xref: /openbmc/linux/drivers/iommu/intel/iommu.c (revision 97ee19ff491479822eade8a869d49f9ddcd71e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2014 Intel Corporation.
4  *
5  * Authors: David Woodhouse <dwmw2@infradead.org>,
6  *          Ashok Raj <ashok.raj@intel.com>,
7  *          Shaohua Li <shaohua.li@intel.com>,
8  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9  *          Fenghua Yu <fenghua.yu@intel.com>
10  *          Joerg Roedel <jroedel@suse.de>
11  */
12 
13 #define pr_fmt(fmt)     "DMAR: " fmt
14 #define dev_fmt(fmt)    pr_fmt(fmt)
15 
16 #include <linux/crash_dump.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dmi.h>
19 #include <linux/memory.h>
20 #include <linux/pci.h>
21 #include <linux/pci-ats.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/tboot.h>
25 #include <uapi/linux/iommufd.h>
26 
27 #include "iommu.h"
28 #include "../dma-iommu.h"
29 #include "../irq_remapping.h"
30 #include "../iommu-sva.h"
31 #include "pasid.h"
32 #include "cap_audit.h"
33 #include "perfmon.h"
34 
35 #define ROOT_SIZE		VTD_PAGE_SIZE
36 #define CONTEXT_SIZE		VTD_PAGE_SIZE
37 
38 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
39 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
40 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
41 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
42 
43 #define IOAPIC_RANGE_START	(0xfee00000)
44 #define IOAPIC_RANGE_END	(0xfeefffff)
45 #define IOVA_START_ADDR		(0x1000)
46 
47 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
48 
49 #define MAX_AGAW_WIDTH 64
50 #define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
51 
52 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
53 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
54 
55 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
56    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
57 #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
58 				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
59 #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
60 
61 /* IO virtual address start page frame number */
62 #define IOVA_START_PFN		(1)
63 
64 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
65 
66 /* page table handling */
67 #define LEVEL_STRIDE		(9)
68 #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
69 
70 static inline int agaw_to_level(int agaw)
71 {
72 	return agaw + 2;
73 }
74 
75 static inline int agaw_to_width(int agaw)
76 {
77 	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
78 }
79 
80 static inline int width_to_agaw(int width)
81 {
82 	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
83 }
84 
85 static inline unsigned int level_to_offset_bits(int level)
86 {
87 	return (level - 1) * LEVEL_STRIDE;
88 }
89 
90 static inline int pfn_level_offset(u64 pfn, int level)
91 {
92 	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
93 }
94 
95 static inline u64 level_mask(int level)
96 {
97 	return -1ULL << level_to_offset_bits(level);
98 }
99 
100 static inline u64 level_size(int level)
101 {
102 	return 1ULL << level_to_offset_bits(level);
103 }
104 
105 static inline u64 align_to_level(u64 pfn, int level)
106 {
107 	return (pfn + level_size(level) - 1) & level_mask(level);
108 }
109 
110 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
111 {
112 	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
113 }
114 
115 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
116    are never going to work. */
117 static inline unsigned long mm_to_dma_pfn_start(unsigned long mm_pfn)
118 {
119 	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
120 }
121 static inline unsigned long mm_to_dma_pfn_end(unsigned long mm_pfn)
122 {
123 	return ((mm_pfn + 1) << (PAGE_SHIFT - VTD_PAGE_SHIFT)) - 1;
124 }
125 static inline unsigned long page_to_dma_pfn(struct page *pg)
126 {
127 	return mm_to_dma_pfn_start(page_to_pfn(pg));
128 }
129 static inline unsigned long virt_to_dma_pfn(void *p)
130 {
131 	return page_to_dma_pfn(virt_to_page(p));
132 }
133 
134 static void __init check_tylersburg_isoch(void);
135 static int rwbf_quirk;
136 
137 /*
138  * set to 1 to panic kernel if can't successfully enable VT-d
139  * (used when kernel is launched w/ TXT)
140  */
141 static int force_on = 0;
142 static int intel_iommu_tboot_noforce;
143 static int no_platform_optin;
144 
145 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
146 
147 /*
148  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
149  * if marked present.
150  */
151 static phys_addr_t root_entry_lctp(struct root_entry *re)
152 {
153 	if (!(re->lo & 1))
154 		return 0;
155 
156 	return re->lo & VTD_PAGE_MASK;
157 }
158 
159 /*
160  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
161  * if marked present.
162  */
163 static phys_addr_t root_entry_uctp(struct root_entry *re)
164 {
165 	if (!(re->hi & 1))
166 		return 0;
167 
168 	return re->hi & VTD_PAGE_MASK;
169 }
170 
171 static inline void context_set_present(struct context_entry *context)
172 {
173 	context->lo |= 1;
174 }
175 
176 static inline void context_set_fault_enable(struct context_entry *context)
177 {
178 	context->lo &= (((u64)-1) << 2) | 1;
179 }
180 
181 static inline void context_set_translation_type(struct context_entry *context,
182 						unsigned long value)
183 {
184 	context->lo &= (((u64)-1) << 4) | 3;
185 	context->lo |= (value & 3) << 2;
186 }
187 
188 static inline void context_set_address_root(struct context_entry *context,
189 					    unsigned long value)
190 {
191 	context->lo &= ~VTD_PAGE_MASK;
192 	context->lo |= value & VTD_PAGE_MASK;
193 }
194 
195 static inline void context_set_address_width(struct context_entry *context,
196 					     unsigned long value)
197 {
198 	context->hi |= value & 7;
199 }
200 
201 static inline void context_set_domain_id(struct context_entry *context,
202 					 unsigned long value)
203 {
204 	context->hi |= (value & ((1 << 16) - 1)) << 8;
205 }
206 
207 static inline void context_set_pasid(struct context_entry *context)
208 {
209 	context->lo |= CONTEXT_PASIDE;
210 }
211 
212 static inline int context_domain_id(struct context_entry *c)
213 {
214 	return((c->hi >> 8) & 0xffff);
215 }
216 
217 static inline void context_clear_entry(struct context_entry *context)
218 {
219 	context->lo = 0;
220 	context->hi = 0;
221 }
222 
223 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
224 {
225 	if (!iommu->copied_tables)
226 		return false;
227 
228 	return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
229 }
230 
231 static inline void
232 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
233 {
234 	set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
235 }
236 
237 static inline void
238 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
239 {
240 	clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
241 }
242 
243 /*
244  * This domain is a statically identity mapping domain.
245  *	1. This domain creats a static 1:1 mapping to all usable memory.
246  * 	2. It maps to each iommu if successful.
247  *	3. Each iommu mapps to this domain if successful.
248  */
249 static struct dmar_domain *si_domain;
250 static int hw_pass_through = 1;
251 
252 struct dmar_rmrr_unit {
253 	struct list_head list;		/* list of rmrr units	*/
254 	struct acpi_dmar_header *hdr;	/* ACPI header		*/
255 	u64	base_address;		/* reserved base address*/
256 	u64	end_address;		/* reserved end address */
257 	struct dmar_dev_scope *devices;	/* target devices */
258 	int	devices_cnt;		/* target device count */
259 };
260 
261 struct dmar_atsr_unit {
262 	struct list_head list;		/* list of ATSR units */
263 	struct acpi_dmar_header *hdr;	/* ACPI header */
264 	struct dmar_dev_scope *devices;	/* target devices */
265 	int devices_cnt;		/* target device count */
266 	u8 include_all:1;		/* include all ports */
267 };
268 
269 struct dmar_satc_unit {
270 	struct list_head list;		/* list of SATC units */
271 	struct acpi_dmar_header *hdr;	/* ACPI header */
272 	struct dmar_dev_scope *devices;	/* target devices */
273 	struct intel_iommu *iommu;	/* the corresponding iommu */
274 	int devices_cnt;		/* target device count */
275 	u8 atc_required:1;		/* ATS is required */
276 };
277 
278 static LIST_HEAD(dmar_atsr_units);
279 static LIST_HEAD(dmar_rmrr_units);
280 static LIST_HEAD(dmar_satc_units);
281 
282 #define for_each_rmrr_units(rmrr) \
283 	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
284 
285 static void device_block_translation(struct device *dev);
286 static void intel_iommu_domain_free(struct iommu_domain *domain);
287 
288 int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON);
289 int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON);
290 
291 int intel_iommu_enabled = 0;
292 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
293 
294 static int dmar_map_gfx = 1;
295 static int intel_iommu_superpage = 1;
296 static int iommu_identity_mapping;
297 static int iommu_skip_te_disable;
298 
299 #define IDENTMAP_GFX		2
300 #define IDENTMAP_AZALIA		4
301 
302 const struct iommu_ops intel_iommu_ops;
303 
304 static bool translation_pre_enabled(struct intel_iommu *iommu)
305 {
306 	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
307 }
308 
309 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
310 {
311 	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
312 }
313 
314 static void init_translation_status(struct intel_iommu *iommu)
315 {
316 	u32 gsts;
317 
318 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
319 	if (gsts & DMA_GSTS_TES)
320 		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
321 }
322 
323 static int __init intel_iommu_setup(char *str)
324 {
325 	if (!str)
326 		return -EINVAL;
327 
328 	while (*str) {
329 		if (!strncmp(str, "on", 2)) {
330 			dmar_disabled = 0;
331 			pr_info("IOMMU enabled\n");
332 		} else if (!strncmp(str, "off", 3)) {
333 			dmar_disabled = 1;
334 			no_platform_optin = 1;
335 			pr_info("IOMMU disabled\n");
336 		} else if (!strncmp(str, "igfx_off", 8)) {
337 			dmar_map_gfx = 0;
338 			pr_info("Disable GFX device mapping\n");
339 		} else if (!strncmp(str, "forcedac", 8)) {
340 			pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n");
341 			iommu_dma_forcedac = true;
342 		} else if (!strncmp(str, "strict", 6)) {
343 			pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n");
344 			iommu_set_dma_strict();
345 		} else if (!strncmp(str, "sp_off", 6)) {
346 			pr_info("Disable supported super page\n");
347 			intel_iommu_superpage = 0;
348 		} else if (!strncmp(str, "sm_on", 5)) {
349 			pr_info("Enable scalable mode if hardware supports\n");
350 			intel_iommu_sm = 1;
351 		} else if (!strncmp(str, "sm_off", 6)) {
352 			pr_info("Scalable mode is disallowed\n");
353 			intel_iommu_sm = 0;
354 		} else if (!strncmp(str, "tboot_noforce", 13)) {
355 			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
356 			intel_iommu_tboot_noforce = 1;
357 		} else {
358 			pr_notice("Unknown option - '%s'\n", str);
359 		}
360 
361 		str += strcspn(str, ",");
362 		while (*str == ',')
363 			str++;
364 	}
365 
366 	return 1;
367 }
368 __setup("intel_iommu=", intel_iommu_setup);
369 
370 void *alloc_pgtable_page(int node, gfp_t gfp)
371 {
372 	struct page *page;
373 	void *vaddr = NULL;
374 
375 	page = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
376 	if (page)
377 		vaddr = page_address(page);
378 	return vaddr;
379 }
380 
381 void free_pgtable_page(void *vaddr)
382 {
383 	free_page((unsigned long)vaddr);
384 }
385 
386 static inline int domain_type_is_si(struct dmar_domain *domain)
387 {
388 	return domain->domain.type == IOMMU_DOMAIN_IDENTITY;
389 }
390 
391 static inline int domain_pfn_supported(struct dmar_domain *domain,
392 				       unsigned long pfn)
393 {
394 	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
395 
396 	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
397 }
398 
399 /*
400  * Calculate the Supported Adjusted Guest Address Widths of an IOMMU.
401  * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of
402  * the returned SAGAW.
