1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/dma-iommu.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/iommu.h> 20 #include <linux/idr.h> 21 #include <linux/err.h> 22 #include <linux/pci.h> 23 #include <linux/bitops.h> 24 #include <linux/property.h> 25 #include <linux/fsl/mc.h> 26 #include <linux/module.h> 27 #include <linux/cc_platform.h> 28 #include <trace/events/iommu.h> 29 30 static struct kset *iommu_group_kset; 31 static DEFINE_IDA(iommu_group_ida); 32 33 static unsigned int iommu_def_domain_type __read_mostly; 34 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 35 static u32 iommu_cmd_line __read_mostly; 36 37 struct iommu_group { 38 struct kobject kobj; 39 struct kobject *devices_kobj; 40 struct list_head devices; 41 struct mutex mutex; 42 void *iommu_data; 43 void (*iommu_data_release)(void *iommu_data); 44 char *name; 45 int id; 46 struct iommu_domain *default_domain; 47 struct iommu_domain *blocking_domain; 48 struct iommu_domain *domain; 49 struct list_head entry; 50 unsigned int owner_cnt; 51 void *owner; 52 }; 53 54 struct group_device { 55 struct list_head list; 56 struct device *dev; 57 char *name; 58 }; 59 60 struct iommu_group_attribute { 61 struct attribute attr; 62 ssize_t (*show)(struct iommu_group *group, char *buf); 63 ssize_t (*store)(struct iommu_group *group, 64 const char *buf, size_t count); 65 }; 66 67 static const char * const iommu_group_resv_type_string[] = { 68 [IOMMU_RESV_DIRECT] = "direct", 69 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 70 [IOMMU_RESV_RESERVED] = "reserved", 71 [IOMMU_RESV_MSI] = "msi", 72 [IOMMU_RESV_SW_MSI] = "msi", 73 }; 74 75 #define IOMMU_CMD_LINE_DMA_API BIT(0) 76 #define IOMMU_CMD_LINE_STRICT BIT(1) 77 78 static int iommu_alloc_default_domain(struct iommu_group *group, 79 struct device *dev); 80 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 81 unsigned type); 82 static int __iommu_attach_device(struct iommu_domain *domain, 83 struct device *dev); 84 static int __iommu_attach_group(struct iommu_domain *domain, 85 struct iommu_group *group); 86 static int __iommu_group_set_domain(struct iommu_group *group, 87 struct iommu_domain *new_domain); 88 static int iommu_create_device_direct_mappings(struct iommu_group *group, 89 struct device *dev); 90 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 91 static ssize_t iommu_group_store_type(struct iommu_group *group, 92 const char *buf, size_t count); 93 94 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 95 struct iommu_group_attribute iommu_group_attr_##_name = \ 96 __ATTR(_name, _mode, _show, _store) 97 98 #define to_iommu_group_attr(_attr) \ 99 container_of(_attr, struct iommu_group_attribute, attr) 100 #define to_iommu_group(_kobj) \ 101 container_of(_kobj, struct iommu_group, kobj) 102 103 static LIST_HEAD(iommu_device_list); 104 static DEFINE_SPINLOCK(iommu_device_lock); 105 106 /* 107 * Use a function instead of an array here because the domain-type is a 108 * bit-field, so an array would waste memory. 109 */ 110 static const char *iommu_domain_type_str(unsigned int t) 111 { 112 switch (t) { 113 case IOMMU_DOMAIN_BLOCKED: 114 return "Blocked"; 115 case IOMMU_DOMAIN_IDENTITY: 116 return "Passthrough"; 117 case IOMMU_DOMAIN_UNMANAGED: 118 return "Unmanaged"; 119 case IOMMU_DOMAIN_DMA: 120 case IOMMU_DOMAIN_DMA_FQ: 121 return "Translated"; 122 default: 123 return "Unknown"; 124 } 125 } 126 127 static int __init iommu_subsys_init(void) 128 { 129 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 130 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 131 iommu_set_default_passthrough(false); 132 else 133 iommu_set_default_translated(false); 134 135 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 136 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 137 iommu_set_default_translated(false); 138 } 139 } 140 141 if (!iommu_default_passthrough() && !iommu_dma_strict) 142 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 143 144 pr_info("Default domain type: %s %s\n", 145 iommu_domain_type_str(iommu_def_domain_type), 146 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 147 "(set via kernel command line)" : ""); 148 149 if (!iommu_default_passthrough()) 150 pr_info("DMA domain TLB invalidation policy: %s mode %s\n", 151 iommu_dma_strict ? "strict" : "lazy", 152 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 153 "(set via kernel command line)" : ""); 154 155 return 0; 156 } 157 subsys_initcall(iommu_subsys_init); 158 159 /** 160 * iommu_device_register() - Register an IOMMU hardware instance 161 * @iommu: IOMMU handle for the instance 162 * @ops: IOMMU ops to associate with the instance 163 * @hwdev: (optional) actual instance device, used for fwnode lookup 164 * 165 * Return: 0 on success, or an error. 166 */ 167 int iommu_device_register(struct iommu_device *iommu, 168 const struct iommu_ops *ops, struct device *hwdev) 169 { 170 /* We need to be able to take module references appropriately */ 171 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 172 return -EINVAL; 173 174 iommu->ops = ops; 175 if (hwdev) 176 iommu->fwnode = hwdev->fwnode; 177 178 spin_lock(&iommu_device_lock); 179 list_add_tail(&iommu->list, &iommu_device_list); 180 spin_unlock(&iommu_device_lock); 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(iommu_device_register); 184 185 void iommu_device_unregister(struct iommu_device *iommu) 186 { 187 spin_lock(&iommu_device_lock); 188 list_del(&iommu->list); 189 spin_unlock(&iommu_device_lock); 190 } 191 EXPORT_SYMBOL_GPL(iommu_device_unregister); 192 193 static struct dev_iommu *dev_iommu_get(struct device *dev) 194 { 195 struct dev_iommu *param = dev->iommu; 196 197 if (param) 198 return param; 199 200 param = kzalloc(sizeof(*param), GFP_KERNEL); 201 if (!param) 202 return NULL; 203 204 mutex_init(¶m->lock); 205 dev->iommu = param; 206 return param; 207 } 208 209 static void dev_iommu_free(struct device *dev) 210 { 211 struct dev_iommu *param = dev->iommu; 212 213 dev->iommu = NULL; 214 if (param->fwspec) { 215 fwnode_handle_put(param->fwspec->iommu_fwnode); 216 kfree(param->fwspec); 217 } 218 kfree(param); 219 } 220 221 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 222 { 223 const struct iommu_ops *ops = dev->bus->iommu_ops; 224 struct iommu_device *iommu_dev; 225 struct iommu_group *group; 226 int ret; 227 228 if (!ops) 229 return -ENODEV; 230 231 if (!dev_iommu_get(dev)) 232 return -ENOMEM; 233 234 if (!try_module_get(ops->owner)) { 235 ret = -EINVAL; 236 goto err_free; 237 } 238 239 iommu_dev = ops->probe_device(dev); 240 if (IS_ERR(iommu_dev)) { 241 ret = PTR_ERR(iommu_dev); 242 goto out_module_put; 243 } 244 245 dev->iommu->iommu_dev = iommu_dev; 246 247 group = iommu_group_get_for_dev(dev); 248 if (IS_ERR(group)) { 249 ret = PTR_ERR(group); 250 goto out_release; 251 } 252 iommu_group_put(group); 253 254 if (group_list && !group->default_domain && list_empty(&group->entry)) 255 list_add_tail(&group->entry, group_list); 256 257 iommu_device_link(iommu_dev, dev); 258 259 return 0; 260 261 out_release: 262 if (ops->release_device) 263 ops->release_device(dev); 264 265 out_module_put: 266 module_put(ops->owner); 267 268 err_free: 269 dev_iommu_free(dev); 270 271 return ret; 272 } 273 274 int iommu_probe_device(struct device *dev) 275 { 276 const struct iommu_ops *ops; 277 struct iommu_group *group; 278 int ret; 279 280 ret = __iommu_probe_device(dev, NULL); 281 if (ret) 282 goto err_out; 283 284 group = iommu_group_get(dev); 285 if (!group) { 286 ret = -ENODEV; 287 goto err_release; 288 } 289 290 /* 291 * Try to allocate a default domain - needs support from the 292 * IOMMU driver. There are still some drivers which don't 293 * support default domains, so the return value is not yet 294 * checked. 295 */ 296 mutex_lock(&group->mutex); 297 iommu_alloc_default_domain(group, dev); 298 299 /* 300 * If device joined an existing group which has been claimed, don't 301 * attach the default domain. 302 */ 303 if (group->default_domain && !group->owner) { 304 ret = __iommu_attach_device(group->default_domain, dev); 305 if (ret) { 306 mutex_unlock(&group->mutex); 307 iommu_group_put(group); 308 goto err_release; 309 } 310 } 311 312 iommu_create_device_direct_mappings(group, dev); 313 314 mutex_unlock(&group->mutex); 315 iommu_group_put(group); 316 317 ops = dev_iommu_ops(dev); 318 if (ops->probe_finalize) 319 ops->probe_finalize(dev); 320 321 return 0; 322 323 err_release: 324 iommu_release_device(dev); 325 326 err_out: 327 return ret; 328 329 } 330 331 void iommu_release_device(struct device *dev) 332 { 333 const struct iommu_ops *ops; 334 335 if (!dev->iommu) 336 return; 337 338 iommu_device_unlink(dev->iommu->iommu_dev, dev); 339 340 ops = dev_iommu_ops(dev); 341 if (ops->release_device) 342 ops->release_device(dev); 343 344 iommu_group_remove_device(dev); 345 module_put(ops->owner); 346 dev_iommu_free(dev); 347 } 348 349 static int __init iommu_set_def_domain_type(char *str) 350 { 351 bool pt; 352 int ret; 353 354 ret = kstrtobool(str, &pt); 355 if (ret) 356 return ret; 357 358 if (pt) 359 iommu_set_default_passthrough(true); 360 else 361 iommu_set_default_translated(true); 362 363 return 0; 364 } 365 early_param("iommu.passthrough", iommu_set_def_domain_type); 366 367 static int __init iommu_dma_setup(char *str) 368 { 369 int ret = kstrtobool(str, &iommu_dma_strict); 370 371 if (!ret) 372 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 373 return ret; 374 } 375 early_param("iommu.strict", iommu_dma_setup); 376 377 void iommu_set_dma_strict(void) 378 { 379 iommu_dma_strict = true; 380 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 381 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 382 } 383 384 static ssize_t iommu_group_attr_show(struct kobject *kobj, 385 struct attribute *__attr, char *buf) 386 { 387 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 388 struct iommu_group *group = to_iommu_group(kobj); 389 ssize_t ret = -EIO; 390 391 if (attr->show) 392 ret = attr->show(group, buf); 393 return ret; 394 } 395 396 static ssize_t iommu_group_attr_store(struct kobject *kobj, 397 struct attribute *__attr, 398 const char *buf, size_t count) 399 { 400 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 401 struct iommu_group *group = to_iommu_group(kobj); 402 ssize_t ret = -EIO; 403 404 if (attr->store) 405 ret = attr->store(group, buf, count); 406 return ret; 407 } 408 409 static const struct sysfs_ops iommu_group_sysfs_ops = { 410 .show = iommu_group_attr_show, 411 .store = iommu_group_attr_store, 412 }; 413 414 static int iommu_group_create_file(struct iommu_group *group, 415 struct iommu_group_attribute *attr) 416 { 417 return sysfs_create_file(&group->kobj, &attr->attr); 418 } 419 420 static void iommu_group_remove_file(struct iommu_group *group, 421 struct iommu_group_attribute *attr) 422 { 423 sysfs_remove_file(&group->kobj, &attr->attr); 424 } 425 426 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 427 { 428 return sprintf(buf, "%s\n", group->name); 429 } 430 431 /** 432 * iommu_insert_resv_region - Insert a new region in the 433 * list of reserved regions. 434 * @new: new region to insert 435 * @regions: list of regions 436 * 437 * Elements are sorted by start address and overlapping segments 438 * of the same type are merged. 