENXIO; 2382 } 2383 2384 baser->order = order; 2385 baser->base = base; 2386 baser->psz = psz; 2387 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2388 2389 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2390 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2391 its_base_type_string[type], 2392 (unsigned long)virt_to_phys(base), 2393 indirect ? "indirect" : "flat", (int)esz, 2394 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2395 2396 return 0; 2397 } 2398 2399 static bool its_parse_indirect_baser(struct its_node *its, 2400 struct its_baser *baser, 2401 u32 *order, u32 ids) 2402 { 2403 u64 tmp = its_read_baser(its, baser); 2404 u64 type = GITS_BASER_TYPE(tmp); 2405 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2406 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2407 u32 new_order = *order; 2408 u32 psz = baser->psz; 2409 bool indirect = false; 2410 2411 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2412 if ((esz << ids) > (psz * 2)) { 2413 /* 2414 * Find out whether hw supports a single or two-level table by 2415 * table by reading bit at offset '62' after writing '1' to it. 2416 */ 2417 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2418 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2419 2420 if (indirect) { 2421 /* 2422 * The size of the lvl2 table is equal to ITS page size 2423 * which is 'psz'. For computing lvl1 table size, 2424 * subtract ID bits that sparse lvl2 table from 'ids' 2425 * which is reported by ITS hardware times lvl1 table 2426 * entry size. 2427 */ 2428 ids -= ilog2(psz / (int)esz); 2429 esz = GITS_LVL1_ENTRY_SIZE; 2430 } 2431 } 2432 2433 /* 2434 * Allocate as many entries as required to fit the 2435 * range of device IDs that the ITS can grok... The ID 2436 * space being incredibly sparse, this results in a 2437 * massive waste of memory if two-level device table 2438 * feature is not supported by hardware. 2439 */ 2440 new_order = max_t(u32, get_order(esz << ids), new_order); 2441 if (new_order >= MAX_ORDER) { 2442 new_order = MAX_ORDER - 1; 2443 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2444 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2445 &its->phys_base, its_base_type_string[type], 2446 device_ids(its), ids); 2447 } 2448 2449 *order = new_order; 2450 2451 return indirect; 2452 } 2453 2454 static u32 compute_common_aff(u64 val) 2455 { 2456 u32 aff, clpiaff; 2457 2458 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2459 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2460 2461 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2462 } 2463 2464 static u32 compute_its_aff(struct its_node *its) 2465 { 2466 u64 val; 2467 u32 svpet; 2468 2469 /* 2470 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2471 * the resulting affinity. We then use that to see if this match 2472 * our own affinity. 2473 */ 2474 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2475 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2476 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2477 return compute_common_aff(val); 2478 } 2479 2480 static struct its_node *find_sibling_its(struct its_node *cur_its) 2481 { 2482 struct its_node *its; 2483 u32 aff; 2484 2485 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2486 return NULL; 2487 2488 aff = compute_its_aff(cur_its); 2489 2490 list_for_each_entry(its, &its_nodes, entry) { 2491 u64 baser; 2492 2493 if (!is_v4_1(its) || its == cur_its) 2494 continue; 2495 2496 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2497 continue; 2498 2499 if (aff != compute_its_aff(its)) 2500 continue; 2501 2502 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2503 baser = its->tables[2].val; 2504 if (!(baser & GITS_BASER_VALID)) 2505 continue; 2506 2507 return its; 2508 } 2509 2510 return NULL; 2511 } 2512 2513 static void its_free_tables(struct its_node *its) 2514 { 2515 int i; 2516 2517 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2518 if (its->tables[i].base) { 2519 free_pages((unsigned long)its->tables[i].base, 2520 its->tables[i].order); 2521 its->tables[i].base = NULL; 2522 } 2523 } 2524 } 2525 2526 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2527 { 2528 u64 psz = SZ_64K; 2529 2530 while (psz) { 2531 u64 val, gpsz; 2532 2533 val = its_read_baser(its, baser); 2534 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2535 2536 switch (psz) { 2537 case SZ_64K: 2538 gpsz = GITS_BASER_PAGE_SIZE_64K; 2539 break; 2540 case SZ_16K: 2541 gpsz = GITS_BASER_PAGE_SIZE_16K; 2542 break; 2543 case SZ_4K: 2544 default: 2545 gpsz = GITS_BASER_PAGE_SIZE_4K; 2546 break; 2547 } 2548 2549 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2550 2551 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2552 its_write_baser(its, baser, val); 2553 2554 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2555 break; 2556 2557 switch (psz) { 2558 case SZ_64K: 2559 psz = SZ_16K; 2560 break; 2561 case SZ_16K: 2562 psz = SZ_4K; 2563 break; 2564 case SZ_4K: 2565 default: 2566 return -1; 2567 } 2568 } 2569 2570 baser->psz = psz; 2571 return 0; 2572 } 2573 2574 static int its_alloc_tables(struct its_node *its) 2575 { 2576 u64 shr = GITS_BASER_InnerShareable; 2577 u64 cache = GITS_BASER_RaWaWb; 2578 int err, i; 2579 2580 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2581 /* erratum 24313: ignore memory access type */ 2582 cache = GITS_BASER_nCnB; 2583 2584 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2585 struct its_baser *baser = its->tables + i; 2586 u64 val = its_read_baser(its, baser); 2587 u64 type = GITS_BASER_TYPE(val); 2588 bool indirect = false; 2589 u32 order; 2590 2591 if (type == GITS_BASER_TYPE_NONE) 2592 continue; 2593 2594 if (its_probe_baser_psz(its, baser)) { 2595 its_free_tables(its); 2596 return -ENXIO; 2597 } 2598 2599 order = get_order(baser->psz); 2600 2601 switch (type) { 2602 case GITS_BASER_TYPE_DEVICE: 2603 indirect = its_parse_indirect_baser(its, baser, &order, 2604 device_ids(its)); 2605 break; 2606 2607 case GITS_BASER_TYPE_VCPU: 2608 if (is_v4_1(its)) { 2609 struct its_node *sibling; 2610 2611 WARN_ON(i != 2); 2612 if ((sibling = find_sibling_its(its))) { 2613 *baser = sibling->tables[2]; 2614 its_write_baser(its, baser, baser->val); 2615 continue; 2616 } 2617 } 2618 2619 indirect = its_parse_indirect_baser(its, baser, &order, 2620 ITS_MAX_VPEID_BITS); 2621 break; 2622 } 2623 2624 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2625 if (err < 0) { 2626 its_free_tables(its); 2627 return err; 2628 } 2629 2630 /* Update settings which will be used for next BASERn */ 2631 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2632 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2633 } 2634 2635 return 0; 2636 } 2637 2638 static u64 inherit_vpe_l1_table_from_its(void) 2639 { 2640 struct its_node *its; 2641 u64 val; 2642 u32 aff; 2643 2644 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2645 aff = compute_common_aff(val); 2646 2647 list_for_each_entry(its, &its_nodes, entry) { 2648 u64 baser, addr; 2649 2650 if (!is_v4_1(its)) 2651 continue; 2652 2653 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2654 continue; 2655 2656 if (aff != compute_its_aff(its)) 2657 continue; 2658 2659 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2660 baser = its->tables[2].val; 2661 if (!(baser & GITS_BASER_VALID)) 2662 continue; 2663 2664 /* We have a winner! */ 2665 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2666 2667 val = GICR_VPROPBASER_4_1_VALID; 2668 if (baser & GITS_BASER_INDIRECT) 2669 val |= GICR_VPROPBASER_4_1_INDIRECT; 2670 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2671 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2672 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2673 case GIC_PAGE_SIZE_64K: 2674 addr = GITS_BASER_ADDR_48_to_52(baser); 2675 break; 2676 default: 2677 addr = baser & GENMASK_ULL(47, 12); 2678 break; 2679 } 2680 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2681 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2682 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2683 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2684 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2685 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2686 2687 return val; 2688 } 2689 2690 return 0; 2691 } 2692 2693 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2694 { 2695 u32 aff; 2696 u64 val; 2697 int cpu; 2698 2699 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2700 aff = compute_common_aff(val); 2701 2702 for_each_possible_cpu(cpu) { 2703 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2704 2705 if (!base || cpu == smp_processor_id()) 2706 continue; 2707 2708 val = gic_read_typer(base + GICR_TYPER); 2709 if (aff != compute_common_aff(val)) 2710 continue; 2711 2712 /* 2713 * At this point, we have a victim. This particular CPU 2714 * has already booted, and has an affinity that matches 2715 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2716 * Make sure we don't write the Z bit in that case. 2717 */ 2718 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2719 val &= ~GICR_VPROPBASER_4_1_Z; 2720 2721 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2722 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2723 2724 return val; 2725 } 2726 2727 return 0; 2728 } 2729 2730 static bool allocate_vpe_l2_table(int cpu, u32 id) 2731 { 2732 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2733 unsigned int psz, esz, idx, npg, gpsz; 2734 u64 val; 2735 struct page *page; 2736 __le64 *table; 2737 2738 if (!gic_rdists->has_rvpeid) 2739 return true; 2740 2741 /* Skip non-present CPUs */ 2742 if (!base) 2743 return true; 2744 2745 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2746 2747 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2748 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2749 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2750 2751 switch (gpsz) { 2752 default: 2753 WARN_ON(1); 2754 fallthrough; 2755 case GIC_PAGE_SIZE_4K: 2756 psz = SZ_4K; 2757 break; 2758 case GIC_PAGE_SIZE_16K: 2759 psz = SZ_16K; 2760 break; 2761 case GIC_PAGE_SIZE_64K: 2762 psz = SZ_64K; 2763 break; 2764 } 2765 2766 /* Don't allow vpe_id that exceeds single, flat table limit */ 2767 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2768 return (id < (npg * psz / (esz * SZ_8))); 2769 2770 /* Compute 1st level table index & check if that exceeds table limit */ 2771 idx = id >> ilog2(psz / (esz * SZ_8)); 2772 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2773 return false; 2774 2775 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2776 2777 /* Allocate memory for 2nd level table */ 2778 if (!table[idx]) { 2779 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2780 if (!page) 2781 return false; 2782 2783 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2784 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2785 gic_flush_dcache_to_poc(page_address(page), psz); 2786 2787 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2788 2789 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2790 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2791 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2792 2793 /* Ensure updated table contents are visible to RD hardware */ 2794 dsb(sy); 2795 } 2796 2797 return true; 2798 } 2799 2800 static int allocate_vpe_l1_table(void) 2801 { 2802 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2803 u64 val, gpsz, npg, pa; 2804 unsigned int psz = SZ_64K; 2805 unsigned int np, epp, esz; 2806 struct page *page; 2807 2808 if (!gic_rdists->has_rvpeid) 2809 return 0; 2810 2811 /* 2812 * if VPENDBASER.Valid is set, disable any previously programmed 2813 * VPE by setting PendingLast while clearing Valid. This has the 2814 * effect of making sure no doorbell will be generated and we can 2815 * then safely clear VPROPBASER.Valid. 