403  */
404 static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu)
405 {
406 	unsigned long fl_sagaw, sl_sagaw;
407 
408 	fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0);
409 	sl_sagaw = cap_sagaw(iommu->cap);
410 
411 	/* Second level only. */
412 	if (!sm_supported(iommu) || !ecap_flts(iommu->ecap))
413 		return sl_sagaw;
414 
415 	/* First level only. */
416 	if (!ecap_slts(iommu->ecap))
417 		return fl_sagaw;
418 
419 	return fl_sagaw & sl_sagaw;
420 }
421 
422 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
423 {
424 	unsigned long sagaw;
425 	int agaw;
426 
427 	sagaw = __iommu_calculate_sagaw(iommu);
428 	for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) {
429 		if (test_bit(agaw, &sagaw))
430 			break;
431 	}
432 
433 	return agaw;
434 }
435 
436 /*
437  * Calculate max SAGAW for each iommu.
438  */
439 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
440 {
441 	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
442 }
443 
444 /*
445  * calculate agaw for each iommu.
446  * "SAGAW" may be different across iommus, use a default agaw, and
447  * get a supported less agaw for iommus that don't support the default agaw.
448  */
449 int iommu_calculate_agaw(struct intel_iommu *iommu)
450 {
451 	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
452 }
453 
454 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
455 {
456 	return sm_supported(iommu) ?
457 			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
458 }
459 
460 static void domain_update_iommu_coherency(struct dmar_domain *domain)
461 {
462 	struct iommu_domain_info *info;
463 	struct dmar_drhd_unit *drhd;
464 	struct intel_iommu *iommu;
465 	bool found = false;
466 	unsigned long i;
467 
468 	domain->iommu_coherency = true;
469 	xa_for_each(&domain->iommu_array, i, info) {
470 		found = true;
471 		if (!iommu_paging_structure_coherency(info->iommu)) {
472 			domain->iommu_coherency = false;
473 			break;
474 		}
475 	}
476 	if (found)
477 		return;
478 
479 	/* No hardware attached; use lowest common denominator */
480 	rcu_read_lock();
481 	for_each_active_iommu(iommu, drhd) {
482 		if (!iommu_paging_structure_coherency(iommu)) {
483 			domain->iommu_coherency = false;
484 			break;
485 		}
486 	}
487 	rcu_read_unlock();
488 }
489 
490 static int domain_update_iommu_superpage(struct dmar_domain *domain,
491 					 struct intel_iommu *skip)
492 {
493 	struct dmar_drhd_unit *drhd;
494 	struct intel_iommu *iommu;
495 	int mask = 0x3;
496 
497 	if (!intel_iommu_superpage)
498 		return 0;
499 
500 	/* set iommu_superpage to the smallest common denominator */
501 	rcu_read_lock();
502 	for_each_active_iommu(iommu, drhd) {
503 		if (iommu != skip) {
504 			if (domain && domain->use_first_level) {
505 				if (!cap_fl1gp_support(iommu->cap))
506 					mask = 0x1;
507 			} else {
508 				mask &= cap_super_page_val(iommu->cap);
509 			}
510 
511 			if (!mask)
512 				break;
513 		}
514 	}
515 	rcu_read_unlock();
516 
517 	return fls(mask);
518 }
519 
520 static int domain_update_device_node(struct dmar_domain *domain)
521 {
522 	struct device_domain_info *info;
523 	int nid = NUMA_NO_NODE;
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&domain->lock, flags);
527 	list_for_each_entry(info, &domain->devices, link) {
528 		/*
529 		 * There could possibly be multiple device numa nodes as devices
530 		 * within the same domain may sit behind different IOMMUs. There
531 		 * isn't perfect answer in such situation, so we select first
532 		 * come first served policy.
533 		 */
534 		nid = dev_to_node(info->dev);
535 		if (nid != NUMA_NO_NODE)
536 			break;
537 	}
538 	spin_unlock_irqrestore(&domain->lock, flags);
539 
540 	return nid;
541 }
542 
543 static void domain_update_iotlb(struct dmar_domain *domain);
544 
545 /* Return the super pagesize bitmap if supported. */
546 static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain)
547 {
548 	unsigned long bitmap = 0;
549 
550 	/*
551 	 * 1-level super page supports page size of 2MiB, 2-level super page
552 	 * supports page size of both 2MiB and 1GiB.
553 	 */
554 	if (domain->iommu_superpage == 1)
555 		bitmap |= SZ_2M;
556 	else if (domain->iommu_superpage == 2)
557 		bitmap |= SZ_2M | SZ_1G;
558 
559 	return bitmap;
560 }
561 
562 /* Some capabilities may be different across iommus */
563 static void domain_update_iommu_cap(struct dmar_domain *domain)
564 {
565 	domain_update_iommu_coherency(domain);
566 	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
567 
568 	/*
569 	 * If RHSA is missing, we should default to the device numa domain
570 	 * as fall back.
571 	 */
572 	if (domain->nid == NUMA_NO_NODE)
573 		domain->nid = domain_update_device_node(domain);
574 
575 	/*
576 	 * First-level translation restricts the input-address to a
577 	 * canonical address (i.e., address bits 63:N have the same
578 	 * value as address bit [N-1], where N is 48-bits with 4-level
579 	 * paging and 57-bits with 5-level paging). Hence, skip bit
580 	 * [N-1].
581 	 */
582 	if (domain->use_first_level)
583 		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
584 	else
585 		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
586 
587 	domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
588 	domain_update_iotlb(domain);
589 }
590 
591 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
592 					 u8 devfn, int alloc)
593 {
594 	struct root_entry *root = &iommu->root_entry[bus];
595 	struct context_entry *context;
596 	u64 *entry;
597 
598 	/*
599 	 * Except that the caller requested to allocate a new entry,
600 	 * returning a copied context entry makes no sense.
601 	 */
602 	if (!alloc && context_copied(iommu, bus, devfn))
603 		return NULL;
604 
605 	entry = &root->lo;
606 	if (sm_supported(iommu)) {
607 		if (devfn >= 0x80) {
608 			devfn -= 0x80;
609 			entry = &root->hi;
610 		}
611 		devfn *= 2;
612 	}
613 	if (*entry & 1)
614 		context = phys_to_virt(*entry & VTD_PAGE_MASK);
615 	else {
616 		unsigned long phy_addr;
617 		if (!alloc)
618 			return NULL;
619 
620 		context = alloc_pgtable_page(iommu->node, GFP_ATOMIC);
621 		if (!context)
622 			return NULL;
623 
624 		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
625 		phy_addr = virt_to_phys((void *)context);
626 		*entry = phy_addr | 1;
627 		__iommu_flush_cache(iommu, entry, sizeof(*entry));
628 	}
629 	return &context[devfn];
630 }
631 
632 /**
633  * is_downstream_to_pci_bridge - test if a device belongs to the PCI
634  *				 sub-hierarchy of a candidate PCI-PCI bridge
635  * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
636  * @bridge: the candidate PCI-PCI bridge
637  *
638  * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
639  */
640 static bool
641 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
642 {
643 	struct pci_dev *pdev, *pbridge;
644 
645 	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
646 		return false;
647 
648 	pdev = to_pci_dev(dev);
649 	pbridge = to_pci_dev(bridge);
650 
651 	if (pbridge->subordinate &&
652 	    pbridge->subordinate->number <= pdev->bus->number &&
653 	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
654 		return true;
655 
656 	return false;
657 }
658 
659 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
660 {
661 	struct dmar_drhd_unit *drhd;
662 	u32 vtbar;
663 	int rc;
664 
665 	/* We know that this device on this chipset has its own IOMMU.
666 	 * If we find it under a different IOMMU, then the BIOS is lying
667 	 * to us. Hope that the IOMMU for this device is actually
668 	 * disabled, and it needs no translation...
669 	 */
670 	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
671 	if (rc) {
672 		/* "can't" happen */
673 		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
674 		return false;
675 	}
676 	vtbar &= 0xffff0000;
677 
678 	/* we know that the this iommu should be at offset 0xa000 from vtbar */
679 	drhd = dmar_find_matched_drhd_unit(pdev);
680 	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
681 		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
682 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
683 		return true;
684 	}
685 
686 	return false;
687 }
688 
689 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
690 {
691 	if (!iommu || iommu->drhd->ignored)
692 		return true;
693 
694 	if (dev_is_pci(dev)) {
695 		struct pci_dev *pdev = to_pci_dev(dev);
696 
697 		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
698 		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
699 		    quirk_ioat_snb_local_iommu(pdev))
700 			return true;
701 	}
702 
703 	return false;
704 }
705 
706 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
707 {
708 	struct dmar_drhd_unit *drhd = NULL;
709 	struct pci_dev *pdev = NULL;
710 	struct intel_iommu *iommu;
711 	struct device *tmp;
712 	u16 segment = 0;
713 	int i;
714 
715 	if (!dev)
716 		return NULL;
717 
718 	if (dev_is_pci(dev)) {
719 		struct pci_dev *pf_pdev;
720 
721 		pdev = pci_real_dma_dev(to_pci_dev(dev));
722 
723 		/* VFs aren't listed in scope tables; we need to look up
724 		 * the PF instead to find the IOMMU. */
725 		pf_pdev = pci_physfn(pdev);
726 		dev = &pf_pdev->dev;
727 		segment = pci_domain_nr(pdev->bus);
728 	} else if (has_acpi_companion(dev))
729 		dev = &ACPI_COMPANION(dev)->dev;
730 
731 	rcu_read_lock();
732 	for_each_iommu(iommu, drhd) {
733 		if (pdev && segment != drhd->segment)
734 			continue;
735 
736 		for_each_active_dev_scope(drhd->devices,
737 					  drhd->devices_cnt, i, tmp) {
738 			if (tmp == dev) {
739 				/* For a VF use its original BDF# not that of the PF
740 				 * which we used for the IOMMU lookup. Strictly speaking
741 				 * we could do this for all PCI devices; we only need to
742 				 * get the BDF# from the scope table for ACPI matches. */
743 				if (pdev && pdev->is_virtfn)
744 					goto got_pdev;
745 
746 				if (bus && devfn) {
747 					*bus = drhd->devices[i].bus;
748 					*devfn = drhd->devices[i].devfn;
749 				}
750 				goto out;
751 			}
752 
753 			if (is_downstream_to_pci_bridge(dev, tmp))
754 				goto got_pdev;
755 		}
756 
757 		if (pdev && drhd->include_all) {
758 got_pdev:
759 			if (bus && devfn) {
760 				*bus = pdev->bus->number;
761 				*devfn = pdev->devfn;
762 			}
763 			goto out;
764 		}
765 	}
766 	iommu = NULL;
767 out:
768 	if (iommu_is_dummy(iommu, dev))
769 		iommu = NULL;
770 
771 	rcu_read_unlock();
772 
773 	return iommu;
774 }
775 
776 static void domain_flush_cache(struct dmar_domain *domain,
777 			       void *addr, int size)
778 {
779 	if (!domain->iommu_coherency)
780 		clflush_cache_range(addr, size);
781 }
782 
783 static void free_context_table(struct intel_iommu *iommu)
784 {
785 	struct context_entry *context;
786 	int i;
787 
788 	if (!iommu->root_entry)
789 		return;
790 
791 	for (i = 0; i < ROOT_ENTRY_NR; i++) {
792 		context = iommu_context_addr(iommu, i, 0, 0);
793 		if (context)
794 			free_pgtable_page(context);
795 
796 		if (!sm_supported(iommu))
797 			continue;
798 
799 		context = iommu_context_addr(iommu, i, 0x80, 0);
800 		if (context)
801 			free_pgtable_page(context);
802 	}
803 
804 	free_pgtable_page(iommu->root_entry);
805 	iommu->root_entry = NULL;
806 }
807 
808 #ifdef CONFIG_DMAR_DEBUG
809 static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn,
810 			 u8 bus, u8 devfn, struct dma_pte *parent, int level)
811 {
812 	struct dma_pte *pte;
813 	int offset;
814 
815 	while (1) {
816 		offset = pfn_level_offset(pfn, level);
817 		pte = &parent[offset];
818 		if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) {
819 			pr_info("PTE not present at level %d\n", level);
820 			break;
821 		}
822 
823 		pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val);
824 
825 		if (level == 1)
826 			break;
827 
828 		parent = phys_to_virt(dma_pte_addr(pte));
829 		level--;
830 	}
831 }
832 
833 void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id,
834 			  unsigned long long addr, u32 pasid)
835 {
836 	struct pasid_dir_entry *dir, *pde;
837 	struct pasid_entry *entries, *pte;
838 	struct context_entry *ctx_entry;
839 	struct root_entry *rt_entry;
840 	int i, dir_index, index, level;
841 	u8 devfn = source_id & 0xff;