439 */ 440 static int iommu_insert_resv_region(struct iommu_resv_region *new, 441 struct list_head *regions) 442 { 443 struct iommu_resv_region *iter, *tmp, *nr, *top; 444 LIST_HEAD(stack); 445 446 nr = iommu_alloc_resv_region(new->start, new->length, 447 new->prot, new->type); 448 if (!nr) 449 return -ENOMEM; 450 451 /* First add the new element based on start address sorting */ 452 list_for_each_entry(iter, regions, list) { 453 if (nr->start < iter->start || 454 (nr->start == iter->start && nr->type <= iter->type)) 455 break; 456 } 457 list_add_tail(&nr->list, &iter->list); 458 459 /* Merge overlapping segments of type nr->type in @regions, if any */ 460 list_for_each_entry_safe(iter, tmp, regions, list) { 461 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 462 463 /* no merge needed on elements of different types than @new */ 464 if (iter->type != new->type) { 465 list_move_tail(&iter->list, &stack); 466 continue; 467 } 468 469 /* look for the last stack element of same type as @iter */ 470 list_for_each_entry_reverse(top, &stack, list) 471 if (top->type == iter->type) 472 goto check_overlap; 473 474 list_move_tail(&iter->list, &stack); 475 continue; 476 477 check_overlap: 478 top_end = top->start + top->length - 1; 479 480 if (iter->start > top_end + 1) { 481 list_move_tail(&iter->list, &stack); 482 } else { 483 top->length = max(top_end, iter_end) - top->start + 1; 484 list_del(&iter->list); 485 kfree(iter); 486 } 487 } 488 list_splice(&stack, regions); 489 return 0; 490 } 491 492 static int 493 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 494 struct list_head *group_resv_regions) 495 { 496 struct iommu_resv_region *entry; 497 int ret = 0; 498 499 list_for_each_entry(entry, dev_resv_regions, list) { 500 ret = iommu_insert_resv_region(entry, group_resv_regions); 501 if (ret) 502 break; 503 } 504 return ret; 505 } 506 507 int iommu_get_group_resv_regions(struct iommu_group *group, 508 struct list_head *head) 509 { 510 struct group_device *device; 511 int ret = 0; 512 513 mutex_lock(&group->mutex); 514 list_for_each_entry(device, &group->devices, list) { 515 struct list_head dev_resv_regions; 516 517 /* 518 * Non-API groups still expose reserved_regions in sysfs, 519 * so filter out calls that get here that way. 520 */ 521 if (!device->dev->iommu) 522 break; 523 524 INIT_LIST_HEAD(&dev_resv_regions); 525 iommu_get_resv_regions(device->dev, &dev_resv_regions); 526 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 527 iommu_put_resv_regions(device->dev, &dev_resv_regions); 528 if (ret) 529 break; 530 } 531 mutex_unlock(&group->mutex); 532 return ret; 533 } 534 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 535 536 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 537 char *buf) 538 { 539 struct iommu_resv_region *region, *next; 540 struct list_head group_resv_regions; 541 char *str = buf; 542 543 INIT_LIST_HEAD(&group_resv_regions); 544 iommu_get_group_resv_regions(group, &group_resv_regions); 545 546 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 547 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 548 (long long int)region->start, 549 (long long int)(region->start + 550 region->length - 1), 551 iommu_group_resv_type_string[region->type]); 552 kfree(region); 553 } 554 555 return (str - buf); 556 } 557 558 static ssize_t iommu_group_show_type(struct iommu_group *group, 559 char *buf) 560 { 561 char *type = "unknown\n"; 562 563 mutex_lock(&group->mutex); 564 if (group->default_domain) { 565 switch (group->default_domain->type) { 566 case IOMMU_DOMAIN_BLOCKED: 567 type = "blocked\n"; 568 break; 569 case IOMMU_DOMAIN_IDENTITY: 570 type = "identity\n"; 571 break; 572 case IOMMU_DOMAIN_UNMANAGED: 573 type = "unmanaged\n"; 574 break; 575 case IOMMU_DOMAIN_DMA: 576 type = "DMA\n"; 577 break; 578 case IOMMU_DOMAIN_DMA_FQ: 579 type = "DMA-FQ\n"; 580 break; 581 } 582 } 583 mutex_unlock(&group->mutex); 584 strcpy(buf, type); 585 586 return strlen(type); 587 } 588 589 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 590 591 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 592 iommu_group_show_resv_regions, NULL); 593 594 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 595 iommu_group_store_type); 596 597 static void iommu_group_release(struct kobject *kobj) 598 { 599 struct iommu_group *group = to_iommu_group(kobj); 600 601 pr_debug("Releasing group %d\n", group->id); 602 603 if (group->iommu_data_release) 604 group->iommu_data_release(group->iommu_data); 605 606 ida_free(&iommu_group_ida, group->id); 607 608 if (group->default_domain) 609 iommu_domain_free(group->default_domain); 610 if (group->blocking_domain) 611 iommu_domain_free(group->blocking_domain); 612 613 kfree(group->name); 614 kfree(group); 615 } 616 617 static struct kobj_type iommu_group_ktype = { 618 .sysfs_ops = &iommu_group_sysfs_ops, 619 .release = iommu_group_release, 620 }; 621 622 /** 623 * iommu_group_alloc - Allocate a new group 624 * 625 * This function is called by an iommu driver to allocate a new iommu 626 * group. The iommu group represents the minimum granularity of the iommu. 627 * Upon successful return, the caller holds a reference to the supplied 628 * group in order to hold the group until devices are added. Use 629 * iommu_group_put() to release this extra reference count, allowing the 630 * group to be automatically reclaimed once it has no devices or external 631 * references. 632 */ 633 struct iommu_group *iommu_group_alloc(void) 634 { 635 struct iommu_group *group; 636 int ret; 637 638 group = kzalloc(sizeof(*group), GFP_KERNEL); 639 if (!group) 640 return ERR_PTR(-ENOMEM); 641 642 group->kobj.kset = iommu_group_kset; 643 mutex_init(&group->mutex); 644 INIT_LIST_HEAD(&group->devices); 645 INIT_LIST_HEAD(&group->entry); 646 647 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 648 if (ret < 0) { 649 kfree(group); 650 return ERR_PTR(ret); 651 } 652 group->id = ret; 653 654 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 655 NULL, "%d", group->id); 656 if (ret) { 657 ida_free(&iommu_group_ida, group->id); 658 kobject_put(&group->kobj); 659 return ERR_PTR(ret); 660 } 661 662 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 663 if (!group->devices_kobj) { 664 kobject_put(&group->kobj); /* triggers .release & free */ 665 return ERR_PTR(-ENOMEM); 666 } 667 668 /* 669 * The devices_kobj holds a reference on the group kobject, so 670 * as long as that exists so will the group. We can therefore 671 * use the devices_kobj for reference counting. 672 */ 673 kobject_put(&group->kobj); 674 675 ret = iommu_group_create_file(group, 676 &iommu_group_attr_reserved_regions); 677 if (ret) 678 return ERR_PTR(ret); 679 680 ret = iommu_group_create_file(group, &iommu_group_attr_type); 681 if (ret) 682 return ERR_PTR(ret); 683 684 pr_debug("Allocated group %d\n", group->id); 685 686 return group; 687 } 688 EXPORT_SYMBOL_GPL(iommu_group_alloc); 689 690 struct iommu_group *iommu_group_get_by_id(int id) 691 { 692 struct kobject *group_kobj; 693 struct iommu_group *group; 694 const char *name; 695 696 if (!iommu_group_kset) 697 return NULL; 698 699 name = kasprintf(GFP_KERNEL, "%d", id); 700 if (!name) 701 return NULL; 702 703 group_kobj = kset_find_obj(iommu_group_kset, name); 704 kfree(name); 705 706 if (!group_kobj) 707 return NULL; 708 709 group = container_of(group_kobj, struct iommu_group, kobj); 710 BUG_ON(group->id != id); 711 712 kobject_get(group->devices_kobj); 713 kobject_put(&group->kobj); 714 715 return group; 716 } 717 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 718 719 /** 720 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 721 * @group: the group 722 * 723 * iommu drivers can store data in the group for use when doing iommu 724 * operations. This function provides a way to retrieve it. Caller 725 * should hold a group reference. 726 */ 727 void *iommu_group_get_iommudata(struct iommu_group *group) 728 { 729 return group->iommu_data; 730 } 731 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 732 733 /** 734 * iommu_group_set_iommudata - set iommu_data for a group 735 * @group: the group 736 * @iommu_data: new data 737 * @release: release function for iommu_data 738 * 739 * iommu drivers can store data in the group for use when doing iommu 740 * operations. This function provides a way to set the data after 741 * the group has been allocated. Caller should hold a group reference. 742 */ 743 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 744 void (*release)(void *iommu_data)) 745 { 746 group->iommu_data = iommu_data; 747 group->iommu_data_release = release; 748 } 749 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 750 751 /** 752 * iommu_group_set_name - set name for a group 753 * @group: the group 754 * @name: name 755 * 756 * Allow iommu driver to set a name for a group. When set it will 757 * appear in a name attribute file under the group in sysfs. 758 */ 759 int iommu_group_set_name(struct iommu_group *group, const char *name) 760 { 761 int ret; 762 763 if (group->name) { 764 iommu_group_remove_file(group, &iommu_group_attr_name); 765 kfree(group->name); 766 group->name = NULL; 767 if (!name) 768 return 0; 769 } 770 771 group->name = kstrdup(name, GFP_KERNEL); 772 if (!group->name) 773 return -ENOMEM; 774 775 ret = iommu_group_create_file(group, &iommu_group_attr_name); 776 if (ret) { 777 kfree(group->name); 778 group->name = NULL; 779 return ret; 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(iommu_group_set_name); 785 786 static int iommu_create_device_direct_mappings(struct iommu_group *group, 787 struct device *dev) 788 { 789 struct iommu_domain *domain = group->default_domain; 790 struct iommu_resv_region *entry; 791 struct list_head mappings; 792 unsigned long pg_size; 793 int ret = 0; 794 795 if (!domain || !iommu_is_dma_domain(domain)) 796 return 0; 797 798 BUG_ON(!domain->pgsize_bitmap); 799 800 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 801 INIT_LIST_HEAD(&mappings); 802 803 iommu_get_resv_regions(dev, &mappings); 804 805 /* We need to consider overlapping regions for different devices */ 806 list_for_each_entry(entry, &mappings, list) { 807 dma_addr_t start, end, addr; 808 size_t map_size = 0; 809 810 start = ALIGN(entry->start, pg_size); 811 end = ALIGN(entry->start + entry->length, pg_size); 812 813 if (entry->type != IOMMU_RESV_DIRECT && 814 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 815 continue; 816 817 for (addr = start; addr <= end; addr += pg_size) { 818 phys_addr_t phys_addr; 819 820 if (addr == end) 821 goto map_end; 822 823 phys_addr = iommu_iova_to_phys(domain, addr); 824 if (!phys_addr) { 825 map_size += pg_size; 826 continue; 827 } 828 829 map_end: 830 if (map_size) { 831 ret = iommu_map(domain, addr - map_size, 832 addr - map_size, map_size, 833 entry->prot); 834 if (ret) 835 goto out; 836 map_size = 0; 837 } 838 } 839 840 } 841 842 iommu_flush_iotlb_all(domain); 843 844 out: 845 iommu_put_resv_regions(dev, &mappings); 846 847 return ret; 848 } 849 850 static bool iommu_is_attach_deferred(struct device *dev) 851 { 852 const struct iommu_ops *ops = dev_iommu_ops(dev); 853 854 if (ops->is_attach_deferred) 855 return ops->is_attach_deferred(dev); 856 857 return false; 858 } 859 860 /** 861 * iommu_group_add_device - add a device to an iommu group 862 * @group: the group into which to add the device (reference should be held) 863 * @dev: the device 864 * 865 * This function is called by an iommu driver to add a device into a 866 * group. Adding a device increments the group reference count. 