2816 */ 2817 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2818 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2819 vlpi_base + GICR_VPENDBASER); 2820 2821 /* 2822 * If we can inherit the configuration from another RD, let's do 2823 * so. Otherwise, we have to go through the allocation process. We 2824 * assume that all RDs have the exact same requirements, as 2825 * nothing will work otherwise. 2826 */ 2827 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2828 if (val & GICR_VPROPBASER_4_1_VALID) 2829 goto out; 2830 2831 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2832 if (!gic_data_rdist()->vpe_table_mask) 2833 return -ENOMEM; 2834 2835 val = inherit_vpe_l1_table_from_its(); 2836 if (val & GICR_VPROPBASER_4_1_VALID) 2837 goto out; 2838 2839 /* First probe the page size */ 2840 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2841 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2842 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2843 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2844 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2845 2846 switch (gpsz) { 2847 default: 2848 gpsz = GIC_PAGE_SIZE_4K; 2849 fallthrough; 2850 case GIC_PAGE_SIZE_4K: 2851 psz = SZ_4K; 2852 break; 2853 case GIC_PAGE_SIZE_16K: 2854 psz = SZ_16K; 2855 break; 2856 case GIC_PAGE_SIZE_64K: 2857 psz = SZ_64K; 2858 break; 2859 } 2860 2861 /* 2862 * Start populating the register from scratch, including RO fields 2863 * (which we want to print in debug cases...) 2864 */ 2865 val = 0; 2866 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2867 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2868 2869 /* How many entries per GIC page? */ 2870 esz++; 2871 epp = psz / (esz * SZ_8); 2872 2873 /* 2874 * If we need more than just a single L1 page, flag the table 2875 * as indirect and compute the number of required L1 pages. 2876 */ 2877 if (epp < ITS_MAX_VPEID) { 2878 int nl2; 2879 2880 val |= GICR_VPROPBASER_4_1_INDIRECT; 2881 2882 /* Number of L2 pages required to cover the VPEID space */ 2883 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2884 2885 /* Number of L1 pages to point to the L2 pages */ 2886 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2887 } else { 2888 npg = 1; 2889 } 2890 2891 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2892 2893 /* Right, that's the number of CPU pages we need for L1 */ 2894 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2895 2896 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2897 np, npg, psz, epp, esz); 2898 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2899 if (!page) 2900 return -ENOMEM; 2901 2902 gic_data_rdist()->vpe_l1_base = page_address(page); 2903 pa = virt_to_phys(page_address(page)); 2904 WARN_ON(!IS_ALIGNED(pa, psz)); 2905 2906 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2907 val |= GICR_VPROPBASER_RaWb; 2908 val |= GICR_VPROPBASER_InnerShareable; 2909 val |= GICR_VPROPBASER_4_1_Z; 2910 val |= GICR_VPROPBASER_4_1_VALID; 2911 2912 out: 2913 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2914 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2915 2916 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2917 smp_processor_id(), val, 2918 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2919 2920 return 0; 2921 } 2922 2923 static int its_alloc_collections(struct its_node *its) 2924 { 2925 int i; 2926 2927 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2928 GFP_KERNEL); 2929 if (!its->collections) 2930 return -ENOMEM; 2931 2932 for (i = 0; i < nr_cpu_ids; i++) 2933 its->collections[i].target_address = ~0ULL; 2934 2935 return 0; 2936 } 2937 2938 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2939 { 2940 struct page *pend_page; 2941 2942 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2943 get_order(LPI_PENDBASE_SZ)); 2944 if (!pend_page) 2945 return NULL; 2946 2947 /* Make sure the GIC will observe the zero-ed page */ 2948 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2949 2950 return pend_page; 2951 } 2952 2953 static void its_free_pending_table(struct page *pt) 2954 { 2955 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2956 } 2957 2958 /* 2959 * Booting with kdump and LPIs enabled is generally fine. Any other 2960 * case is wrong in the absence of firmware/EFI support. 2961 */ 2962 static bool enabled_lpis_allowed(void) 2963 { 2964 phys_addr_t addr; 2965 u64 val; 2966 2967 /* Check whether the property table is in a reserved region */ 2968 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2969 addr = val & GENMASK_ULL(51, 12); 2970 2971 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2972 } 2973 2974 static int __init allocate_lpi_tables(void) 2975 { 2976 u64 val; 2977 int err, cpu; 2978 2979 /* 2980 * If LPIs are enabled while we run this from the boot CPU, 2981 * flag the RD tables as pre-allocated if the stars do align. 2982 */ 2983 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2984 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2985 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2986 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2987 pr_info("GICv3: Using preallocated redistributor tables\n"); 2988 } 2989 2990 err = its_setup_lpi_prop_table(); 2991 if (err) 2992 return err; 2993 2994 /* 2995 * We allocate all the pending tables anyway, as we may have a 2996 * mix of RDs that have had LPIs enabled, and some that 2997 * don't. We'll free the unused ones as each CPU comes online. 2998 */ 2999 for_each_possible_cpu(cpu) { 3000 struct page *pend_page; 3001 3002 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3003 if (!pend_page) { 3004 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3005 return -ENOMEM; 3006 } 3007 3008 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3009 } 3010 3011 return 0; 3012 } 3013 3014 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3015 { 3016 u32 count = 1000000; /* 1s! */ 3017 bool clean; 3018 u64 val; 3019 3020 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3021 val &= ~GICR_VPENDBASER_Valid; 3022 val &= ~clr; 3023 val |= set; 3024 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3025 3026 do { 3027 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3028 clean = !(val & GICR_VPENDBASER_Dirty); 3029 if (!clean) { 3030 count--; 3031 cpu_relax(); 3032 udelay(1); 3033 } 3034 } while (!clean && count); 3035 3036 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 3037 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3038 val |= GICR_VPENDBASER_PendingLast; 3039 } 3040 3041 return val; 3042 } 3043 3044 static void its_cpu_init_lpis(void) 3045 { 3046 void __iomem *rbase = gic_data_rdist_rd_base(); 3047 struct page *pend_page; 3048 phys_addr_t paddr; 3049 u64 val, tmp; 3050 3051 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3052 return; 3053 3054 val = readl_relaxed(rbase + GICR_CTLR); 3055 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3056 (val & GICR_CTLR_ENABLE_LPIS)) { 3057 /* 3058 * Check that we get the same property table on all 3059 * RDs. If we don't, this is hopeless. 3060 */ 3061 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3062 paddr &= GENMASK_ULL(51, 12); 3063 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3064 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3065 3066 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3067 paddr &= GENMASK_ULL(51, 16); 3068 3069 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3070 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3071 3072 goto out; 3073 } 3074 3075 pend_page = gic_data_rdist()->pend_page; 3076 paddr = page_to_phys(pend_page); 3077 3078 /* set PROPBASE */ 3079 val = (gic_rdists->prop_table_pa | 3080 GICR_PROPBASER_InnerShareable | 3081 GICR_PROPBASER_RaWaWb | 3082 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3083 3084 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3085 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3086 3087 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3088 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3089 /* 3090 * The HW reports non-shareable, we must 3091 * remove the cacheability attributes as 3092 * well. 3093 */ 3094 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3095 GICR_PROPBASER_CACHEABILITY_MASK); 3096 val |= GICR_PROPBASER_nC; 3097 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3098 } 3099 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3100 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3101 } 3102 3103 /* set PENDBASE */ 3104 val = (page_to_phys(pend_page) | 3105 GICR_PENDBASER_InnerShareable | 3106 GICR_PENDBASER_RaWaWb); 3107 3108 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3109 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3110 3111 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3112 /* 3113 * The HW reports non-shareable, we must remove the 3114 * cacheability attributes as well. 3115 */ 3116 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3117 GICR_PENDBASER_CACHEABILITY_MASK); 3118 val |= GICR_PENDBASER_nC; 3119 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3120 } 3121 3122 /* Enable LPIs */ 3123 val = readl_relaxed(rbase + GICR_CTLR); 3124 val |= GICR_CTLR_ENABLE_LPIS; 3125 writel_relaxed(val, rbase + GICR_CTLR); 3126 3127 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3128 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3129 3130 /* 3131 * It's possible for CPU to receive VLPIs before it is 3132 * scheduled as a vPE, especially for the first CPU, and the 3133 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3134 * as out of range and dropped by GIC. 3135 * So we initialize IDbits to known value to avoid VLPI drop. 3136 */ 3137 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3138 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3139 smp_processor_id(), val); 3140 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3141 3142 /* 3143 * Also clear Valid bit of GICR_VPENDBASER, in case some 3144 * ancient programming gets left in and has possibility of 3145 * corrupting memory. 3146 */ 3147 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3148 } 3149 3150 if (allocate_vpe_l1_table()) { 3151 /* 3152 * If the allocation has failed, we're in massive trouble. 3153 * Disable direct injection, and pray that no VM was 3154 * already running... 3155 */ 3156 gic_rdists->has_rvpeid = false; 3157 gic_rdists->has_vlpis = false; 3158 } 3159 3160 /* Make sure the GIC has seen the above */ 3161 dsb(sy); 3162 out: 3163 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3164 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3165 smp_processor_id(), 3166 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3167 "reserved" : "allocated", 3168 &paddr); 3169 } 3170 3171 static void its_cpu_init_collection(struct its_node *its) 3172 { 3173 int cpu = smp_processor_id(); 3174 u64 target; 3175 3176 /* avoid cross node collections and its mapping */ 3177 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3178 struct device_node *cpu_node; 3179 3180 cpu_node = of_get_cpu_node(cpu, NULL); 3181 if (its->numa_node != NUMA_NO_NODE && 3182 its->numa_node != of_node_to_nid(cpu_node)) 3183 return; 3184 } 3185 3186 /* 3187 * We now have to bind each collection to its target 3188 * redistributor. 