xref: /openbmc/linux/drivers/iommu/iommu.c (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/notifier.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/property.h>
26 #include <linux/fsl/mc.h>
27 #include <linux/module.h>
28 #include <linux/cc_platform.h>
29 #include <trace/events/iommu.h>
30 
31 static struct kset *iommu_group_kset;
32 static DEFINE_IDA(iommu_group_ida);
33 
34 static unsigned int iommu_def_domain_type __read_mostly;
35 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
36 static u32 iommu_cmd_line __read_mostly;
37 
38 struct iommu_group {
39 	struct kobject kobj;
40 	struct kobject *devices_kobj;
41 	struct list_head devices;
42 	struct mutex mutex;
43 	struct blocking_notifier_head notifier;
44 	void *iommu_data;
45 	void (*iommu_data_release)(void *iommu_data);
46 	char *name;
47 	int id;
48 	struct iommu_domain *default_domain;
49 	struct iommu_domain *domain;
50 	struct list_head entry;
51 };
52 
53 struct group_device {
54 	struct list_head list;
55 	struct device *dev;
56 	char *name;
57 };
58 
59 struct iommu_group_attribute {
60 	struct attribute attr;
61 	ssize_t (*show)(struct iommu_group *group, char *buf);
62 	ssize_t (*store)(struct iommu_group *group,
63 			 const char *buf, size_t count);
64 };
65 
66 static const char * const iommu_group_resv_type_string[] = {
67 	[IOMMU_RESV_DIRECT]			= "direct",
68 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
69 	[IOMMU_RESV_RESERVED]			= "reserved",
70 	[IOMMU_RESV_MSI]			= "msi",
71 	[IOMMU_RESV_SW_MSI]			= "msi",
72 };
73 
74 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
75 #define IOMMU_CMD_LINE_STRICT		BIT(1)
76 
77 static int iommu_alloc_default_domain(struct iommu_group *group,
78 				      struct device *dev);
79 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
80 						 unsigned type);
81 static int __iommu_attach_device(struct iommu_domain *domain,
82 				 struct device *dev);
83 static int __iommu_attach_group(struct iommu_domain *domain,
84 				struct iommu_group *group);
85 static void __iommu_detach_group(struct iommu_domain *domain,
86 				 struct iommu_group *group);
87 static int iommu_create_device_direct_mappings(struct iommu_group *group,
88 					       struct device *dev);
89 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
90 static ssize_t iommu_group_store_type(struct iommu_group *group,
91 				      const char *buf, size_t count);
92 
93 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
94 struct iommu_group_attribute iommu_group_attr_##_name =		\
95 	__ATTR(_name, _mode, _show, _store)
96 
97 #define to_iommu_group_attr(_attr)	\
98 	container_of(_attr, struct iommu_group_attribute, attr)
99 #define to_iommu_group(_kobj)		\
100 	container_of(_kobj, struct iommu_group, kobj)
101 
102 static LIST_HEAD(iommu_device_list);
103 static DEFINE_SPINLOCK(iommu_device_lock);
104 
105 /*
106  * Use a function instead of an array here because the domain-type is a
107  * bit-field, so an array would waste memory.
108  */
109 static const char *iommu_domain_type_str(unsigned int t)
110 {
111 	switch (t) {
112 	case IOMMU_DOMAIN_BLOCKED:
113 		return "Blocked";
114 	case IOMMU_DOMAIN_IDENTITY:
115 		return "Passthrough";
116 	case IOMMU_DOMAIN_UNMANAGED:
117 		return "Unmanaged";
118 	case IOMMU_DOMAIN_DMA:
119 	case IOMMU_DOMAIN_DMA_FQ:
120 		return "Translated";
121 	default:
122 		return "Unknown";
123 	}
124 }
125 
126 static int __init iommu_subsys_init(void)
127 {
128 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
129 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
130 			iommu_set_default_passthrough(false);
131 		else
132 			iommu_set_default_translated(false);
133 
134 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
135 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
136 			iommu_set_default_translated(false);
137 		}
138 	}
139 
140 	if (!iommu_default_passthrough() && !iommu_dma_strict)
141 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
142 
143 	pr_info("Default domain type: %s %s\n",
144 		iommu_domain_type_str(iommu_def_domain_type),
145 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
146 			"(set via kernel command line)" : "");
147 
148 	if (!iommu_default_passthrough())
149 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
150 			iommu_dma_strict ? "strict" : "lazy",
151 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
152 				"(set via kernel command line)" : "");
153 
154 	return 0;
155 }
156 subsys_initcall(iommu_subsys_init);
157 
158 /**
159  * iommu_device_register() - Register an IOMMU hardware instance
160  * @iommu: IOMMU handle for the instance
161  * @ops:   IOMMU ops to associate with the instance
162  * @hwdev: (optional) actual instance device, used for fwnode lookup
163  *
164  * Return: 0 on success, or an error.
165  */
166 int iommu_device_register(struct iommu_device *iommu,
167 			  const struct iommu_ops *ops, struct device *hwdev)
168 {
169 	/* We need to be able to take module references appropriately */
170 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
171 		return -EINVAL;
172 
173 	iommu->ops = ops;
174 	if (hwdev)
175 		iommu->fwnode = hwdev->fwnode;
176 
177 	spin_lock(&iommu_device_lock);
178 	list_add_tail(&iommu->list, &iommu_device_list);
179 	spin_unlock(&iommu_device_lock);
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(iommu_device_register);
183 
184 void iommu_device_unregister(struct iommu_device *iommu)
185 {
186 	spin_lock(&iommu_device_lock);
187 	list_del(&iommu->list);
188 	spin_unlock(&iommu_device_lock);
189 }
190 EXPORT_SYMBOL_GPL(iommu_device_unregister);
191 
192 static struct dev_iommu *dev_iommu_get(struct device *dev)
193 {
194 	struct dev_iommu *param = dev->iommu;
195 
196 	if (param)
197 		return param;
198 
199 	param = kzalloc(sizeof(*param), GFP_KERNEL);
200 	if (!param)
201 		return NULL;
202 
203 	mutex_init(&param->lock);
204 	dev->iommu = param;
205 	return param;
206 }
207 
208 static void dev_iommu_free(struct device *dev)
209 {
210 	struct dev_iommu *param = dev->iommu;
211 
212 	dev->iommu = NULL;
213 	if (param->fwspec) {
214 		fwnode_handle_put(param->fwspec->iommu_fwnode);
215 		kfree(param->fwspec);
216 	}
217 	kfree(param);
218 }
219 
220 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
221 {
222 	const struct iommu_ops *ops = dev->bus->iommu_ops;
223 	struct iommu_device *iommu_dev;
224 	struct iommu_group *group;
225 	int ret;
226 
227 	if (!ops)
228 		return -ENODEV;
229 
230 	if (!dev_iommu_get(dev))
231 		return -ENOMEM;
232 
233 	if (!try_module_get(ops->owner)) {
234 		ret = -EINVAL;
235 		goto err_free;
236 	}
237 
238 	iommu_dev = ops->probe_device(dev);
239 	if (IS_ERR(iommu_dev)) {
240 		ret = PTR_ERR(iommu_dev);
241 		goto out_module_put;
242 	}
243 
244 	dev->iommu->iommu_dev = iommu_dev;
245 
246 	group = iommu_group_get_for_dev(dev);
247 	if (IS_ERR(group)) {
248 		ret = PTR_ERR(group);
249 		goto out_release;
250 	}
251 	iommu_group_put(group);
252 
253 	if (group_list && !group->default_domain && list_empty(&group->entry))
254 		list_add_tail(&group->entry, group_list);
255 
256 	iommu_device_link(iommu_dev, dev);
257 
258 	return 0;
259 
260 out_release:
261 	ops->release_device(dev);
262 
263 out_module_put:
264 	module_put(ops->owner);
265 
266 err_free:
267 	dev_iommu_free(dev);
268 
269 	return ret;
270 }
271 
272 int iommu_probe_device(struct device *dev)
273 {
274 	const struct iommu_ops *ops = dev->bus->iommu_ops;
275 	struct iommu_group *group;
276 	int ret;
277 
278 	ret = __iommu_probe_device(dev, NULL);
279 	if (ret)
280 		goto err_out;
281 
282 	group = iommu_group_get(dev);
283 	if (!group) {
284 		ret = -ENODEV;
285 		goto err_release;
286 	}
287 
288 	/*
289 	 * Try to allocate a default domain - needs support from the
290 	 * IOMMU driver. There are still some drivers which don't
291 	 * support default domains, so the return value is not yet
292 	 * checked.
293 	 */
294 	mutex_lock(&group->mutex);
295 	iommu_alloc_default_domain(group, dev);
296 
297 	if (group->default_domain) {
298 		ret = __iommu_attach_device(group->default_domain, dev);
299 		if (ret) {
300 			mutex_unlock(&group->mutex);
301 			iommu_group_put(group);
302 			goto err_release;
303 		}
304 	}
305 
306 	iommu_create_device_direct_mappings(group, dev);
307 
308 	mutex_unlock(&group->mutex);
309 	iommu_group_put(group);
310 
311 	if (ops->probe_finalize)
312 		ops->probe_finalize(dev);
313 
314 	return 0;
315 
316 err_release:
317 	iommu_release_device(dev);
318 
319 err_out:
320 	return ret;
321 
322 }
323 
324 void iommu_release_device(struct device *dev)
325 {
326 	const struct iommu_ops *ops;
327 
328 	if (!dev->iommu)
329 		return;
330 
331 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
332 
333 	ops = dev_iommu_ops(dev);
334 	ops->release_device(dev);
335 
336 	iommu_group_remove_device(dev);
337 	module_put(ops->owner);
338 	dev_iommu_free(dev);
339 }
340 
341 static int __init iommu_set_def_domain_type(char *str)
342 {
343 	bool pt;
344 	int ret;
345 
346 	ret = kstrtobool(str, &pt);
347 	if (ret)
348 		return ret;
349 
350 	if (pt)
351 		iommu_set_default_passthrough(true);
352 	else
353 		iommu_set_default_translated(true);
354 
355 	return 0;
356 }
357 early_param("iommu.passthrough", iommu_set_def_domain_type);
358 
359 static int __init iommu_dma_setup(char *str)
360 {
361 	int ret = kstrtobool(str, &iommu_dma_strict);
362 
363 	if (!ret)
364 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
365 	return ret;
366 }
367 early_param("iommu.strict", iommu_dma_setup);
368 
369 void iommu_set_dma_strict(void)
370 {
371 	iommu_dma_strict = true;
372 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
373 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
374 }
375 
376 static ssize_t iommu_group_attr_show(struct kobject *kobj,
377 				     struct attribute *__attr, char *buf)
378 {
379 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
380 	struct iommu_group *group = to_iommu_group(kobj);
381 	ssize_t ret = -EIO;
382 
383 	if (attr->show)
384 		ret = attr->show(group, buf);
385 	return ret;
386 }
387 
388 static ssize_t iommu_group_attr_store(struct kobject *kobj,
389 				      struct attribute *__attr,
390 				      const char *buf, size_t count)
391 {
392 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
393 	struct iommu_group *group = to_iommu_group(kobj);
394 	ssize_t ret = -EIO;
395 
396 	if (attr->store)
397 		ret = attr->store(group, buf, count);
398 	return ret;
399 }
400 
401 static const struct sysfs_ops iommu_group_sysfs_ops = {
402 	.show = iommu_group_attr_show,
403 	.store = iommu_group_attr_store,
404 };
405 
406 static int iommu_group_create_file(struct iommu_group *group,
407 				   struct iommu_group_attribute *attr)
408 {
409 	return sysfs_create_file(&group->kobj, &attr->attr);
410 }
411 
412 static void iommu_group_remove_file(struct iommu_group *group,
413 				    struct iommu_group_attribute *attr)
414 {
415 	sysfs_remove_file(&group->kobj, &attr->attr);
416 }
417 
418 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
419 {
420 	return sprintf(buf, "%s\n", group->name);
421 }
422 
423 /**
424  * iommu_insert_resv_region - Insert a new region in the
425  * list of reserved regions.