867 */ 868 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 869 { 870 int ret, i = 0; 871 struct group_device *device; 872 873 device = kzalloc(sizeof(*device), GFP_KERNEL); 874 if (!device) 875 return -ENOMEM; 876 877 device->dev = dev; 878 879 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 880 if (ret) 881 goto err_free_device; 882 883 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 884 rename: 885 if (!device->name) { 886 ret = -ENOMEM; 887 goto err_remove_link; 888 } 889 890 ret = sysfs_create_link_nowarn(group->devices_kobj, 891 &dev->kobj, device->name); 892 if (ret) { 893 if (ret == -EEXIST && i >= 0) { 894 /* 895 * Account for the slim chance of collision 896 * and append an instance to the name. 897 */ 898 kfree(device->name); 899 device->name = kasprintf(GFP_KERNEL, "%s.%d", 900 kobject_name(&dev->kobj), i++); 901 goto rename; 902 } 903 goto err_free_name; 904 } 905 906 kobject_get(group->devices_kobj); 907 908 dev->iommu_group = group; 909 910 mutex_lock(&group->mutex); 911 list_add_tail(&device->list, &group->devices); 912 if (group->domain && !iommu_is_attach_deferred(dev)) 913 ret = __iommu_attach_device(group->domain, dev); 914 mutex_unlock(&group->mutex); 915 if (ret) 916 goto err_put_group; 917 918 trace_add_device_to_group(group->id, dev); 919 920 dev_info(dev, "Adding to iommu group %d\n", group->id); 921 922 return 0; 923 924 err_put_group: 925 mutex_lock(&group->mutex); 926 list_del(&device->list); 927 mutex_unlock(&group->mutex); 928 dev->iommu_group = NULL; 929 kobject_put(group->devices_kobj); 930 sysfs_remove_link(group->devices_kobj, device->name); 931 err_free_name: 932 kfree(device->name); 933 err_remove_link: 934 sysfs_remove_link(&dev->kobj, "iommu_group"); 935 err_free_device: 936 kfree(device); 937 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 938 return ret; 939 } 940 EXPORT_SYMBOL_GPL(iommu_group_add_device); 941 942 /** 943 * iommu_group_remove_device - remove a device from it's current group 944 * @dev: device to be removed 945 * 946 * This function is called by an iommu driver to remove the device from 947 * it's current group. This decrements the iommu group reference count. 948 */ 949 void iommu_group_remove_device(struct device *dev) 950 { 951 struct iommu_group *group = dev->iommu_group; 952 struct group_device *tmp_device, *device = NULL; 953 954 if (!group) 955 return; 956 957 dev_info(dev, "Removing from iommu group %d\n", group->id); 958 959 mutex_lock(&group->mutex); 960 list_for_each_entry(tmp_device, &group->devices, list) { 961 if (tmp_device->dev == dev) { 962 device = tmp_device; 963 list_del(&device->list); 964 break; 965 } 966 } 967 mutex_unlock(&group->mutex); 968 969 if (!device) 970 return; 971 972 sysfs_remove_link(group->devices_kobj, device->name); 973 sysfs_remove_link(&dev->kobj, "iommu_group"); 974 975 trace_remove_device_from_group(group->id, dev); 976 977 kfree(device->name); 978 kfree(device); 979 dev->iommu_group = NULL; 980 kobject_put(group->devices_kobj); 981 } 982 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 983 984 static int iommu_group_device_count(struct iommu_group *group) 985 { 986 struct group_device *entry; 987 int ret = 0; 988 989 list_for_each_entry(entry, &group->devices, list) 990 ret++; 991 992 return ret; 993 } 994 995 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 996 int (*fn)(struct device *, void *)) 997 { 998 struct group_device *device; 999 int ret = 0; 1000 1001 list_for_each_entry(device, &group->devices, list) { 1002 ret = fn(device->dev, data); 1003 if (ret) 1004 break; 1005 } 1006 return ret; 1007 } 1008 1009 /** 1010 * iommu_group_for_each_dev - iterate over each device in the group 1011 * @group: the group 1012 * @data: caller opaque data to be passed to callback function 1013 * @fn: caller supplied callback function 1014 * 1015 * This function is called by group users to iterate over group devices. 1016 * Callers should hold a reference count to the group during callback. 1017 * The group->mutex is held across callbacks, which will block calls to 1018 * iommu_group_add/remove_device. 1019 */ 1020 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1021 int (*fn)(struct device *, void *)) 1022 { 1023 int ret; 1024 1025 mutex_lock(&group->mutex); 1026 ret = __iommu_group_for_each_dev(group, data, fn); 1027 mutex_unlock(&group->mutex); 1028 1029 return ret; 1030 } 1031 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1032 1033 /** 1034 * iommu_group_get - Return the group for a device and increment reference 1035 * @dev: get the group that this device belongs to 1036 * 1037 * This function is called by iommu drivers and users to get the group 1038 * for the specified device. If found, the group is returned and the group 1039 * reference in incremented, else NULL. 1040 */ 1041 struct iommu_group *iommu_group_get(struct device *dev) 1042 { 1043 struct iommu_group *group = dev->iommu_group; 1044 1045 if (group) 1046 kobject_get(group->devices_kobj); 1047 1048 return group; 1049 } 1050 EXPORT_SYMBOL_GPL(iommu_group_get); 1051 1052 /** 1053 * iommu_group_ref_get - Increment reference on a group 1054 * @group: the group to use, must not be NULL 1055 * 1056 * This function is called by iommu drivers to take additional references on an 1057 * existing group. Returns the given group for convenience. 1058 */ 1059 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1060 { 1061 kobject_get(group->devices_kobj); 1062 return group; 1063 } 1064 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1065 1066 /** 1067 * iommu_group_put - Decrement group reference 1068 * @group: the group to use 1069 * 1070 * This function is called by iommu drivers and users to release the 1071 * iommu group. Once the reference count is zero, the group is released. 1072 */ 1073 void iommu_group_put(struct iommu_group *group) 1074 { 1075 if (group) 1076 kobject_put(group->devices_kobj); 1077 } 1078 EXPORT_SYMBOL_GPL(iommu_group_put); 1079 1080 /** 1081 * iommu_register_device_fault_handler() - Register a device fault handler 1082 * @dev: the device 1083 * @handler: the fault handler 1084 * @data: private data passed as argument to the handler 1085 * 1086 * When an IOMMU fault event is received, this handler gets called with the 1087 * fault event and data as argument. The handler should return 0 on success. If 1088 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1089 * complete the fault by calling iommu_page_response() with one of the following 1090 * response code: 1091 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1092 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1093 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1094 * page faults if possible. 1095 * 1096 * Return 0 if the fault handler was installed successfully, or an error. 1097 */ 1098 int iommu_register_device_fault_handler(struct device *dev, 1099 iommu_dev_fault_handler_t handler, 1100 void *data) 1101 { 1102 struct dev_iommu *param = dev->iommu; 1103 int ret = 0; 1104 1105 if (!param) 1106 return -EINVAL; 1107 1108 mutex_lock(¶m->lock); 1109 /* Only allow one fault handler registered for each device */ 1110 if (param->fault_param) { 1111 ret = -EBUSY; 1112 goto done_unlock; 1113 } 1114 1115 get_device(dev); 1116 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1117 if (!param->fault_param) { 1118 put_device(dev); 1119 ret = -ENOMEM; 1120 goto done_unlock; 1121 } 1122 param->fault_param->handler = handler; 1123 param->fault_param->data = data; 1124 mutex_init(¶m->fault_param->lock); 1125 INIT_LIST_HEAD(¶m->fault_param->faults); 1126 1127 done_unlock: 1128 mutex_unlock(¶m->lock); 1129 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1133 1134 /** 1135 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1136 * @dev: the device 1137 * 1138 * Remove the device fault handler installed with 1139 * iommu_register_device_fault_handler(). 1140 * 1141 * Return 0 on success, or an error. 1142 */ 1143 int iommu_unregister_device_fault_handler(struct device *dev) 1144 { 1145 struct dev_iommu *param = dev->iommu; 1146 int ret = 0; 1147 1148 if (!param) 1149 return -EINVAL; 1150 1151 mutex_lock(¶m->lock); 1152 1153 if (!param->fault_param) 1154 goto unlock; 1155 1156 /* we cannot unregister handler if there are pending faults */ 1157 if (!list_empty(¶m->fault_param->faults)) { 1158 ret = -EBUSY; 1159 goto unlock; 1160 } 1161 1162 kfree(param->fault_param); 1163 param->fault_param = NULL; 1164 put_device(dev); 1165 unlock: 1166 mutex_unlock(¶m->lock); 1167 1168 return ret; 1169 } 1170 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1171 1172 /** 1173 * iommu_report_device_fault() - Report fault event to device driver 1174 * @dev: the device 1175 * @evt: fault event data 1176 * 1177 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1178 * handler. When this function fails and the fault is recoverable, it is the 1179 * caller's responsibility to complete the fault. 1180 * 1181 * Return 0 on success, or an error. 1182 */ 1183 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1184 { 1185 struct dev_iommu *param = dev->iommu; 1186 struct iommu_fault_event *evt_pending = NULL; 1187 struct iommu_fault_param *fparam; 1188 int ret = 0; 1189 1190 if (!param || !evt) 1191 return -EINVAL; 1192 1193 /* we only report device fault if there is a handler registered */ 1194 mutex_lock(¶m->lock); 1195 fparam = param->fault_param; 1196 if (!fparam || !fparam->handler) { 1197 ret = -EINVAL; 1198 goto done_unlock; 1199 } 1200 1201 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1202 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1203 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1204 GFP_KERNEL); 1205 if (!evt_pending) { 1206 ret = -ENOMEM; 1207 goto done_unlock; 1208 } 1209 mutex_lock(&fparam->lock); 1210 list_add_tail(&evt_pending->list, &fparam->faults); 1211 mutex_unlock(&fparam->lock); 1212 } 1213 1214 ret = fparam->handler(&evt->fault, fparam->data); 1215 if (ret && evt_pending) { 1216 mutex_lock(&fparam->lock); 1217 list_del(&evt_pending->list); 1218 mutex_unlock(&fparam->lock); 1219 kfree(evt_pending); 1220 } 1221 done_unlock: 1222 mutex_unlock(¶m->lock); 1223 return ret; 1224 } 1225 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1226 1227 int iommu_page_response(struct device *dev, 1228 struct iommu_page_response *msg) 1229 { 1230 bool needs_pasid; 1231 int ret = -EINVAL; 1232 struct iommu_fault_event *evt; 1233 struct iommu_fault_page_request *prm; 1234 struct dev_iommu *param = dev->iommu; 1235 const struct iommu_ops *ops = dev_iommu_ops(dev); 1236 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1237 1238 if (!ops->page_response) 1239 return -ENODEV; 1240 1241 if (!param || !param->fault_param) 1242 return -EINVAL; 1243 1244 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1245 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1246 return -EINVAL; 1247 1248 /* Only send response if there is a fault report pending */ 1249 mutex_lock(¶m->fault_param->lock); 1250 if (list_empty(¶m->fault_param->faults)) { 1251 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1252 goto done_unlock; 1253 } 1254 /* 1255 * Check if we have a matching page request pending to respond, 1256 * otherwise return -EINVAL 1257 */ 1258 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1259 prm = &evt->fault.prm; 1260 if (prm->grpid != msg->grpid) 1261 continue; 1262 1263 /* 1264 * If the PASID is required, the corresponding request is 1265 * matched using the group ID, the PASID valid bit and the PASID 1266 * value. Otherwise only the group ID matches request and 1267 * response. 