3189 */ 3190 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3191 /* 3192 * This ITS wants the physical address of the 3193 * redistributor. 3194 */ 3195 target = gic_data_rdist()->phys_base; 3196 } else { 3197 /* This ITS wants a linear CPU number. */ 3198 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3199 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3200 } 3201 3202 /* Perform collection mapping */ 3203 its->collections[cpu].target_address = target; 3204 its->collections[cpu].col_id = cpu; 3205 3206 its_send_mapc(its, &its->collections[cpu], 1); 3207 its_send_invall(its, &its->collections[cpu]); 3208 } 3209 3210 static void its_cpu_init_collections(void) 3211 { 3212 struct its_node *its; 3213 3214 raw_spin_lock(&its_lock); 3215 3216 list_for_each_entry(its, &its_nodes, entry) 3217 its_cpu_init_collection(its); 3218 3219 raw_spin_unlock(&its_lock); 3220 } 3221 3222 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3223 { 3224 struct its_device *its_dev = NULL, *tmp; 3225 unsigned long flags; 3226 3227 raw_spin_lock_irqsave(&its->lock, flags); 3228 3229 list_for_each_entry(tmp, &its->its_device_list, entry) { 3230 if (tmp->device_id == dev_id) { 3231 its_dev = tmp; 3232 break; 3233 } 3234 } 3235 3236 raw_spin_unlock_irqrestore(&its->lock, flags); 3237 3238 return its_dev; 3239 } 3240 3241 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3242 { 3243 int i; 3244 3245 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3246 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3247 return &its->tables[i]; 3248 } 3249 3250 return NULL; 3251 } 3252 3253 static bool its_alloc_table_entry(struct its_node *its, 3254 struct its_baser *baser, u32 id) 3255 { 3256 struct page *page; 3257 u32 esz, idx; 3258 __le64 *table; 3259 3260 /* Don't allow device id that exceeds single, flat table limit */ 3261 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3262 if (!(baser->val & GITS_BASER_INDIRECT)) 3263 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3264 3265 /* Compute 1st level table index & check if that exceeds table limit */ 3266 idx = id >> ilog2(baser->psz / esz); 3267 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3268 return false; 3269 3270 table = baser->base; 3271 3272 /* Allocate memory for 2nd level table */ 3273 if (!table[idx]) { 3274 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3275 get_order(baser->psz)); 3276 if (!page) 3277 return false; 3278 3279 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3280 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3281 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3282 3283 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3284 3285 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3286 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3287 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3288 3289 /* Ensure updated table contents are visible to ITS hardware */ 3290 dsb(sy); 3291 } 3292 3293 return true; 3294 } 3295 3296 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3297 { 3298 struct its_baser *baser; 3299 3300 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3301 3302 /* Don't allow device id that exceeds ITS hardware limit */ 3303 if (!baser) 3304 return (ilog2(dev_id) < device_ids(its)); 3305 3306 return its_alloc_table_entry(its, baser, dev_id); 3307 } 3308 3309 static bool its_alloc_vpe_table(u32 vpe_id) 3310 { 3311 struct its_node *its; 3312 int cpu; 3313 3314 /* 3315 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3316 * could try and only do it on ITSs corresponding to devices 3317 * that have interrupts targeted at this VPE, but the 3318 * complexity becomes crazy (and you have tons of memory 3319 * anyway, right?). 3320 */ 3321 list_for_each_entry(its, &its_nodes, entry) { 3322 struct its_baser *baser; 3323 3324 if (!is_v4(its)) 3325 continue; 3326 3327 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3328 if (!baser) 3329 return false; 3330 3331 if (!its_alloc_table_entry(its, baser, vpe_id)) 3332 return false; 3333 } 3334 3335 /* Non v4.1? No need to iterate RDs and go back early. */ 3336 if (!gic_rdists->has_rvpeid) 3337 return true; 3338 3339 /* 3340 * Make sure the L2 tables are allocated for all copies of 3341 * the L1 table on *all* v4.1 RDs. 3342 */ 3343 for_each_possible_cpu(cpu) { 3344 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3345 return false; 3346 } 3347 3348 return true; 3349 } 3350 3351 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3352 int nvecs, bool alloc_lpis) 3353 { 3354 struct its_device *dev; 3355 unsigned long *lpi_map = NULL; 3356 unsigned long flags; 3357 u16 *col_map = NULL; 3358 void *itt; 3359 int lpi_base; 3360 int nr_lpis; 3361 int nr_ites; 3362 int sz; 3363 3364 if (!its_alloc_device_table(its, dev_id)) 3365 return NULL; 3366 3367 if (WARN_ON(!is_power_of_2(nvecs))) 3368 nvecs = roundup_pow_of_two(nvecs); 3369 3370 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3371 /* 3372 * Even if the device wants a single LPI, the ITT must be 3373 * sized as a power of two (and you need at least one bit...). 3374 */ 3375 nr_ites = max(2, nvecs); 3376 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3377 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3378 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3379 if (alloc_lpis) { 3380 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3381 if (lpi_map) 3382 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3383 GFP_KERNEL); 3384 } else { 3385 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3386 nr_lpis = 0; 3387 lpi_base = 0; 3388 } 3389 3390 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3391 kfree(dev); 3392 kfree(itt); 3393 bitmap_free(lpi_map); 3394 kfree(col_map); 3395 return NULL; 3396 } 3397 3398 gic_flush_dcache_to_poc(itt, sz); 3399 3400 dev->its = its; 3401 dev->itt = itt; 3402 dev->nr_ites = nr_ites; 3403 dev->event_map.lpi_map = lpi_map; 3404 dev->event_map.col_map = col_map; 3405 dev->event_map.lpi_base = lpi_base; 3406 dev->event_map.nr_lpis = nr_lpis; 3407 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3408 dev->device_id = dev_id; 3409 INIT_LIST_HEAD(&dev->entry); 3410 3411 raw_spin_lock_irqsave(&its->lock, flags); 3412 list_add(&dev->entry, &its->its_device_list); 3413 raw_spin_unlock_irqrestore(&its->lock, flags); 3414 3415 /* Map device to its ITT */ 3416 its_send_mapd(dev, 1); 3417 3418 return dev; 3419 } 3420 3421 static void its_free_device(struct its_device *its_dev) 3422 { 3423 unsigned long flags; 3424 3425 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3426 list_del(&its_dev->entry); 3427 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3428 kfree(its_dev->event_map.col_map); 3429 kfree(its_dev->itt); 3430 kfree(its_dev); 3431 } 3432 3433 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3434 { 3435 int idx; 3436 3437 /* Find a free LPI region in lpi_map and allocate them. */ 3438 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3439 dev->event_map.nr_lpis, 3440 get_count_order(nvecs)); 3441 if (idx < 0) 3442 return -ENOSPC; 3443 3444 *hwirq = dev->event_map.lpi_base + idx; 3445 3446 return 0; 3447 } 3448 3449 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3450 int nvec, msi_alloc_info_t *info) 3451 { 3452 struct its_node *its; 3453 struct its_device *its_dev; 3454 struct msi_domain_info *msi_info; 3455 u32 dev_id; 3456 int err = 0; 3457 3458 /* 3459 * We ignore "dev" entirely, and rely on the dev_id that has 3460 * been passed via the scratchpad. This limits this domain's 3461 * usefulness to upper layers that definitely know that they 3462 * are built on top of the ITS. 3463 */ 3464 dev_id = info->scratchpad[0].ul; 3465 3466 msi_info = msi_get_domain_info(domain); 3467 its = msi_info->data; 3468 3469 if (!gic_rdists->has_direct_lpi && 3470 vpe_proxy.dev && 3471 vpe_proxy.dev->its == its && 3472 dev_id == vpe_proxy.dev->device_id) { 3473 /* Bad luck. Get yourself a better implementation */ 3474 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3475 dev_id); 3476 return -EINVAL; 3477 } 3478 3479 mutex_lock(&its->dev_alloc_lock); 3480 its_dev = its_find_device(its, dev_id); 3481 if (its_dev) { 3482 /* 3483 * We already have seen this ID, probably through 3484 * another alias (PCI bridge of some sort). No need to 3485 * create the device. 3486 */ 3487 its_dev->shared = true; 3488 pr_debug("Reusing ITT for devID %x\n", dev_id); 3489 goto out; 3490 } 3491 3492 its_dev = its_create_device(its, dev_id, nvec, true); 3493 if (!its_dev) { 3494 err = -ENOMEM; 3495 goto out; 3496 } 3497 3498 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3499 its_dev->shared = true; 3500 3501 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3502 out: 3503 mutex_unlock(&its->dev_alloc_lock); 3504 info->scratchpad[0].ptr = its_dev; 3505 return err; 3506 } 3507 3508 static struct msi_domain_ops its_msi_domain_ops = { 3509 .msi_prepare = its_msi_prepare, 3510 }; 3511 3512 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3513 unsigned int virq, 3514 irq_hw_number_t hwirq) 3515 { 3516 struct irq_fwspec fwspec; 3517 3518 if (irq_domain_get_of_node(domain->parent)) { 3519 fwspec.fwnode = domain->parent->fwnode; 3520 fwspec.param_count = 3; 3521 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3522 fwspec.param[1] = hwirq; 3523 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3524 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3525 fwspec.fwnode = domain->parent->fwnode; 3526 fwspec.param_count = 2; 3527 fwspec.param[0] = hwirq; 3528 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3529 } else { 3530 return -EINVAL; 3531 } 3532 3533 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3534 } 3535 3536 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3537 unsigned int nr_irqs, void *args) 3538 { 3539 msi_alloc_info_t *info = args; 3540 struct its_device *its_dev = info->scratchpad[0].ptr; 3541 struct its_node *its = its_dev->its; 3542 struct irq_data *irqd; 3543 irq_hw_number_t hwirq; 3544 int err; 3545 int i; 3546 3547 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3548 if (err) 3549 return err; 3550 3551 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3552 if (err) 3553 return err; 3554 3555 for (i = 0; i < nr_irqs; i++) { 3556 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3557 if (err) 3558 return err; 3559 3560 irq_domain_set_hwirq_and_chip(domain, virq + i, 3561 hwirq + i, &its_irq_chip, its_dev); 3562 irqd = irq_get_irq_data(virq + i); 3563 irqd_set_single_target(irqd); 3564 irqd_set_affinity_on_activate(irqd); 3565 pr_debug("ID:%d pID:%d vID:%d\n", 3566 (int)(hwirq + i - its_dev->event_map.lpi_base), 3567 (int)(hwirq + i), virq + i); 3568 } 3569 3570 return 0; 3571 } 3572 3573 static int its_irq_domain_activate(struct irq_domain *domain, 3574 struct irq_data *d, bool reserve) 3575 { 3576 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3577 u32 event = its_get_event_id(d); 3578 int cpu; 3579 3580 cpu = its_select_cpu(d, cpu_online_mask); 3581 if (cpu < 0 || cpu >= nr_cpu_ids) 3582 return -EINVAL; 3583 3584 its_inc_lpi_count(d, cpu); 3585 its_dev->event_map.col_map[event] = cpu; 3586 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3587 3588 /* Map the GIC IRQ and event to the device */ 3589 its_send_mapti(its_dev, d->hwirq, event); 3590 return 0; 3591 } 3592 3593 static void its_irq_domain_deactivate(struct irq_domain *domain, 3594 struct irq_data *d) 3595 { 3596 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3597 u32 event = its_get_event_id(d); 3598 3599 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3600 /* Stop the delivery of interrupts */ 3601 its_send_discard(its_dev, event); 3602 } 3603 3604 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3605 unsigned int nr_irqs) 3606 { 3607 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3608 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3609 struct its_node *its = its_dev->its; 3610 int i; 3611 3612 bitmap_release_region(its_dev->event_map.lpi_map, 3613 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3614 get_count_order(nr_irqs)); 3615 3616 for (i = 0; i < nr_irqs; i++) { 3617 struct irq_data *data = irq_domain_get_irq_data(domain, 3618 virq + i); 3619 /* Nuke the entry in the domain */ 3620 irq_domain_reset_irq_data(data); 3621 } 3622 3623 mutex_lock(&its->dev_alloc_lock); 3624 3625 /* 3626 * If all interrupts have been freed, start mopping the 3627 * floor. This is conditioned on the device not being shared. 