842 	u8 bus = source_id >> 8;
843 	struct dma_pte *pgtable;
844 
845 	pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr);
846 
847 	/* root entry dump */
848 	rt_entry = &iommu->root_entry[bus];
849 	if (!rt_entry) {
850 		pr_info("root table entry is not present\n");
851 		return;
852 	}
853 
854 	if (sm_supported(iommu))
855 		pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n",
856 			rt_entry->hi, rt_entry->lo);
857 	else
858 		pr_info("root entry: 0x%016llx", rt_entry->lo);
859 
860 	/* context entry dump */
861 	ctx_entry = iommu_context_addr(iommu, bus, devfn, 0);
862 	if (!ctx_entry) {
863 		pr_info("context table entry is not present\n");
864 		return;
865 	}
866 
867 	pr_info("context entry: hi 0x%016llx, low 0x%016llx\n",
868 		ctx_entry->hi, ctx_entry->lo);
869 
870 	/* legacy mode does not require PASID entries */
871 	if (!sm_supported(iommu)) {
872 		level = agaw_to_level(ctx_entry->hi & 7);
873 		pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
874 		goto pgtable_walk;
875 	}
876 
877 	/* get the pointer to pasid directory entry */
878 	dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
879 	if (!dir) {
880 		pr_info("pasid directory entry is not present\n");
881 		return;
882 	}
883 	/* For request-without-pasid, get the pasid from context entry */
884 	if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID)
885 		pasid = IOMMU_NO_PASID;
886 
887 	dir_index = pasid >> PASID_PDE_SHIFT;
888 	pde = &dir[dir_index];
889 	pr_info("pasid dir entry: 0x%016llx\n", pde->val);
890 
891 	/* get the pointer to the pasid table entry */
892 	entries = get_pasid_table_from_pde(pde);
893 	if (!entries) {
894 		pr_info("pasid table entry is not present\n");
895 		return;
896 	}
897 	index = pasid & PASID_PTE_MASK;
898 	pte = &entries[index];
899 	for (i = 0; i < ARRAY_SIZE(pte->val); i++)
900 		pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]);
901 
902 	if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) {
903 		level = pte->val[2] & BIT_ULL(2) ? 5 : 4;
904 		pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK);
905 	} else {
906 		level = agaw_to_level((pte->val[0] >> 2) & 0x7);
907 		pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK);
908 	}
909 
910 pgtable_walk:
911 	pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level);
912 }
913 #endif
914 
915 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
916 				      unsigned long pfn, int *target_level,
917 				      gfp_t gfp)
918 {
919 	struct dma_pte *parent, *pte;
920 	int level = agaw_to_level(domain->agaw);
921 	int offset;
922 
923 	if (!domain_pfn_supported(domain, pfn))
924 		/* Address beyond IOMMU's addressing capabilities. */
925 		return NULL;
926 
927 	parent = domain->pgd;
928 
929 	while (1) {
930 		void *tmp_page;
931 
932 		offset = pfn_level_offset(pfn, level);
933 		pte = &parent[offset];
934 		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
935 			break;
936 		if (level == *target_level)
937 			break;
938 
939 		if (!dma_pte_present(pte)) {
940 			uint64_t pteval;
941 
942 			tmp_page = alloc_pgtable_page(domain->nid, gfp);
943 
944 			if (!tmp_page)
945 				return NULL;
946 
947 			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
948 			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
949 			if (domain->use_first_level)
950 				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
951 
952 			if (cmpxchg64(&pte->val, 0ULL, pteval))
953 				/* Someone else set it while we were thinking; use theirs. */
954 				free_pgtable_page(tmp_page);
955 			else
956 				domain_flush_cache(domain, pte, sizeof(*pte));
957 		}
958 		if (level == 1)
959 			break;
960 
961 		parent = phys_to_virt(dma_pte_addr(pte));
962 		level--;
963 	}
964 
965 	if (!*target_level)
966 		*target_level = level;
967 
968 	return pte;
969 }
970 
971 /* return address's pte at specific level */
972 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
973 					 unsigned long pfn,
974 					 int level, int *large_page)
975 {
976 	struct dma_pte *parent, *pte;
977 	int total = agaw_to_level(domain->agaw);
978 	int offset;
979 
980 	parent = domain->pgd;
981 	while (level <= total) {
982 		offset = pfn_level_offset(pfn, total);
983 		pte = &parent[offset];
984 		if (level == total)
985 			return pte;
986 
987 		if (!dma_pte_present(pte)) {
988 			*large_page = total;
989 			break;
990 		}
991 
992 		if (dma_pte_superpage(pte)) {
993 			*large_page = total;
994 			return pte;
995 		}
996 
997 		parent = phys_to_virt(dma_pte_addr(pte));
998 		total--;
999 	}
1000 	return NULL;
1001 }
1002 
1003 /* clear last level pte, a tlb flush should be followed */
1004 static void dma_pte_clear_range(struct dmar_domain *domain,
1005 				unsigned long start_pfn,
1006 				unsigned long last_pfn)
1007 {
1008 	unsigned int large_page;
1009 	struct dma_pte *first_pte, *pte;
1010 
1011 	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
1012 	    WARN_ON(start_pfn > last_pfn))
1013 		return;
1014 
1015 	/* we don't need lock here; nobody else touches the iova range */
1016 	do {
1017 		large_page = 1;
1018 		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1019 		if (!pte) {
1020 			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1021 			continue;
1022 		}
1023 		do {
1024 			dma_clear_pte(pte);
1025 			start_pfn += lvl_to_nr_pages(large_page);
1026 			pte++;
1027 		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1028 
1029 		domain_flush_cache(domain, first_pte,
1030 				   (void *)pte - (void *)first_pte);
1031 
1032 	} while (start_pfn && start_pfn <= last_pfn);
1033 }
1034 
1035 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1036 			       int retain_level, struct dma_pte *pte,
1037 			       unsigned long pfn, unsigned long start_pfn,
1038 			       unsigned long last_pfn)
1039 {
1040 	pfn = max(start_pfn, pfn);
1041 	pte = &pte[pfn_level_offset(pfn, level)];
1042 
1043 	do {
1044 		unsigned long level_pfn;
1045 		struct dma_pte *level_pte;
1046 
1047 		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1048 			goto next;
1049 
1050 		level_pfn = pfn & level_mask(level);
1051 		level_pte = phys_to_virt(dma_pte_addr(pte));
1052 
1053 		if (level > 2) {
1054 			dma_pte_free_level(domain, level - 1, retain_level,
1055 					   level_pte, level_pfn, start_pfn,
1056 					   last_pfn);
1057 		}
1058 
1059 		/*
1060 		 * Free the page table if we're below the level we want to
1061 		 * retain and the range covers the entire table.
1062 		 */
1063 		if (level < retain_level && !(start_pfn > level_pfn ||
1064 		      last_pfn < level_pfn + level_size(level) - 1)) {
1065 			dma_clear_pte(pte);
1066 			domain_flush_cache(domain, pte, sizeof(*pte));
1067 			free_pgtable_page(level_pte);
1068 		}
1069 next:
1070 		pfn += level_size(level);
1071 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1072 }
1073 
1074 /*
1075  * clear last level (leaf) ptes and free page table pages below the
1076  * level we wish to keep intact.
1077  */
1078 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1079 				   unsigned long start_pfn,
1080 				   unsigned long last_pfn,
1081 				   int retain_level)
1082 {
1083 	dma_pte_clear_range(domain, start_pfn, last_pfn);
1084 
1085 	/* We don't need lock here; nobody else touches the iova range */
1086 	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1087 			   domain->pgd, 0, start_pfn, last_pfn);
1088 
1089 	/* free pgd */
1090 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1091 		free_pgtable_page(domain->pgd);
1092 		domain->pgd = NULL;
1093 	}
1094 }
1095 
1096 /* When a page at a given level is being unlinked from its parent, we don't
1097    need to *modify* it at all. All we need to do is make a list of all the
1098    pages which can be freed just as soon as we've flushed the IOTLB and we
1099    know the hardware page-walk will no longer touch them.
1100    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1101    be freed. */
1102 static void dma_pte_list_pagetables(struct dmar_domain *domain,
1103 				    int level, struct dma_pte *pte,
1104 				    struct list_head *freelist)
1105 {
1106 	struct page *pg;
1107 
1108 	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1109 	list_add_tail(&pg->lru, freelist);
1110 
1111 	if (level == 1)
1112 		return;
1113 
1114 	pte = page_address(pg);
1115 	do {
1116 		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1117 			dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1118 		pte++;
1119 	} while (!first_pte_in_page(pte));
1120 }
1121 
1122 static void dma_pte_clear_level(struct dmar_domain *domain, int level,
1123 				struct dma_pte *pte, unsigned long pfn,
1124 				unsigned long start_pfn, unsigned long last_pfn,
1125 				struct list_head *freelist)
1126 {
1127 	struct dma_pte *first_pte = NULL, *last_pte = NULL;
1128 
1129 	pfn = max(start_pfn, pfn);
1130 	pte = &pte[pfn_level_offset(pfn, level)];
1131 
1132 	do {
1133 		unsigned long level_pfn = pfn & level_mask(level);
1134 
1135 		if (!dma_pte_present(pte))
1136 			goto next;
1137 
1138 		/* If range covers entire pagetable, free it */
1139 		if (start_pfn <= level_pfn &&
1140 		    last_pfn >= level_pfn + level_size(level) - 1) {
1141 			/* These suborbinate page tables are going away entirely. Don't
1142 			   bother to clear them; we're just going to *free* them. */
1143 			if (level > 1 && !dma_pte_superpage(pte))
1144 				dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1145 
1146 			dma_clear_pte(pte);
1147 			if (!first_pte)
1148 				first_pte = pte;
1149 			last_pte = pte;
1150 		} else if (level > 1) {
1151 			/* Recurse down into a level that isn't *entirely* obsolete */
1152 			dma_pte_clear_level(domain, level - 1,
1153 					    phys_to_virt(dma_pte_addr(pte)),
1154 					    level_pfn, start_pfn, last_pfn,
1155 					    freelist);
1156 		}
1157 next:
1158 		pfn = level_pfn + level_size(level);
1159 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1160 
1161 	if (first_pte)
1162 		domain_flush_cache(domain, first_pte,
1163 				   (void *)++last_pte - (void *)first_pte);
1164 }
1165 
1166 /* We can't just free the pages because the IOMMU may still be walking
1167    the page tables, and may have cached the intermediate levels. The
1168    pages can only be freed after the IOTLB flush has been done. */
1169 static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn,
1170 			 unsigned long last_pfn, struct list_head *freelist)
1171 {
1172 	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
1173 	    WARN_ON(start_pfn > last_pfn))
1174 		return;
1175 
1176 	/* we don't need lock here; nobody else touches the iova range */
1177 	dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1178 			    domain->pgd, 0, start_pfn, last_pfn, freelist);
1179 
1180 	/* free pgd */
1181 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1182 		struct page *pgd_page = virt_to_page(domain->pgd);
1183 		list_add_tail(&pgd_page->lru, freelist);
1184 		domain->pgd = NULL;
1185 	}
1186 }
1187 
1188 /* iommu handling */
1189 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1190 {
1191 	struct root_entry *root;
1192 
1193 	root = alloc_pgtable_page(iommu->node, GFP_ATOMIC);
1194 	if (!root) {
1195 		pr_err("Allocating root entry for %s failed\n",
1196 			iommu->name);
1197 		return -ENOMEM;
1198 	}
1199 
1200 	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1201 	iommu->root_entry = root;
1202 
1203 	return 0;
1204 }
1205 
1206 static void iommu_set_root_entry(struct intel_iommu *iommu)
1207 {
1208 	u64 addr;
1209 	u32 sts;
1210 	unsigned long flag;
1211 
1212 	addr = virt_to_phys(iommu->root_entry);
1213 	if (sm_supported(iommu))
1214 		addr |= DMA_RTADDR_SMT;
1215 
1216 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1217 	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1218 
1219 	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1220 
1221 	/* Make sure hardware complete it */
1222 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1223 		      readl, (sts & DMA_GSTS_RTPS), sts);
1224 
1225 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1226 
1227 	/*
1228 	 * Hardware invalidates all DMA remapping hardware translation
1229 	 * caches as part of SRTP flow.