1268 */ 1269 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1270 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1271 continue; 1272 1273 if (!needs_pasid && has_pasid) { 1274 /* No big deal, just clear it. */ 1275 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1276 msg->pasid = 0; 1277 } 1278 1279 ret = ops->page_response(dev, evt, msg); 1280 list_del(&evt->list); 1281 kfree(evt); 1282 break; 1283 } 1284 1285 done_unlock: 1286 mutex_unlock(¶m->fault_param->lock); 1287 return ret; 1288 } 1289 EXPORT_SYMBOL_GPL(iommu_page_response); 1290 1291 /** 1292 * iommu_group_id - Return ID for a group 1293 * @group: the group to ID 1294 * 1295 * Return the unique ID for the group matching the sysfs group number. 1296 */ 1297 int iommu_group_id(struct iommu_group *group) 1298 { 1299 return group->id; 1300 } 1301 EXPORT_SYMBOL_GPL(iommu_group_id); 1302 1303 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1304 unsigned long *devfns); 1305 1306 /* 1307 * To consider a PCI device isolated, we require ACS to support Source 1308 * Validation, Request Redirection, Completer Redirection, and Upstream 1309 * Forwarding. This effectively means that devices cannot spoof their 1310 * requester ID, requests and completions cannot be redirected, and all 1311 * transactions are forwarded upstream, even as it passes through a 1312 * bridge where the target device is downstream. 1313 */ 1314 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1315 1316 /* 1317 * For multifunction devices which are not isolated from each other, find 1318 * all the other non-isolated functions and look for existing groups. For 1319 * each function, we also need to look for aliases to or from other devices 1320 * that may already have a group. 1321 */ 1322 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1323 unsigned long *devfns) 1324 { 1325 struct pci_dev *tmp = NULL; 1326 struct iommu_group *group; 1327 1328 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1329 return NULL; 1330 1331 for_each_pci_dev(tmp) { 1332 if (tmp == pdev || tmp->bus != pdev->bus || 1333 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1334 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1335 continue; 1336 1337 group = get_pci_alias_group(tmp, devfns); 1338 if (group) { 1339 pci_dev_put(tmp); 1340 return group; 1341 } 1342 } 1343 1344 return NULL; 1345 } 1346 1347 /* 1348 * Look for aliases to or from the given device for existing groups. DMA 1349 * aliases are only supported on the same bus, therefore the search 1350 * space is quite small (especially since we're really only looking at pcie 1351 * device, and therefore only expect multiple slots on the root complex or 1352 * downstream switch ports). It's conceivable though that a pair of 1353 * multifunction devices could have aliases between them that would cause a 1354 * loop. To prevent this, we use a bitmap to track where we've been. 1355 */ 1356 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1357 unsigned long *devfns) 1358 { 1359 struct pci_dev *tmp = NULL; 1360 struct iommu_group *group; 1361 1362 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1363 return NULL; 1364 1365 group = iommu_group_get(&pdev->dev); 1366 if (group) 1367 return group; 1368 1369 for_each_pci_dev(tmp) { 1370 if (tmp == pdev || tmp->bus != pdev->bus) 1371 continue; 1372 1373 /* We alias them or they alias us */ 1374 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1375 group = get_pci_alias_group(tmp, devfns); 1376 if (group) { 1377 pci_dev_put(tmp); 1378 return group; 1379 } 1380 1381 group = get_pci_function_alias_group(tmp, devfns); 1382 if (group) { 1383 pci_dev_put(tmp); 1384 return group; 1385 } 1386 } 1387 } 1388 1389 return NULL; 1390 } 1391 1392 struct group_for_pci_data { 1393 struct pci_dev *pdev; 1394 struct iommu_group *group; 1395 }; 1396 1397 /* 1398 * DMA alias iterator callback, return the last seen device. Stop and return 1399 * the IOMMU group if we find one along the way. 1400 */ 1401 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1402 { 1403 struct group_for_pci_data *data = opaque; 1404 1405 data->pdev = pdev; 1406 data->group = iommu_group_get(&pdev->dev); 1407 1408 return data->group != NULL; 1409 } 1410 1411 /* 1412 * Generic device_group call-back function. It just allocates one 1413 * iommu-group per device. 1414 */ 1415 struct iommu_group *generic_device_group(struct device *dev) 1416 { 1417 return iommu_group_alloc(); 1418 } 1419 EXPORT_SYMBOL_GPL(generic_device_group); 1420 1421 /* 1422 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1423 * to find or create an IOMMU group for a device. 1424 */ 1425 struct iommu_group *pci_device_group(struct device *dev) 1426 { 1427 struct pci_dev *pdev = to_pci_dev(dev); 1428 struct group_for_pci_data data; 1429 struct pci_bus *bus; 1430 struct iommu_group *group = NULL; 1431 u64 devfns[4] = { 0 }; 1432 1433 if (WARN_ON(!dev_is_pci(dev))) 1434 return ERR_PTR(-EINVAL); 1435 1436 /* 1437 * Find the upstream DMA alias for the device. A device must not 1438 * be aliased due to topology in order to have its own IOMMU group. 1439 * If we find an alias along the way that already belongs to a 1440 * group, use it. 1441 */ 1442 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1443 return data.group; 1444 1445 pdev = data.pdev; 1446 1447 /* 1448 * Continue upstream from the point of minimum IOMMU granularity 1449 * due to aliases to the point where devices are protected from 1450 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1451 * group, use it. 1452 */ 1453 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1454 if (!bus->self) 1455 continue; 1456 1457 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1458 break; 1459 1460 pdev = bus->self; 1461 1462 group = iommu_group_get(&pdev->dev); 1463 if (group) 1464 return group; 1465 } 1466 1467 /* 1468 * Look for existing groups on device aliases. If we alias another 1469 * device or another device aliases us, use the same group. 1470 */ 1471 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1472 if (group) 1473 return group; 1474 1475 /* 1476 * Look for existing groups on non-isolated functions on the same 1477 * slot and aliases of those funcions, if any. No need to clear 1478 * the search bitmap, the tested devfns are still valid. 1479 */ 1480 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1481 if (group) 1482 return group; 1483 1484 /* No shared group found, allocate new */ 1485 return iommu_group_alloc(); 1486 } 1487 EXPORT_SYMBOL_GPL(pci_device_group); 1488 1489 /* Get the IOMMU group for device on fsl-mc bus */ 1490 struct iommu_group *fsl_mc_device_group(struct device *dev) 1491 { 1492 struct device *cont_dev = fsl_mc_cont_dev(dev); 1493 struct iommu_group *group; 1494 1495 group = iommu_group_get(cont_dev); 1496 if (!group) 1497 group = iommu_group_alloc(); 1498 return group; 1499 } 1500 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1501 1502 static int iommu_get_def_domain_type(struct device *dev) 1503 { 1504 const struct iommu_ops *ops = dev_iommu_ops(dev); 1505 1506 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1507 return IOMMU_DOMAIN_DMA; 1508 1509 if (ops->def_domain_type) 1510 return ops->def_domain_type(dev); 1511 1512 return 0; 1513 } 1514 1515 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1516 struct iommu_group *group, 1517 unsigned int type) 1518 { 1519 struct iommu_domain *dom; 1520 1521 dom = __iommu_domain_alloc(bus, type); 1522 if (!dom && type != IOMMU_DOMAIN_DMA) { 1523 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1524 if (dom) 1525 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1526 type, group->name); 1527 } 1528 1529 if (!dom) 1530 return -ENOMEM; 1531 1532 group->default_domain = dom; 1533 if (!group->domain) 1534 group->domain = dom; 1535 return 0; 1536 } 1537 1538 static int iommu_alloc_default_domain(struct iommu_group *group, 1539 struct device *dev) 1540 { 1541 unsigned int type; 1542 1543 if (group->default_domain) 1544 return 0; 1545 1546 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1547 1548 return iommu_group_alloc_default_domain(dev->bus, group, type); 1549 } 1550 1551 /** 1552 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1553 * @dev: target device 1554 * 1555 * This function is intended to be called by IOMMU drivers and extended to 1556 * support common, bus-defined algorithms when determining or creating the 1557 * IOMMU group for a device. On success, the caller will hold a reference 1558 * to the returned IOMMU group, which will already include the provided 1559 * device. The reference should be released with iommu_group_put(). 1560 */ 1561 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1562 { 1563 const struct iommu_ops *ops = dev_iommu_ops(dev); 1564 struct iommu_group *group; 1565 int ret; 1566 1567 group = iommu_group_get(dev); 1568 if (group) 1569 return group; 1570 1571 group = ops->device_group(dev); 1572 if (WARN_ON_ONCE(group == NULL)) 1573 return ERR_PTR(-EINVAL); 1574 1575 if (IS_ERR(group)) 1576 return group; 1577 1578 ret = iommu_group_add_device(group, dev); 1579 if (ret) 1580 goto out_put_group; 1581 1582 return group; 1583 1584 out_put_group: 1585 iommu_group_put(group); 1586 1587 return ERR_PTR(ret); 1588 } 1589 1590 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1591 { 1592 return group->default_domain; 1593 } 1594 1595 static int probe_iommu_group(struct device *dev, void *data) 1596 { 1597 struct list_head *group_list = data; 1598 struct iommu_group *group; 1599 int ret; 1600 1601 /* Device is probed already if in a group */ 1602 group = iommu_group_get(dev); 1603 if (group) { 1604 iommu_group_put(group); 1605 return 0; 1606 } 1607 1608 ret = __iommu_probe_device(dev, group_list); 1609 if (ret == -ENODEV) 1610 ret = 0; 1611 1612 return ret; 1613 } 1614 1615 static int remove_iommu_group(struct device *dev, void *data) 1616 { 1617 iommu_release_device(dev); 1618 1619 return 0; 1620 } 1621 1622 static int iommu_bus_notifier(struct notifier_block *nb, 1623 unsigned long action, void *data) 1624 { 1625 struct device *dev = data; 1626 1627 if (action == BUS_NOTIFY_ADD_DEVICE) { 1628 int ret; 1629 1630 ret = iommu_probe_device(dev); 1631 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1632 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1633 iommu_release_device(dev); 1634 return NOTIFY_OK; 1635 } 1636 1637 return 0; 1638 } 1639 1640 struct __group_domain_type { 1641 struct device *dev; 1642 unsigned int type; 1643 }; 1644 1645 static int probe_get_default_domain_type(struct device *dev, void *data) 1646 { 1647 struct __group_domain_type *gtype = data; 1648 unsigned int type = iommu_get_def_domain_type(dev); 1649 1650 if (type) { 1651 if (gtype->type && gtype->type != type) { 1652 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1653 iommu_domain_type_str(type), 1654 dev_name(gtype->dev), 1655 iommu_domain_type_str(gtype->type)); 1656 gtype->type = 0; 1657 } 1658 1659 if (!gtype->dev) { 1660 gtype->dev = dev; 1661 gtype->type = type; 1662 } 1663 } 1664 1665 return 0; 1666 } 1667 1668 static void probe_alloc_default_domain(struct bus_type *bus, 1669 struct iommu_group *group) 1670 { 1671 struct __group_domain_type gtype; 1672 1673 memset(>ype, 0, sizeof(gtype)); 1674 1675 /* Ask for default domain requirements of all devices in the group */ 1676 __iommu_group_for_each_dev(group, >ype, 1677 probe_get_default_domain_type); 1678 1679 if (!gtype.type) 1680 gtype.type = iommu_def_domain_type; 1681 1682 iommu_group_alloc_default_domain(bus, group, gtype.type); 1683 1684 } 1685 1686 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1687 { 1688 struct iommu_domain *domain = data; 1689 int ret = 0; 1690 1691 if (!iommu_is_attach_deferred(dev)) 1692 ret = __iommu_attach_device(domain, dev); 1693 1694 return ret; 1695 } 1696 1697 static int __iommu_group_dma_attach(struct iommu_group *group) 1698 { 1699 return __iommu_group_for_each_dev(group, group->default_domain, 1700 iommu_group_do_dma_attach); 1701 } 1702 1703 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1704 { 1705 const struct iommu_ops *ops = dev_iommu_ops(dev); 1706 1707 if (ops->probe_finalize) 1708 ops->probe_finalize(dev); 1709 1710 return 0; 1711 } 1712 1713 static void __iommu_group_dma_finalize(struct iommu_group *group) 1714 { 1715 __iommu_group_for_each_dev(group, group->default_domain, 1716 iommu_group_do_probe_finalize); 1717 } 1718 1719 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1720 { 1721 struct iommu_group *group = data; 1722 1723 iommu_create_device_direct_mappings(group, dev); 1724 1725 return 0; 1726 } 1727 1728 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1729 { 1730 return __iommu_group_for_each_dev(group, group, 1731 iommu_do_create_direct_mappings); 1732 } 1733 1734 int bus_iommu_probe(struct bus_type *bus) 1735 { 1736 struct iommu_group *group, *next; 1737 LIST_HEAD(group_list); 1738 int ret; 1739 1740 /* 1741 * This code-path does not allocate the default domain when 1742 * creating the iommu group, so do it after the groups are 1743 * created. 