3628 */ 3629 if (!its_dev->shared && 3630 bitmap_empty(its_dev->event_map.lpi_map, 3631 its_dev->event_map.nr_lpis)) { 3632 its_lpi_free(its_dev->event_map.lpi_map, 3633 its_dev->event_map.lpi_base, 3634 its_dev->event_map.nr_lpis); 3635 3636 /* Unmap device/itt */ 3637 its_send_mapd(its_dev, 0); 3638 its_free_device(its_dev); 3639 } 3640 3641 mutex_unlock(&its->dev_alloc_lock); 3642 3643 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3644 } 3645 3646 static const struct irq_domain_ops its_domain_ops = { 3647 .alloc = its_irq_domain_alloc, 3648 .free = its_irq_domain_free, 3649 .activate = its_irq_domain_activate, 3650 .deactivate = its_irq_domain_deactivate, 3651 }; 3652 3653 /* 3654 * This is insane. 3655 * 3656 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3657 * likely), the only way to perform an invalidate is to use a fake 3658 * device to issue an INV command, implying that the LPI has first 3659 * been mapped to some event on that device. Since this is not exactly 3660 * cheap, we try to keep that mapping around as long as possible, and 3661 * only issue an UNMAP if we're short on available slots. 3662 * 3663 * Broken by design(tm). 3664 * 3665 * GICv4.1, on the other hand, mandates that we're able to invalidate 3666 * by writing to a MMIO register. It doesn't implement the whole of 3667 * DirectLPI, but that's good enough. And most of the time, we don't 3668 * even have to invalidate anything, as the redistributor can be told 3669 * whether to generate a doorbell or not (we thus leave it enabled, 3670 * always). 3671 */ 3672 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3673 { 3674 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3675 if (gic_rdists->has_rvpeid) 3676 return; 3677 3678 /* Already unmapped? */ 3679 if (vpe->vpe_proxy_event == -1) 3680 return; 3681 3682 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3683 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3684 3685 /* 3686 * We don't track empty slots at all, so let's move the 3687 * next_victim pointer if we can quickly reuse that slot 3688 * instead of nuking an existing entry. Not clear that this is 3689 * always a win though, and this might just generate a ripple 3690 * effect... Let's just hope VPEs don't migrate too often. 3691 */ 3692 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3693 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3694 3695 vpe->vpe_proxy_event = -1; 3696 } 3697 3698 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3699 { 3700 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3701 if (gic_rdists->has_rvpeid) 3702 return; 3703 3704 if (!gic_rdists->has_direct_lpi) { 3705 unsigned long flags; 3706 3707 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3708 its_vpe_db_proxy_unmap_locked(vpe); 3709 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3710 } 3711 } 3712 3713 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3714 { 3715 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3716 if (gic_rdists->has_rvpeid) 3717 return; 3718 3719 /* Already mapped? */ 3720 if (vpe->vpe_proxy_event != -1) 3721 return; 3722 3723 /* This slot was already allocated. Kick the other VPE out. */ 3724 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3725 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3726 3727 /* Map the new VPE instead */ 3728 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3729 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3730 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3731 3732 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3733 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3734 } 3735 3736 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3737 { 3738 unsigned long flags; 3739 struct its_collection *target_col; 3740 3741 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3742 if (gic_rdists->has_rvpeid) 3743 return; 3744 3745 if (gic_rdists->has_direct_lpi) { 3746 void __iomem *rdbase; 3747 3748 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3749 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3750 wait_for_syncr(rdbase); 3751 3752 return; 3753 } 3754 3755 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3756 3757 its_vpe_db_proxy_map_locked(vpe); 3758 3759 target_col = &vpe_proxy.dev->its->collections[to]; 3760 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3761 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3762 3763 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3764 } 3765 3766 static int its_vpe_set_affinity(struct irq_data *d, 3767 const struct cpumask *mask_val, 3768 bool force) 3769 { 3770 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3771 int from, cpu = cpumask_first(mask_val); 3772 unsigned long flags; 3773 3774 /* 3775 * Changing affinity is mega expensive, so let's be as lazy as 3776 * we can and only do it if we really have to. Also, if mapped 3777 * into the proxy device, we need to move the doorbell 3778 * interrupt to its new location. 3779 * 3780 * Another thing is that changing the affinity of a vPE affects 3781 * *other interrupts* such as all the vLPIs that are routed to 3782 * this vPE. This means that the irq_desc lock is not enough to 3783 * protect us, and that we must ensure nobody samples vpe->col_idx 3784 * during the update, hence the lock below which must also be 3785 * taken on any vLPI handling path that evaluates vpe->col_idx. 3786 */ 3787 from = vpe_to_cpuid_lock(vpe, &flags); 3788 if (from == cpu) 3789 goto out; 3790 3791 vpe->col_idx = cpu; 3792 3793 /* 3794 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3795 * is sharing its VPE table with the current one. 3796 */ 3797 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3798 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3799 goto out; 3800 3801 its_send_vmovp(vpe); 3802 its_vpe_db_proxy_move(vpe, from, cpu); 3803 3804 out: 3805 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3806 vpe_to_cpuid_unlock(vpe, flags); 3807 3808 return IRQ_SET_MASK_OK_DONE; 3809 } 3810 3811 static void its_wait_vpt_parse_complete(void) 3812 { 3813 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3814 u64 val; 3815 3816 if (!gic_rdists->has_vpend_valid_dirty) 3817 return; 3818 3819 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3820 val, 3821 !(val & GICR_VPENDBASER_Dirty), 3822 1, 500)); 3823 } 3824 3825 static void its_vpe_schedule(struct its_vpe *vpe) 3826 { 3827 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3828 u64 val; 3829 3830 /* Schedule the VPE */ 3831 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3832 GENMASK_ULL(51, 12); 3833 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3834 val |= GICR_VPROPBASER_RaWb; 3835 val |= GICR_VPROPBASER_InnerShareable; 3836 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3837 3838 val = virt_to_phys(page_address(vpe->vpt_page)) & 3839 GENMASK_ULL(51, 16); 3840 val |= GICR_VPENDBASER_RaWaWb; 3841 val |= GICR_VPENDBASER_InnerShareable; 3842 /* 3843 * There is no good way of finding out if the pending table is 3844 * empty as we can race against the doorbell interrupt very 3845 * easily. So in the end, vpe->pending_last is only an 3846 * indication that the vcpu has something pending, not one 3847 * that the pending table is empty. A good implementation 3848 * would be able to read its coarse map pretty quickly anyway, 3849 * making this a tolerable issue. 3850 */ 3851 val |= GICR_VPENDBASER_PendingLast; 3852 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3853 val |= GICR_VPENDBASER_Valid; 3854 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3855 } 3856 3857 static void its_vpe_deschedule(struct its_vpe *vpe) 3858 { 3859 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3860 u64 val; 3861 3862 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3863 3864 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3865 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3866 } 3867 3868 static void its_vpe_invall(struct its_vpe *vpe) 3869 { 3870 struct its_node *its; 3871 3872 list_for_each_entry(its, &its_nodes, entry) { 3873 if (!is_v4(its)) 3874 continue; 3875 3876 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3877 continue; 3878 3879 /* 3880 * Sending a VINVALL to a single ITS is enough, as all 3881 * we need is to reach the redistributors. 3882 */ 3883 its_send_vinvall(its, vpe); 3884 return; 3885 } 3886 } 3887 3888 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3889 { 3890 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3891 struct its_cmd_info *info = vcpu_info; 3892 3893 switch (info->cmd_type) { 3894 case SCHEDULE_VPE: 3895 its_vpe_schedule(vpe); 3896 return 0; 3897 3898 case DESCHEDULE_VPE: 3899 its_vpe_deschedule(vpe); 3900 return 0; 3901 3902 case COMMIT_VPE: 3903 its_wait_vpt_parse_complete(); 3904 return 0; 3905 3906 case INVALL_VPE: 3907 its_vpe_invall(vpe); 3908 return 0; 3909 3910 default: 3911 return -EINVAL; 3912 } 3913 } 3914 3915 static void its_vpe_send_cmd(struct its_vpe *vpe, 3916 void (*cmd)(struct its_device *, u32)) 3917 { 3918 unsigned long flags; 3919 3920 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3921 3922 its_vpe_db_proxy_map_locked(vpe); 3923 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3924 3925 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3926 } 3927 3928 static void its_vpe_send_inv(struct irq_data *d) 3929 { 3930 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3931 3932 if (gic_rdists->has_direct_lpi) { 3933 void __iomem *rdbase; 3934 3935 /* Target the redistributor this VPE is currently known on */ 3936 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3937 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3938 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3939 wait_for_syncr(rdbase); 3940 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3941 } else { 3942 its_vpe_send_cmd(vpe, its_send_inv); 3943 } 3944 } 3945 3946 static void its_vpe_mask_irq(struct irq_data *d) 3947 { 3948 /* 3949 * We need to unmask the LPI, which is described by the parent 3950 * irq_data. Instead of calling into the parent (which won't 3951 * exactly do the right thing, let's simply use the 3952 * parent_data pointer. Yes, I'm naughty. 