1230 	 */
1231 	if (cap_esrtps(iommu->cap))
1232 		return;
1233 
1234 	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1235 	if (sm_supported(iommu))
1236 		qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
1237 	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1238 }
1239 
1240 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1241 {
1242 	u32 val;
1243 	unsigned long flag;
1244 
1245 	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1246 		return;
1247 
1248 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1249 	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1250 
1251 	/* Make sure hardware complete it */
1252 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1253 		      readl, (!(val & DMA_GSTS_WBFS)), val);
1254 
1255 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1256 }
1257 
1258 /* return value determine if we need a write buffer flush */
1259 static void __iommu_flush_context(struct intel_iommu *iommu,
1260 				  u16 did, u16 source_id, u8 function_mask,
1261 				  u64 type)
1262 {
1263 	u64 val = 0;
1264 	unsigned long flag;
1265 
1266 	switch (type) {
1267 	case DMA_CCMD_GLOBAL_INVL:
1268 		val = DMA_CCMD_GLOBAL_INVL;
1269 		break;
1270 	case DMA_CCMD_DOMAIN_INVL:
1271 		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1272 		break;
1273 	case DMA_CCMD_DEVICE_INVL:
1274 		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1275 			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1276 		break;
1277 	default:
1278 		pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n",
1279 			iommu->name, type);
1280 		return;
1281 	}
1282 	val |= DMA_CCMD_ICC;
1283 
1284 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1285 	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1286 
1287 	/* Make sure hardware complete it */
1288 	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1289 		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1290 
1291 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1292 }
1293 
1294 /* return value determine if we need a write buffer flush */
1295 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1296 				u64 addr, unsigned int size_order, u64 type)
1297 {
1298 	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1299 	u64 val = 0, val_iva = 0;
1300 	unsigned long flag;
1301 
1302 	switch (type) {
1303 	case DMA_TLB_GLOBAL_FLUSH:
1304 		/* global flush doesn't need set IVA_REG */
1305 		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1306 		break;
1307 	case DMA_TLB_DSI_FLUSH:
1308 		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1309 		break;
1310 	case DMA_TLB_PSI_FLUSH:
1311 		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1312 		/* IH bit is passed in as part of address */
1313 		val_iva = size_order | addr;
1314 		break;
1315 	default:
1316 		pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n",
1317 			iommu->name, type);
1318 		return;
1319 	}
1320 
1321 	if (cap_write_drain(iommu->cap))
1322 		val |= DMA_TLB_WRITE_DRAIN;
1323 
1324 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1325 	/* Note: Only uses first TLB reg currently */
1326 	if (val_iva)
1327 		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1328 	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1329 
1330 	/* Make sure hardware complete it */
1331 	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1332 		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1333 
1334 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1335 
1336 	/* check IOTLB invalidation granularity */
1337 	if (DMA_TLB_IAIG(val) == 0)
1338 		pr_err("Flush IOTLB failed\n");
1339 	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1340 		pr_debug("TLB flush request %Lx, actual %Lx\n",
1341 			(unsigned long long)DMA_TLB_IIRG(type),
1342 			(unsigned long long)DMA_TLB_IAIG(val));
1343 }
1344 
1345 static struct device_domain_info *
1346 domain_lookup_dev_info(struct dmar_domain *domain,
1347 		       struct intel_iommu *iommu, u8 bus, u8 devfn)
1348 {
1349 	struct device_domain_info *info;
1350 	unsigned long flags;
1351 
1352 	spin_lock_irqsave(&domain->lock, flags);
1353 	list_for_each_entry(info, &domain->devices, link) {
1354 		if (info->iommu == iommu && info->bus == bus &&
1355 		    info->devfn == devfn) {
1356 			spin_unlock_irqrestore(&domain->lock, flags);
1357 			return info;
1358 		}
1359 	}
1360 	spin_unlock_irqrestore(&domain->lock, flags);
1361 
1362 	return NULL;
1363 }
1364 
1365 static void domain_update_iotlb(struct dmar_domain *domain)
1366 {
1367 	struct dev_pasid_info *dev_pasid;
1368 	struct device_domain_info *info;
1369 	bool has_iotlb_device = false;
1370 	unsigned long flags;
1371 
1372 	spin_lock_irqsave(&domain->lock, flags);
1373 	list_for_each_entry(info, &domain->devices, link) {
1374 		if (info->ats_enabled) {
1375 			has_iotlb_device = true;
1376 			break;
1377 		}
1378 	}
1379 
1380 	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
1381 		info = dev_iommu_priv_get(dev_pasid->dev);
1382 		if (info->ats_enabled) {
1383 			has_iotlb_device = true;
1384 			break;
1385 		}
1386 	}
1387 	domain->has_iotlb_device = has_iotlb_device;
1388 	spin_unlock_irqrestore(&domain->lock, flags);
1389 }
1390 
1391 /*
1392  * The extra devTLB flush quirk impacts those QAT devices with PCI device
1393  * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device()
1394  * check because it applies only to the built-in QAT devices and it doesn't
1395  * grant additional privileges.
1396  */
1397 #define BUGGY_QAT_DEVID_MASK 0x4940
1398 static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev)
1399 {
1400 	if (pdev->vendor != PCI_VENDOR_ID_INTEL)
1401 		return false;
1402 
1403 	if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK)
1404 		return false;
1405 
1406 	return true;
1407 }
1408 
1409 static void iommu_enable_pci_caps(struct device_domain_info *info)
1410 {
1411 	struct pci_dev *pdev;
1412 
1413 	if (!dev_is_pci(info->dev))
1414 		return;
1415 
1416 	pdev = to_pci_dev(info->dev);
1417 
1418 	/* The PCIe spec, in its wisdom, declares that the behaviour of
1419 	   the device if you enable PASID support after ATS support is
1420 	   undefined. So always enable PASID support on devices which
1421 	   have it, even if we can't yet know if we're ever going to
1422 	   use it. */
1423 	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1424 		info->pasid_enabled = 1;
1425 
1426 	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1427 	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1428 		info->ats_enabled = 1;
1429 		domain_update_iotlb(info->domain);
1430 	}
1431 }
1432 
1433 static void iommu_disable_pci_caps(struct device_domain_info *info)
1434 {
1435 	struct pci_dev *pdev;
1436 
1437 	if (!dev_is_pci(info->dev))
1438 		return;
1439 
1440 	pdev = to_pci_dev(info->dev);
1441 
1442 	if (info->ats_enabled) {
1443 		pci_disable_ats(pdev);
1444 		info->ats_enabled = 0;
1445 		domain_update_iotlb(info->domain);
1446 	}
1447 
1448 	if (info->pasid_enabled) {
1449 		pci_disable_pasid(pdev);
1450 		info->pasid_enabled = 0;
1451 	}
1452 }
1453 
1454 static void __iommu_flush_dev_iotlb(struct device_domain_info *info,
1455 				    u64 addr, unsigned int mask)
1456 {
1457 	u16 sid, qdep;
1458 
1459 	if (!info || !info->ats_enabled)
1460 		return;
1461 
1462 	sid = info->bus << 8 | info->devfn;
1463 	qdep = info->ats_qdep;
1464 	qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1465 			   qdep, addr, mask);
1466 	quirk_extra_dev_tlb_flush(info, addr, mask, IOMMU_NO_PASID, qdep);
1467 }
1468 
1469 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1470 				  u64 addr, unsigned mask)
1471 {
1472 	struct dev_pasid_info *dev_pasid;
1473 	struct device_domain_info *info;
1474 	unsigned long flags;
1475 
1476 	if (!domain->has_iotlb_device)
1477 		return;
1478 
1479 	spin_lock_irqsave(&domain->lock, flags);
1480 	list_for_each_entry(info, &domain->devices, link)
1481 		__iommu_flush_dev_iotlb(info, addr, mask);
1482 
1483 	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
1484 		info = dev_iommu_priv_get(dev_pasid->dev);
1485 
1486 		if (!info->ats_enabled)
1487 			continue;
1488 
1489 		qi_flush_dev_iotlb_pasid(info->iommu,
1490 					 PCI_DEVID(info->bus, info->devfn),
1491 					 info->pfsid, dev_pasid->pasid,
1492 					 info->ats_qdep, addr,
1493 					 mask);
1494 	}
1495 	spin_unlock_irqrestore(&domain->lock, flags);
1496 }
1497 
1498 static void domain_flush_pasid_iotlb(struct intel_iommu *iommu,
1499 				     struct dmar_domain *domain, u64 addr,
1500 				     unsigned long npages, bool ih)
1501 {
1502 	u16 did = domain_id_iommu(domain, iommu);
1503 	struct dev_pasid_info *dev_pasid;
1504 	unsigned long flags;
1505 
1506 	spin_lock_irqsave(&domain->lock, flags);
1507 	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain)
1508 		qi_flush_piotlb(iommu, did, dev_pasid->pasid, addr, npages, ih);
1509 
1510 	if (!list_empty(&domain->devices))
1511 		qi_flush_piotlb(iommu, did, IOMMU_NO_PASID, addr, npages, ih);
1512 	spin_unlock_irqrestore(&domain->lock, flags);
1513 }
1514 
1515 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1516 				  struct dmar_domain *domain,
1517 				  unsigned long pfn, unsigned int pages,
1518 				  int ih, int map)
1519 {
1520 	unsigned int aligned_pages = __roundup_pow_of_two(pages);
1521 	unsigned int mask = ilog2(aligned_pages);
1522 	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1523 	u16 did = domain_id_iommu(domain, iommu);
1524 
1525 	if (WARN_ON(!pages))
1526 		return;
1527 
1528 	if (ih)
1529 		ih = 1 << 6;
1530 
1531 	if (domain->use_first_level) {
1532 		domain_flush_pasid_iotlb(iommu, domain, addr, pages, ih);
1533 	} else {
1534 		unsigned long bitmask = aligned_pages - 1;
1535 
1536 		/*
1537 		 * PSI masks the low order bits of the base address. If the
1538 		 * address isn't aligned to the mask, then compute a mask value
1539 		 * needed to ensure the target range is flushed.
1540 		 */
1541 		if (unlikely(bitmask & pfn)) {
1542 			unsigned long end_pfn = pfn + pages - 1, shared_bits;
1543 
1544 			/*
1545 			 * Since end_pfn <= pfn + bitmask, the only way bits
1546 			 * higher than bitmask can differ in pfn and end_pfn is
1547 			 * by carrying. This means after masking out bitmask,
1548 			 * high bits starting with the first set bit in
1549 			 * shared_bits are all equal in both pfn and end_pfn.