1744 */ 1745 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1746 if (ret) 1747 return ret; 1748 1749 list_for_each_entry_safe(group, next, &group_list, entry) { 1750 /* Remove item from the list */ 1751 list_del_init(&group->entry); 1752 1753 mutex_lock(&group->mutex); 1754 1755 /* Try to allocate default domain */ 1756 probe_alloc_default_domain(bus, group); 1757 1758 if (!group->default_domain) { 1759 mutex_unlock(&group->mutex); 1760 continue; 1761 } 1762 1763 iommu_group_create_direct_mappings(group); 1764 1765 ret = __iommu_group_dma_attach(group); 1766 1767 mutex_unlock(&group->mutex); 1768 1769 if (ret) 1770 break; 1771 1772 __iommu_group_dma_finalize(group); 1773 } 1774 1775 return ret; 1776 } 1777 1778 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1779 { 1780 struct notifier_block *nb; 1781 int err; 1782 1783 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1784 if (!nb) 1785 return -ENOMEM; 1786 1787 nb->notifier_call = iommu_bus_notifier; 1788 1789 err = bus_register_notifier(bus, nb); 1790 if (err) 1791 goto out_free; 1792 1793 err = bus_iommu_probe(bus); 1794 if (err) 1795 goto out_err; 1796 1797 1798 return 0; 1799 1800 out_err: 1801 /* Clean up */ 1802 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1803 bus_unregister_notifier(bus, nb); 1804 1805 out_free: 1806 kfree(nb); 1807 1808 return err; 1809 } 1810 1811 /** 1812 * bus_set_iommu - set iommu-callbacks for the bus 1813 * @bus: bus. 1814 * @ops: the callbacks provided by the iommu-driver 1815 * 1816 * This function is called by an iommu driver to set the iommu methods 1817 * used for a particular bus. Drivers for devices on that bus can use 1818 * the iommu-api after these ops are registered. 1819 * This special function is needed because IOMMUs are usually devices on 1820 * the bus itself, so the iommu drivers are not initialized when the bus 1821 * is set up. With this function the iommu-driver can set the iommu-ops 1822 * afterwards. 1823 */ 1824 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1825 { 1826 int err; 1827 1828 if (ops == NULL) { 1829 bus->iommu_ops = NULL; 1830 return 0; 1831 } 1832 1833 if (bus->iommu_ops != NULL) 1834 return -EBUSY; 1835 1836 bus->iommu_ops = ops; 1837 1838 /* Do IOMMU specific setup for this bus-type */ 1839 err = iommu_bus_init(bus, ops); 1840 if (err) 1841 bus->iommu_ops = NULL; 1842 1843 return err; 1844 } 1845 EXPORT_SYMBOL_GPL(bus_set_iommu); 1846 1847 bool iommu_present(struct bus_type *bus) 1848 { 1849 return bus->iommu_ops != NULL; 1850 } 1851 EXPORT_SYMBOL_GPL(iommu_present); 1852 1853 /** 1854 * device_iommu_capable() - check for a general IOMMU capability 1855 * @dev: device to which the capability would be relevant, if available 1856 * @cap: IOMMU capability 1857 * 1858 * Return: true if an IOMMU is present and supports the given capability 1859 * for the given device, otherwise false. 1860 */ 1861 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1862 { 1863 const struct iommu_ops *ops; 1864 1865 if (!dev->iommu || !dev->iommu->iommu_dev) 1866 return false; 1867 1868 ops = dev_iommu_ops(dev); 1869 if (!ops->capable) 1870 return false; 1871 1872 return ops->capable(cap); 1873 } 1874 EXPORT_SYMBOL_GPL(device_iommu_capable); 1875 1876 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1877 { 1878 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1879 return false; 1880 1881 return bus->iommu_ops->capable(cap); 1882 } 1883 EXPORT_SYMBOL_GPL(iommu_capable); 1884 1885 /** 1886 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1887 * @domain: iommu domain 1888 * @handler: fault handler 1889 * @token: user data, will be passed back to the fault handler 1890 * 1891 * This function should be used by IOMMU users which want to be notified 1892 * whenever an IOMMU fault happens. 1893 * 1894 * The fault handler itself should return 0 on success, and an appropriate 1895 * error code otherwise. 1896 */ 1897 void iommu_set_fault_handler(struct iommu_domain *domain, 1898 iommu_fault_handler_t handler, 1899 void *token) 1900 { 1901 BUG_ON(!domain); 1902 1903 domain->handler = handler; 1904 domain->handler_token = token; 1905 } 1906 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1907 1908 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1909 unsigned type) 1910 { 1911 struct iommu_domain *domain; 1912 1913 if (bus == NULL || bus->iommu_ops == NULL) 1914 return NULL; 1915 1916 domain = bus->iommu_ops->domain_alloc(type); 1917 if (!domain) 1918 return NULL; 1919 1920 domain->type = type; 1921 /* Assume all sizes by default; the driver may override this later */ 1922 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1923 if (!domain->ops) 1924 domain->ops = bus->iommu_ops->default_domain_ops; 1925 1926 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 1927 iommu_domain_free(domain); 1928 domain = NULL; 1929 } 1930 return domain; 1931 } 1932 1933 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1934 { 1935 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1936 } 1937 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1938 1939 void iommu_domain_free(struct iommu_domain *domain) 1940 { 1941 iommu_put_dma_cookie(domain); 1942 domain->ops->free(domain); 1943 } 1944 EXPORT_SYMBOL_GPL(iommu_domain_free); 1945 1946 /* 1947 * Put the group's domain back to the appropriate core-owned domain - either the 1948 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 1949 */ 1950 static void __iommu_group_set_core_domain(struct iommu_group *group) 1951 { 1952 struct iommu_domain *new_domain; 1953 int ret; 1954 1955 if (group->owner) 1956 new_domain = group->blocking_domain; 1957 else 1958 new_domain = group->default_domain; 1959 1960 ret = __iommu_group_set_domain(group, new_domain); 1961 WARN(ret, "iommu driver failed to attach the default/blocking domain"); 1962 } 1963 1964 static int __iommu_attach_device(struct iommu_domain *domain, 1965 struct device *dev) 1966 { 1967 int ret; 1968 1969 if (unlikely(domain->ops->attach_dev == NULL)) 1970 return -ENODEV; 1971 1972 ret = domain->ops->attach_dev(domain, dev); 1973 if (!ret) 1974 trace_attach_device_to_domain(dev); 1975 return ret; 1976 } 1977 1978 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1979 { 1980 struct iommu_group *group; 1981 int ret; 1982 1983 group = iommu_group_get(dev); 1984 if (!group) 1985 return -ENODEV; 1986 1987 /* 1988 * Lock the group to make sure the device-count doesn't 1989 * change while we are attaching 1990 */ 1991 mutex_lock(&group->mutex); 1992 ret = -EINVAL; 1993 if (iommu_group_device_count(group) != 1) 1994 goto out_unlock; 1995 1996 ret = __iommu_attach_group(domain, group); 1997 1998 out_unlock: 1999 mutex_unlock(&group->mutex); 2000 iommu_group_put(group); 2001 2002 return ret; 2003 } 2004 EXPORT_SYMBOL_GPL(iommu_attach_device); 2005 2006 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2007 { 2008 if (iommu_is_attach_deferred(dev)) 2009 return __iommu_attach_device(domain, dev); 2010 2011 return 0; 2012 } 2013 2014 static void __iommu_detach_device(struct iommu_domain *domain, 2015 struct device *dev) 2016 { 2017 if (iommu_is_attach_deferred(dev)) 2018 return; 2019 2020 domain->ops->detach_dev(domain, dev); 2021 trace_detach_device_from_domain(dev); 2022 } 2023 2024 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2025 { 2026 struct iommu_group *group; 2027 2028 group = iommu_group_get(dev); 2029 if (!group) 2030 return; 2031 2032 mutex_lock(&group->mutex); 2033 if (WARN_ON(domain != group->domain) || 2034 WARN_ON(iommu_group_device_count(group) != 1)) 2035 goto out_unlock; 2036 __iommu_group_set_core_domain(group); 2037 2038 out_unlock: 2039 mutex_unlock(&group->mutex); 2040 iommu_group_put(group); 2041 } 2042 EXPORT_SYMBOL_GPL(iommu_detach_device); 2043 2044 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2045 { 2046 struct iommu_domain *domain; 2047 struct iommu_group *group; 2048 2049 group = iommu_group_get(dev); 2050 if (!group) 2051 return NULL; 2052 2053 domain = group->domain; 2054 2055 iommu_group_put(group); 2056 2057 return domain; 2058 } 2059 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2060 2061 /* 2062 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2063 * guarantees that the group and its default domain are valid and correct. 2064 */ 2065 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2066 { 2067 return dev->iommu_group->default_domain; 2068 } 2069 2070 /* 2071 * IOMMU groups are really the natural working unit of the IOMMU, but 2072 * the IOMMU API works on domains and devices. Bridge that gap by 2073 * iterating over the devices in a group. Ideally we'd have a single 2074 * device which represents the requestor ID of the group, but we also 2075 * allow IOMMU drivers to create policy defined minimum sets, where 2076 * the physical hardware may be able to distiguish members, but we 2077 * wish to group them at a higher level (ex. untrusted multi-function 2078 * PCI devices). Thus we attach each device. 2079 */ 2080 static int iommu_group_do_attach_device(struct device *dev, void *data) 2081 { 2082 struct iommu_domain *domain = data; 2083 2084 return __iommu_attach_device(domain, dev); 2085 } 2086 2087 static int __iommu_attach_group(struct iommu_domain *domain, 2088 struct iommu_group *group) 2089 { 2090 int ret; 2091 2092 if (group->domain && group->domain != group->default_domain && 2093 group->domain != group->blocking_domain) 2094 return -EBUSY; 2095 2096 ret = __iommu_group_for_each_dev(group, domain, 2097 iommu_group_do_attach_device); 2098 if (ret == 0) 2099 group->domain = domain; 2100 2101 return ret; 2102 } 2103 2104 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2105 { 2106 int ret; 2107 2108 mutex_lock(&group->mutex); 2109 ret = __iommu_attach_group(domain, group); 2110 mutex_unlock(&group->mutex); 2111 2112 return ret; 2113 } 2114 EXPORT_SYMBOL_GPL(iommu_attach_group); 2115 2116 static int iommu_group_do_detach_device(struct device *dev, void *data) 2117 { 2118 struct iommu_domain *domain = data; 2119 2120 __iommu_detach_device(domain, dev); 2121 2122 return 0; 2123 } 2124 2125 static int __iommu_group_set_domain(struct iommu_group *group, 2126 struct iommu_domain *new_domain) 2127 { 2128 int ret; 2129 2130 if (group->domain == new_domain) 2131 return 0; 2132 2133 /* 2134 * New drivers should support default domains and so the detach_dev() op 2135 * will never be called. Otherwise the NULL domain represents some 2136 * platform specific behavior. 