426  * @new: new region to insert
427  * @regions: list of regions
428  *
429  * Elements are sorted by start address and overlapping segments
430  * of the same type are merged.
431  */
432 static int iommu_insert_resv_region(struct iommu_resv_region *new,
433 				    struct list_head *regions)
434 {
435 	struct iommu_resv_region *iter, *tmp, *nr, *top;
436 	LIST_HEAD(stack);
437 
438 	nr = iommu_alloc_resv_region(new->start, new->length,
439 				     new->prot, new->type);
440 	if (!nr)
441 		return -ENOMEM;
442 
443 	/* First add the new element based on start address sorting */
444 	list_for_each_entry(iter, regions, list) {
445 		if (nr->start < iter->start ||
446 		    (nr->start == iter->start && nr->type <= iter->type))
447 			break;
448 	}
449 	list_add_tail(&nr->list, &iter->list);
450 
451 	/* Merge overlapping segments of type nr->type in @regions, if any */
452 	list_for_each_entry_safe(iter, tmp, regions, list) {
453 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
454 
455 		/* no merge needed on elements of different types than @new */
456 		if (iter->type != new->type) {
457 			list_move_tail(&iter->list, &stack);
458 			continue;
459 		}
460 
461 		/* look for the last stack element of same type as @iter */
462 		list_for_each_entry_reverse(top, &stack, list)
463 			if (top->type == iter->type)
464 				goto check_overlap;
465 
466 		list_move_tail(&iter->list, &stack);
467 		continue;
468 
469 check_overlap:
470 		top_end = top->start + top->length - 1;
471 
472 		if (iter->start > top_end + 1) {
473 			list_move_tail(&iter->list, &stack);
474 		} else {
475 			top->length = max(top_end, iter_end) - top->start + 1;
476 			list_del(&iter->list);
477 			kfree(iter);
478 		}
479 	}
480 	list_splice(&stack, regions);
481 	return 0;
482 }
483 
484 static int
485 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
486 				 struct list_head *group_resv_regions)
487 {
488 	struct iommu_resv_region *entry;
489 	int ret = 0;
490 
491 	list_for_each_entry(entry, dev_resv_regions, list) {
492 		ret = iommu_insert_resv_region(entry, group_resv_regions);
493 		if (ret)
494 			break;
495 	}
496 	return ret;
497 }
498 
499 int iommu_get_group_resv_regions(struct iommu_group *group,
500 				 struct list_head *head)
501 {
502 	struct group_device *device;
503 	int ret = 0;
504 
505 	mutex_lock(&group->mutex);
506 	list_for_each_entry(device, &group->devices, list) {
507 		struct list_head dev_resv_regions;
508 
509 		INIT_LIST_HEAD(&dev_resv_regions);
510 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
511 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
512 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
513 		if (ret)
514 			break;
515 	}
516 	mutex_unlock(&group->mutex);
517 	return ret;
518 }
519 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
520 
521 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
522 					     char *buf)
523 {
524 	struct iommu_resv_region *region, *next;
525 	struct list_head group_resv_regions;
526 	char *str = buf;
527 
528 	INIT_LIST_HEAD(&group_resv_regions);
529 	iommu_get_group_resv_regions(group, &group_resv_regions);
530 
531 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
532 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
533 			       (long long int)region->start,
534 			       (long long int)(region->start +
535 						region->length - 1),
536 			       iommu_group_resv_type_string[region->type]);
537 		kfree(region);
538 	}
539 
540 	return (str - buf);
541 }
542 
543 static ssize_t iommu_group_show_type(struct iommu_group *group,
544 				     char *buf)
545 {
546 	char *type = "unknown\n";
547 
548 	mutex_lock(&group->mutex);
549 	if (group->default_domain) {
550 		switch (group->default_domain->type) {
551 		case IOMMU_DOMAIN_BLOCKED:
552 			type = "blocked\n";
553 			break;
554 		case IOMMU_DOMAIN_IDENTITY:
555 			type = "identity\n";
556 			break;
557 		case IOMMU_DOMAIN_UNMANAGED:
558 			type = "unmanaged\n";
559 			break;
560 		case IOMMU_DOMAIN_DMA:
561 			type = "DMA\n";
562 			break;
563 		case IOMMU_DOMAIN_DMA_FQ:
564 			type = "DMA-FQ\n";
565 			break;
566 		}
567 	}
568 	mutex_unlock(&group->mutex);
569 	strcpy(buf, type);
570 
571 	return strlen(type);
572 }
573 
574 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
575 
576 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
577 			iommu_group_show_resv_regions, NULL);
578 
579 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
580 			iommu_group_store_type);
581 
582 static void iommu_group_release(struct kobject *kobj)
583 {
584 	struct iommu_group *group = to_iommu_group(kobj);
585 
586 	pr_debug("Releasing group %d\n", group->id);
587 
588 	if (group->iommu_data_release)
589 		group->iommu_data_release(group->iommu_data);
590 
591 	ida_simple_remove(&iommu_group_ida, group->id);
592 
593 	if (group->default_domain)
594 		iommu_domain_free(group->default_domain);
595 
596 	kfree(group->name);
597 	kfree(group);
598 }
599 
600 static struct kobj_type iommu_group_ktype = {
601 	.sysfs_ops = &iommu_group_sysfs_ops,
602 	.release = iommu_group_release,
603 };
604 
605 /**
606  * iommu_group_alloc - Allocate a new group
607  *
608  * This function is called by an iommu driver to allocate a new iommu
609  * group.  The iommu group represents the minimum granularity of the iommu.
610  * Upon successful return, the caller holds a reference to the supplied
611  * group in order to hold the group until devices are added.  Use
612  * iommu_group_put() to release this extra reference count, allowing the
613  * group to be automatically reclaimed once it has no devices or external
614  * references.
615  */
616 struct iommu_group *iommu_group_alloc(void)
617 {
618 	struct iommu_group *group;
619 	int ret;
620 
621 	group = kzalloc(sizeof(*group), GFP_KERNEL);
622 	if (!group)
623 		return ERR_PTR(-ENOMEM);
624 
625 	group->kobj.kset = iommu_group_kset;
626 	mutex_init(&group->mutex);
627 	INIT_LIST_HEAD(&group->devices);
628 	INIT_LIST_HEAD(&group->entry);
629 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
630 
631 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
632 	if (ret < 0) {
633 		kfree(group);
634 		return ERR_PTR(ret);
635 	}
636 	group->id = ret;
637 
638 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
639 				   NULL, "%d", group->id);
640 	if (ret) {
641 		ida_simple_remove(&iommu_group_ida, group->id);
642 		kobject_put(&group->kobj);
643 		return ERR_PTR(ret);
644 	}
645 
646 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
647 	if (!group->devices_kobj) {
648 		kobject_put(&group->kobj); /* triggers .release & free */
649 		return ERR_PTR(-ENOMEM);
650 	}
651 
652 	/*
653 	 * The devices_kobj holds a reference on the group kobject, so
654 	 * as long as that exists so will the group.  We can therefore
655 	 * use the devices_kobj for reference counting.
656 	 */
657 	kobject_put(&group->kobj);
658 
659 	ret = iommu_group_create_file(group,
660 				      &iommu_group_attr_reserved_regions);
661 	if (ret)
662 		return ERR_PTR(ret);
663 
664 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
665 	if (ret)
666 		return ERR_PTR(ret);
667 
668 	pr_debug("Allocated group %d\n", group->id);
669 
670 	return group;
671 }
672 EXPORT_SYMBOL_GPL(iommu_group_alloc);
673 
674 struct iommu_group *iommu_group_get_by_id(int id)
675 {
676 	struct kobject *group_kobj;
677 	struct iommu_group *group;
678 	const char *name;
679 
680 	if (!iommu_group_kset)
681 		return NULL;
682 
683 	name = kasprintf(GFP_KERNEL, "%d", id);
684 	if (!name)
685 		return NULL;
686 
687 	group_kobj = kset_find_obj(iommu_group_kset, name);
688 	kfree(name);
689 
690 	if (!group_kobj)
691 		return NULL;
692 
693 	group = container_of(group_kobj, struct iommu_group, kobj);
694 	BUG_ON(group->id != id);
695 
696 	kobject_get(group->devices_kobj);
697 	kobject_put(&group->kobj);
698 
699 	return group;
700 }
701 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
702 
703 /**
704  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
705  * @group: the group
706  *
707  * iommu drivers can store data in the group for use when doing iommu
708  * operations.  This function provides a way to retrieve it.  Caller
709  * should hold a group reference.
710  */
711 void *iommu_group_get_iommudata(struct iommu_group *group)
712 {
713 	return group->iommu_data;
714 }
715 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
716 
717 /**
718  * iommu_group_set_iommudata - set iommu_data for a group
719  * @group: the group
720  * @iommu_data: new data
721  * @release: release function for iommu_data
722  *
723  * iommu drivers can store data in the group for use when doing iommu
724  * operations.  This function provides a way to set the data after
725  * the group has been allocated.  Caller should hold a group reference.
726  */
727 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
728 			       void (*release)(void *iommu_data))
729 {
730 	group->iommu_data = iommu_data;
731 	group->iommu_data_release = release;
732 }
733 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
734 
735 /**
736  * iommu_group_set_name - set name for a group
737  * @group: the group
738  * @name: name
739  *
740  * Allow iommu driver to set a name for a group.  When set it will
741  * appear in a name attribute file under the group in sysfs.