3953 */ 3954 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3955 its_vpe_send_inv(d); 3956 } 3957 3958 static void its_vpe_unmask_irq(struct irq_data *d) 3959 { 3960 /* Same hack as above... */ 3961 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3962 its_vpe_send_inv(d); 3963 } 3964 3965 static int its_vpe_set_irqchip_state(struct irq_data *d, 3966 enum irqchip_irq_state which, 3967 bool state) 3968 { 3969 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3970 3971 if (which != IRQCHIP_STATE_PENDING) 3972 return -EINVAL; 3973 3974 if (gic_rdists->has_direct_lpi) { 3975 void __iomem *rdbase; 3976 3977 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3978 if (state) { 3979 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3980 } else { 3981 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3982 wait_for_syncr(rdbase); 3983 } 3984 } else { 3985 if (state) 3986 its_vpe_send_cmd(vpe, its_send_int); 3987 else 3988 its_vpe_send_cmd(vpe, its_send_clear); 3989 } 3990 3991 return 0; 3992 } 3993 3994 static int its_vpe_retrigger(struct irq_data *d) 3995 { 3996 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 3997 } 3998 3999 static struct irq_chip its_vpe_irq_chip = { 4000 .name = "GICv4-vpe", 4001 .irq_mask = its_vpe_mask_irq, 4002 .irq_unmask = its_vpe_unmask_irq, 4003 .irq_eoi = irq_chip_eoi_parent, 4004 .irq_set_affinity = its_vpe_set_affinity, 4005 .irq_retrigger = its_vpe_retrigger, 4006 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4007 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4008 }; 4009 4010 static struct its_node *find_4_1_its(void) 4011 { 4012 static struct its_node *its = NULL; 4013 4014 if (!its) { 4015 list_for_each_entry(its, &its_nodes, entry) { 4016 if (is_v4_1(its)) 4017 return its; 4018 } 4019 4020 /* Oops? */ 4021 its = NULL; 4022 } 4023 4024 return its; 4025 } 4026 4027 static void its_vpe_4_1_send_inv(struct irq_data *d) 4028 { 4029 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4030 struct its_node *its; 4031 4032 /* 4033 * GICv4.1 wants doorbells to be invalidated using the 4034 * INVDB command in order to be broadcast to all RDs. Send 4035 * it to the first valid ITS, and let the HW do its magic. 4036 */ 4037 its = find_4_1_its(); 4038 if (its) 4039 its_send_invdb(its, vpe); 4040 } 4041 4042 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4043 { 4044 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4045 its_vpe_4_1_send_inv(d); 4046 } 4047 4048 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4049 { 4050 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4051 its_vpe_4_1_send_inv(d); 4052 } 4053 4054 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4055 struct its_cmd_info *info) 4056 { 4057 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4058 u64 val = 0; 4059 4060 /* Schedule the VPE */ 4061 val |= GICR_VPENDBASER_Valid; 4062 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4063 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4064 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4065 4066 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4067 } 4068 4069 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4070 struct its_cmd_info *info) 4071 { 4072 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4073 u64 val; 4074 4075 if (info->req_db) { 4076 unsigned long flags; 4077 4078 /* 4079 * vPE is going to block: make the vPE non-resident with 4080 * PendingLast clear and DB set. The GIC guarantees that if 4081 * we read-back PendingLast clear, then a doorbell will be 4082 * delivered when an interrupt comes. 4083 * 4084 * Note the locking to deal with the concurrent update of 4085 * pending_last from the doorbell interrupt handler that can 4086 * run concurrently. 4087 */ 4088 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4089 val = its_clear_vpend_valid(vlpi_base, 4090 GICR_VPENDBASER_PendingLast, 4091 GICR_VPENDBASER_4_1_DB); 4092 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4093 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4094 } else { 4095 /* 4096 * We're not blocking, so just make the vPE non-resident 4097 * with PendingLast set, indicating that we'll be back. 4098 */ 4099 val = its_clear_vpend_valid(vlpi_base, 4100 0, 4101 GICR_VPENDBASER_PendingLast); 4102 vpe->pending_last = true; 4103 } 4104 } 4105 4106 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4107 { 4108 void __iomem *rdbase; 4109 unsigned long flags; 4110 u64 val; 4111 int cpu; 4112 4113 val = GICR_INVALLR_V; 4114 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4115 4116 /* Target the redistributor this vPE is currently known on */ 4117 cpu = vpe_to_cpuid_lock(vpe, &flags); 4118 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4119 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4120 gic_write_lpir(val, rdbase + GICR_INVALLR); 4121 4122 wait_for_syncr(rdbase); 4123 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4124 vpe_to_cpuid_unlock(vpe, flags); 4125 } 4126 4127 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4128 { 4129 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4130 struct its_cmd_info *info = vcpu_info; 4131 4132 switch (info->cmd_type) { 4133 case SCHEDULE_VPE: 4134 its_vpe_4_1_schedule(vpe, info); 4135 return 0; 4136 4137 case DESCHEDULE_VPE: 4138 its_vpe_4_1_deschedule(vpe, info); 4139 return 0; 4140 4141 case COMMIT_VPE: 4142 its_wait_vpt_parse_complete(); 4143 return 0; 4144 4145 case INVALL_VPE: 4146 its_vpe_4_1_invall(vpe); 4147 return 0; 4148 4149 default: 4150 return -EINVAL; 4151 } 4152 } 4153 4154 static struct irq_chip its_vpe_4_1_irq_chip = { 4155 .name = "GICv4.1-vpe", 4156 .irq_mask = its_vpe_4_1_mask_irq, 4157 .irq_unmask = its_vpe_4_1_unmask_irq, 4158 .irq_eoi = irq_chip_eoi_parent, 4159 .irq_set_affinity = its_vpe_set_affinity, 4160 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4161 }; 4162 4163 static void its_configure_sgi(struct irq_data *d, bool clear) 4164 { 4165 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4166 struct its_cmd_desc desc; 4167 4168 desc.its_vsgi_cmd.vpe = vpe; 4169 desc.its_vsgi_cmd.sgi = d->hwirq; 4170 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4171 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4172 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4173 desc.its_vsgi_cmd.clear = clear; 4174 4175 /* 4176 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4177 * destination VPE is mapped there. Since we map them eagerly at 4178 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4179 */ 4180 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4181 } 4182 4183 static void its_sgi_mask_irq(struct irq_data *d) 4184 { 4185 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4186 4187 vpe->sgi_config[d->hwirq].enabled = false; 4188 its_configure_sgi(d, false); 4189 } 4190 4191 static void its_sgi_unmask_irq(struct irq_data *d) 4192 { 4193 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4194 4195 vpe->sgi_config[d->hwirq].enabled = true; 4196 its_configure_sgi(d, false); 4197 } 4198 4199 static int its_sgi_set_affinity(struct irq_data *d, 4200 const struct cpumask *mask_val, 4201 bool force) 4202 { 4203 /* 4204 * There is no notion of affinity for virtual SGIs, at least 4205 * not on the host (since they can only be targeting a vPE). 4206 * Tell the kernel we've done whatever it asked for. 4207 */ 4208 irq_data_update_effective_affinity(d, mask_val); 4209 return IRQ_SET_MASK_OK; 4210 } 4211 4212 static int its_sgi_set_irqchip_state(struct irq_data *d, 4213 enum irqchip_irq_state which, 4214 bool state) 4215 { 4216 if (which != IRQCHIP_STATE_PENDING) 4217 return -EINVAL; 4218 4219 if (state) { 4220 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4221 struct its_node *its = find_4_1_its(); 4222 u64 val; 4223 4224 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4225 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4226 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4227 } else { 4228 its_configure_sgi(d, true); 4229 } 4230 4231 return 0; 4232 } 4233 4234 static int its_sgi_get_irqchip_state(struct irq_data *d, 4235 enum irqchip_irq_state which, bool *val) 4236 { 4237 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4238 void __iomem *base; 4239 unsigned long flags; 4240 u32 count = 1000000; /* 1s! */ 4241 u32 status; 4242 int cpu; 4243 4244 if (which != IRQCHIP_STATE_PENDING) 4245 return -EINVAL; 4246 4247 /* 4248 * Locking galore! We can race against two different events: 4249 * 4250 * - Concurrent vPE affinity change: we must make sure it cannot 4251 * happen, or we'll talk to the wrong redistributor. This is 4252 * identical to what happens with vLPIs. 4253 * 4254 * - Concurrent VSGIPENDR access: As it involves accessing two 4255 * MMIO registers, this must be made atomic one way or another. 4256 */ 4257 cpu = vpe_to_cpuid_lock(vpe, &flags); 4258 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4259 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4260 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4261 do { 4262 status = readl_relaxed(base + GICR_VSGIPENDR); 4263 if (!(status & GICR_VSGIPENDR_BUSY)) 4264 goto out; 4265 4266 count--; 4267 if (!count) { 4268 pr_err_ratelimited("Unable to get SGI status\n"); 4269 goto out; 4270 } 4271 cpu_relax(); 4272 udelay(1); 4273 } while (count); 4274 4275 out: 4276 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4277 vpe_to_cpuid_unlock(vpe, flags); 4278 4279 if (!count) 4280 return -ENXIO; 4281 4282 *val = !!(status & (1 << d->hwirq)); 4283 4284 return 0; 4285 } 4286 4287 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4288 { 4289 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4290 struct its_cmd_info *info = vcpu_info; 4291 4292 switch (info->cmd_type) { 4293 case PROP_UPDATE_VSGI: 4294 vpe->sgi_config[d->hwirq].priority = info->priority; 4295 vpe->sgi_config[d->hwirq].group = info->group; 4296 its_configure_sgi(d, false); 4297 return 0; 4298 4299 default: 4300 return -EINVAL; 4301 } 4302 } 4303 4304 static struct irq_chip its_sgi_irq_chip = { 4305 .name = "GICv4.1-sgi", 4306 .irq_mask = its_sgi_mask_irq, 4307 .irq_unmask = its_sgi_unmask_irq, 4308 .irq_set_affinity = its_sgi_set_affinity, 4309 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4310 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4311 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4312 }; 4313 4314 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4315 unsigned int virq, unsigned int nr_irqs, 4316 void *args) 4317 { 4318 struct its_vpe *vpe = args; 4319 int i; 4320 4321 /* Yes, we do want 16 SGIs */ 4322 WARN_ON(nr_irqs != 16); 4323 4324 for (i = 0; i < 16; i++) { 4325 vpe->sgi_config[i].priority = 0; 4326 vpe->sgi_config[i].enabled = false; 4327 vpe->sgi_config[i].group = false; 4328 4329 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4330 &its_sgi_irq_chip, vpe); 4331 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4332 } 4333 4334 return 0; 4335 } 4336 4337 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4338 unsigned int virq, 4339 unsigned int nr_irqs) 4340 { 4341 /* Nothing to do */ 4342 } 4343 4344 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4345 struct irq_data *d, bool reserve) 4346 { 4347 /* Write out the initial SGI configuration */ 4348 its_configure_sgi(d, false); 4349 return 0; 4350 } 4351 4352 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4353 struct irq_data *d) 4354 { 4355 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4356 4357 /* 4358 * The VSGI command is awkward: 4359 * 4360 * - To change the configuration, CLEAR must be set to false, 4361 * leaving the pending bit unchanged. 