2137 */ 2138 if (!new_domain) { 2139 if (WARN_ON(!group->domain->ops->detach_dev)) 2140 return -EINVAL; 2141 __iommu_group_for_each_dev(group, group->domain, 2142 iommu_group_do_detach_device); 2143 group->domain = NULL; 2144 return 0; 2145 } 2146 2147 /* 2148 * Changing the domain is done by calling attach_dev() on the new 2149 * domain. This switch does not have to be atomic and DMA can be 2150 * discarded during the transition. DMA must only be able to access 2151 * either new_domain or group->domain, never something else. 2152 * 2153 * Note that this is called in error unwind paths, attaching to a 2154 * domain that has already been attached cannot fail. 2155 */ 2156 ret = __iommu_group_for_each_dev(group, new_domain, 2157 iommu_group_do_attach_device); 2158 if (ret) 2159 return ret; 2160 group->domain = new_domain; 2161 return 0; 2162 } 2163 2164 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2165 { 2166 mutex_lock(&group->mutex); 2167 __iommu_group_set_core_domain(group); 2168 mutex_unlock(&group->mutex); 2169 } 2170 EXPORT_SYMBOL_GPL(iommu_detach_group); 2171 2172 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2173 { 2174 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2175 return iova; 2176 2177 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2178 return 0; 2179 2180 return domain->ops->iova_to_phys(domain, iova); 2181 } 2182 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2183 2184 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2185 phys_addr_t paddr, size_t size, size_t *count) 2186 { 2187 unsigned int pgsize_idx, pgsize_idx_next; 2188 unsigned long pgsizes; 2189 size_t offset, pgsize, pgsize_next; 2190 unsigned long addr_merge = paddr | iova; 2191 2192 /* Page sizes supported by the hardware and small enough for @size */ 2193 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2194 2195 /* Constrain the page sizes further based on the maximum alignment */ 2196 if (likely(addr_merge)) 2197 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2198 2199 /* Make sure we have at least one suitable page size */ 2200 BUG_ON(!pgsizes); 2201 2202 /* Pick the biggest page size remaining */ 2203 pgsize_idx = __fls(pgsizes); 2204 pgsize = BIT(pgsize_idx); 2205 if (!count) 2206 return pgsize; 2207 2208 /* Find the next biggest support page size, if it exists */ 2209 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2210 if (!pgsizes) 2211 goto out_set_count; 2212 2213 pgsize_idx_next = __ffs(pgsizes); 2214 pgsize_next = BIT(pgsize_idx_next); 2215 2216 /* 2217 * There's no point trying a bigger page size unless the virtual 2218 * and physical addresses are similarly offset within the larger page. 2219 */ 2220 if ((iova ^ paddr) & (pgsize_next - 1)) 2221 goto out_set_count; 2222 2223 /* Calculate the offset to the next page size alignment boundary */ 2224 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2225 2226 /* 2227 * If size is big enough to accommodate the larger page, reduce 2228 * the number of smaller pages. 2229 */ 2230 if (offset + pgsize_next <= size) 2231 size = offset; 2232 2233 out_set_count: 2234 *count = size >> pgsize_idx; 2235 return pgsize; 2236 } 2237 2238 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2239 phys_addr_t paddr, size_t size, int prot, 2240 gfp_t gfp, size_t *mapped) 2241 { 2242 const struct iommu_domain_ops *ops = domain->ops; 2243 size_t pgsize, count; 2244 int ret; 2245 2246 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2247 2248 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2249 iova, &paddr, pgsize, count); 2250 2251 if (ops->map_pages) { 2252 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2253 gfp, mapped); 2254 } else { 2255 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2256 *mapped = ret ? 0 : pgsize; 2257 } 2258 2259 return ret; 2260 } 2261 2262 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2263 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2264 { 2265 const struct iommu_domain_ops *ops = domain->ops; 2266 unsigned long orig_iova = iova; 2267 unsigned int min_pagesz; 2268 size_t orig_size = size; 2269 phys_addr_t orig_paddr = paddr; 2270 int ret = 0; 2271 2272 if (unlikely(!(ops->map || ops->map_pages) || 2273 domain->pgsize_bitmap == 0UL)) 2274 return -ENODEV; 2275 2276 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2277 return -EINVAL; 2278 2279 /* find out the minimum page size supported */ 2280 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2281 2282 /* 2283 * both the virtual address and the physical one, as well as 2284 * the size of the mapping, must be aligned (at least) to the 2285 * size of the smallest page supported by the hardware 2286 */ 2287 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2288 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2289 iova, &paddr, size, min_pagesz); 2290 return -EINVAL; 2291 } 2292 2293 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2294 2295 while (size) { 2296 size_t mapped = 0; 2297 2298 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2299 &mapped); 2300 /* 2301 * Some pages may have been mapped, even if an error occurred, 2302 * so we should account for those so they can be unmapped. 2303 */ 2304 size -= mapped; 2305 2306 if (ret) 2307 break; 2308 2309 iova += mapped; 2310 paddr += mapped; 2311 } 2312 2313 /* unroll mapping in case something went wrong */ 2314 if (ret) 2315 iommu_unmap(domain, orig_iova, orig_size - size); 2316 else 2317 trace_map(orig_iova, orig_paddr, orig_size); 2318 2319 return ret; 2320 } 2321 2322 static int _iommu_map(struct iommu_domain *domain, unsigned long iova, 2323 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2324 { 2325 const struct iommu_domain_ops *ops = domain->ops; 2326 int ret; 2327 2328 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2329 if (ret == 0 && ops->iotlb_sync_map) 2330 ops->iotlb_sync_map(domain, iova, size); 2331 2332 return ret; 2333 } 2334 2335 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2336 phys_addr_t paddr, size_t size, int prot) 2337 { 2338 might_sleep(); 2339 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2340 } 2341 EXPORT_SYMBOL_GPL(iommu_map); 2342 2343 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2344 phys_addr_t paddr, size_t size, int prot) 2345 { 2346 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2347 } 2348 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2349 2350 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2351 unsigned long iova, size_t size, 2352 struct iommu_iotlb_gather *iotlb_gather) 2353 { 2354 const struct iommu_domain_ops *ops = domain->ops; 2355 size_t pgsize, count; 2356 2357 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2358 return ops->unmap_pages ? 2359 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2360 ops->unmap(domain, iova, pgsize, iotlb_gather); 2361 } 2362 2363 static size_t __iommu_unmap(struct iommu_domain *domain, 2364 unsigned long iova, size_t size, 2365 struct iommu_iotlb_gather *iotlb_gather) 2366 { 2367 const struct iommu_domain_ops *ops = domain->ops; 2368 size_t unmapped_page, unmapped = 0; 2369 unsigned long orig_iova = iova; 2370 unsigned int min_pagesz; 2371 2372 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2373 domain->pgsize_bitmap == 0UL)) 2374 return 0; 2375 2376 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2377 return 0; 2378 2379 /* find out the minimum page size supported */ 2380 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2381 2382 /* 2383 * The virtual address, as well as the size of the mapping, must be 2384 * aligned (at least) to the size of the smallest page supported 2385 * by the hardware 2386 */ 2387 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2388 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2389 iova, size, min_pagesz); 2390 return 0; 2391 } 2392 2393 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2394 2395 /* 2396 * Keep iterating until we either unmap 'size' bytes (or more) 2397 * or we hit an area that isn't mapped. 2398 */ 2399 while (unmapped < size) { 2400 unmapped_page = __iommu_unmap_pages(domain, iova, 2401 size - unmapped, 2402 iotlb_gather); 2403 if (!unmapped_page) 2404 break; 2405 2406 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2407 iova, unmapped_page); 2408 2409 iova += unmapped_page; 2410 unmapped += unmapped_page; 2411 } 2412 2413 trace_unmap(orig_iova, size, unmapped); 2414 return unmapped; 2415 } 2416 2417 size_t iommu_unmap(struct iommu_domain *domain, 2418 unsigned long iova, size_t size) 2419 { 2420 struct iommu_iotlb_gather iotlb_gather; 2421 size_t ret; 2422 2423 iommu_iotlb_gather_init(&iotlb_gather); 2424 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2425 iommu_iotlb_sync(domain, &iotlb_gather); 2426 2427 return ret; 2428 } 2429 EXPORT_SYMBOL_GPL(iommu_unmap); 2430 2431 size_t iommu_unmap_fast(struct iommu_domain *domain, 2432 unsigned long iova, size_t size, 2433 struct iommu_iotlb_gather *iotlb_gather) 2434 { 2435 return __iommu_unmap(domain, iova, size, iotlb_gather); 2436 } 2437 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2438 2439 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2440 struct scatterlist *sg, unsigned int nents, int prot, 2441 gfp_t gfp) 2442 { 2443 const struct iommu_domain_ops *ops = domain->ops; 2444 size_t len = 0, mapped = 0; 2445 phys_addr_t start; 2446 unsigned int i = 0; 2447 int ret; 2448 2449 while (i <= nents) { 2450 phys_addr_t s_phys = sg_phys(sg); 2451 2452 if (len && s_phys != start + len) { 2453 ret = __iommu_map(domain, iova + mapped, start, 2454 len, prot, gfp); 2455 2456 if (ret) 2457 goto out_err; 2458 2459 mapped += len; 2460 len = 0; 2461 } 2462 2463 if (sg_is_dma_bus_address(sg)) 2464 goto next; 2465 2466 if (len) { 2467 len += sg->length; 2468 } else { 2469 len = sg->length; 2470 start = s_phys; 2471 } 2472 2473 next: 2474 if (++i < nents) 2475 sg = sg_next(sg); 2476 } 2477 2478 if (ops->iotlb_sync_map) 2479 ops->iotlb_sync_map(domain, iova, mapped); 2480 return mapped; 2481 2482 out_err: 2483 /* undo mappings already done */ 2484 iommu_unmap(domain, iova, mapped); 2485 2486 return ret; 2487 } 2488 2489 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2490 struct scatterlist *sg, unsigned int nents, int prot) 2491 { 2492 might_sleep(); 2493 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2494 } 2495 EXPORT_SYMBOL_GPL(iommu_map_sg); 2496 2497 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2498 struct scatterlist *sg, unsigned int nents, int prot) 2499 { 2500 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2501 } 2502 2503 /** 2504 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2505 * @domain: the iommu domain where the fault has happened 2506 * @dev: the device where the fault has happened 2507 * @iova: the faulting address 2508 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2509 * 2510 * This function should be called by the low-level IOMMU implementations 2511 * whenever IOMMU faults happen, to allow high-level users, that are 2512 * interested in such events, to know about them. 2513 * 2514 * This event may be useful for several possible use cases: 2515 * - mere logging of the event 2516 * - dynamic TLB/PTE loading 2517 * - if restarting of the faulting device is required 2518 * 2519 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2520 * PTE/TLB loading will one day be supported, implementations will be able 2521 * to tell whether it succeeded or not according to this return value). 