742  */
743 int iommu_group_set_name(struct iommu_group *group, const char *name)
744 {
745 	int ret;
746 
747 	if (group->name) {
748 		iommu_group_remove_file(group, &iommu_group_attr_name);
749 		kfree(group->name);
750 		group->name = NULL;
751 		if (!name)
752 			return 0;
753 	}
754 
755 	group->name = kstrdup(name, GFP_KERNEL);
756 	if (!group->name)
757 		return -ENOMEM;
758 
759 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
760 	if (ret) {
761 		kfree(group->name);
762 		group->name = NULL;
763 		return ret;
764 	}
765 
766 	return 0;
767 }
768 EXPORT_SYMBOL_GPL(iommu_group_set_name);
769 
770 static int iommu_create_device_direct_mappings(struct iommu_group *group,
771 					       struct device *dev)
772 {
773 	struct iommu_domain *domain = group->default_domain;
774 	struct iommu_resv_region *entry;
775 	struct list_head mappings;
776 	unsigned long pg_size;
777 	int ret = 0;
778 
779 	if (!domain || !iommu_is_dma_domain(domain))
780 		return 0;
781 
782 	BUG_ON(!domain->pgsize_bitmap);
783 
784 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
785 	INIT_LIST_HEAD(&mappings);
786 
787 	iommu_get_resv_regions(dev, &mappings);
788 
789 	/* We need to consider overlapping regions for different devices */
790 	list_for_each_entry(entry, &mappings, list) {
791 		dma_addr_t start, end, addr;
792 		size_t map_size = 0;
793 
794 		start = ALIGN(entry->start, pg_size);
795 		end   = ALIGN(entry->start + entry->length, pg_size);
796 
797 		if (entry->type != IOMMU_RESV_DIRECT &&
798 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
799 			continue;
800 
801 		for (addr = start; addr <= end; addr += pg_size) {
802 			phys_addr_t phys_addr;
803 
804 			if (addr == end)
805 				goto map_end;
806 
807 			phys_addr = iommu_iova_to_phys(domain, addr);
808 			if (!phys_addr) {
809 				map_size += pg_size;
810 				continue;
811 			}
812 
813 map_end:
814 			if (map_size) {
815 				ret = iommu_map(domain, addr - map_size,
816 						addr - map_size, map_size,
817 						entry->prot);
818 				if (ret)
819 					goto out;
820 				map_size = 0;
821 			}
822 		}
823 
824 	}
825 
826 	iommu_flush_iotlb_all(domain);
827 
828 out:
829 	iommu_put_resv_regions(dev, &mappings);
830 
831 	return ret;
832 }
833 
834 static bool iommu_is_attach_deferred(struct device *dev)
835 {
836 	const struct iommu_ops *ops = dev_iommu_ops(dev);
837 
838 	if (ops->is_attach_deferred)
839 		return ops->is_attach_deferred(dev);
840 
841 	return false;
842 }
843 
844 /**
845  * iommu_group_add_device - add a device to an iommu group
846  * @group: the group into which to add the device (reference should be held)
847  * @dev: the device
848  *
849  * This function is called by an iommu driver to add a device into a
850  * group.  Adding a device increments the group reference count.
851  */
852 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
853 {
854 	int ret, i = 0;
855 	struct group_device *device;
856 
857 	device = kzalloc(sizeof(*device), GFP_KERNEL);
858 	if (!device)
859 		return -ENOMEM;
860 
861 	device->dev = dev;
862 
863 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
864 	if (ret)
865 		goto err_free_device;
866 
867 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
868 rename:
869 	if (!device->name) {
870 		ret = -ENOMEM;
871 		goto err_remove_link;
872 	}
873 
874 	ret = sysfs_create_link_nowarn(group->devices_kobj,
875 				       &dev->kobj, device->name);
876 	if (ret) {
877 		if (ret == -EEXIST && i >= 0) {
878 			/*
879 			 * Account for the slim chance of collision
880 			 * and append an instance to the name.
881 			 */
882 			kfree(device->name);
883 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
884 						 kobject_name(&dev->kobj), i++);
885 			goto rename;
886 		}
887 		goto err_free_name;
888 	}
889 
890 	kobject_get(group->devices_kobj);
891 
892 	dev->iommu_group = group;
893 
894 	mutex_lock(&group->mutex);
895 	list_add_tail(&device->list, &group->devices);
896 	if (group->domain  && !iommu_is_attach_deferred(dev))
897 		ret = __iommu_attach_device(group->domain, dev);
898 	mutex_unlock(&group->mutex);
899 	if (ret)
900 		goto err_put_group;
901 
902 	/* Notify any listeners about change to group. */
903 	blocking_notifier_call_chain(&group->notifier,
904 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
905 
906 	trace_add_device_to_group(group->id, dev);
907 
908 	dev_info(dev, "Adding to iommu group %d\n", group->id);
909 
910 	return 0;
911 
912 err_put_group:
913 	mutex_lock(&group->mutex);
914 	list_del(&device->list);
915 	mutex_unlock(&group->mutex);
916 	dev->iommu_group = NULL;
917 	kobject_put(group->devices_kobj);
918 	sysfs_remove_link(group->devices_kobj, device->name);
919 err_free_name:
920 	kfree(device->name);
921 err_remove_link:
922 	sysfs_remove_link(&dev->kobj, "iommu_group");
923 err_free_device:
924 	kfree(device);
925 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
926 	return ret;
927 }
928 EXPORT_SYMBOL_GPL(iommu_group_add_device);
929 
930 /**
931  * iommu_group_remove_device - remove a device from it's current group
932  * @dev: device to be removed
933  *
934  * This function is called by an iommu driver to remove the device from
935  * it's current group.  This decrements the iommu group reference count.
936  */
937 void iommu_group_remove_device(struct device *dev)
938 {
939 	struct iommu_group *group = dev->iommu_group;
940 	struct group_device *tmp_device, *device = NULL;
941 
942 	if (!group)
943 		return;
944 
945 	dev_info(dev, "Removing from iommu group %d\n", group->id);
946 
947 	/* Pre-notify listeners that a device is being removed. */
948 	blocking_notifier_call_chain(&group->notifier,
949 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
950 
951 	mutex_lock(&group->mutex);
952 	list_for_each_entry(tmp_device, &group->devices, list) {
953 		if (tmp_device->dev == dev) {
954 			device = tmp_device;
955 			list_del(&device->list);
956 			break;
957 		}
958 	}
959 	mutex_unlock(&group->mutex);
960 
961 	if (!device)
962 		return;
963 
964 	sysfs_remove_link(group->devices_kobj, device->name);
965 	sysfs_remove_link(&dev->kobj, "iommu_group");
966 
967 	trace_remove_device_from_group(group->id, dev);
968 
969 	kfree(device->name);
970 	kfree(device);
971 	dev->iommu_group = NULL;
972 	kobject_put(group->devices_kobj);
973 }
974 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
975 
976 static int iommu_group_device_count(struct iommu_group *group)
977 {
978 	struct group_device *entry;
979 	int ret = 0;
980 
981 	list_for_each_entry(entry, &group->devices, list)
982 		ret++;
983 
984 	return ret;
985 }
986 
987 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
988 				      int (*fn)(struct device *, void *))
989 {
990 	struct group_device *device;
991 	int ret = 0;
992 
993 	list_for_each_entry(device, &group->devices, list) {
994 		ret = fn(device->dev, data);
995 		if (ret)
996 			break;
997 	}
998 	return ret;
999 }
1000 
1001 /**
1002  * iommu_group_for_each_dev - iterate over each device in the group
1003  * @group: the group
1004  * @data: caller opaque data to be passed to callback function
1005  * @fn: caller supplied callback function
1006  *
1007  * This function is called by group users to iterate over group devices.
1008  * Callers should hold a reference count to the group during callback.
1009  * The group->mutex is held across callbacks, which will block calls to
1010  * iommu_group_add/remove_device.
1011  */
1012 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1013 			     int (*fn)(struct device *, void *))
1014 {
1015 	int ret;
1016 
1017 	mutex_lock(&group->mutex);
1018 	ret = __iommu_group_for_each_dev(group, data, fn);
1019 	mutex_unlock(&group->mutex);
1020 
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1024 
1025 /**
1026  * iommu_group_get - Return the group for a device and increment reference
1027  * @dev: get the group that this device belongs to
1028  *
1029  * This function is called by iommu drivers and users to get the group
1030  * for the specified device.  If found, the group is returned and the group
1031  * reference in incremented, else NULL.
1032  */
1033 struct iommu_group *iommu_group_get(struct device *dev)
1034 {
1035 	struct iommu_group *group = dev->iommu_group;
1036 
1037 	if (group)
1038 		kobject_get(group->devices_kobj);
1039 
1040 	return group;
1041 }
1042 EXPORT_SYMBOL_GPL(iommu_group_get);
1043 
1044 /**
1045  * iommu_group_ref_get - Increment reference on a group
1046  * @group: the group to use, must not be NULL
1047  *
1048  * This function is called by iommu drivers to take additional references on an
1049  * existing group.  Returns the given group for convenience.
1050  */
1051 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1052 {
1053 	kobject_get(group->devices_kobj);
1054 	return group;
1055 }
1056 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1057 
1058 /**
1059  * iommu_group_put - Decrement group reference
1060  * @group: the group to use
1061  *
1062  * This function is called by iommu drivers and users to release the
1063  * iommu group.  Once the reference count is zero, the group is released.
1064  */
1065 void iommu_group_put(struct iommu_group *group)
1066 {
1067 	if (group)
1068 		kobject_put(group->devices_kobj);
1069 }
1070 EXPORT_SYMBOL_GPL(iommu_group_put);
1071 
1072 /**
1073  * iommu_group_register_notifier - Register a notifier for group changes
1074  * @group: the group to watch
1075  * @nb: notifier block to signal
1076  *
1077  * This function allows iommu group users to track changes in a group.
1078  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1079  * should hold a reference to the group throughout notifier registration.
1080  */
1081 int iommu_group_register_notifier(struct iommu_group *group,
1082 				  struct notifier_block *nb)
1083 {
1084 	return blocking_notifier_chain_register(&group->notifier, nb);
1085 }
1086 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1087 
1088 /**
1089  * iommu_group_unregister_notifier - Unregister a notifier
1090  * @group: the group to watch
1091  * @nb: notifier block to signal
1092  *
1093  * Unregister a previously registered group notifier block.
1094  */
1095 int iommu_group_unregister_notifier(struct iommu_group *group,
1096 				    struct notifier_block *nb)
1097 {
1098 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1099 }
1100 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1101 
1102 /**
1103  * iommu_register_device_fault_handler() - Register a device fault handler
1104  * @dev: the device
1105  * @handler: the fault handler
1106  * @data: private data passed as argument to the handler
1107  *
1108  * When an IOMMU fault event is received, this handler gets called with the
1109  * fault event and data as argument. The handler should return 0 on success. If
1110  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1111  * complete the fault by calling iommu_page_response() with one of the following
1112  * response code:
1113  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1114  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1115  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1116  *   page faults if possible.
1117  *
1118  * Return 0 if the fault handler was installed successfully, or an error.
1119  */
1120 int iommu_register_device_fault_handler(struct device *dev,
1121 					iommu_dev_fault_handler_t handler,
1122 					void *data)
1123 {
1124 	struct dev_iommu *param = dev->iommu;
1125 	int ret = 0;
1126 
1127 	if (!param)
1128 		return -EINVAL;
1129 
1130 	mutex_lock(&param->lock);
1131 	/* Only allow one fault handler registered for each device */
1132 	if (param->fault_param) {
1133 		ret = -EBUSY;
1134 		goto done_unlock;
1135 	}
1136 
1137 	get_device(dev);
1138 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1139 	if (!param->fault_param) {
1140 		put_device(dev);
1141 		ret = -ENOMEM;
1142 		goto done_unlock;
1143 	}
1144 	param->fault_param->handler = handler;
1145 	param->fault_param->data = data;
1146 	mutex_init(&param->fault_param->lock);
1147 	INIT_LIST_HEAD(&param->fault_param->faults);
1148 
1149 done_unlock:
1150 	mutex_unlock(&param->lock);
1151 
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1155 
1156 /**
1157  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1158  * @dev: the device
1159  *
1160  * Remove the device fault handler installed with
1161  * iommu_register_device_fault_handler().
1162  *
1163  * Return 0 on success, or an error.