4362 * - To clear the pending bit, CLEAR must be set to true, leaving 4363 * the configuration unchanged. 4364 * 4365 * You just can't do both at once, hence the two commands below. 4366 */ 4367 vpe->sgi_config[d->hwirq].enabled = false; 4368 its_configure_sgi(d, false); 4369 its_configure_sgi(d, true); 4370 } 4371 4372 static const struct irq_domain_ops its_sgi_domain_ops = { 4373 .alloc = its_sgi_irq_domain_alloc, 4374 .free = its_sgi_irq_domain_free, 4375 .activate = its_sgi_irq_domain_activate, 4376 .deactivate = its_sgi_irq_domain_deactivate, 4377 }; 4378 4379 static int its_vpe_id_alloc(void) 4380 { 4381 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4382 } 4383 4384 static void its_vpe_id_free(u16 id) 4385 { 4386 ida_simple_remove(&its_vpeid_ida, id); 4387 } 4388 4389 static int its_vpe_init(struct its_vpe *vpe) 4390 { 4391 struct page *vpt_page; 4392 int vpe_id; 4393 4394 /* Allocate vpe_id */ 4395 vpe_id = its_vpe_id_alloc(); 4396 if (vpe_id < 0) 4397 return vpe_id; 4398 4399 /* Allocate VPT */ 4400 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4401 if (!vpt_page) { 4402 its_vpe_id_free(vpe_id); 4403 return -ENOMEM; 4404 } 4405 4406 if (!its_alloc_vpe_table(vpe_id)) { 4407 its_vpe_id_free(vpe_id); 4408 its_free_pending_table(vpt_page); 4409 return -ENOMEM; 4410 } 4411 4412 raw_spin_lock_init(&vpe->vpe_lock); 4413 vpe->vpe_id = vpe_id; 4414 vpe->vpt_page = vpt_page; 4415 if (gic_rdists->has_rvpeid) 4416 atomic_set(&vpe->vmapp_count, 0); 4417 else 4418 vpe->vpe_proxy_event = -1; 4419 4420 return 0; 4421 } 4422 4423 static void its_vpe_teardown(struct its_vpe *vpe) 4424 { 4425 its_vpe_db_proxy_unmap(vpe); 4426 its_vpe_id_free(vpe->vpe_id); 4427 its_free_pending_table(vpe->vpt_page); 4428 } 4429 4430 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4431 unsigned int virq, 4432 unsigned int nr_irqs) 4433 { 4434 struct its_vm *vm = domain->host_data; 4435 int i; 4436 4437 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4438 4439 for (i = 0; i < nr_irqs; i++) { 4440 struct irq_data *data = irq_domain_get_irq_data(domain, 4441 virq + i); 4442 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4443 4444 BUG_ON(vm != vpe->its_vm); 4445 4446 clear_bit(data->hwirq, vm->db_bitmap); 4447 its_vpe_teardown(vpe); 4448 irq_domain_reset_irq_data(data); 4449 } 4450 4451 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4452 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4453 its_free_prop_table(vm->vprop_page); 4454 } 4455 } 4456 4457 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4458 unsigned int nr_irqs, void *args) 4459 { 4460 struct irq_chip *irqchip = &its_vpe_irq_chip; 4461 struct its_vm *vm = args; 4462 unsigned long *bitmap; 4463 struct page *vprop_page; 4464 int base, nr_ids, i, err = 0; 4465 4466 BUG_ON(!vm); 4467 4468 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4469 if (!bitmap) 4470 return -ENOMEM; 4471 4472 if (nr_ids < nr_irqs) { 4473 its_lpi_free(bitmap, base, nr_ids); 4474 return -ENOMEM; 4475 } 4476 4477 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4478 if (!vprop_page) { 4479 its_lpi_free(bitmap, base, nr_ids); 4480 return -ENOMEM; 4481 } 4482 4483 vm->db_bitmap = bitmap; 4484 vm->db_lpi_base = base; 4485 vm->nr_db_lpis = nr_ids; 4486 vm->vprop_page = vprop_page; 4487 4488 if (gic_rdists->has_rvpeid) 4489 irqchip = &its_vpe_4_1_irq_chip; 4490 4491 for (i = 0; i < nr_irqs; i++) { 4492 vm->vpes[i]->vpe_db_lpi = base + i; 4493 err = its_vpe_init(vm->vpes[i]); 4494 if (err) 4495 break; 4496 err = its_irq_gic_domain_alloc(domain, virq + i, 4497 vm->vpes[i]->vpe_db_lpi); 4498 if (err) 4499 break; 4500 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4501 irqchip, vm->vpes[i]); 4502 set_bit(i, bitmap); 4503 } 4504 4505 if (err) { 4506 if (i > 0) 4507 its_vpe_irq_domain_free(domain, virq, i); 4508 4509 its_lpi_free(bitmap, base, nr_ids); 4510 its_free_prop_table(vprop_page); 4511 } 4512 4513 return err; 4514 } 4515 4516 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4517 struct irq_data *d, bool reserve) 4518 { 4519 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4520 struct its_node *its; 4521 4522 /* 4523 * If we use the list map, we issue VMAPP on demand... Unless 4524 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4525 * so that VSGIs can work. 4526 */ 4527 if (!gic_requires_eager_mapping()) 4528 return 0; 4529 4530 /* Map the VPE to the first possible CPU */ 4531 vpe->col_idx = cpumask_first(cpu_online_mask); 4532 4533 list_for_each_entry(its, &its_nodes, entry) { 4534 if (!is_v4(its)) 4535 continue; 4536 4537 its_send_vmapp(its, vpe, true); 4538 its_send_vinvall(its, vpe); 4539 } 4540 4541 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4542 4543 return 0; 4544 } 4545 4546 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4547 struct irq_data *d) 4548 { 4549 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4550 struct its_node *its; 4551 4552 /* 4553 * If we use the list map on GICv4.0, we unmap the VPE once no 4554 * VLPIs are associated with the VM. 4555 */ 4556 if (!gic_requires_eager_mapping()) 4557 return; 4558 4559 list_for_each_entry(its, &its_nodes, entry) { 4560 if (!is_v4(its)) 4561 continue; 4562 4563 its_send_vmapp(its, vpe, false); 4564 } 4565 4566 /* 4567 * There may be a direct read to the VPT after unmapping the 4568 * vPE, to guarantee the validity of this, we make the VPT 4569 * memory coherent with the CPU caches here. 4570 */ 4571 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4572 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4573 LPI_PENDBASE_SZ); 4574 } 4575 4576 static const struct irq_domain_ops its_vpe_domain_ops = { 4577 .alloc = its_vpe_irq_domain_alloc, 4578 .free = its_vpe_irq_domain_free, 4579 .activate = its_vpe_irq_domain_activate, 4580 .deactivate = its_vpe_irq_domain_deactivate, 4581 }; 4582 4583 static int its_force_quiescent(void __iomem *base) 4584 { 4585 u32 count = 1000000; /* 1s */ 4586 u32 val; 4587 4588 val = readl_relaxed(base + GITS_CTLR); 4589 /* 4590 * GIC architecture specification requires the ITS to be both 4591 * disabled and quiescent for writes to GITS_BASER<n> or 4592 * GITS_CBASER to not have UNPREDICTABLE results. 4593 */ 4594 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4595 return 0; 4596 4597 /* Disable the generation of all interrupts to this ITS */ 4598 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4599 writel_relaxed(val, base + GITS_CTLR); 4600 4601 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4602 while (1) { 4603 val = readl_relaxed(base + GITS_CTLR); 4604 if (val & GITS_CTLR_QUIESCENT) 4605 return 0; 4606 4607 count--; 4608 if (!count) 4609 return -EBUSY; 4610 4611 cpu_relax(); 4612 udelay(1); 4613 } 4614 } 4615 4616 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4617 { 4618 struct its_node *its = data; 4619 4620 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4621 its->typer &= ~GITS_TYPER_DEVBITS; 4622 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4623 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4624 4625 return true; 4626 } 4627 4628 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4629 { 4630 struct its_node *its = data; 4631 4632 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4633 4634 return true; 4635 } 4636 4637 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4638 { 4639 struct its_node *its = data; 4640 4641 /* On QDF2400, the size of the ITE is 16Bytes */ 4642 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4643 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4644 4645 return true; 4646 } 4647 4648 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4649 { 4650 struct its_node *its = its_dev->its; 4651 4652 /* 4653 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4654 * which maps 32-bit writes targeted at a separate window of 4655 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4656 * with device ID taken from bits [device_id_bits + 1:2] of 4657 * the window offset. 4658 */ 4659 return its->pre_its_base + (its_dev->device_id << 2); 4660 } 4661 4662 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4663 { 4664 struct its_node *its = data; 4665 u32 pre_its_window[2]; 4666 u32 ids; 4667 4668 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4669 "socionext,synquacer-pre-its", 4670 pre_its_window, 4671 ARRAY_SIZE(pre_its_window))) { 4672 4673 its->pre_its_base = pre_its_window[0]; 4674 its->get_msi_base = its_irq_get_msi_base_pre_its; 4675 4676 ids = ilog2(pre_its_window[1]) - 2; 4677 if (device_ids(its) > ids) { 4678 its->typer &= ~GITS_TYPER_DEVBITS; 4679 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4680 } 4681 4682 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4683 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 4684 return true; 4685 } 4686 return false; 4687 } 4688 4689 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4690 { 4691 struct its_node *its = data; 4692 4693 /* 4694 * Hip07 insists on using the wrong address for the VLPI 4695 * page. Trick it into doing the right thing... 4696 */ 4697 its->vlpi_redist_offset = SZ_128K; 4698 return true; 4699 } 4700 4701 static const struct gic_quirk its_quirks[] = { 4702 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4703 { 4704 .desc = "ITS: Cavium errata 22375, 24313", 4705 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4706 .mask = 0xffff0fff, 4707 .init = its_enable_quirk_cavium_22375, 4708 }, 4709 #endif 4710 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4711 { 4712 .desc = "ITS: Cavium erratum 23144", 4713 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4714 .mask = 0xffff0fff, 4715 .init = its_enable_quirk_cavium_23144, 4716 }, 4717 #endif 4718 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4719 { 4720 .desc = "ITS: QDF2400 erratum 0065", 4721 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4722 .mask = 0xffffffff, 4723 .init = its_enable_quirk_qdf2400_e0065, 4724 }, 4725 #endif 4726 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4727 { 4728 /* 4729 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4730 * implementation, but with a 'pre-ITS' added that requires 4731 * special handling in software. 