2522 * 2523 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2524 * (though fault handlers can also return -ENOSYS, in case they want to 2525 * elicit the default behavior of the IOMMU drivers). 2526 */ 2527 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2528 unsigned long iova, int flags) 2529 { 2530 int ret = -ENOSYS; 2531 2532 /* 2533 * if upper layers showed interest and installed a fault handler, 2534 * invoke it. 2535 */ 2536 if (domain->handler) 2537 ret = domain->handler(domain, dev, iova, flags, 2538 domain->handler_token); 2539 2540 trace_io_page_fault(dev, iova, flags); 2541 return ret; 2542 } 2543 EXPORT_SYMBOL_GPL(report_iommu_fault); 2544 2545 static int __init iommu_init(void) 2546 { 2547 iommu_group_kset = kset_create_and_add("iommu_groups", 2548 NULL, kernel_kobj); 2549 BUG_ON(!iommu_group_kset); 2550 2551 iommu_debugfs_setup(); 2552 2553 return 0; 2554 } 2555 core_initcall(iommu_init); 2556 2557 int iommu_enable_nesting(struct iommu_domain *domain) 2558 { 2559 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2560 return -EINVAL; 2561 if (!domain->ops->enable_nesting) 2562 return -EINVAL; 2563 return domain->ops->enable_nesting(domain); 2564 } 2565 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2566 2567 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2568 unsigned long quirk) 2569 { 2570 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2571 return -EINVAL; 2572 if (!domain->ops->set_pgtable_quirks) 2573 return -EINVAL; 2574 return domain->ops->set_pgtable_quirks(domain, quirk); 2575 } 2576 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2577 2578 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2579 { 2580 const struct iommu_ops *ops = dev_iommu_ops(dev); 2581 2582 if (ops->get_resv_regions) 2583 ops->get_resv_regions(dev, list); 2584 } 2585 2586 /** 2587 * iommu_put_resv_regions - release resered regions 2588 * @dev: device for which to free reserved regions 2589 * @list: reserved region list for device 2590 * 2591 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2592 */ 2593 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2594 { 2595 struct iommu_resv_region *entry, *next; 2596 2597 list_for_each_entry_safe(entry, next, list, list) { 2598 if (entry->free) 2599 entry->free(dev, entry); 2600 else 2601 kfree(entry); 2602 } 2603 } 2604 EXPORT_SYMBOL(iommu_put_resv_regions); 2605 2606 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2607 size_t length, int prot, 2608 enum iommu_resv_type type) 2609 { 2610 struct iommu_resv_region *region; 2611 2612 region = kzalloc(sizeof(*region), GFP_KERNEL); 2613 if (!region) 2614 return NULL; 2615 2616 INIT_LIST_HEAD(®ion->list); 2617 region->start = start; 2618 region->length = length; 2619 region->prot = prot; 2620 region->type = type; 2621 return region; 2622 } 2623 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2624 2625 void iommu_set_default_passthrough(bool cmd_line) 2626 { 2627 if (cmd_line) 2628 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2629 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2630 } 2631 2632 void iommu_set_default_translated(bool cmd_line) 2633 { 2634 if (cmd_line) 2635 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2636 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2637 } 2638 2639 bool iommu_default_passthrough(void) 2640 { 2641 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2642 } 2643 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2644 2645 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2646 { 2647 const struct iommu_ops *ops = NULL; 2648 struct iommu_device *iommu; 2649 2650 spin_lock(&iommu_device_lock); 2651 list_for_each_entry(iommu, &iommu_device_list, list) 2652 if (iommu->fwnode == fwnode) { 2653 ops = iommu->ops; 2654 break; 2655 } 2656 spin_unlock(&iommu_device_lock); 2657 return ops; 2658 } 2659 2660 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2661 const struct iommu_ops *ops) 2662 { 2663 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2664 2665 if (fwspec) 2666 return ops == fwspec->ops ? 0 : -EINVAL; 2667 2668 if (!dev_iommu_get(dev)) 2669 return -ENOMEM; 2670 2671 /* Preallocate for the overwhelmingly common case of 1 ID */ 2672 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2673 if (!fwspec) 2674 return -ENOMEM; 2675 2676 of_node_get(to_of_node(iommu_fwnode)); 2677 fwspec->iommu_fwnode = iommu_fwnode; 2678 fwspec->ops = ops; 2679 dev_iommu_fwspec_set(dev, fwspec); 2680 return 0; 2681 } 2682 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2683 2684 void iommu_fwspec_free(struct device *dev) 2685 { 2686 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2687 2688 if (fwspec) { 2689 fwnode_handle_put(fwspec->iommu_fwnode); 2690 kfree(fwspec); 2691 dev_iommu_fwspec_set(dev, NULL); 2692 } 2693 } 2694 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2695 2696 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2697 { 2698 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2699 int i, new_num; 2700 2701 if (!fwspec) 2702 return -EINVAL; 2703 2704 new_num = fwspec->num_ids + num_ids; 2705 if (new_num > 1) { 2706 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2707 GFP_KERNEL); 2708 if (!fwspec) 2709 return -ENOMEM; 2710 2711 dev_iommu_fwspec_set(dev, fwspec); 2712 } 2713 2714 for (i = 0; i < num_ids; i++) 2715 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2716 2717 fwspec->num_ids = new_num; 2718 return 0; 2719 } 2720 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2721 2722 /* 2723 * Per device IOMMU features. 2724 */ 2725 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2726 { 2727 if (dev->iommu && dev->iommu->iommu_dev) { 2728 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2729 2730 if (ops->dev_enable_feat) 2731 return ops->dev_enable_feat(dev, feat); 2732 } 2733 2734 return -ENODEV; 2735 } 2736 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2737 2738 /* 2739 * The device drivers should do the necessary cleanups before calling this. 2740 */ 2741 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2742 { 2743 if (dev->iommu && dev->iommu->iommu_dev) { 2744 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2745 2746 if (ops->dev_disable_feat) 2747 return ops->dev_disable_feat(dev, feat); 2748 } 2749 2750 return -EBUSY; 2751 } 2752 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2753 2754 /** 2755 * iommu_sva_bind_device() - Bind a process address space to a device 2756 * @dev: the device 2757 * @mm: the mm to bind, caller must hold a reference to it 2758 * @drvdata: opaque data pointer to pass to bind callback 2759 * 2760 * Create a bond between device and address space, allowing the device to access 2761 * the mm using the returned PASID. If a bond already exists between @device and 2762 * @mm, it is returned and an additional reference is taken. Caller must call 2763 * iommu_sva_unbind_device() to release each reference. 2764 * 2765 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2766 * initialize the required SVA features. 2767 * 2768 * On error, returns an ERR_PTR value. 2769 */ 2770 struct iommu_sva * 2771 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2772 { 2773 struct iommu_group *group; 2774 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2775 const struct iommu_ops *ops = dev_iommu_ops(dev); 2776 2777 if (!ops->sva_bind) 2778 return ERR_PTR(-ENODEV); 2779 2780 group = iommu_group_get(dev); 2781 if (!group) 2782 return ERR_PTR(-ENODEV); 2783 2784 /* Ensure device count and domain don't change while we're binding */ 2785 mutex_lock(&group->mutex); 2786 2787 /* 2788 * To keep things simple, SVA currently doesn't support IOMMU groups 2789 * with more than one device. Existing SVA-capable systems are not 2790 * affected by the problems that required IOMMU groups (lack of ACS 2791 * isolation, device ID aliasing and other hardware issues). 2792 */ 2793 if (iommu_group_device_count(group) != 1) 2794 goto out_unlock; 2795 2796 handle = ops->sva_bind(dev, mm, drvdata); 2797 2798 out_unlock: 2799 mutex_unlock(&group->mutex); 2800 iommu_group_put(group); 2801 2802 return handle; 2803 } 2804 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2805 2806 /** 2807 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2808 * @handle: the handle returned by iommu_sva_bind_device() 2809 * 2810 * Put reference to a bond between device and address space. The device should 2811 * not be issuing any more transaction for this PASID. All outstanding page 2812 * requests for this PASID must have been flushed to the IOMMU. 2813 */ 2814 void iommu_sva_unbind_device(struct iommu_sva *handle) 2815 { 2816 struct iommu_group *group; 2817 struct device *dev = handle->dev; 2818 const struct iommu_ops *ops = dev_iommu_ops(dev); 2819 2820 if (!ops->sva_unbind) 2821 return; 2822 2823 group = iommu_group_get(dev); 2824 if (!group) 2825 return; 2826 2827 mutex_lock(&group->mutex); 2828 ops->sva_unbind(handle); 2829 mutex_unlock(&group->mutex); 2830 2831 iommu_group_put(group); 2832 } 2833 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2834 2835 u32 iommu_sva_get_pasid(struct iommu_sva *handle) 2836 { 2837 const struct iommu_ops *ops = dev_iommu_ops(handle->dev); 2838 2839 if (!ops->sva_get_pasid) 2840 return IOMMU_PASID_INVALID; 2841 2842 return ops->sva_get_pasid(handle); 2843 } 2844 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2845 2846 /* 2847 * Changes the default domain of an iommu group that has *only* one device 2848 * 2849 * @group: The group for which the default domain should be changed 2850 * @prev_dev: The device in the group (this is used to make sure that the device 2851 * hasn't changed after the caller has called this function) 2852 * @type: The type of the new default domain that gets associated with the group 2853 * 2854 * Returns 0 on success and error code on failure 2855 * 2856 * Note: 2857 * 1. Presently, this function is called only when user requests to change the 2858 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 2859 * Please take a closer look if intended to use for other purposes. 2860 */ 2861 static int iommu_change_dev_def_domain(struct iommu_group *group, 2862 struct device *prev_dev, int type) 2863 { 2864 struct iommu_domain *prev_dom; 2865 struct group_device *grp_dev; 2866 int ret, dev_def_dom; 2867 struct device *dev; 2868 2869 mutex_lock(&group->mutex); 2870 2871 if (group->default_domain != group->domain) { 2872 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n"); 2873 ret = -EBUSY; 2874 goto out; 2875 } 2876 2877 /* 2878 * iommu group wasn't locked while acquiring device lock in 2879 * iommu_group_store_type(). So, make sure that the device count hasn't 2880 * changed while acquiring device lock. 2881 * 2882 * Changing default domain of an iommu group with two or more devices 2883 * isn't supported because there could be a potential deadlock. Consider 2884 * the following scenario. T1 is trying to acquire device locks of all 2885 * the devices in the group and before it could acquire all of them, 2886 * there could be another thread T2 (from different sub-system and use 2887 * case) that has already acquired some of the device locks and might be 2888 * waiting for T1 to release other device locks. 