1164  */
1165 int iommu_unregister_device_fault_handler(struct device *dev)
1166 {
1167 	struct dev_iommu *param = dev->iommu;
1168 	int ret = 0;
1169 
1170 	if (!param)
1171 		return -EINVAL;
1172 
1173 	mutex_lock(&param->lock);
1174 
1175 	if (!param->fault_param)
1176 		goto unlock;
1177 
1178 	/* we cannot unregister handler if there are pending faults */
1179 	if (!list_empty(&param->fault_param->faults)) {
1180 		ret = -EBUSY;
1181 		goto unlock;
1182 	}
1183 
1184 	kfree(param->fault_param);
1185 	param->fault_param = NULL;
1186 	put_device(dev);
1187 unlock:
1188 	mutex_unlock(&param->lock);
1189 
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1193 
1194 /**
1195  * iommu_report_device_fault() - Report fault event to device driver
1196  * @dev: the device
1197  * @evt: fault event data
1198  *
1199  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1200  * handler. When this function fails and the fault is recoverable, it is the
1201  * caller's responsibility to complete the fault.
1202  *
1203  * Return 0 on success, or an error.
1204  */
1205 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1206 {
1207 	struct dev_iommu *param = dev->iommu;
1208 	struct iommu_fault_event *evt_pending = NULL;
1209 	struct iommu_fault_param *fparam;
1210 	int ret = 0;
1211 
1212 	if (!param || !evt)
1213 		return -EINVAL;
1214 
1215 	/* we only report device fault if there is a handler registered */
1216 	mutex_lock(&param->lock);
1217 	fparam = param->fault_param;
1218 	if (!fparam || !fparam->handler) {
1219 		ret = -EINVAL;
1220 		goto done_unlock;
1221 	}
1222 
1223 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1224 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1225 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1226 				      GFP_KERNEL);
1227 		if (!evt_pending) {
1228 			ret = -ENOMEM;
1229 			goto done_unlock;
1230 		}
1231 		mutex_lock(&fparam->lock);
1232 		list_add_tail(&evt_pending->list, &fparam->faults);
1233 		mutex_unlock(&fparam->lock);
1234 	}
1235 
1236 	ret = fparam->handler(&evt->fault, fparam->data);
1237 	if (ret && evt_pending) {
1238 		mutex_lock(&fparam->lock);
1239 		list_del(&evt_pending->list);
1240 		mutex_unlock(&fparam->lock);
1241 		kfree(evt_pending);
1242 	}
1243 done_unlock:
1244 	mutex_unlock(&param->lock);
1245 	return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1248 
1249 int iommu_page_response(struct device *dev,
1250 			struct iommu_page_response *msg)
1251 {
1252 	bool needs_pasid;
1253 	int ret = -EINVAL;
1254 	struct iommu_fault_event *evt;
1255 	struct iommu_fault_page_request *prm;
1256 	struct dev_iommu *param = dev->iommu;
1257 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1258 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1259 
1260 	if (!ops->page_response)
1261 		return -ENODEV;
1262 
1263 	if (!param || !param->fault_param)
1264 		return -EINVAL;
1265 
1266 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1267 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1268 		return -EINVAL;
1269 
1270 	/* Only send response if there is a fault report pending */
1271 	mutex_lock(&param->fault_param->lock);
1272 	if (list_empty(&param->fault_param->faults)) {
1273 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1274 		goto done_unlock;
1275 	}
1276 	/*
1277 	 * Check if we have a matching page request pending to respond,
1278 	 * otherwise return -EINVAL
1279 	 */
1280 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1281 		prm = &evt->fault.prm;
1282 		if (prm->grpid != msg->grpid)
1283 			continue;
1284 
1285 		/*
1286 		 * If the PASID is required, the corresponding request is
1287 		 * matched using the group ID, the PASID valid bit and the PASID
1288 		 * value. Otherwise only the group ID matches request and
1289 		 * response.
1290 		 */
1291 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1292 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1293 			continue;
1294 
1295 		if (!needs_pasid && has_pasid) {
1296 			/* No big deal, just clear it. */
1297 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1298 			msg->pasid = 0;
1299 		}
1300 
1301 		ret = ops->page_response(dev, evt, msg);
1302 		list_del(&evt->list);
1303 		kfree(evt);
1304 		break;
1305 	}
1306 
1307 done_unlock:
1308 	mutex_unlock(&param->fault_param->lock);
1309 	return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(iommu_page_response);
1312 
1313 /**
1314  * iommu_group_id - Return ID for a group
1315  * @group: the group to ID
1316  *
1317  * Return the unique ID for the group matching the sysfs group number.
1318  */
1319 int iommu_group_id(struct iommu_group *group)
1320 {
1321 	return group->id;
1322 }
1323 EXPORT_SYMBOL_GPL(iommu_group_id);
1324 
1325 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1326 					       unsigned long *devfns);
1327 
1328 /*
1329  * To consider a PCI device isolated, we require ACS to support Source
1330  * Validation, Request Redirection, Completer Redirection, and Upstream
1331  * Forwarding.  This effectively means that devices cannot spoof their
1332  * requester ID, requests and completions cannot be redirected, and all
1333  * transactions are forwarded upstream, even as it passes through a
1334  * bridge where the target device is downstream.
1335  */
1336 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1337 
1338 /*
1339  * For multifunction devices which are not isolated from each other, find
1340  * all the other non-isolated functions and look for existing groups.  For
1341  * each function, we also need to look for aliases to or from other devices
1342  * that may already have a group.
1343  */
1344 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1345 							unsigned long *devfns)
1346 {
1347 	struct pci_dev *tmp = NULL;
1348 	struct iommu_group *group;
1349 
1350 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1351 		return NULL;
1352 
1353 	for_each_pci_dev(tmp) {
1354 		if (tmp == pdev || tmp->bus != pdev->bus ||
1355 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1356 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1357 			continue;
1358 
1359 		group = get_pci_alias_group(tmp, devfns);
1360 		if (group) {
1361 			pci_dev_put(tmp);
1362 			return group;
1363 		}
1364 	}
1365 
1366 	return NULL;
1367 }
1368 
1369 /*
1370  * Look for aliases to or from the given device for existing groups. DMA
1371  * aliases are only supported on the same bus, therefore the search
1372  * space is quite small (especially since we're really only looking at pcie
1373  * device, and therefore only expect multiple slots on the root complex or
1374  * downstream switch ports).  It's conceivable though that a pair of
1375  * multifunction devices could have aliases between them that would cause a
1376  * loop.  To prevent this, we use a bitmap to track where we've been.
1377  */
1378 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1379 					       unsigned long *devfns)
1380 {
1381 	struct pci_dev *tmp = NULL;
1382 	struct iommu_group *group;
1383 
1384 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1385 		return NULL;
1386 
1387 	group = iommu_group_get(&pdev->dev);
1388 	if (group)
1389 		return group;
1390 
1391 	for_each_pci_dev(tmp) {
1392 		if (tmp == pdev || tmp->bus != pdev->bus)
1393 			continue;
1394 
1395 		/* We alias them or they alias us */
1396 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1397 			group = get_pci_alias_group(tmp, devfns);
1398 			if (group) {
1399 				pci_dev_put(tmp);
1400 				return group;
1401 			}
1402 
1403 			group = get_pci_function_alias_group(tmp, devfns);
1404 			if (group) {
1405 				pci_dev_put(tmp);
1406 				return group;
1407 			}
1408 		}
1409 	}
1410 
1411 	return NULL;
1412 }
1413 
1414 struct group_for_pci_data {
1415 	struct pci_dev *pdev;
1416 	struct iommu_group *group;
1417 };
1418 
1419 /*
1420  * DMA alias iterator callback, return the last seen device.  Stop and return
1421  * the IOMMU group if we find one along the way.
1422  */
1423 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1424 {
1425 	struct group_for_pci_data *data = opaque;
1426 
1427 	data->pdev = pdev;
1428 	data->group = iommu_group_get(&pdev->dev);
1429 
1430 	return data->group != NULL;
1431 }
1432 
1433 /*
1434  * Generic device_group call-back function. It just allocates one
1435  * iommu-group per device.
1436  */
1437 struct iommu_group *generic_device_group(struct device *dev)
1438 {
1439 	return iommu_group_alloc();
1440 }
1441 EXPORT_SYMBOL_GPL(generic_device_group);
1442 
1443 /*
1444  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1445  * to find or create an IOMMU group for a device.
1446  */
1447 struct iommu_group *pci_device_group(struct device *dev)
1448 {
1449 	struct pci_dev *pdev = to_pci_dev(dev);
1450 	struct group_for_pci_data data;
1451 	struct pci_bus *bus;
1452 	struct iommu_group *group = NULL;
1453 	u64 devfns[4] = { 0 };
1454 
1455 	if (WARN_ON(!dev_is_pci(dev)))
1456 		return ERR_PTR(-EINVAL);
1457 
1458 	/*
1459 	 * Find the upstream DMA alias for the device.  A device must not
1460 	 * be aliased due to topology in order to have its own IOMMU group.
1461 	 * If we find an alias along the way that already belongs to a
1462 	 * group, use it.
1463 	 */
1464 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1465 		return data.group;
1466 
1467 	pdev = data.pdev;
1468 
1469 	/*
1470 	 * Continue upstream from the point of minimum IOMMU granularity
1471 	 * due to aliases to the point where devices are protected from
1472 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1473 	 * group, use it.
1474 	 */
1475 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1476 		if (!bus->self)
1477 			continue;
1478 
1479 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1480 			break;
1481 
1482 		pdev = bus->self;
1483 
1484 		group = iommu_group_get(&pdev->dev);
1485 		if (group)
1486 			return group;
1487 	}
1488 
1489 	/*
1490 	 * Look for existing groups on device aliases.  If we alias another
1491 	 * device or another device aliases us, use the same group.
1492 	 */
1493 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1494 	if (group)
1495 		return group;
1496 
1497 	/*
1498 	 * Look for existing groups on non-isolated functions on the same
1499 	 * slot and aliases of those funcions, if any.  No need to clear
1500 	 * the search bitmap, the tested devfns are still valid.
1501 	 */
1502 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1503 	if (group)
1504 		return group;
1505 
1506 	/* No shared group found, allocate new */
1507 	return iommu_group_alloc();
1508 }
1509 EXPORT_SYMBOL_GPL(pci_device_group);
1510 
1511 /* Get the IOMMU group for device on fsl-mc bus */
1512 struct iommu_group *fsl_mc_device_group(struct device *dev)
1513 {
1514 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1515 	struct iommu_group *group;
1516 
1517 	group = iommu_group_get(cont_dev);
1518 	if (!group)
1519 		group = iommu_group_alloc();
1520 	return group;
1521 }
1522 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1523 
1524 static int iommu_get_def_domain_type(struct device *dev)
1525 {
1526 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1527 
1528 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1529 		return IOMMU_DOMAIN_DMA;
1530 
1531 	if (ops->def_domain_type)
1532 		return ops->def_domain_type(dev);
1533 
1534 	return 0;
1535 }
1536 
1537 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1538 					    struct iommu_group *group,
1539 					    unsigned int type)
1540 {
1541 	struct iommu_domain *dom;
1542 
1543 	dom = __iommu_domain_alloc(bus, type);
1544 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1545 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1546 		if (dom)
1547 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1548 				type, group->name);
1549 	}
1550 
1551 	if (!dom)
1552 		return -ENOMEM;
1553 
1554 	group->default_domain = dom;
1555 	if (!group->domain)
1556 		group->domain = dom;
1557 	return 0;
1558 }
1559 
1560 static int iommu_alloc_default_domain(struct iommu_group *group,
1561 				      struct device *dev)
1562 {
1563 	unsigned int type;
1564 
1565 	if (group->default_domain)
1566 		return 0;
1567 
1568 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1569 
1570 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1571 }
1572 
1573 /**
1574  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1575  * @dev: target device
1576  *
1577  * This function is intended to be called by IOMMU drivers and extended to
1578  * support common, bus-defined algorithms when determining or creating the
1579  * IOMMU group for a device.  On success, the caller will hold a reference
1580  * to the returned IOMMU group, which will already include the provided
1581  * device.  The reference should be released with iommu_group_put().