1550 			 */
1551 			shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
1552 			mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
1553 		}
1554 
1555 		/*
1556 		 * Fallback to domain selective flush if no PSI support or
1557 		 * the size is too big.
1558 		 */
1559 		if (!cap_pgsel_inv(iommu->cap) ||
1560 		    mask > cap_max_amask_val(iommu->cap))
1561 			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1562 							DMA_TLB_DSI_FLUSH);
1563 		else
1564 			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1565 							DMA_TLB_PSI_FLUSH);
1566 	}
1567 
1568 	/*
1569 	 * In caching mode, changes of pages from non-present to present require
1570 	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1571 	 */
1572 	if (!cap_caching_mode(iommu->cap) || !map)
1573 		iommu_flush_dev_iotlb(domain, addr, mask);
1574 }
1575 
1576 /* Notification for newly created mappings */
1577 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1578 					struct dmar_domain *domain,
1579 					unsigned long pfn, unsigned int pages)
1580 {
1581 	/*
1582 	 * It's a non-present to present mapping. Only flush if caching mode
1583 	 * and second level.
1584 	 */
1585 	if (cap_caching_mode(iommu->cap) && !domain->use_first_level)
1586 		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1587 	else
1588 		iommu_flush_write_buffer(iommu);
1589 }
1590 
1591 static void intel_flush_iotlb_all(struct iommu_domain *domain)
1592 {
1593 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1594 	struct iommu_domain_info *info;
1595 	unsigned long idx;
1596 
1597 	xa_for_each(&dmar_domain->iommu_array, idx, info) {
1598 		struct intel_iommu *iommu = info->iommu;
1599 		u16 did = domain_id_iommu(dmar_domain, iommu);
1600 
1601 		if (dmar_domain->use_first_level)
1602 			domain_flush_pasid_iotlb(iommu, dmar_domain, 0, -1, 0);
1603 		else
1604 			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1605 						 DMA_TLB_DSI_FLUSH);
1606 
1607 		if (!cap_caching_mode(iommu->cap))
1608 			iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH);
1609 	}
1610 }
1611 
1612 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1613 {
1614 	u32 pmen;
1615 	unsigned long flags;
1616 
1617 	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1618 		return;
1619 
1620 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1621 	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1622 	pmen &= ~DMA_PMEN_EPM;
1623 	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1624 
1625 	/* wait for the protected region status bit to clear */
1626 	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1627 		readl, !(pmen & DMA_PMEN_PRS), pmen);
1628 
1629 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1630 }
1631 
1632 static void iommu_enable_translation(struct intel_iommu *iommu)
1633 {
1634 	u32 sts;
1635 	unsigned long flags;
1636 
1637 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1638 	iommu->gcmd |= DMA_GCMD_TE;
1639 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1640 
1641 	/* Make sure hardware complete it */
1642 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1643 		      readl, (sts & DMA_GSTS_TES), sts);
1644 
1645 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1646 }
1647 
1648 static void iommu_disable_translation(struct intel_iommu *iommu)
1649 {
1650 	u32 sts;
1651 	unsigned long flag;
1652 
1653 	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
1654 	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
1655 		return;
1656 
1657 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1658 	iommu->gcmd &= ~DMA_GCMD_TE;
1659 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660 
1661 	/* Make sure hardware complete it */
1662 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1663 		      readl, (!(sts & DMA_GSTS_TES)), sts);
1664 
1665 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1666 }
1667 
1668 static int iommu_init_domains(struct intel_iommu *iommu)
1669 {
1670 	u32 ndomains;
1671 
1672 	ndomains = cap_ndoms(iommu->cap);
1673 	pr_debug("%s: Number of Domains supported <%d>\n",
1674 		 iommu->name, ndomains);
1675 
1676 	spin_lock_init(&iommu->lock);
1677 
1678 	iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL);
1679 	if (!iommu->domain_ids)
1680 		return -ENOMEM;
1681 
1682 	/*
1683 	 * If Caching mode is set, then invalid translations are tagged
1684 	 * with domain-id 0, hence we need to pre-allocate it. We also
1685 	 * use domain-id 0 as a marker for non-allocated domain-id, so
1686 	 * make sure it is not used for a real domain.
1687 	 */
1688 	set_bit(0, iommu->domain_ids);
1689 
1690 	/*
1691 	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1692 	 * entry for first-level or pass-through translation modes should
1693 	 * be programmed with a domain id different from those used for
1694 	 * second-level or nested translation. We reserve a domain id for
1695 	 * this purpose.
1696 	 */
1697 	if (sm_supported(iommu))
1698 		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1699 
1700 	return 0;
1701 }
1702 
1703 static void disable_dmar_iommu(struct intel_iommu *iommu)
1704 {
1705 	if (!iommu->domain_ids)
1706 		return;
1707 
1708 	/*
1709 	 * All iommu domains must have been detached from the devices,
1710 	 * hence there should be no domain IDs in use.
1711 	 */
1712 	if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap))
1713 		    > NUM_RESERVED_DID))
1714 		return;
1715 
1716 	if (iommu->gcmd & DMA_GCMD_TE)
1717 		iommu_disable_translation(iommu);
1718 }
1719 
1720 static void free_dmar_iommu(struct intel_iommu *iommu)
1721 {
1722 	if (iommu->domain_ids) {
1723 		bitmap_free(iommu->domain_ids);
1724 		iommu->domain_ids = NULL;
1725 	}
1726 
1727 	if (iommu->copied_tables) {
1728 		bitmap_free(iommu->copied_tables);
1729 		iommu->copied_tables = NULL;
1730 	}
1731 
1732 	/* free context mapping */
1733 	free_context_table(iommu);
1734 
1735 #ifdef CONFIG_INTEL_IOMMU_SVM
1736 	if (pasid_supported(iommu)) {
1737 		if (ecap_prs(iommu->ecap))
1738 			intel_svm_finish_prq(iommu);
1739 	}
1740 #endif
1741 }
1742 
1743 /*
1744  * Check and return whether first level is used by default for
1745  * DMA translation.
1746  */
1747 static bool first_level_by_default(unsigned int type)
1748 {
1749 	/* Only SL is available in legacy mode */
1750 	if (!scalable_mode_support())
1751 		return false;
1752 
1753 	/* Only level (either FL or SL) is available, just use it */
1754 	if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity())
1755 		return intel_cap_flts_sanity();
1756 
1757 	/* Both levels are available, decide it based on domain type */
1758 	return type != IOMMU_DOMAIN_UNMANAGED;
1759 }
1760 
1761 static struct dmar_domain *alloc_domain(unsigned int type)
1762 {
1763 	struct dmar_domain *domain;
1764 
1765 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1766 	if (!domain)
1767 		return NULL;
1768 
1769 	domain->nid = NUMA_NO_NODE;
1770 	if (first_level_by_default(type))
1771 		domain->use_first_level = true;
1772 	domain->has_iotlb_device = false;
1773 	INIT_LIST_HEAD(&domain->devices);
1774 	INIT_LIST_HEAD(&domain->dev_pasids);
1775 	spin_lock_init(&domain->lock);
1776 	xa_init(&domain->iommu_array);
1777 
1778 	return domain;
1779 }
1780 
1781 static int domain_attach_iommu(struct dmar_domain *domain,
1782 			       struct intel_iommu *iommu)
1783 {
1784 	struct iommu_domain_info *info, *curr;
1785 	unsigned long ndomains;
1786 	int num, ret = -ENOSPC;
1787 
1788 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1789 	if (!info)
1790 		return -ENOMEM;
1791 
1792 	spin_lock(&iommu->lock);
1793 	curr = xa_load(&domain->iommu_array, iommu->seq_id);
1794 	if (curr) {
1795 		curr->refcnt++;
1796 		spin_unlock(&iommu->lock);
1797 		kfree(info);
1798 		return 0;
1799 	}
1800 
1801 	ndomains = cap_ndoms(iommu->cap);
1802 	num = find_first_zero_bit(iommu->domain_ids, ndomains);
1803 	if (num >= ndomains) {
1804 		pr_err("%s: No free domain ids\n", iommu->name);
1805 		goto err_unlock;
1806 	}
1807 
1808 	set_bit(num, iommu->domain_ids);
1809 	info->refcnt	= 1;
1810 	info->did	= num;
1811 	info->iommu	= iommu;
1812 	curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id,
1813 			  NULL, info, GFP_ATOMIC);
1814 	if (curr) {
1815 		ret = xa_err(curr) ? : -EBUSY;
1816 		goto err_clear;
1817 	}
1818 	domain_update_iommu_cap(domain);
1819 
1820 	spin_unlock(&iommu->lock);
1821 	return 0;
1822 
1823 err_clear:
1824 	clear_bit(info->did, iommu->domain_ids);
1825 err_unlock:
1826 	spin_unlock(&iommu->lock);
1827 	kfree(info);
1828 	return ret;
1829 }
1830 
1831 static void domain_detach_iommu(struct dmar_domain *domain,
1832 				struct intel_iommu *iommu)
1833 {
1834 	struct iommu_domain_info *info;
1835 
1836 	spin_lock(&iommu->lock);
1837 	info = xa_load(&domain->iommu_array, iommu->seq_id);
1838 	if (--info->refcnt == 0) {
1839 		clear_bit(info->did, iommu->domain_ids);
1840 		xa_erase(&domain->iommu_array, iommu->seq_id);
1841 		domain->nid = NUMA_NO_NODE;
1842 		domain_update_iommu_cap(domain);
1843 		kfree(info);
1844 	}
1845 	spin_unlock(&iommu->lock);
1846 }
1847 
1848 static inline int guestwidth_to_adjustwidth(int gaw)
1849 {
1850 	int agaw;
1851 	int r = (gaw - 12) % 9;
1852 
1853 	if (r == 0)
1854 		agaw = gaw;
1855 	else
1856 		agaw = gaw + 9 - r;
1857 	if (agaw > 64)
1858 		agaw = 64;
1859 	return agaw;
1860 }
1861 
1862 static void domain_exit(struct dmar_domain *domain)
1863 {
1864 	if (domain->pgd) {
1865 		LIST_HEAD(freelist);
1866 
1867 		domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist);
1868 		put_pages_list(&freelist);
1869 	}
1870 
1871 	if (WARN_ON(!list_empty(&domain->devices)))
1872 		return;
1873 
1874 	kfree(domain);
1875 }
1876 
1877 /*
1878  * Get the PASID directory size for scalable mode context entry.
1879  * Value of X in the PDTS field of a scalable mode context entry
1880  * indicates PASID directory with 2^(X + 7) entries.
1881  */
1882 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1883 {
1884 	unsigned long pds, max_pde;
1885 
1886 	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1887 	pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS);
1888 	if (pds < 7)
1889 		return 0;
1890 
1891 	return pds - 7;
1892 }
1893 
1894 /*
1895  * Set the RID_PASID field of a scalable mode context entry. The
1896  * IOMMU hardware will use the PASID value set in this field for
1897  * DMA translations of DMA requests without PASID.
1898  */
1899 static inline void
1900 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1901 {
1902 	context->hi |= pasid & ((1 << 20) - 1);
1903 }
1904 
1905 /*
1906  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1907  * entry.
1908  */
1909 static inline void context_set_sm_dte(struct context_entry *context)
1910 {
1911 	context->lo |= BIT_ULL(2);
1912 }
1913 
1914 /*
1915  * Set the PRE(Page Request Enable) field of a scalable mode context
1916  * entry.