4732 */ 4733 .desc = "ITS: Socionext Synquacer pre-ITS", 4734 .iidr = 0x0001143b, 4735 .mask = 0xffffffff, 4736 .init = its_enable_quirk_socionext_synquacer, 4737 }, 4738 #endif 4739 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4740 { 4741 .desc = "ITS: Hip07 erratum 161600802", 4742 .iidr = 0x00000004, 4743 .mask = 0xffffffff, 4744 .init = its_enable_quirk_hip07_161600802, 4745 }, 4746 #endif 4747 { 4748 } 4749 }; 4750 4751 static void its_enable_quirks(struct its_node *its) 4752 { 4753 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4754 4755 gic_enable_quirks(iidr, its_quirks, its); 4756 } 4757 4758 static int its_save_disable(void) 4759 { 4760 struct its_node *its; 4761 int err = 0; 4762 4763 raw_spin_lock(&its_lock); 4764 list_for_each_entry(its, &its_nodes, entry) { 4765 void __iomem *base; 4766 4767 base = its->base; 4768 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4769 err = its_force_quiescent(base); 4770 if (err) { 4771 pr_err("ITS@%pa: failed to quiesce: %d\n", 4772 &its->phys_base, err); 4773 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4774 goto err; 4775 } 4776 4777 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4778 } 4779 4780 err: 4781 if (err) { 4782 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4783 void __iomem *base; 4784 4785 base = its->base; 4786 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4787 } 4788 } 4789 raw_spin_unlock(&its_lock); 4790 4791 return err; 4792 } 4793 4794 static void its_restore_enable(void) 4795 { 4796 struct its_node *its; 4797 int ret; 4798 4799 raw_spin_lock(&its_lock); 4800 list_for_each_entry(its, &its_nodes, entry) { 4801 void __iomem *base; 4802 int i; 4803 4804 base = its->base; 4805 4806 /* 4807 * Make sure that the ITS is disabled. If it fails to quiesce, 4808 * don't restore it since writing to CBASER or BASER<n> 4809 * registers is undefined according to the GIC v3 ITS 4810 * Specification. 4811 * 4812 * Firmware resuming with the ITS enabled is terminally broken. 4813 */ 4814 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4815 ret = its_force_quiescent(base); 4816 if (ret) { 4817 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4818 &its->phys_base, ret); 4819 continue; 4820 } 4821 4822 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4823 4824 /* 4825 * Writing CBASER resets CREADR to 0, so make CWRITER and 4826 * cmd_write line up with it. 4827 */ 4828 its->cmd_write = its->cmd_base; 4829 gits_write_cwriter(0, base + GITS_CWRITER); 4830 4831 /* Restore GITS_BASER from the value cache. */ 4832 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4833 struct its_baser *baser = &its->tables[i]; 4834 4835 if (!(baser->val & GITS_BASER_VALID)) 4836 continue; 4837 4838 its_write_baser(its, baser, baser->val); 4839 } 4840 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4841 4842 /* 4843 * Reinit the collection if it's stored in the ITS. This is 4844 * indicated by the col_id being less than the HCC field. 4845 * CID < HCC as specified in the GIC v3 Documentation. 4846 */ 4847 if (its->collections[smp_processor_id()].col_id < 4848 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4849 its_cpu_init_collection(its); 4850 } 4851 raw_spin_unlock(&its_lock); 4852 } 4853 4854 static struct syscore_ops its_syscore_ops = { 4855 .suspend = its_save_disable, 4856 .resume = its_restore_enable, 4857 }; 4858 4859 static void __init __iomem *its_map_one(struct resource *res, int *err) 4860 { 4861 void __iomem *its_base; 4862 u32 val; 4863 4864 its_base = ioremap(res->start, SZ_64K); 4865 if (!its_base) { 4866 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4867 *err = -ENOMEM; 4868 return NULL; 4869 } 4870 4871 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4872 if (val != 0x30 && val != 0x40) { 4873 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4874 *err = -ENODEV; 4875 goto out_unmap; 4876 } 4877 4878 *err = its_force_quiescent(its_base); 4879 if (*err) { 4880 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4881 goto out_unmap; 4882 } 4883 4884 return its_base; 4885 4886 out_unmap: 4887 iounmap(its_base); 4888 return NULL; 4889 } 4890 4891 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4892 { 4893 struct irq_domain *inner_domain; 4894 struct msi_domain_info *info; 4895 4896 info = kzalloc(sizeof(*info), GFP_KERNEL); 4897 if (!info) 4898 return -ENOMEM; 4899 4900 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 4901 if (!inner_domain) { 4902 kfree(info); 4903 return -ENOMEM; 4904 } 4905 4906 inner_domain->parent = its_parent; 4907 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4908 inner_domain->flags |= its->msi_domain_flags; 4909 info->ops = &its_msi_domain_ops; 4910 info->data = its; 4911 inner_domain->host_data = info; 4912 4913 return 0; 4914 } 4915 4916 static int its_init_vpe_domain(void) 4917 { 4918 struct its_node *its; 4919 u32 devid; 4920 int entries; 4921 4922 if (gic_rdists->has_direct_lpi) { 4923 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4924 return 0; 4925 } 4926 4927 /* Any ITS will do, even if not v4 */ 4928 its = list_first_entry(&its_nodes, struct its_node, entry); 4929 4930 entries = roundup_pow_of_two(nr_cpu_ids); 4931 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4932 GFP_KERNEL); 4933 if (!vpe_proxy.vpes) 4934 return -ENOMEM; 4935 4936 /* Use the last possible DevID */ 4937 devid = GENMASK(device_ids(its) - 1, 0); 4938 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4939 if (!vpe_proxy.dev) { 4940 kfree(vpe_proxy.vpes); 4941 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4942 return -ENOMEM; 4943 } 4944 4945 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4946 4947 raw_spin_lock_init(&vpe_proxy.lock); 4948 vpe_proxy.next_victim = 0; 4949 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4950 devid, vpe_proxy.dev->nr_ites); 4951 4952 return 0; 4953 } 4954 4955 static int __init its_compute_its_list_map(struct resource *res, 4956 void __iomem *its_base) 4957 { 4958 int its_number; 4959 u32 ctlr; 4960 4961 /* 4962 * This is assumed to be done early enough that we're 4963 * guaranteed to be single-threaded, hence no 4964 * locking. Should this change, we should address 4965 * this. 4966 */ 4967 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 4968 if (its_number >= GICv4_ITS_LIST_MAX) { 4969 pr_err("ITS@%pa: No ITSList entry available!\n", 4970 &res->start); 4971 return -EINVAL; 4972 } 4973 4974 ctlr = readl_relaxed(its_base + GITS_CTLR); 4975 ctlr &= ~GITS_CTLR_ITS_NUMBER; 4976 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 4977 writel_relaxed(ctlr, its_base + GITS_CTLR); 4978 ctlr = readl_relaxed(its_base + GITS_CTLR); 4979 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 4980 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 4981 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 4982 } 4983 4984 if (test_and_set_bit(its_number, &its_list_map)) { 4985 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 4986 &res->start, its_number); 4987 return -EINVAL; 4988 } 4989 4990 return its_number; 4991 } 4992 4993 static int __init its_probe_one(struct resource *res, 4994 struct fwnode_handle *handle, int numa_node) 4995 { 4996 struct its_node *its; 4997 void __iomem *its_base; 4998 u64 baser, tmp, typer; 4999 struct page *page; 5000 u32 ctlr; 5001 int err; 5002 5003 its_base = its_map_one(res, &err); 5004 if (!its_base) 5005 return err; 5006 5007 pr_info("ITS %pR\n", res); 5008 5009 its = kzalloc(sizeof(*its), GFP_KERNEL); 5010 if (!its) { 5011 err = -ENOMEM; 5012 goto out_unmap; 5013 } 5014 5015 raw_spin_lock_init(&its->lock); 5016 mutex_init(&its->dev_alloc_lock); 5017 INIT_LIST_HEAD(&its->entry); 5018 INIT_LIST_HEAD(&its->its_device_list); 5019 typer = gic_read_typer(its_base + GITS_TYPER); 5020 its->typer = typer; 5021 its->base = its_base; 5022 its->phys_base = res->start; 5023 if (is_v4(its)) { 5024 if (!(typer & GITS_TYPER_VMOVP)) { 5025 err = its_compute_its_list_map(res, its_base); 5026 if (err < 0) 5027 goto out_free_its; 5028 5029 its->list_nr = err; 5030 5031 pr_info("ITS@%pa: Using ITS number %d\n", 5032 &res->start, err); 5033 } else { 5034 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 5035 } 5036 5037 if (is_v4_1(its)) { 5038 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 5039 5040 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 5041 if (!its->sgir_base) { 5042 err = -ENOMEM; 5043 goto out_free_its; 5044 } 5045 5046 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 5047 5048 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5049 &res->start, its->mpidr, svpet); 5050 } 5051 } 5052 5053 its->numa_node = numa_node; 5054 5055 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5056 get_order(ITS_CMD_QUEUE_SZ)); 5057 if (!page) { 5058 err = -ENOMEM; 5059 goto out_unmap_sgir; 5060 } 5061 its->cmd_base = (void *)page_address(page); 5062 its->cmd_write = its->cmd_base; 5063 its->fwnode_handle = handle; 5064 its->get_msi_base = its_irq_get_msi_base; 5065 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 5066 5067 its_enable_quirks(its); 5068 5069 err = its_alloc_tables(its); 5070 if (err) 5071 goto out_free_cmd; 5072 5073 err = its_alloc_collections(its); 5074 if (err) 5075 goto out_free_tables; 5076 5077 baser = (virt_to_phys(its->cmd_base) | 5078 GITS_CBASER_RaWaWb | 5079 GITS_CBASER_InnerShareable | 5080 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5081 GITS_CBASER_VALID); 5082 5083 gits_write_cbaser(baser, its->base + GITS_CBASER); 5084 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5085 5086 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5087 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5088 /* 5089 * The HW reports non-shareable, we must 5090 * remove the cacheability attributes as 5091 * well. 5092 */ 5093 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5094 GITS_CBASER_CACHEABILITY_MASK); 5095 baser |= GITS_CBASER_nC; 5096 gits_write_cbaser(baser, its->base + GITS_CBASER); 5097 } 5098 pr_info("ITS: using cache flushing for cmd queue\n"); 5099 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5100 } 5101 5102 gits_write_cwriter(0, its->base + GITS_CWRITER); 5103 ctlr = readl_relaxed(its->base + GITS_CTLR); 5104 ctlr |= GITS_CTLR_ENABLE; 5105 if (is_v4(its)) 5106 ctlr |= GITS_CTLR_ImDe; 5107 writel_relaxed(ctlr, its->base + GITS_CTLR); 5108 5109 err = its_init_domain(handle, its); 5110 if (err) 5111 goto out_free_tables; 5112 5113 raw_spin_lock(&its_lock); 5114 list_add(&its->entry, &its_nodes); 5115 raw_spin_unlock(&its_lock); 5116 5117 return 0; 5118 5119 out_free_tables: 5120 its_free_tables(its); 5121 out_free_cmd: 5122 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5123 out_unmap_sgir: 5124 if (its->sgir_base) 5125 iounmap(its->sgir_base); 5126 out_free_its: 5127 kfree(its); 5128 out_unmap: 5129 iounmap(its_base); 5130 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5131 return err; 5132 } 5133 5134 static bool gic_rdists_supports_plpis(void) 5135 { 5136 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5137 } 5138 5139 static int redist_disable_lpis(void) 5140 { 5141 void __iomem *rbase = gic_data_rdist_rd_base(); 5142 u64 timeout = USEC_PER_SEC; 5143 u64 val; 5144 5145 if (!gic_rdists_supports_plpis()) { 5146 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5147 return -ENXIO; 5148 } 5149 5150 val = readl_relaxed(rbase + GICR_CTLR); 5151 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5152 return 0; 5153 5154 /* 5155 * If coming via a CPU hotplug event, we don't need to disable 5156 * LPIs before trying to re-enable them. They are already 5157 * configured and all is well in the world. 5158 * 5159 * If running with preallocated tables, there is nothing to do. 5160 */ 5161 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5162 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5163 return 0; 5164 5165 /* 5166 * From that point on, we only try to do some damage control. 