1582  */
1583 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1584 {
1585 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1586 	struct iommu_group *group;
1587 	int ret;
1588 
1589 	group = iommu_group_get(dev);
1590 	if (group)
1591 		return group;
1592 
1593 	group = ops->device_group(dev);
1594 	if (WARN_ON_ONCE(group == NULL))
1595 		return ERR_PTR(-EINVAL);
1596 
1597 	if (IS_ERR(group))
1598 		return group;
1599 
1600 	ret = iommu_group_add_device(group, dev);
1601 	if (ret)
1602 		goto out_put_group;
1603 
1604 	return group;
1605 
1606 out_put_group:
1607 	iommu_group_put(group);
1608 
1609 	return ERR_PTR(ret);
1610 }
1611 
1612 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1613 {
1614 	return group->default_domain;
1615 }
1616 
1617 static int probe_iommu_group(struct device *dev, void *data)
1618 {
1619 	struct list_head *group_list = data;
1620 	struct iommu_group *group;
1621 	int ret;
1622 
1623 	/* Device is probed already if in a group */
1624 	group = iommu_group_get(dev);
1625 	if (group) {
1626 		iommu_group_put(group);
1627 		return 0;
1628 	}
1629 
1630 	ret = __iommu_probe_device(dev, group_list);
1631 	if (ret == -ENODEV)
1632 		ret = 0;
1633 
1634 	return ret;
1635 }
1636 
1637 static int remove_iommu_group(struct device *dev, void *data)
1638 {
1639 	iommu_release_device(dev);
1640 
1641 	return 0;
1642 }
1643 
1644 static int iommu_bus_notifier(struct notifier_block *nb,
1645 			      unsigned long action, void *data)
1646 {
1647 	unsigned long group_action = 0;
1648 	struct device *dev = data;
1649 	struct iommu_group *group;
1650 
1651 	/*
1652 	 * ADD/DEL call into iommu driver ops if provided, which may
1653 	 * result in ADD/DEL notifiers to group->notifier
1654 	 */
1655 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1656 		int ret;
1657 
1658 		ret = iommu_probe_device(dev);
1659 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1660 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1661 		iommu_release_device(dev);
1662 		return NOTIFY_OK;
1663 	}
1664 
1665 	/*
1666 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1667 	 * group, if anyone is listening
1668 	 */
1669 	group = iommu_group_get(dev);
1670 	if (!group)
1671 		return 0;
1672 
1673 	switch (action) {
1674 	case BUS_NOTIFY_BIND_DRIVER:
1675 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1676 		break;
1677 	case BUS_NOTIFY_BOUND_DRIVER:
1678 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1679 		break;
1680 	case BUS_NOTIFY_UNBIND_DRIVER:
1681 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1682 		break;
1683 	case BUS_NOTIFY_UNBOUND_DRIVER:
1684 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1685 		break;
1686 	}
1687 
1688 	if (group_action)
1689 		blocking_notifier_call_chain(&group->notifier,
1690 					     group_action, dev);
1691 
1692 	iommu_group_put(group);
1693 	return 0;
1694 }
1695 
1696 struct __group_domain_type {
1697 	struct device *dev;
1698 	unsigned int type;
1699 };
1700 
1701 static int probe_get_default_domain_type(struct device *dev, void *data)
1702 {
1703 	struct __group_domain_type *gtype = data;
1704 	unsigned int type = iommu_get_def_domain_type(dev);
1705 
1706 	if (type) {
1707 		if (gtype->type && gtype->type != type) {
1708 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1709 				 iommu_domain_type_str(type),
1710 				 dev_name(gtype->dev),
1711 				 iommu_domain_type_str(gtype->type));
1712 			gtype->type = 0;
1713 		}
1714 
1715 		if (!gtype->dev) {
1716 			gtype->dev  = dev;
1717 			gtype->type = type;
1718 		}
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static void probe_alloc_default_domain(struct bus_type *bus,
1725 				       struct iommu_group *group)
1726 {
1727 	struct __group_domain_type gtype;
1728 
1729 	memset(&gtype, 0, sizeof(gtype));
1730 
1731 	/* Ask for default domain requirements of all devices in the group */
1732 	__iommu_group_for_each_dev(group, &gtype,
1733 				   probe_get_default_domain_type);
1734 
1735 	if (!gtype.type)
1736 		gtype.type = iommu_def_domain_type;
1737 
1738 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1739 
1740 }
1741 
1742 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1743 {
1744 	struct iommu_domain *domain = data;
1745 	int ret = 0;
1746 
1747 	if (!iommu_is_attach_deferred(dev))
1748 		ret = __iommu_attach_device(domain, dev);
1749 
1750 	return ret;
1751 }
1752 
1753 static int __iommu_group_dma_attach(struct iommu_group *group)
1754 {
1755 	return __iommu_group_for_each_dev(group, group->default_domain,
1756 					  iommu_group_do_dma_attach);
1757 }
1758 
1759 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1760 {
1761 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1762 
1763 	if (ops->probe_finalize)
1764 		ops->probe_finalize(dev);
1765 
1766 	return 0;
1767 }
1768 
1769 static void __iommu_group_dma_finalize(struct iommu_group *group)
1770 {
1771 	__iommu_group_for_each_dev(group, group->default_domain,
1772 				   iommu_group_do_probe_finalize);
1773 }
1774 
1775 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1776 {
1777 	struct iommu_group *group = data;
1778 
1779 	iommu_create_device_direct_mappings(group, dev);
1780 
1781 	return 0;
1782 }
1783 
1784 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1785 {
1786 	return __iommu_group_for_each_dev(group, group,
1787 					  iommu_do_create_direct_mappings);
1788 }
1789 
1790 int bus_iommu_probe(struct bus_type *bus)
1791 {
1792 	struct iommu_group *group, *next;
1793 	LIST_HEAD(group_list);
1794 	int ret;
1795 
1796 	/*
1797 	 * This code-path does not allocate the default domain when
1798 	 * creating the iommu group, so do it after the groups are
1799 	 * created.
1800 	 */
1801 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1802 	if (ret)
1803 		return ret;
1804 
1805 	list_for_each_entry_safe(group, next, &group_list, entry) {
1806 		/* Remove item from the list */
1807 		list_del_init(&group->entry);
1808 
1809 		mutex_lock(&group->mutex);
1810 
1811 		/* Try to allocate default domain */
1812 		probe_alloc_default_domain(bus, group);
1813 
1814 		if (!group->default_domain) {
1815 			mutex_unlock(&group->mutex);
1816 			continue;
1817 		}
1818 
1819 		iommu_group_create_direct_mappings(group);
1820 
1821 		ret = __iommu_group_dma_attach(group);
1822 
1823 		mutex_unlock(&group->mutex);
1824 
1825 		if (ret)
1826 			break;
1827 
1828 		__iommu_group_dma_finalize(group);
1829 	}
1830 
1831 	return ret;
1832 }
1833 
1834 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1835 {
1836 	struct notifier_block *nb;
1837 	int err;
1838 
1839 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1840 	if (!nb)
1841 		return -ENOMEM;
1842 
1843 	nb->notifier_call = iommu_bus_notifier;
1844 
1845 	err = bus_register_notifier(bus, nb);
1846 	if (err)
1847 		goto out_free;
1848 
1849 	err = bus_iommu_probe(bus);
1850 	if (err)
1851 		goto out_err;
1852 
1853 
1854 	return 0;
1855 
1856 out_err:
1857 	/* Clean up */
1858 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1859 	bus_unregister_notifier(bus, nb);
1860 
1861 out_free:
1862 	kfree(nb);
1863 
1864 	return err;
1865 }
1866 
1867 /**
1868  * bus_set_iommu - set iommu-callbacks for the bus
1869  * @bus: bus.
1870  * @ops: the callbacks provided by the iommu-driver
1871  *
1872  * This function is called by an iommu driver to set the iommu methods
1873  * used for a particular bus. Drivers for devices on that bus can use
1874  * the iommu-api after these ops are registered.
1875  * This special function is needed because IOMMUs are usually devices on
1876  * the bus itself, so the iommu drivers are not initialized when the bus
1877  * is set up. With this function the iommu-driver can set the iommu-ops
1878  * afterwards.
1879  */
1880 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1881 {
1882 	int err;
1883 
1884 	if (ops == NULL) {
1885 		bus->iommu_ops = NULL;
1886 		return 0;
1887 	}
1888 
1889 	if (bus->iommu_ops != NULL)
1890 		return -EBUSY;
1891 
1892 	bus->iommu_ops = ops;
1893 
1894 	/* Do IOMMU specific setup for this bus-type */
1895 	err = iommu_bus_init(bus, ops);
1896 	if (err)
1897 		bus->iommu_ops = NULL;
1898 
1899 	return err;
1900 }
1901 EXPORT_SYMBOL_GPL(bus_set_iommu);
1902 
1903 bool iommu_present(struct bus_type *bus)
1904 {
1905 	return bus->iommu_ops != NULL;
1906 }
1907 EXPORT_SYMBOL_GPL(iommu_present);
1908 
1909 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1910 {
1911 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1912 		return false;
1913 
1914 	return bus->iommu_ops->capable(cap);
1915 }
1916 EXPORT_SYMBOL_GPL(iommu_capable);
1917 
1918 /**
1919  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1920  * @domain: iommu domain
1921  * @handler: fault handler
1922  * @token: user data, will be passed back to the fault handler
1923  *
1924  * This function should be used by IOMMU users which want to be notified
1925  * whenever an IOMMU fault happens.
1926  *
1927  * The fault handler itself should return 0 on success, and an appropriate
1928  * error code otherwise.