1917  */
1918 static inline void context_set_sm_pre(struct context_entry *context)
1919 {
1920 	context->lo |= BIT_ULL(4);
1921 }
1922 
1923 /* Convert value to context PASID directory size field coding. */
1924 #define context_pdts(pds)	(((pds) & 0x7) << 9)
1925 
1926 static int domain_context_mapping_one(struct dmar_domain *domain,
1927 				      struct intel_iommu *iommu,
1928 				      struct pasid_table *table,
1929 				      u8 bus, u8 devfn)
1930 {
1931 	struct device_domain_info *info =
1932 			domain_lookup_dev_info(domain, iommu, bus, devfn);
1933 	u16 did = domain_id_iommu(domain, iommu);
1934 	int translation = CONTEXT_TT_MULTI_LEVEL;
1935 	struct context_entry *context;
1936 	int ret;
1937 
1938 	if (hw_pass_through && domain_type_is_si(domain))
1939 		translation = CONTEXT_TT_PASS_THROUGH;
1940 
1941 	pr_debug("Set context mapping for %02x:%02x.%d\n",
1942 		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1943 
1944 	spin_lock(&iommu->lock);
1945 	ret = -ENOMEM;
1946 	context = iommu_context_addr(iommu, bus, devfn, 1);
1947 	if (!context)
1948 		goto out_unlock;
1949 
1950 	ret = 0;
1951 	if (context_present(context) && !context_copied(iommu, bus, devfn))
1952 		goto out_unlock;
1953 
1954 	/*
1955 	 * For kdump cases, old valid entries may be cached due to the
1956 	 * in-flight DMA and copied pgtable, but there is no unmapping
1957 	 * behaviour for them, thus we need an explicit cache flush for
1958 	 * the newly-mapped device. For kdump, at this point, the device
1959 	 * is supposed to finish reset at its driver probe stage, so no
1960 	 * in-flight DMA will exist, and we don't need to worry anymore
1961 	 * hereafter.
1962 	 */
1963 	if (context_copied(iommu, bus, devfn)) {
1964 		u16 did_old = context_domain_id(context);
1965 
1966 		if (did_old < cap_ndoms(iommu->cap)) {
1967 			iommu->flush.flush_context(iommu, did_old,
1968 						   (((u16)bus) << 8) | devfn,
1969 						   DMA_CCMD_MASK_NOBIT,
1970 						   DMA_CCMD_DEVICE_INVL);
1971 			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
1972 						 DMA_TLB_DSI_FLUSH);
1973 		}
1974 
1975 		clear_context_copied(iommu, bus, devfn);
1976 	}
1977 
1978 	context_clear_entry(context);
1979 
1980 	if (sm_supported(iommu)) {
1981 		unsigned long pds;
1982 
1983 		/* Setup the PASID DIR pointer: */
1984 		pds = context_get_sm_pds(table);
1985 		context->lo = (u64)virt_to_phys(table->table) |
1986 				context_pdts(pds);
1987 
1988 		/* Setup the RID_PASID field: */
1989 		context_set_sm_rid2pasid(context, IOMMU_NO_PASID);
1990 
1991 		/*
1992 		 * Setup the Device-TLB enable bit and Page request
1993 		 * Enable bit:
1994 		 */
1995 		if (info && info->ats_supported)
1996 			context_set_sm_dte(context);
1997 		if (info && info->pri_supported)
1998 			context_set_sm_pre(context);
1999 		if (info && info->pasid_supported)
2000 			context_set_pasid(context);
2001 	} else {
2002 		struct dma_pte *pgd = domain->pgd;
2003 		int agaw;
2004 
2005 		context_set_domain_id(context, did);
2006 
2007 		if (translation != CONTEXT_TT_PASS_THROUGH) {
2008 			/*
2009 			 * Skip top levels of page tables for iommu which has
2010 			 * less agaw than default. Unnecessary for PT mode.
2011 			 */
2012 			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2013 				ret = -ENOMEM;
2014 				pgd = phys_to_virt(dma_pte_addr(pgd));
2015 				if (!dma_pte_present(pgd))
2016 					goto out_unlock;
2017 			}
2018 
2019 			if (info && info->ats_supported)
2020 				translation = CONTEXT_TT_DEV_IOTLB;
2021 			else
2022 				translation = CONTEXT_TT_MULTI_LEVEL;
2023 
2024 			context_set_address_root(context, virt_to_phys(pgd));
2025 			context_set_address_width(context, agaw);
2026 		} else {
2027 			/*
2028 			 * In pass through mode, AW must be programmed to
2029 			 * indicate the largest AGAW value supported by
2030 			 * hardware. And ASR is ignored by hardware.
2031 			 */
2032 			context_set_address_width(context, iommu->msagaw);
2033 		}
2034 
2035 		context_set_translation_type(context, translation);
2036 	}
2037 
2038 	context_set_fault_enable(context);
2039 	context_set_present(context);
2040 	if (!ecap_coherent(iommu->ecap))
2041 		clflush_cache_range(context, sizeof(*context));
2042 
2043 	/*
2044 	 * It's a non-present to present mapping. If hardware doesn't cache
2045 	 * non-present entry we only need to flush the write-buffer. If the
2046 	 * _does_ cache non-present entries, then it does so in the special
2047 	 * domain #0, which we have to flush:
2048 	 */
2049 	if (cap_caching_mode(iommu->cap)) {
2050 		iommu->flush.flush_context(iommu, 0,
2051 					   (((u16)bus) << 8) | devfn,
2052 					   DMA_CCMD_MASK_NOBIT,
2053 					   DMA_CCMD_DEVICE_INVL);
2054 		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2055 	} else {
2056 		iommu_flush_write_buffer(iommu);
2057 	}
2058 
2059 	ret = 0;
2060 
2061 out_unlock:
2062 	spin_unlock(&iommu->lock);
2063 
2064 	return ret;
2065 }
2066 
2067 struct domain_context_mapping_data {
2068 	struct dmar_domain *domain;
2069 	struct intel_iommu *iommu;
2070 	struct pasid_table *table;
2071 };
2072 
2073 static int domain_context_mapping_cb(struct pci_dev *pdev,
2074 				     u16 alias, void *opaque)
2075 {
2076 	struct domain_context_mapping_data *data = opaque;
2077 
2078 	return domain_context_mapping_one(data->domain, data->iommu,
2079 					  data->table, PCI_BUS_NUM(alias),
2080 					  alias & 0xff);
2081 }
2082 
2083 static int
2084 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2085 {
2086 	struct domain_context_mapping_data data;
2087 	struct pasid_table *table;
2088 	struct intel_iommu *iommu;
2089 	u8 bus, devfn;
2090 
2091 	iommu = device_to_iommu(dev, &bus, &devfn);
2092 	if (!iommu)
2093 		return -ENODEV;
2094 
2095 	table = intel_pasid_get_table(dev);
2096 
2097 	if (!dev_is_pci(dev))
2098 		return domain_context_mapping_one(domain, iommu, table,
2099 						  bus, devfn);
2100 
2101 	data.domain = domain;
2102 	data.iommu = iommu;
2103 	data.table = table;
2104 
2105 	return pci_for_each_dma_alias(to_pci_dev(dev),
2106 				      &domain_context_mapping_cb, &data);
2107 }
2108 
2109 /* Returns a number of VTD pages, but aligned to MM page size */
2110 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2111 					    size_t size)
2112 {
2113 	host_addr &= ~PAGE_MASK;
2114 	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2115 }
2116 
2117 /* Return largest possible superpage level for a given mapping */
2118 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2119 					  unsigned long iov_pfn,
2120 					  unsigned long phy_pfn,
2121 					  unsigned long pages)
2122 {
2123 	int support, level = 1;
2124 	unsigned long pfnmerge;
2125 
2126 	support = domain->iommu_superpage;
2127 
2128 	/* To use a large page, the virtual *and* physical addresses
2129 	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2130 	   of them will mean we have to use smaller pages. So just
2131 	   merge them and check both at once. */
2132 	pfnmerge = iov_pfn | phy_pfn;
2133 
2134 	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2135 		pages >>= VTD_STRIDE_SHIFT;
2136 		if (!pages)
2137 			break;
2138 		pfnmerge >>= VTD_STRIDE_SHIFT;
2139 		level++;
2140 		support--;
2141 	}
2142 	return level;
2143 }
2144 
2145 /*
2146  * Ensure that old small page tables are removed to make room for superpage(s).
2147  * We're going to add new large pages, so make sure we don't remove their parent
2148  * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared.
2149  */
2150 static void switch_to_super_page(struct dmar_domain *domain,
2151 				 unsigned long start_pfn,
2152 				 unsigned long end_pfn, int level)
2153 {
2154 	unsigned long lvl_pages = lvl_to_nr_pages(level);
2155 	struct iommu_domain_info *info;
2156 	struct dma_pte *pte = NULL;
2157 	unsigned long i;
2158 
2159 	while (start_pfn <= end_pfn) {
2160 		if (!pte)
2161 			pte = pfn_to_dma_pte(domain, start_pfn, &level,
2162 					     GFP_ATOMIC);
2163 
2164 		if (dma_pte_present(pte)) {
2165 			dma_pte_free_pagetable(domain, start_pfn,
2166 					       start_pfn + lvl_pages - 1,
2167 					       level + 1);
2168 
2169 			xa_for_each(&domain->iommu_array, i, info)
2170 				iommu_flush_iotlb_psi(info->iommu, domain,
2171 						      start_pfn, lvl_pages,
2172 						      0, 0);
2173 		}
2174 
2175 		pte++;
2176 		start_pfn += lvl_pages;
2177 		if (first_pte_in_page(pte))
2178 			pte = NULL;
2179 	}
2180 }
2181 
2182 static int
2183 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184 		 unsigned long phys_pfn, unsigned long nr_pages, int prot,
2185 		 gfp_t gfp)
2186 {
2187 	struct dma_pte *first_pte = NULL, *pte = NULL;
2188 	unsigned int largepage_lvl = 0;
2189 	unsigned long lvl_pages = 0;
2190 	phys_addr_t pteval;
2191 	u64 attr;
2192 
2193 	if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)))
2194 		return -EINVAL;
2195 
2196 	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2197 		return -EINVAL;
2198 
2199 	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
2200 	attr |= DMA_FL_PTE_PRESENT;
2201 	if (domain->use_first_level) {
2202 		attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
2203 		if (prot & DMA_PTE_WRITE)
2204 			attr |= DMA_FL_PTE_DIRTY;
2205 	}
2206 
2207 	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2208 
2209 	while (nr_pages > 0) {
2210 		uint64_t tmp;
2211 
2212 		if (!pte) {
2213 			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
2214 					phys_pfn, nr_pages);
2215 
2216 			pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl,
2217 					     gfp);
2218 			if (!pte)
2219 				return -ENOMEM;
2220 			first_pte = pte;
2221 
2222 			lvl_pages = lvl_to_nr_pages(largepage_lvl);
2223 
2224 			/* It is large page*/
2225 			if (largepage_lvl > 1) {
2226 				unsigned long end_pfn;
2227 				unsigned long pages_to_remove;
2228 
2229 				pteval |= DMA_PTE_LARGE_PAGE;
2230 				pages_to_remove = min_t(unsigned long, nr_pages,
2231 							nr_pte_to_next_page(pte) * lvl_pages);
2232 				end_pfn = iov_pfn + pages_to_remove - 1;
2233 				switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl);
2234 			} else {
2235 				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2236 			}
2237 
2238 		}
2239 		/* We don't need lock here, nobody else
2240 		 * touches the iova range
2241 		 */
2242 		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2243 		if (tmp) {
2244 			static int dumps = 5;
2245 			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2246 				iov_pfn, tmp, (unsigned long long)pteval);
2247 			if (dumps) {
2248 				dumps--;
2249 				debug_dma_dump_mappings(NULL);
2250 			}
2251 			WARN_ON(1);
2252 		}
2253 
2254 		nr_pages -= lvl_pages;
2255 		iov_pfn += lvl_pages;
2256 		phys_pfn += lvl_pages;
2257 		pteval += lvl_pages * VTD_PAGE_SIZE;
2258 
2259 		/* If the next PTE would be the first in a new page, then we
2260 		 * need to flush the cache on the entries we've just written.