5167 */ 5168 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5169 smp_processor_id()); 5170 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5171 5172 /* Disable LPIs */ 5173 val &= ~GICR_CTLR_ENABLE_LPIS; 5174 writel_relaxed(val, rbase + GICR_CTLR); 5175 5176 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5177 dsb(sy); 5178 5179 /* 5180 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5181 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5182 * Error out if we time out waiting for RWP to clear. 5183 */ 5184 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5185 if (!timeout) { 5186 pr_err("CPU%d: Timeout while disabling LPIs\n", 5187 smp_processor_id()); 5188 return -ETIMEDOUT; 5189 } 5190 udelay(1); 5191 timeout--; 5192 } 5193 5194 /* 5195 * After it has been written to 1, it is IMPLEMENTATION 5196 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5197 * cleared to 0. Error out if clearing the bit failed. 5198 */ 5199 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5200 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5201 return -EBUSY; 5202 } 5203 5204 return 0; 5205 } 5206 5207 int its_cpu_init(void) 5208 { 5209 if (!list_empty(&its_nodes)) { 5210 int ret; 5211 5212 ret = redist_disable_lpis(); 5213 if (ret) 5214 return ret; 5215 5216 its_cpu_init_lpis(); 5217 its_cpu_init_collections(); 5218 } 5219 5220 return 0; 5221 } 5222 5223 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5224 { 5225 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5226 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5227 } 5228 5229 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5230 rdist_memreserve_cpuhp_cleanup_workfn); 5231 5232 static int its_cpu_memreserve_lpi(unsigned int cpu) 5233 { 5234 struct page *pend_page; 5235 int ret = 0; 5236 5237 /* This gets to run exactly once per CPU */ 5238 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5239 return 0; 5240 5241 pend_page = gic_data_rdist()->pend_page; 5242 if (WARN_ON(!pend_page)) { 5243 ret = -ENOMEM; 5244 goto out; 5245 } 5246 /* 5247 * If the pending table was pre-programmed, free the memory we 5248 * preemptively allocated. Otherwise, reserve that memory for 5249 * later kexecs. 5250 */ 5251 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5252 its_free_pending_table(pend_page); 5253 gic_data_rdist()->pend_page = NULL; 5254 } else { 5255 phys_addr_t paddr = page_to_phys(pend_page); 5256 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5257 } 5258 5259 out: 5260 /* Last CPU being brought up gets to issue the cleanup */ 5261 if (!IS_ENABLED(CONFIG_SMP) || 5262 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5263 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5264 5265 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5266 return ret; 5267 } 5268 5269 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5270 static int __init its_reset_one(struct resource *res) 5271 { 5272 void __iomem *its_base; 5273 int err, i; 5274 5275 its_base = its_map_one(res, &err); 5276 if (!its_base) 5277 return err; 5278 5279 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5280 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5281 5282 iounmap(its_base); 5283 return 0; 5284 } 5285 5286 static const struct of_device_id its_device_id[] = { 5287 { .compatible = "arm,gic-v3-its", }, 5288 {}, 5289 }; 5290 5291 static int __init its_of_probe(struct device_node *node) 5292 { 5293 struct device_node *np; 5294 struct resource res; 5295 5296 /* 5297 * Make sure *all* the ITS are reset before we probe any, as 5298 * they may be sharing memory. If any of the ITS fails to 5299 * reset, don't even try to go any further, as this could 5300 * result in something even worse. 5301 */ 5302 for (np = of_find_matching_node(node, its_device_id); np; 5303 np = of_find_matching_node(np, its_device_id)) { 5304 int err; 5305 5306 if (!of_device_is_available(np) || 5307 !of_property_read_bool(np, "msi-controller") || 5308 of_address_to_resource(np, 0, &res)) 5309 continue; 5310 5311 err = its_reset_one(&res); 5312 if (err) 5313 return err; 5314 } 5315 5316 for (np = of_find_matching_node(node, its_device_id); np; 5317 np = of_find_matching_node(np, its_device_id)) { 5318 if (!of_device_is_available(np)) 5319 continue; 5320 if (!of_property_read_bool(np, "msi-controller")) { 5321 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5322 np); 5323 continue; 5324 } 5325 5326 if (of_address_to_resource(np, 0, &res)) { 5327 pr_warn("%pOF: no regs?\n", np); 5328 continue; 5329 } 5330 5331 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5332 } 5333 return 0; 5334 } 5335 5336 #ifdef CONFIG_ACPI 5337 5338 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5339 5340 #ifdef CONFIG_ACPI_NUMA 5341 struct its_srat_map { 5342 /* numa node id */ 5343 u32 numa_node; 5344 /* GIC ITS ID */ 5345 u32 its_id; 5346 }; 5347 5348 static struct its_srat_map *its_srat_maps __initdata; 5349 static int its_in_srat __initdata; 5350 5351 static int __init acpi_get_its_numa_node(u32 its_id) 5352 { 5353 int i; 5354 5355 for (i = 0; i < its_in_srat; i++) { 5356 if (its_id == its_srat_maps[i].its_id) 5357 return its_srat_maps[i].numa_node; 5358 } 5359 return NUMA_NO_NODE; 5360 } 5361 5362 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5363 const unsigned long end) 5364 { 5365 return 0; 5366 } 5367 5368 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5369 const unsigned long end) 5370 { 5371 int node; 5372 struct acpi_srat_gic_its_affinity *its_affinity; 5373 5374 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5375 if (!its_affinity) 5376 return -EINVAL; 5377 5378 if (its_affinity->header.length < sizeof(*its_affinity)) { 5379 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5380 its_affinity->header.length); 5381 return -EINVAL; 5382 } 5383 5384 /* 5385 * Note that in theory a new proximity node could be created by this 5386 * entry as it is an SRAT resource allocation structure. 5387 * We do not currently support doing so. 5388 */ 5389 node = pxm_to_node(its_affinity->proximity_domain); 5390 5391 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5392 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5393 return 0; 5394 } 5395 5396 its_srat_maps[its_in_srat].numa_node = node; 5397 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5398 its_in_srat++; 5399 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5400 its_affinity->proximity_domain, its_affinity->its_id, node); 5401 5402 return 0; 5403 } 5404 5405 static void __init acpi_table_parse_srat_its(void) 5406 { 5407 int count; 5408 5409 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5410 sizeof(struct acpi_table_srat), 5411 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5412 gic_acpi_match_srat_its, 0); 5413 if (count <= 0) 5414 return; 5415 5416 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5417 GFP_KERNEL); 5418 if (!its_srat_maps) 5419 return; 5420 5421 acpi_table_parse_entries(ACPI_SIG_SRAT, 5422 sizeof(struct acpi_table_srat), 5423 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5424 gic_acpi_parse_srat_its, 0); 5425 } 5426 5427 /* free the its_srat_maps after ITS probing */ 5428 static void __init acpi_its_srat_maps_free(void) 5429 { 5430 kfree(its_srat_maps); 5431 } 5432 #else 5433 static void __init acpi_table_parse_srat_its(void) { } 5434 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5435 static void __init acpi_its_srat_maps_free(void) { } 5436 #endif 5437 5438 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5439 const unsigned long end) 5440 { 5441 struct acpi_madt_generic_translator *its_entry; 5442 struct fwnode_handle *dom_handle; 5443 struct resource res; 5444 int err; 5445 5446 its_entry = (struct acpi_madt_generic_translator *)header; 5447 memset(&res, 0, sizeof(res)); 5448 res.start = its_entry->base_address; 5449 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5450 res.flags = IORESOURCE_MEM; 5451 5452 dom_handle = irq_domain_alloc_fwnode(&res.start); 5453 if (!dom_handle) { 5454 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5455 &res.start); 5456 return -ENOMEM; 5457 } 5458 5459 err = iort_register_domain_token(its_entry->translation_id, res.start, 5460 dom_handle); 5461 if (err) { 5462 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5463 &res.start, its_entry->translation_id); 5464 goto dom_err; 5465 } 5466 5467 err = its_probe_one(&res, dom_handle, 5468 acpi_get_its_numa_node(its_entry->translation_id)); 5469 if (!err) 5470 return 0; 5471 5472 iort_deregister_domain_token(its_entry->translation_id); 5473 dom_err: 5474 irq_domain_free_fwnode(dom_handle); 5475 return err; 5476 } 5477 5478 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5479 const unsigned long end) 5480 { 5481 struct acpi_madt_generic_translator *its_entry; 5482 struct resource res; 5483 5484 its_entry = (struct acpi_madt_generic_translator *)header; 5485 res = (struct resource) { 5486 .start = its_entry->base_address, 5487 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5488 .flags = IORESOURCE_MEM, 5489 }; 5490 5491 return its_reset_one(&res); 5492 } 5493 5494 static void __init its_acpi_probe(void) 5495 { 5496 acpi_table_parse_srat_its(); 5497 /* 5498 * Make sure *all* the ITS are reset before we probe any, as 5499 * they may be sharing memory. If any of the ITS fails to 5500 * reset, don't even try to go any further, as this could 5501 * result in something even worse. 5502 */ 5503 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5504 its_acpi_reset, 0) > 0) 5505 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5506 gic_acpi_parse_madt_its, 0); 5507 acpi_its_srat_maps_free(); 5508 } 5509 #else 5510 static void __init its_acpi_probe(void) { } 5511 #endif 5512 5513 int __init its_lpi_memreserve_init(void) 5514 { 5515 int state; 5516 5517 if (!efi_enabled(EFI_CONFIG_TABLES)) 5518 return 0; 5519 5520 if (list_empty(&its_nodes)) 5521 return 0; 5522 5523 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5524 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5525 "irqchip/arm/gicv3/memreserve:online", 5526 its_cpu_memreserve_lpi, 5527 NULL); 5528 if (state < 0) 5529 return state; 5530 5531 gic_rdists->cpuhp_memreserve_state = state; 5532 5533 return 0; 5534 } 5535 5536 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5537 struct irq_domain *parent_domain) 5538 { 5539 struct device_node *of_node; 5540 struct its_node *its; 5541 bool has_v4 = false; 5542 bool has_v4_1 = false; 5543 int err; 5544 5545 gic_rdists = rdists; 5546 5547 its_parent = parent_domain; 5548 of_node = to_of_node(handle); 5549 if (of_node) 5550 its_of_probe(of_node); 5551 else 5552 its_acpi_probe(); 5553 5554 if (list_empty(&its_nodes)) { 5555 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5556 return -ENXIO; 5557 } 5558 5559 err = allocate_lpi_tables(); 5560 if (err) 5561 return err; 5562 5563 list_for_each_entry(its, &its_nodes, entry) { 5564 has_v4 |= is_v4(its); 5565 has_v4_1 |= is_v4_1(its); 5566 } 5567 5568 /* Don't bother with inconsistent systems */ 5569 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5570 rdists->has_rvpeid = false; 5571 5572 if (has_v4 & rdists->has_vlpis) { 5573 const struct irq_domain_ops *sgi_ops; 5574 5575 if (has_v4_1) 5576 sgi_ops = &its_sgi_domain_ops; 5577 else 5578 sgi_ops = NULL; 5579 5580 if (its_init_vpe_domain() || 5581 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5582 rdists->has_vlpis = false; 5583 pr_err("ITS: Disabling GICv4 support\n"); 5584 } 5585 } 5586 5587 register_syscore_ops(&its_syscore_ops); 5588 5589 return 0; 5590 } 5591