1929  */
1930 void iommu_set_fault_handler(struct iommu_domain *domain,
1931 					iommu_fault_handler_t handler,
1932 					void *token)
1933 {
1934 	BUG_ON(!domain);
1935 
1936 	domain->handler = handler;
1937 	domain->handler_token = token;
1938 }
1939 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1940 
1941 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1942 						 unsigned type)
1943 {
1944 	struct iommu_domain *domain;
1945 
1946 	if (bus == NULL || bus->iommu_ops == NULL)
1947 		return NULL;
1948 
1949 	domain = bus->iommu_ops->domain_alloc(type);
1950 	if (!domain)
1951 		return NULL;
1952 
1953 	domain->type = type;
1954 	/* Assume all sizes by default; the driver may override this later */
1955 	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1956 	if (!domain->ops)
1957 		domain->ops = bus->iommu_ops->default_domain_ops;
1958 
1959 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1960 		iommu_domain_free(domain);
1961 		domain = NULL;
1962 	}
1963 	return domain;
1964 }
1965 
1966 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1967 {
1968 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1969 }
1970 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1971 
1972 void iommu_domain_free(struct iommu_domain *domain)
1973 {
1974 	iommu_put_dma_cookie(domain);
1975 	domain->ops->free(domain);
1976 }
1977 EXPORT_SYMBOL_GPL(iommu_domain_free);
1978 
1979 static int __iommu_attach_device(struct iommu_domain *domain,
1980 				 struct device *dev)
1981 {
1982 	int ret;
1983 
1984 	if (unlikely(domain->ops->attach_dev == NULL))
1985 		return -ENODEV;
1986 
1987 	ret = domain->ops->attach_dev(domain, dev);
1988 	if (!ret)
1989 		trace_attach_device_to_domain(dev);
1990 	return ret;
1991 }
1992 
1993 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1994 {
1995 	struct iommu_group *group;
1996 	int ret;
1997 
1998 	group = iommu_group_get(dev);
1999 	if (!group)
2000 		return -ENODEV;
2001 
2002 	/*
2003 	 * Lock the group to make sure the device-count doesn't
2004 	 * change while we are attaching
2005 	 */
2006 	mutex_lock(&group->mutex);
2007 	ret = -EINVAL;
2008 	if (iommu_group_device_count(group) != 1)
2009 		goto out_unlock;
2010 
2011 	ret = __iommu_attach_group(domain, group);
2012 
2013 out_unlock:
2014 	mutex_unlock(&group->mutex);
2015 	iommu_group_put(group);
2016 
2017 	return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(iommu_attach_device);
2020 
2021 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2022 {
2023 	if (iommu_is_attach_deferred(dev))
2024 		return __iommu_attach_device(domain, dev);
2025 
2026 	return 0;
2027 }
2028 
2029 static void __iommu_detach_device(struct iommu_domain *domain,
2030 				  struct device *dev)
2031 {
2032 	if (iommu_is_attach_deferred(dev))
2033 		return;
2034 
2035 	if (unlikely(domain->ops->detach_dev == NULL))
2036 		return;
2037 
2038 	domain->ops->detach_dev(domain, dev);
2039 	trace_detach_device_from_domain(dev);
2040 }
2041 
2042 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2043 {
2044 	struct iommu_group *group;
2045 
2046 	group = iommu_group_get(dev);
2047 	if (!group)
2048 		return;
2049 
2050 	mutex_lock(&group->mutex);
2051 	if (iommu_group_device_count(group) != 1) {
2052 		WARN_ON(1);
2053 		goto out_unlock;
2054 	}
2055 
2056 	__iommu_detach_group(domain, group);
2057 
2058 out_unlock:
2059 	mutex_unlock(&group->mutex);
2060 	iommu_group_put(group);
2061 }
2062 EXPORT_SYMBOL_GPL(iommu_detach_device);
2063 
2064 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2065 {
2066 	struct iommu_domain *domain;
2067 	struct iommu_group *group;
2068 
2069 	group = iommu_group_get(dev);
2070 	if (!group)
2071 		return NULL;
2072 
2073 	domain = group->domain;
2074 
2075 	iommu_group_put(group);
2076 
2077 	return domain;
2078 }
2079 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2080 
2081 /*
2082  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2083  * guarantees that the group and its default domain are valid and correct.
2084  */
2085 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2086 {
2087 	return dev->iommu_group->default_domain;
2088 }
2089 
2090 /*
2091  * IOMMU groups are really the natural working unit of the IOMMU, but
2092  * the IOMMU API works on domains and devices.  Bridge that gap by
2093  * iterating over the devices in a group.  Ideally we'd have a single
2094  * device which represents the requestor ID of the group, but we also
2095  * allow IOMMU drivers to create policy defined minimum sets, where
2096  * the physical hardware may be able to distiguish members, but we
2097  * wish to group them at a higher level (ex. untrusted multi-function
2098  * PCI devices).  Thus we attach each device.
2099  */
2100 static int iommu_group_do_attach_device(struct device *dev, void *data)
2101 {
2102 	struct iommu_domain *domain = data;
2103 
2104 	return __iommu_attach_device(domain, dev);
2105 }
2106 
2107 static int __iommu_attach_group(struct iommu_domain *domain,
2108 				struct iommu_group *group)
2109 {
2110 	int ret;
2111 
2112 	if (group->default_domain && group->domain != group->default_domain)
2113 		return -EBUSY;
2114 
2115 	ret = __iommu_group_for_each_dev(group, domain,
2116 					 iommu_group_do_attach_device);
2117 	if (ret == 0)
2118 		group->domain = domain;
2119 
2120 	return ret;
2121 }
2122 
2123 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2124 {
2125 	int ret;
2126 
2127 	mutex_lock(&group->mutex);
2128 	ret = __iommu_attach_group(domain, group);
2129 	mutex_unlock(&group->mutex);
2130 
2131 	return ret;
2132 }
2133 EXPORT_SYMBOL_GPL(iommu_attach_group);
2134 
2135 static int iommu_group_do_detach_device(struct device *dev, void *data)
2136 {
2137 	struct iommu_domain *domain = data;
2138 
2139 	__iommu_detach_device(domain, dev);
2140 
2141 	return 0;
2142 }
2143 
2144 static void __iommu_detach_group(struct iommu_domain *domain,
2145 				 struct iommu_group *group)
2146 {
2147 	int ret;
2148 
2149 	if (!group->default_domain) {
2150 		__iommu_group_for_each_dev(group, domain,
2151 					   iommu_group_do_detach_device);
2152 		group->domain = NULL;
2153 		return;
2154 	}
2155 
2156 	if (group->domain == group->default_domain)
2157 		return;
2158 
2159 	/* Detach by re-attaching to the default domain */
2160 	ret = __iommu_group_for_each_dev(group, group->default_domain,
2161 					 iommu_group_do_attach_device);
2162 	if (ret != 0)
2163 		WARN_ON(1);
2164 	else
2165 		group->domain = group->default_domain;
2166 }
2167 
2168 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2169 {
2170 	mutex_lock(&group->mutex);
2171 	__iommu_detach_group(domain, group);
2172 	mutex_unlock(&group->mutex);
2173 }
2174 EXPORT_SYMBOL_GPL(iommu_detach_group);
2175 
2176 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2177 {
2178 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2179 		return iova;
2180 
2181 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2182 		return 0;
2183 
2184 	return domain->ops->iova_to_phys(domain, iova);
2185 }
2186 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2187 
2188 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2189 			   phys_addr_t paddr, size_t size, size_t *count)
2190 {
2191 	unsigned int pgsize_idx, pgsize_idx_next;
2192 	unsigned long pgsizes;
2193 	size_t offset, pgsize, pgsize_next;
2194 	unsigned long addr_merge = paddr | iova;
2195 
2196 	/* Page sizes supported by the hardware and small enough for @size */
2197 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2198 
2199 	/* Constrain the page sizes further based on the maximum alignment */
2200 	if (likely(addr_merge))
2201 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2202 
2203 	/* Make sure we have at least one suitable page size */
2204 	BUG_ON(!pgsizes);
2205 
2206 	/* Pick the biggest page size remaining */
2207 	pgsize_idx = __fls(pgsizes);
2208 	pgsize = BIT(pgsize_idx);
2209 	if (!count)
2210 		return pgsize;
2211 
2212 	/* Find the next biggest support page size, if it exists */
2213 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2214 	if (!pgsizes)
2215 		goto out_set_count;
2216 
2217 	pgsize_idx_next = __ffs(pgsizes);
2218 	pgsize_next = BIT(pgsize_idx_next);
2219 
2220 	/*
2221 	 * There's no point trying a bigger page size unless the virtual
2222 	 * and physical addresses are similarly offset within the larger page.
2223 	 */
2224 	if ((iova ^ paddr) & (pgsize_next - 1))
2225 		goto out_set_count;
2226 
2227 	/* Calculate the offset to the next page size alignment boundary */
2228 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2229 
2230 	/*
2231 	 * If size is big enough to accommodate the larger page, reduce
2232 	 * the number of smaller pages.
2233 	 */
2234 	if (offset + pgsize_next <= size)
2235 		size = offset;
2236 
2237 out_set_count:
2238 	*count = size >> pgsize_idx;
2239 	return pgsize;
2240 }
2241 
2242 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2243 			     phys_addr_t paddr, size_t size, int prot,
2244 			     gfp_t gfp, size_t *mapped)
2245 {
2246 	const struct iommu_domain_ops *ops = domain->ops;
2247 	size_t pgsize, count;
2248 	int ret;
2249 
2250 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2251 
2252 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2253 		 iova, &paddr, pgsize, count);
2254 
2255 	if (ops->map_pages) {
2256 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2257 				     gfp, mapped);
2258 	} else {
2259 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2260 		*mapped = ret ? 0 : pgsize;
2261 	}
2262 
2263 	return ret;
2264 }
2265 
2266 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2267 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2268 {
2269 	const struct iommu_domain_ops *ops = domain->ops;
2270 	unsigned long orig_iova = iova;
2271 	unsigned int min_pagesz;
2272 	size_t orig_size = size;
2273 	phys_addr_t orig_paddr = paddr;
2274 	int ret = 0;
2275 
2276 	if (unlikely(!(ops->map || ops->map_pages) ||
2277 		     domain->pgsize_bitmap == 0UL))
2278 		return -ENODEV;
2279 
2280 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2281 		return -EINVAL;
2282 
2283 	/* find out the minimum page size supported */
2284 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2285 
2286 	/*
2287 	 * both the virtual address and the physical one, as well as
2288 	 * the size of the mapping, must be aligned (at least) to the
2289 	 * size of the smallest page supported by the hardware
2290 	 */
2291 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2292 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2293 		       iova, &paddr, size, min_pagesz);
2294 		return -EINVAL;
2295 	}
2296 
2297 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2298 
2299 	while (size) {
2300 		size_t mapped = 0;
2301 
2302 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2303 					&mapped);
2304 		/*
2305 		 * Some pages may have been mapped, even if an error occurred,
2306 		 * so we should account for those so they can be unmapped.
2307 		 */
2308 		size -= mapped;
2309 
2310 		if (ret)
2311 			break;
2312 
2313 		iova += mapped;
2314 		paddr += mapped;
2315 	}
2316 
2317 	/* unroll mapping in case something went wrong */
2318 	if (ret)
2319 		iommu_unmap(domain, orig_iova, orig_size - size);
2320 	else
2321 		trace_map(orig_iova, orig_paddr, orig_size);
2322 
2323 	return ret;
2324 }
2325 
2326 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2327 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2328 {
2329 	const struct iommu_domain_ops *ops = domain->ops;
2330 	int ret;
2331 
2332 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2333 	if (ret == 0 && ops->iotlb_sync_map)
2334 		ops->iotlb_sync_map(domain, iova, size);
2335 
2336 	return ret;
2337 }
2338 
2339 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2340 	      phys_addr_t paddr, size_t size, int prot)
2341 {
2342 	might_sleep();
2343 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2344 }
2345 EXPORT_SYMBOL_GPL(iommu_map);
2346 
2347 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2348 	      phys_addr_t paddr, size_t size, int prot)
2349 {
2350 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2351 }
2352 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2353 
2354 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2355 				  unsigned long iova, size_t size,
2356 				  struct iommu_iotlb_gather *iotlb_gather)
2357 {
2358 	const struct iommu_domain_ops *ops = domain->ops;
2359 	size_t pgsize, count;
2360 
2361 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2362 	return ops->unmap_pages ?