2261 		 * And then we'll need to recalculate 'pte', so clear it and
2262 		 * let it get set again in the if (!pte) block above.
2263 		 *
2264 		 * If we're done (!nr_pages) we need to flush the cache too.
2265 		 *
2266 		 * Also if we've been setting superpages, we may need to
2267 		 * recalculate 'pte' and switch back to smaller pages for the
2268 		 * end of the mapping, if the trailing size is not enough to
2269 		 * use another superpage (i.e. nr_pages < lvl_pages).
2270 		 */
2271 		pte++;
2272 		if (!nr_pages || first_pte_in_page(pte) ||
2273 		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2274 			domain_flush_cache(domain, first_pte,
2275 					   (void *)pte - (void *)first_pte);
2276 			pte = NULL;
2277 		}
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn)
2284 {
2285 	struct intel_iommu *iommu = info->iommu;
2286 	struct context_entry *context;
2287 	u16 did_old;
2288 
2289 	if (!iommu)
2290 		return;
2291 
2292 	spin_lock(&iommu->lock);
2293 	context = iommu_context_addr(iommu, bus, devfn, 0);
2294 	if (!context) {
2295 		spin_unlock(&iommu->lock);
2296 		return;
2297 	}
2298 
2299 	if (sm_supported(iommu)) {
2300 		if (hw_pass_through && domain_type_is_si(info->domain))
2301 			did_old = FLPT_DEFAULT_DID;
2302 		else
2303 			did_old = domain_id_iommu(info->domain, iommu);
2304 	} else {
2305 		did_old = context_domain_id(context);
2306 	}
2307 
2308 	context_clear_entry(context);
2309 	__iommu_flush_cache(iommu, context, sizeof(*context));
2310 	spin_unlock(&iommu->lock);
2311 	iommu->flush.flush_context(iommu,
2312 				   did_old,
2313 				   (((u16)bus) << 8) | devfn,
2314 				   DMA_CCMD_MASK_NOBIT,
2315 				   DMA_CCMD_DEVICE_INVL);
2316 
2317 	if (sm_supported(iommu))
2318 		qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0);
2319 
2320 	iommu->flush.flush_iotlb(iommu,
2321 				 did_old,
2322 				 0,
2323 				 0,
2324 				 DMA_TLB_DSI_FLUSH);
2325 
2326 	__iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH);
2327 }
2328 
2329 static int domain_setup_first_level(struct intel_iommu *iommu,
2330 				    struct dmar_domain *domain,
2331 				    struct device *dev,
2332 				    u32 pasid)
2333 {
2334 	struct dma_pte *pgd = domain->pgd;
2335 	int agaw, level;
2336 	int flags = 0;
2337 
2338 	/*
2339 	 * Skip top levels of page tables for iommu which has
2340 	 * less agaw than default. Unnecessary for PT mode.
2341 	 */
2342 	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2343 		pgd = phys_to_virt(dma_pte_addr(pgd));
2344 		if (!dma_pte_present(pgd))
2345 			return -ENOMEM;
2346 	}
2347 
2348 	level = agaw_to_level(agaw);
2349 	if (level != 4 && level != 5)
2350 		return -EINVAL;
2351 
2352 	if (level == 5)
2353 		flags |= PASID_FLAG_FL5LP;
2354 
2355 	if (domain->force_snooping)
2356 		flags |= PASID_FLAG_PAGE_SNOOP;
2357 
2358 	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
2359 					     domain_id_iommu(domain, iommu),
2360 					     flags);
2361 }
2362 
2363 static bool dev_is_real_dma_subdevice(struct device *dev)
2364 {
2365 	return dev && dev_is_pci(dev) &&
2366 	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
2367 }
2368 
2369 static int iommu_domain_identity_map(struct dmar_domain *domain,
2370 				     unsigned long first_vpfn,
2371 				     unsigned long last_vpfn)
2372 {
2373 	/*
2374 	 * RMRR range might have overlap with physical memory range,
2375 	 * clear it first
2376 	 */
2377 	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2378 
2379 	return __domain_mapping(domain, first_vpfn,
2380 				first_vpfn, last_vpfn - first_vpfn + 1,
2381 				DMA_PTE_READ|DMA_PTE_WRITE, GFP_KERNEL);
2382 }
2383 
2384 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2385 
2386 static int __init si_domain_init(int hw)
2387 {
2388 	struct dmar_rmrr_unit *rmrr;
2389 	struct device *dev;
2390 	int i, nid, ret;
2391 
2392 	si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY);
2393 	if (!si_domain)
2394 		return -EFAULT;
2395 
2396 	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2397 		domain_exit(si_domain);
2398 		si_domain = NULL;
2399 		return -EFAULT;
2400 	}
2401 
2402 	if (hw)
2403 		return 0;
2404 
2405 	for_each_online_node(nid) {
2406 		unsigned long start_pfn, end_pfn;
2407 		int i;
2408 
2409 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2410 			ret = iommu_domain_identity_map(si_domain,
2411 					mm_to_dma_pfn_start(start_pfn),
2412 					mm_to_dma_pfn_end(end_pfn));
2413 			if (ret)
2414 				return ret;
2415 		}
2416 	}
2417 
2418 	/*
2419 	 * Identity map the RMRRs so that devices with RMRRs could also use
2420 	 * the si_domain.
2421 	 */
2422 	for_each_rmrr_units(rmrr) {
2423 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2424 					  i, dev) {
2425 			unsigned long long start = rmrr->base_address;
2426 			unsigned long long end = rmrr->end_address;
2427 
2428 			if (WARN_ON(end < start ||
2429 				    end >> agaw_to_width(si_domain->agaw)))
2430 				continue;
2431 
2432 			ret = iommu_domain_identity_map(si_domain,
2433 					mm_to_dma_pfn_start(start >> PAGE_SHIFT),
2434 					mm_to_dma_pfn_end(end >> PAGE_SHIFT));
2435 			if (ret)
2436 				return ret;
2437 		}
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 static int dmar_domain_attach_device(struct dmar_domain *domain,
2444 				     struct device *dev)
2445 {
2446 	struct device_domain_info *info = dev_iommu_priv_get(dev);
2447 	struct intel_iommu *iommu;
2448 	unsigned long flags;
2449 	u8 bus, devfn;
2450 	int ret;
2451 
2452 	iommu = device_to_iommu(dev, &bus, &devfn);
2453 	if (!iommu)
2454 		return -ENODEV;
2455 
2456 	ret = domain_attach_iommu(domain, iommu);
2457 	if (ret)
2458 		return ret;
2459 	info->domain = domain;
2460 	spin_lock_irqsave(&domain->lock, flags);
2461 	list_add(&info->link, &domain->devices);
2462 	spin_unlock_irqrestore(&domain->lock, flags);
2463 
2464 	/* PASID table is mandatory for a PCI device in scalable mode. */
2465 	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
2466 		/* Setup the PASID entry for requests without PASID: */
2467 		if (hw_pass_through && domain_type_is_si(domain))
2468 			ret = intel_pasid_setup_pass_through(iommu, domain,
2469 					dev, IOMMU_NO_PASID);
2470 		else if (domain->use_first_level)
2471 			ret = domain_setup_first_level(iommu, domain, dev,
2472 					IOMMU_NO_PASID);
2473 		else
2474 			ret = intel_pasid_setup_second_level(iommu, domain,
2475 					dev, IOMMU_NO_PASID);
2476 		if (ret) {
2477 			dev_err(dev, "Setup RID2PASID failed\n");
2478 			device_block_translation(dev);
2479 			return ret;
2480 		}
2481 	}
2482 
2483 	ret = domain_context_mapping(domain, dev);
2484 	if (ret) {
2485 		dev_err(dev, "Domain context map failed\n");
2486 		device_block_translation(dev);
2487 		return ret;
2488 	}
2489 
2490 	if (sm_supported(info->iommu) || !domain_type_is_si(info->domain))
2491 		iommu_enable_pci_caps(info);
2492 
2493 	return 0;
2494 }
2495 
2496 /**
2497  * device_rmrr_is_relaxable - Test whether the RMRR of this device
2498  * is relaxable (ie. is allowed to be not enforced under some conditions)
2499  * @dev: device handle
2500  *
2501  * We assume that PCI USB devices with RMRRs have them largely
2502  * for historical reasons and that the RMRR space is not actively used post
2503  * boot.  This exclusion may change if vendors begin to abuse it.
2504  *
2505  * The same exception is made for graphics devices, with the requirement that
2506  * any use of the RMRR regions will be torn down before assigning the device
2507  * to a guest.
2508  *
2509  * Return: true if the RMRR is relaxable, false otherwise
2510  */
2511 static bool device_rmrr_is_relaxable(struct device *dev)
2512 {
2513 	struct pci_dev *pdev;
2514 
2515 	if (!dev_is_pci(dev))
2516 		return false;
2517 
2518 	pdev = to_pci_dev(dev);
2519 	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2520 		return true;
2521 	else
2522 		return false;
2523 }
2524 
2525 /*
2526  * Return the required default domain type for a specific device.
2527  *
2528  * @dev: the device in query
2529  * @startup: true if this is during early boot
2530  *
2531  * Returns:
2532  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2533  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2534  *  - 0: both identity and dynamic domains work for this device
2535  */
2536 static int device_def_domain_type(struct device *dev)
2537 {
2538 	if (dev_is_pci(dev)) {
2539 		struct pci_dev *pdev = to_pci_dev(dev);
2540 
2541 		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2542 			return IOMMU_DOMAIN_IDENTITY;
2543 
2544 		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2545 			return IOMMU_DOMAIN_IDENTITY;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2552 {
2553 	/*
2554 	 * Start from the sane iommu hardware state.
2555 	 * If the queued invalidation is already initialized by us
2556 	 * (for example, while enabling interrupt-remapping) then
2557 	 * we got the things already rolling from a sane state.
2558 	 */
2559 	if (!iommu->qi) {
2560 		/*
2561 		 * Clear any previous faults.
2562 		 */
2563 		dmar_fault(-1, iommu);
2564 		/*
2565 		 * Disable queued invalidation if supported and already enabled
2566 		 * before OS handover.