2889 */ 2890 if (iommu_group_device_count(group) != 1) { 2891 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n"); 2892 ret = -EINVAL; 2893 goto out; 2894 } 2895 2896 /* Since group has only one device */ 2897 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2898 dev = grp_dev->dev; 2899 2900 if (prev_dev != dev) { 2901 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n"); 2902 ret = -EBUSY; 2903 goto out; 2904 } 2905 2906 prev_dom = group->default_domain; 2907 if (!prev_dom) { 2908 ret = -EINVAL; 2909 goto out; 2910 } 2911 2912 dev_def_dom = iommu_get_def_domain_type(dev); 2913 if (!type) { 2914 /* 2915 * If the user hasn't requested any specific type of domain and 2916 * if the device supports both the domains, then default to the 2917 * domain the device was booted with 2918 */ 2919 type = dev_def_dom ? : iommu_def_domain_type; 2920 } else if (dev_def_dom && type != dev_def_dom) { 2921 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n", 2922 iommu_domain_type_str(type)); 2923 ret = -EINVAL; 2924 goto out; 2925 } 2926 2927 /* 2928 * Switch to a new domain only if the requested domain type is different 2929 * from the existing default domain type 2930 */ 2931 if (prev_dom->type == type) { 2932 ret = 0; 2933 goto out; 2934 } 2935 2936 /* We can bring up a flush queue without tearing down the domain */ 2937 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) { 2938 ret = iommu_dma_init_fq(prev_dom); 2939 if (!ret) 2940 prev_dom->type = IOMMU_DOMAIN_DMA_FQ; 2941 goto out; 2942 } 2943 2944 /* Sets group->default_domain to the newly allocated domain */ 2945 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 2946 if (ret) 2947 goto out; 2948 2949 ret = iommu_create_device_direct_mappings(group, dev); 2950 if (ret) 2951 goto free_new_domain; 2952 2953 ret = __iommu_attach_device(group->default_domain, dev); 2954 if (ret) 2955 goto free_new_domain; 2956 2957 group->domain = group->default_domain; 2958 2959 /* 2960 * Release the mutex here because ops->probe_finalize() call-back of 2961 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 2962 * in-turn might call back into IOMMU core code, where it tries to take 2963 * group->mutex, resulting in a deadlock. 2964 */ 2965 mutex_unlock(&group->mutex); 2966 2967 /* Make sure dma_ops is appropriatley set */ 2968 iommu_group_do_probe_finalize(dev, group->default_domain); 2969 iommu_domain_free(prev_dom); 2970 return 0; 2971 2972 free_new_domain: 2973 iommu_domain_free(group->default_domain); 2974 group->default_domain = prev_dom; 2975 group->domain = prev_dom; 2976 2977 out: 2978 mutex_unlock(&group->mutex); 2979 2980 return ret; 2981 } 2982 2983 /* 2984 * Changing the default domain through sysfs requires the users to unbind the 2985 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 2986 * transition. Return failure if this isn't met. 2987 * 2988 * We need to consider the race between this and the device release path. 2989 * device_lock(dev) is used here to guarantee that the device release path 2990 * will not be entered at the same time. 2991 */ 2992 static ssize_t iommu_group_store_type(struct iommu_group *group, 2993 const char *buf, size_t count) 2994 { 2995 struct group_device *grp_dev; 2996 struct device *dev; 2997 int ret, req_type; 2998 2999 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3000 return -EACCES; 3001 3002 if (WARN_ON(!group) || !group->default_domain) 3003 return -EINVAL; 3004 3005 if (sysfs_streq(buf, "identity")) 3006 req_type = IOMMU_DOMAIN_IDENTITY; 3007 else if (sysfs_streq(buf, "DMA")) 3008 req_type = IOMMU_DOMAIN_DMA; 3009 else if (sysfs_streq(buf, "DMA-FQ")) 3010 req_type = IOMMU_DOMAIN_DMA_FQ; 3011 else if (sysfs_streq(buf, "auto")) 3012 req_type = 0; 3013 else 3014 return -EINVAL; 3015 3016 /* 3017 * Lock/Unlock the group mutex here before device lock to 3018 * 1. Make sure that the iommu group has only one device (this is a 3019 * prerequisite for step 2) 3020 * 2. Get struct *dev which is needed to lock device 3021 */ 3022 mutex_lock(&group->mutex); 3023 if (iommu_group_device_count(group) != 1) { 3024 mutex_unlock(&group->mutex); 3025 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n"); 3026 return -EINVAL; 3027 } 3028 3029 /* Since group has only one device */ 3030 grp_dev = list_first_entry(&group->devices, struct group_device, list); 3031 dev = grp_dev->dev; 3032 get_device(dev); 3033 3034 /* 3035 * Don't hold the group mutex because taking group mutex first and then 3036 * the device lock could potentially cause a deadlock as below. Assume 3037 * two threads T1 and T2. T1 is trying to change default domain of an 3038 * iommu group and T2 is trying to hot unplug a device or release [1] VF 3039 * of a PCIe device which is in the same iommu group. T1 takes group 3040 * mutex and before it could take device lock assume T2 has taken device 3041 * lock and is yet to take group mutex. Now, both the threads will be 3042 * waiting for the other thread to release lock. Below, lock order was 3043 * suggested. 3044 * device_lock(dev); 3045 * mutex_lock(&group->mutex); 3046 * iommu_change_dev_def_domain(); 3047 * mutex_unlock(&group->mutex); 3048 * device_unlock(dev); 3049 * 3050 * [1] Typical device release path 3051 * device_lock() from device/driver core code 3052 * -> bus_notifier() 3053 * -> iommu_bus_notifier() 3054 * -> iommu_release_device() 3055 * -> ops->release_device() vendor driver calls back iommu core code 3056 * -> mutex_lock() from iommu core code 3057 */ 3058 mutex_unlock(&group->mutex); 3059 3060 /* Check if the device in the group still has a driver bound to it */ 3061 device_lock(dev); 3062 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ && 3063 group->default_domain->type == IOMMU_DOMAIN_DMA)) { 3064 pr_err_ratelimited("Device is still bound to driver\n"); 3065 ret = -EBUSY; 3066 goto out; 3067 } 3068 3069 ret = iommu_change_dev_def_domain(group, dev, req_type); 3070 ret = ret ?: count; 3071 3072 out: 3073 device_unlock(dev); 3074 put_device(dev); 3075 3076 return ret; 3077 } 3078 3079 static bool iommu_is_default_domain(struct iommu_group *group) 3080 { 3081 if (group->domain == group->default_domain) 3082 return true; 3083 3084 /* 3085 * If the default domain was set to identity and it is still an identity 3086 * domain then we consider this a pass. This happens because of 3087 * amd_iommu_init_device() replacing the default idenytity domain with an 3088 * identity domain that has a different configuration for AMDGPU. 3089 */ 3090 if (group->default_domain && 3091 group->default_domain->type == IOMMU_DOMAIN_IDENTITY && 3092 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY) 3093 return true; 3094 return false; 3095 } 3096 3097 /** 3098 * iommu_device_use_default_domain() - Device driver wants to handle device 3099 * DMA through the kernel DMA API. 3100 * @dev: The device. 3101 * 3102 * The device driver about to bind @dev wants to do DMA through the kernel 3103 * DMA API. Return 0 if it is allowed, otherwise an error. 3104 */ 3105 int iommu_device_use_default_domain(struct device *dev) 3106 { 3107 struct iommu_group *group = iommu_group_get(dev); 3108 int ret = 0; 3109 3110 if (!group) 3111 return 0; 3112 3113 mutex_lock(&group->mutex); 3114 if (group->owner_cnt) { 3115 if (group->owner || !iommu_is_default_domain(group)) { 3116 ret = -EBUSY; 3117 goto unlock_out; 3118 } 3119 } 3120 3121 group->owner_cnt++; 3122 3123 unlock_out: 3124 mutex_unlock(&group->mutex); 3125 iommu_group_put(group); 3126 3127 return ret; 3128 } 3129 3130 /** 3131 * iommu_device_unuse_default_domain() - Device driver stops handling device 3132 * DMA through the kernel DMA API. 3133 * @dev: The device. 3134 * 3135 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3136 * It must be called after iommu_device_use_default_domain(). 3137 */ 3138 void iommu_device_unuse_default_domain(struct device *dev) 3139 { 3140 struct iommu_group *group = iommu_group_get(dev); 3141 3142 if (!group) 3143 return; 3144 3145 mutex_lock(&group->mutex); 3146 if (!WARN_ON(!group->owner_cnt)) 3147 group->owner_cnt--; 3148 3149 mutex_unlock(&group->mutex); 3150 iommu_group_put(group); 3151 } 3152 3153 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3154 { 3155 struct group_device *dev = 3156 list_first_entry(&group->devices, struct group_device, list); 3157 3158 if (group->blocking_domain) 3159 return 0; 3160 3161 group->blocking_domain = 3162 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED); 3163 if (!group->blocking_domain) { 3164 /* 3165 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3166 * create an empty domain instead. 3167 */ 3168 group->blocking_domain = __iommu_domain_alloc( 3169 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED); 3170 if (!group->blocking_domain) 3171 return -EINVAL; 3172 } 3173 return 0; 3174 } 3175 3176 /** 3177 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3178 * @group: The group. 3179 * @owner: Caller specified pointer. Used for exclusive ownership. 3180 * 3181 * This is to support backward compatibility for vfio which manages 3182 * the dma ownership in iommu_group level. New invocations on this 3183 * interface should be prohibited. 3184 */ 3185 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3186 { 3187 int ret = 0; 3188 3189 mutex_lock(&group->mutex); 3190 if (group->owner_cnt) { 3191 ret = -EPERM; 3192 goto unlock_out; 3193 } else { 3194 if (group->domain && group->domain != group->default_domain) { 3195 ret = -EBUSY; 3196 goto unlock_out; 3197 } 3198 3199 ret = __iommu_group_alloc_blocking_domain(group); 3200 if (ret) 3201 goto unlock_out; 3202 3203 ret = __iommu_group_set_domain(group, group->blocking_domain); 3204 if (ret) 3205 goto unlock_out; 3206 group->owner = owner; 3207 } 3208 3209 group->owner_cnt++; 3210 unlock_out: 3211 mutex_unlock(&group->mutex); 3212 3213 return ret; 3214 } 3215 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3216 3217 /** 3218 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3219 * @group: The group. 3220 * 3221 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3222 */ 3223 void iommu_group_release_dma_owner(struct iommu_group *group) 3224 { 3225 int ret; 3226 3227 mutex_lock(&group->mutex); 3228 if (WARN_ON(!group->owner_cnt || !group->owner)) 3229 goto unlock_out; 3230 3231 group->owner_cnt = 0; 3232 group->owner = NULL; 3233 ret = __iommu_group_set_domain(group, group->default_domain); 3234 WARN(ret, "iommu driver failed to attach the default domain"); 3235 3236 unlock_out: 3237 mutex_unlock(&group->mutex); 3238 } 3239 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3240 3241 /** 3242 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3243 * @group: The group. 3244 * 3245 * This provides status query on a given group. It is racy and only for 3246 * non-binding status reporting. 3247 */ 3248 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3249 { 3250 unsigned int user; 3251 3252 mutex_lock(&group->mutex); 3253 user = group->owner_cnt; 3254 mutex_unlock(&group->mutex); 3255 3256 return user; 3257 } 3258 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3259