2363 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2364 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2365 }
2366 
2367 static size_t __iommu_unmap(struct iommu_domain *domain,
2368 			    unsigned long iova, size_t size,
2369 			    struct iommu_iotlb_gather *iotlb_gather)
2370 {
2371 	const struct iommu_domain_ops *ops = domain->ops;
2372 	size_t unmapped_page, unmapped = 0;
2373 	unsigned long orig_iova = iova;
2374 	unsigned int min_pagesz;
2375 
2376 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2377 		     domain->pgsize_bitmap == 0UL))
2378 		return 0;
2379 
2380 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2381 		return 0;
2382 
2383 	/* find out the minimum page size supported */
2384 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2385 
2386 	/*
2387 	 * The virtual address, as well as the size of the mapping, must be
2388 	 * aligned (at least) to the size of the smallest page supported
2389 	 * by the hardware
2390 	 */
2391 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2392 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2393 		       iova, size, min_pagesz);
2394 		return 0;
2395 	}
2396 
2397 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2398 
2399 	/*
2400 	 * Keep iterating until we either unmap 'size' bytes (or more)
2401 	 * or we hit an area that isn't mapped.
2402 	 */
2403 	while (unmapped < size) {
2404 		unmapped_page = __iommu_unmap_pages(domain, iova,
2405 						    size - unmapped,
2406 						    iotlb_gather);
2407 		if (!unmapped_page)
2408 			break;
2409 
2410 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2411 			 iova, unmapped_page);
2412 
2413 		iova += unmapped_page;
2414 		unmapped += unmapped_page;
2415 	}
2416 
2417 	trace_unmap(orig_iova, size, unmapped);
2418 	return unmapped;
2419 }
2420 
2421 size_t iommu_unmap(struct iommu_domain *domain,
2422 		   unsigned long iova, size_t size)
2423 {
2424 	struct iommu_iotlb_gather iotlb_gather;
2425 	size_t ret;
2426 
2427 	iommu_iotlb_gather_init(&iotlb_gather);
2428 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2429 	iommu_iotlb_sync(domain, &iotlb_gather);
2430 
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(iommu_unmap);
2434 
2435 size_t iommu_unmap_fast(struct iommu_domain *domain,
2436 			unsigned long iova, size_t size,
2437 			struct iommu_iotlb_gather *iotlb_gather)
2438 {
2439 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2440 }
2441 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2442 
2443 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2444 		struct scatterlist *sg, unsigned int nents, int prot,
2445 		gfp_t gfp)
2446 {
2447 	const struct iommu_domain_ops *ops = domain->ops;
2448 	size_t len = 0, mapped = 0;
2449 	phys_addr_t start;
2450 	unsigned int i = 0;
2451 	int ret;
2452 
2453 	while (i <= nents) {
2454 		phys_addr_t s_phys = sg_phys(sg);
2455 
2456 		if (len && s_phys != start + len) {
2457 			ret = __iommu_map(domain, iova + mapped, start,
2458 					len, prot, gfp);
2459 
2460 			if (ret)
2461 				goto out_err;
2462 
2463 			mapped += len;
2464 			len = 0;
2465 		}
2466 
2467 		if (len) {
2468 			len += sg->length;
2469 		} else {
2470 			len = sg->length;
2471 			start = s_phys;
2472 		}
2473 
2474 		if (++i < nents)
2475 			sg = sg_next(sg);
2476 	}
2477 
2478 	if (ops->iotlb_sync_map)
2479 		ops->iotlb_sync_map(domain, iova, mapped);
2480 	return mapped;
2481 
2482 out_err:
2483 	/* undo mappings already done */
2484 	iommu_unmap(domain, iova, mapped);
2485 
2486 	return ret;
2487 }
2488 
2489 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2490 		     struct scatterlist *sg, unsigned int nents, int prot)
2491 {
2492 	might_sleep();
2493 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2494 }
2495 EXPORT_SYMBOL_GPL(iommu_map_sg);
2496 
2497 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2498 		    struct scatterlist *sg, unsigned int nents, int prot)
2499 {
2500 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2501 }
2502 
2503 /**
2504  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2505  * @domain: the iommu domain where the fault has happened
2506  * @dev: the device where the fault has happened
2507  * @iova: the faulting address
2508  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2509  *
2510  * This function should be called by the low-level IOMMU implementations
2511  * whenever IOMMU faults happen, to allow high-level users, that are
2512  * interested in such events, to know about them.
2513  *
2514  * This event may be useful for several possible use cases:
2515  * - mere logging of the event
2516  * - dynamic TLB/PTE loading
2517  * - if restarting of the faulting device is required
2518  *
2519  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2520  * PTE/TLB loading will one day be supported, implementations will be able
2521  * to tell whether it succeeded or not according to this return value).
2522  *
2523  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2524  * (though fault handlers can also return -ENOSYS, in case they want to
2525  * elicit the default behavior of the IOMMU drivers).
2526  */
2527 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2528 		       unsigned long iova, int flags)
2529 {
2530 	int ret = -ENOSYS;
2531 
2532 	/*
2533 	 * if upper layers showed interest and installed a fault handler,
2534 	 * invoke it.
2535 	 */
2536 	if (domain->handler)
2537 		ret = domain->handler(domain, dev, iova, flags,
2538 						domain->handler_token);
2539 
2540 	trace_io_page_fault(dev, iova, flags);
2541 	return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(report_iommu_fault);
2544 
2545 static int __init iommu_init(void)
2546 {
2547 	iommu_group_kset = kset_create_and_add("iommu_groups",
2548 					       NULL, kernel_kobj);
2549 	BUG_ON(!iommu_group_kset);
2550 
2551 	iommu_debugfs_setup();
2552 
2553 	return 0;
2554 }
2555 core_initcall(iommu_init);
2556 
2557 int iommu_enable_nesting(struct iommu_domain *domain)
2558 {
2559 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2560 		return -EINVAL;
2561 	if (!domain->ops->enable_nesting)
2562 		return -EINVAL;
2563 	return domain->ops->enable_nesting(domain);
2564 }
2565 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2566 
2567 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2568 		unsigned long quirk)
2569 {
2570 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2571 		return -EINVAL;
2572 	if (!domain->ops->set_pgtable_quirks)
2573 		return -EINVAL;
2574 	return domain->ops->set_pgtable_quirks(domain, quirk);
2575 }
2576 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2577 
2578 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2579 {
2580 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2581 
2582 	if (ops->get_resv_regions)
2583 		ops->get_resv_regions(dev, list);
2584 }
2585 
2586 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2587 {
2588 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2589 
2590 	if (ops->put_resv_regions)
2591 		ops->put_resv_regions(dev, list);
2592 }
2593 
2594 /**
2595  * generic_iommu_put_resv_regions - Reserved region driver helper
2596  * @dev: device for which to free reserved regions
2597  * @list: reserved region list for device
2598  *
2599  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2600  * for simple reservations. Memory allocated for each reserved region will be
2601  * freed. If an IOMMU driver allocates additional resources per region, it is
2602  * going to have to implement a custom callback.
2603  */
2604 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2605 {
2606 	struct iommu_resv_region *entry, *next;
2607 
2608 	list_for_each_entry_safe(entry, next, list, list)
2609 		kfree(entry);
2610 }
2611 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2612 
2613 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2614 						  size_t length, int prot,
2615 						  enum iommu_resv_type type)
2616 {
2617 	struct iommu_resv_region *region;
2618 
2619 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2620 	if (!region)
2621 		return NULL;
2622 
2623 	INIT_LIST_HEAD(&region->list);
2624 	region->start = start;
2625 	region->length = length;
2626 	region->prot = prot;
2627 	region->type = type;
2628 	return region;
2629 }
2630 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2631 
2632 void iommu_set_default_passthrough(bool cmd_line)
2633 {
2634 	if (cmd_line)
2635 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2636 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2637 }
2638 
2639 void iommu_set_default_translated(bool cmd_line)
2640 {
2641 	if (cmd_line)
2642 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2643 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2644 }
2645 
2646 bool iommu_default_passthrough(void)
2647 {
2648 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2649 }
2650 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2651 
2652 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2653 {
2654 	const struct iommu_ops *ops = NULL;
2655 	struct iommu_device *iommu;
2656 
2657 	spin_lock(&iommu_device_lock);
2658 	list_for_each_entry(iommu, &iommu_device_list, list)
2659 		if (iommu->fwnode == fwnode) {
2660 			ops = iommu->ops;
2661 			break;
2662 		}
2663 	spin_unlock(&iommu_device_lock);
2664 	return ops;
2665 }
2666 
2667 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2668 		      const struct iommu_ops *ops)
2669 {
2670 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2671 
2672 	if (fwspec)
2673 		return ops == fwspec->ops ? 0 : -EINVAL;
2674 
2675 	if (!dev_iommu_get(dev))
2676 		return -ENOMEM;
2677 
2678 	/* Preallocate for the overwhelmingly common case of 1 ID */
2679 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2680 	if (!fwspec)
2681 		return -ENOMEM;
2682 
2683 	of_node_get(to_of_node(iommu_fwnode));
2684 	fwspec->iommu_fwnode = iommu_fwnode;
2685 	fwspec->ops = ops;
2686 	dev_iommu_fwspec_set(dev, fwspec);
2687 	return 0;
2688 }
2689 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2690 
2691 void iommu_fwspec_free(struct device *dev)
2692 {
2693 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2694 
2695 	if (fwspec) {
2696 		fwnode_handle_put(fwspec->iommu_fwnode);
2697 		kfree(fwspec);
2698 		dev_iommu_fwspec_set(dev, NULL);
2699 	}
2700 }
2701 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2702 
2703 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2704 {
2705 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2706 	int i, new_num;
2707 
2708 	if (!fwspec)
2709 		return -EINVAL;
2710 
2711 	new_num = fwspec->num_ids + num_ids;
2712 	if (new_num > 1) {
2713 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2714 				  GFP_KERNEL);
2715 		if (!fwspec)
2716 			return -ENOMEM;
2717 
2718 		dev_iommu_fwspec_set(dev, fwspec);
2719 	}
2720 
2721 	for (i = 0; i < num_ids; i++)
2722 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2723 
2724 	fwspec->num_ids = new_num;
2725 	return 0;
2726 }
2727 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2728 
2729 /*
2730  * Per device IOMMU features.
2731  */
2732 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2733 {
2734 	if (dev->iommu && dev->iommu->iommu_dev) {
2735 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2736 
2737 		if (ops->dev_enable_feat)
2738 			return ops->dev_enable_feat(dev, feat);
2739 	}
2740 
2741 	return -ENODEV;
2742 }
2743 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2744 
2745 /*
2746  * The device drivers should do the necessary cleanups before calling this.
2747  */
2748 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2749 {
2750 	if (dev->iommu && dev->iommu->iommu_dev) {
2751 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2752 
2753 		if (ops->dev_disable_feat)
2754 			return ops->dev_disable_feat(dev, feat);
2755 	}
2756 
2757 	return -EBUSY;
2758 }
2759 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2760 
2761 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2762 {
2763 	if (dev->iommu && dev->iommu->iommu_dev) {
2764 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2765 
2766 		if (ops->dev_feat_enabled)
2767 			return ops->dev_feat_enabled(dev, feat);
2768 	}
2769 
2770 	return false;
2771 }
2772 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2773 
2774 /**
2775  * iommu_sva_bind_device() - Bind a process address space to a device
2776  * @dev: the device
2777  * @mm: the mm to bind, caller must hold a reference to it
2778  * @drvdata: opaque data pointer to pass to bind callback
2779  *
2780  * Create a bond between device and address space, allowing the device to access
2781  * the mm using the returned PASID. If a bond already exists between @device and
2782  * @mm, it is returned and an additional reference is taken. Caller must call
2783  * iommu_sva_unbind_device() to release each reference.
2784  *
2785  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2786  * initialize the required SVA features.
2787  *
2788  * On error, returns an ERR_PTR value.
2789  */
2790 struct iommu_sva *
2791 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2792 {
2793 	struct iommu_group *group;
2794 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2795 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2796 
2797 	if (!ops->sva_bind)
2798 		return ERR_PTR(-ENODEV);
2799 
2800 	group = iommu_group_get(dev);
2801 	if (!group)
2802 		return ERR_PTR(-ENODEV);
2803 
2804 	/* Ensure device count and domain don't change while we're binding */
2805 	mutex_lock(&group->mutex);
2806 
2807 	/*
2808 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2809 	 * with more than one device. Existing SVA-capable systems are not
2810 	 * affected by the problems that required IOMMU groups (lack of ACS
2811 	 * isolation, device ID aliasing and other hardware issues).
2812 	 */
2813 	if (iommu_group_device_count(group) != 1)
2814 		goto out_unlock;
2815 
2816 	handle = ops->sva_bind(dev, mm, drvdata);
2817 
2818 out_unlock:
2819 	mutex_unlock(&group->mutex);
2820 	iommu_group_put(group);
2821 
2822 	return handle;
2823 }
2824 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2825 
2826 /**
2827  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2828  * @handle: the handle returned by iommu_sva_bind_device()
2829  *
2830  * Put reference to a bond between device and address space. The device should
2831  * not be issuing any more transaction for this PASID. All outstanding page
2832  * requests for this PASID must have been flushed to the IOMMU.
2833  */
2834 void iommu_sva_unbind_device(struct iommu_sva *handle)
2835 {
2836 	struct iommu_group *group;
2837 	struct device *dev = handle->dev;
2838 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2839 
2840 	if (!ops->sva_unbind)
2841 		return;
2842 
2843 	group = iommu_group_get(dev);
2844 	if (!group)
2845 		return;
2846 
2847 	mutex_lock(&group->mutex);
2848 	ops->sva_unbind(handle);
2849 	mutex_unlock(&group->mutex);
2850 
2851 	iommu_group_put(group);
2852 }
2853 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2854 
2855 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
2856 {
2857 	const struct iommu_ops *ops = dev_iommu_ops(handle->dev);
2858 
2859 	if (!ops->sva_get_pasid)
2860 		return IOMMU_PASID_INVALID;
2861 
2862 	return ops->sva_get_pasid(handle);
2863 }
2864 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2865 
2866 /*
2867  * Changes the default domain of an iommu group that has *only* one device
2868  *
2869  * @group: The group for which the default domain should be changed
2870  * @prev_dev: The device in the group (this is used to make sure that the device
2871  *	 hasn't changed after the caller has called this function)
2872  * @type: The type of the new default domain that gets associated with the group
2873  *
2874  * Returns 0 on success and error code on failure
2875  *
2876  * Note:
2877  * 1. Presently, this function is called only when user requests to change the
2878  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2879  *    Please take a closer look if intended to use for other purposes.
2880  */
2881 static int iommu_change_dev_def_domain(struct iommu_group *group,
2882 				       struct device *prev_dev, int type)
2883 {
2884 	struct iommu_domain *prev_dom;
2885 	struct group_device *grp_dev;
2886 	int ret, dev_def_dom;
2887 	struct device *dev;
2888 
2889 	mutex_lock(&group->mutex);
2890 
2891 	if (group->default_domain != group->domain) {
2892 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2893 		ret = -EBUSY;
2894 		goto out;
2895 	}
2896 
2897 	/*
2898 	 * iommu group wasn't locked while acquiring device lock in
2899 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2900 	 * changed while acquiring device lock.
2901 	 *
2902 	 * Changing default domain of an iommu group with two or more devices
2903 	 * isn't supported because there could be a potential deadlock. Consider
2904 	 * the following scenario. T1 is trying to acquire device locks of all
2905 	 * the devices in the group and before it could acquire all of them,
2906 	 * there could be another thread T2 (from different sub-system and use
2907 	 * case) that has already acquired some of the device locks and might be
2908 	 * waiting for T1 to release other device locks.
2909 	 */
2910 	if (iommu_group_device_count(group) != 1) {
2911 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2912 		ret = -EINVAL;
2913 		goto out;
2914 	}
2915 
2916 	/* Since group has only one device */
2917 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2918 	dev = grp_dev->dev;
2919 
2920 	if (prev_dev != dev) {
2921 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2922 		ret = -EBUSY;
2923 		goto out;
2924 	}
2925 
2926 	prev_dom = group->default_domain;
2927 	if (!prev_dom) {
2928 		ret = -EINVAL;
2929 		goto out;
2930 	}
2931 
2932 	dev_def_dom = iommu_get_def_domain_type(dev);
2933 	if (!type) {
2934 		/*
2935 		 * If the user hasn't requested any specific type of domain and
2936 		 * if the device supports both the domains, then default to the
2937 		 * domain the device was booted with
2938 		 */
2939 		type = dev_def_dom ? : iommu_def_domain_type;
2940 	} else if (dev_def_dom && type != dev_def_dom) {
2941 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2942 				    iommu_domain_type_str(type));
2943 		ret = -EINVAL;
2944 		goto out;
2945 	}
2946 
2947 	/*
2948 	 * Switch to a new domain only if the requested domain type is different
2949 	 * from the existing default domain type
2950 	 */
2951 	if (prev_dom->type == type) {
2952 		ret = 0;
2953 		goto out;
2954 	}
2955 
2956 	/* We can bring up a flush queue without tearing down the domain */
2957 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2958 		ret = iommu_dma_init_fq(prev_dom);
2959 		if (!ret)
2960 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2961 		goto out;
2962 	}
2963 
2964 	/* Sets group->default_domain to the newly allocated domain */
2965 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2966 	if (ret)
2967 		goto out;
2968 
2969 	ret = iommu_create_device_direct_mappings(group, dev);
2970 	if (ret)
2971 		goto free_new_domain;
2972 
2973 	ret = __iommu_attach_device(group->default_domain, dev);
2974 	if (ret)
2975 		goto free_new_domain;
2976 
2977 	group->domain = group->default_domain;
2978 
2979 	/*
2980 	 * Release the mutex here because ops->probe_finalize() call-back of
2981 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2982 	 * in-turn might call back into IOMMU core code, where it tries to take
2983 	 * group->mutex, resulting in a deadlock.
2984 	 */
2985 	mutex_unlock(&group->mutex);
2986 
2987 	/* Make sure dma_ops is appropriatley set */
2988 	iommu_group_do_probe_finalize(dev, group->default_domain);
2989 	iommu_domain_free(prev_dom);
2990 	return 0;
2991 
2992 free_new_domain:
2993 	iommu_domain_free(group->default_domain);
2994 	group->default_domain = prev_dom;
2995 	group->domain = prev_dom;
2996 
2997 out:
2998 	mutex_unlock(&group->mutex);
2999 
3000 	return ret;
3001 }
3002 
3003 /*
3004  * Changing the default domain through sysfs requires the users to unbind the
3005  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3006  * transition. Return failure if this isn't met.
3007  *
3008  * We need to consider the race between this and the device release path.
3009  * device_lock(dev) is used here to guarantee that the device release path
3010  * will not be entered at the same time.
3011  */
3012 static ssize_t iommu_group_store_type(struct iommu_group *group,
3013 				      const char *buf, size_t count)
3014 {
3015 	struct group_device *grp_dev;
3016 	struct device *dev;
3017 	int ret, req_type;
3018 
3019 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3020 		return -EACCES;
3021 
3022 	if (WARN_ON(!group))
3023 		return -EINVAL;
3024 
3025 	if (sysfs_streq(buf, "identity"))
3026 		req_type = IOMMU_DOMAIN_IDENTITY;
3027 	else if (sysfs_streq(buf, "DMA"))
3028 		req_type = IOMMU_DOMAIN_DMA;
3029 	else if (sysfs_streq(buf, "DMA-FQ"))
3030 		req_type = IOMMU_DOMAIN_DMA_FQ;
3031 	else if (sysfs_streq(buf, "auto"))
3032 		req_type = 0;
3033 	else
3034 		return -EINVAL;
3035 
3036 	/*
3037 	 * Lock/Unlock the group mutex here before device lock to
3038 	 * 1. Make sure that the iommu group has only one device (this is a
3039 	 *    prerequisite for step 2)
3040 	 * 2. Get struct *dev which is needed to lock device
3041 	 */
3042 	mutex_lock(&group->mutex);
3043 	if (iommu_group_device_count(group) != 1) {
3044 		mutex_unlock(&group->mutex);
3045 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3046 		return -EINVAL;
3047 	}
3048 
3049 	/* Since group has only one device */
3050 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3051 	dev = grp_dev->dev;
3052 	get_device(dev);
3053 
3054 	/*
3055 	 * Don't hold the group mutex because taking group mutex first and then
3056 	 * the device lock could potentially cause a deadlock as below. Assume
3057 	 * two threads T1 and T2. T1 is trying to change default domain of an
3058 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3059 	 * of a PCIe device which is in the same iommu group. T1 takes group
3060 	 * mutex and before it could take device lock assume T2 has taken device
3061 	 * lock and is yet to take group mutex. Now, both the threads will be
3062 	 * waiting for the other thread to release lock. Below, lock order was
3063 	 * suggested.
3064 	 * device_lock(dev);
3065 	 *	mutex_lock(&group->mutex);
3066 	 *		iommu_change_dev_def_domain();
3067 	 *	mutex_unlock(&group->mutex);
3068 	 * device_unlock(dev);
3069 	 *
3070 	 * [1] Typical device release path
3071 	 * device_lock() from device/driver core code
3072 	 *  -> bus_notifier()
3073 	 *   -> iommu_bus_notifier()
3074 	 *    -> iommu_release_device()
3075 	 *     -> ops->release_device() vendor driver calls back iommu core code
3076 	 *      -> mutex_lock() from iommu core code
3077 	 */
3078 	mutex_unlock(&group->mutex);
3079 
3080 	/* Check if the device in the group still has a driver bound to it */
3081 	device_lock(dev);
3082 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3083 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3084 		pr_err_ratelimited("Device is still bound to driver\n");
3085 		ret = -EBUSY;
3086 		goto out;
3087 	}
3088 
3089 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3090 	ret = ret ?: count;
3091 
3092 out:
3093 	device_unlock(dev);
3094 	put_device(dev);
3095 
3096 	return ret;
3097 }
3098