2567 		 */
2568 		dmar_disable_qi(iommu);
2569 	}
2570 
2571 	if (dmar_enable_qi(iommu)) {
2572 		/*
2573 		 * Queued Invalidate not enabled, use Register Based Invalidate
2574 		 */
2575 		iommu->flush.flush_context = __iommu_flush_context;
2576 		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2577 		pr_info("%s: Using Register based invalidation\n",
2578 			iommu->name);
2579 	} else {
2580 		iommu->flush.flush_context = qi_flush_context;
2581 		iommu->flush.flush_iotlb = qi_flush_iotlb;
2582 		pr_info("%s: Using Queued invalidation\n", iommu->name);
2583 	}
2584 }
2585 
2586 static int copy_context_table(struct intel_iommu *iommu,
2587 			      struct root_entry *old_re,
2588 			      struct context_entry **tbl,
2589 			      int bus, bool ext)
2590 {
2591 	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2592 	struct context_entry *new_ce = NULL, ce;
2593 	struct context_entry *old_ce = NULL;
2594 	struct root_entry re;
2595 	phys_addr_t old_ce_phys;
2596 
2597 	tbl_idx = ext ? bus * 2 : bus;
2598 	memcpy(&re, old_re, sizeof(re));
2599 
2600 	for (devfn = 0; devfn < 256; devfn++) {
2601 		/* First calculate the correct index */
2602 		idx = (ext ? devfn * 2 : devfn) % 256;
2603 
2604 		if (idx == 0) {
2605 			/* First save what we may have and clean up */
2606 			if (new_ce) {
2607 				tbl[tbl_idx] = new_ce;
2608 				__iommu_flush_cache(iommu, new_ce,
2609 						    VTD_PAGE_SIZE);
2610 				pos = 1;
2611 			}
2612 
2613 			if (old_ce)
2614 				memunmap(old_ce);
2615 
2616 			ret = 0;
2617 			if (devfn < 0x80)
2618 				old_ce_phys = root_entry_lctp(&re);
2619 			else
2620 				old_ce_phys = root_entry_uctp(&re);
2621 
2622 			if (!old_ce_phys) {
2623 				if (ext && devfn == 0) {
2624 					/* No LCTP, try UCTP */
2625 					devfn = 0x7f;
2626 					continue;
2627 				} else {
2628 					goto out;
2629 				}
2630 			}
2631 
2632 			ret = -ENOMEM;
2633 			old_ce = memremap(old_ce_phys, PAGE_SIZE,
2634 					MEMREMAP_WB);
2635 			if (!old_ce)
2636 				goto out;
2637 
2638 			new_ce = alloc_pgtable_page(iommu->node, GFP_KERNEL);
2639 			if (!new_ce)
2640 				goto out_unmap;
2641 
2642 			ret = 0;
2643 		}
2644 
2645 		/* Now copy the context entry */
2646 		memcpy(&ce, old_ce + idx, sizeof(ce));
2647 
2648 		if (!context_present(&ce))
2649 			continue;
2650 
2651 		did = context_domain_id(&ce);
2652 		if (did >= 0 && did < cap_ndoms(iommu->cap))
2653 			set_bit(did, iommu->domain_ids);
2654 
2655 		set_context_copied(iommu, bus, devfn);
2656 		new_ce[idx] = ce;
2657 	}
2658 
2659 	tbl[tbl_idx + pos] = new_ce;
2660 
2661 	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2662 
2663 out_unmap:
2664 	memunmap(old_ce);
2665 
2666 out:
2667 	return ret;
2668 }
2669 
2670 static int copy_translation_tables(struct intel_iommu *iommu)
2671 {
2672 	struct context_entry **ctxt_tbls;
2673 	struct root_entry *old_rt;
2674 	phys_addr_t old_rt_phys;
2675 	int ctxt_table_entries;
2676 	u64 rtaddr_reg;
2677 	int bus, ret;
2678 	bool new_ext, ext;
2679 
2680 	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2681 	ext        = !!(rtaddr_reg & DMA_RTADDR_SMT);
2682 	new_ext    = !!sm_supported(iommu);
2683 
2684 	/*
2685 	 * The RTT bit can only be changed when translation is disabled,
2686 	 * but disabling translation means to open a window for data
2687 	 * corruption. So bail out and don't copy anything if we would
2688 	 * have to change the bit.
2689 	 */
2690 	if (new_ext != ext)
2691 		return -EINVAL;
2692 
2693 	iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL);
2694 	if (!iommu->copied_tables)
2695 		return -ENOMEM;
2696 
2697 	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2698 	if (!old_rt_phys)
2699 		return -EINVAL;
2700 
2701 	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
2702 	if (!old_rt)
2703 		return -ENOMEM;
2704 
2705 	/* This is too big for the stack - allocate it from slab */
2706 	ctxt_table_entries = ext ? 512 : 256;
2707 	ret = -ENOMEM;
2708 	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
2709 	if (!ctxt_tbls)
2710 		goto out_unmap;
2711 
2712 	for (bus = 0; bus < 256; bus++) {
2713 		ret = copy_context_table(iommu, &old_rt[bus],
2714 					 ctxt_tbls, bus, ext);
2715 		if (ret) {
2716 			pr_err("%s: Failed to copy context table for bus %d\n",
2717 				iommu->name, bus);
2718 			continue;
2719 		}
2720 	}
2721 
2722 	spin_lock(&iommu->lock);
2723 
2724 	/* Context tables are copied, now write them to the root_entry table */
2725 	for (bus = 0; bus < 256; bus++) {
2726 		int idx = ext ? bus * 2 : bus;
2727 		u64 val;
2728 
2729 		if (ctxt_tbls[idx]) {
2730 			val = virt_to_phys(ctxt_tbls[idx]) | 1;
2731 			iommu->root_entry[bus].lo = val;
2732 		}
2733 
2734 		if (!ext || !ctxt_tbls[idx + 1])
2735 			continue;
2736 
2737 		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2738 		iommu->root_entry[bus].hi = val;
2739 	}
2740 
2741 	spin_unlock(&iommu->lock);
2742 
2743 	kfree(ctxt_tbls);
2744 
2745 	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2746 
2747 	ret = 0;
2748 
2749 out_unmap:
2750 	memunmap(old_rt);
2751 
2752 	return ret;
2753 }
2754 
2755 static int __init init_dmars(void)
2756 {
2757 	struct dmar_drhd_unit *drhd;
2758 	struct intel_iommu *iommu;
2759 	int ret;
2760 
2761 	ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
2762 	if (ret)
2763 		goto free_iommu;
2764 
2765 	for_each_iommu(iommu, drhd) {
2766 		if (drhd->ignored) {
2767 			iommu_disable_translation(iommu);
2768 			continue;
2769 		}
2770 
2771 		/*
2772 		 * Find the max pasid size of all IOMMU's in the system.
2773 		 * We need to ensure the system pasid table is no bigger
2774 		 * than the smallest supported.
2775 		 */
2776 		if (pasid_supported(iommu)) {
2777 			u32 temp = 2 << ecap_pss(iommu->ecap);
2778 
2779 			intel_pasid_max_id = min_t(u32, temp,
2780 						   intel_pasid_max_id);
2781 		}
2782 
2783 		intel_iommu_init_qi(iommu);
2784 
2785 		ret = iommu_init_domains(iommu);
2786 		if (ret)
2787 			goto free_iommu;
2788 
2789 		init_translation_status(iommu);
2790 
2791 		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
2792 			iommu_disable_translation(iommu);
2793 			clear_translation_pre_enabled(iommu);
2794 			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
2795 				iommu->name);
2796 		}
2797 
2798 		/*
2799 		 * TBD:
2800 		 * we could share the same root & context tables
2801 		 * among all IOMMU's. Need to Split it later.
2802 		 */
2803 		ret = iommu_alloc_root_entry(iommu);
2804 		if (ret)
2805 			goto free_iommu;
2806 
2807 		if (translation_pre_enabled(iommu)) {
2808 			pr_info("Translation already enabled - trying to copy translation structures\n");
2809 
2810 			ret = copy_translation_tables(iommu);
2811 			if (ret) {
2812 				/*
2813 				 * We found the IOMMU with translation
2814 				 * enabled - but failed to copy over the
2815 				 * old root-entry table. Try to proceed
2816 				 * by disabling translation now and
2817 				 * allocating a clean root-entry table.
2818 				 * This might cause DMAR faults, but
2819 				 * probably the dump will still succeed.
2820 				 */
2821 				pr_err("Failed to copy translation tables from previous kernel for %s\n",
2822 				       iommu->name);
2823 				iommu_disable_translation(iommu);
2824 				clear_translation_pre_enabled(iommu);
2825 			} else {
2826 				pr_info("Copied translation tables from previous kernel for %s\n",
2827 					iommu->name);
2828 			}
2829 		}
2830 
2831 		if (!ecap_pass_through(iommu->ecap))
2832 			hw_pass_through = 0;
2833 		intel_svm_check(iommu);
2834 	}
2835 
2836 	/*
2837 	 * Now that qi is enabled on all iommus, set the root entry and flush
2838 	 * caches. This is required on some Intel X58 chipsets, otherwise the
2839 	 * flush_context function will loop forever and the boot hangs.
2840 	 */
2841 	for_each_active_iommu(iommu, drhd) {
2842 		iommu_flush_write_buffer(iommu);
2843 		iommu_set_root_entry(iommu);
2844 	}
2845 
2846 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2847 	dmar_map_gfx = 0;
2848 #endif
2849 
2850 	if (!dmar_map_gfx)
2851 		iommu_identity_mapping |= IDENTMAP_GFX;
2852 
2853 	check_tylersburg_isoch();
2854 
2855 	ret = si_domain_init(hw_pass_through);
2856 	if (ret)
2857 		goto free_iommu;
2858 
2859 	/*
2860 	 * for each drhd
2861 	 *   enable fault log
2862 	 *   global invalidate context cache
2863 	 *   global invalidate iotlb
2864 	 *   enable translation
2865 	 */
2866 	for_each_iommu(iommu, drhd) {
2867 		if (drhd->ignored) {
2868 			/*
2869 			 * we always have to disable PMRs or DMA may fail on
2870 			 * this device
2871 			 */
2872 			if (force_on)
2873 				iommu_disable_protect_mem_regions(iommu);
2874 			continue;
2875 		}
2876 
2877 		iommu_flush_write_buffer(iommu);
2878 
2879 #ifdef CONFIG_INTEL_IOMMU_SVM
2880 		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
2881 			/*
2882 			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
2883 			 * could cause possible lock race condition.
2884 			 */
2885 			up_write(&dmar_global_lock);
2886 			ret = intel_svm_enable_prq(iommu);
2887 			down_write(&dmar_global_lock);
2888 			if (ret)
2889 				goto free_iommu;
2890 		}
2891 #endif
2892 		ret = dmar_set_interrupt(iommu);
2893 		if (ret)
2894 			goto free_iommu;
2895 	}
2896 
2897 	return 0;
2898 
2899 free_iommu:
2900 	for_each_active_iommu(iommu, drhd) {
2901 		disable_dmar_iommu(iommu);
2902 		free_dmar_iommu(iommu);
2903 	}
2904 	if (si_domain) {
2905 		domain_exit(si_domain);
2906 		si_domain = NULL;
2907 	}
2908 
2909 	return ret;
2910 }
2911 
2912 static void __init init_no_remapping_devices(void)
2913 {
2914 	struct dmar_drhd_unit *drhd;
2915 	struct device *dev;
2916 	int i;
2917 
2918 	for_each_drhd_unit(drhd) {
2919 		if (!drhd->include_all) {
2920 			for_each_active_dev_scope(drhd->devices,
2921 						  drhd->devices_cnt, i, dev)
2922 				break;
2923 			/* ignore DMAR unit if no devices exist */
2924 			if (i == drhd->devices_cnt)
2925 				drhd->ignored = 1;
2926 		}
2927 	}
2928 
2929 	for_each_active_drhd_unit(drhd) {
2930 		if (drhd->include_all)
2931 			continue;
2932 
2933 		for_each_active_dev_scope(drhd->devices,
2934 					  drhd->devices_cnt, i, dev)
2935 			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
2936 				break;
2937 		if (i < drhd->devices_cnt)
2938 			continue;
2939 
2940 		/* This IOMMU has *only* gfx devices. Either bypass it or
2941 		   set the gfx_mapped flag, as appropriate */
2942 		drhd->gfx_dedicated = 1;
2943 		if (!dmar_map_gfx)
2944 			drhd->ignored = 1;
2945 	}
2946 }
2947 
2948 #ifdef CONFIG_SUSPEND
2949 static int init_iommu_hw(void)
2950 {
2951 	struct dmar_drhd_unit *drhd;
2952 	struct intel_iommu *iommu = NULL;
2953 	int ret;
2954 
2955 	for_each_active_iommu(iommu, drhd) {
2956 		if (iommu->qi) {
2957 			ret = dmar_reenable_qi(iommu);
2958 			if (ret)
2959 				return ret;
2960 		}
2961 	}
2962 
2963 	for_each_iommu(iommu, drhd) {
2964 		if (drhd->ignored) {
2965 			/*
2966 			 * we always have to disable PMRs or DMA may fail on
2967 			 * this device
2968 			 */
2969 			if (force_on)
2970 				iommu_disable_protect_mem_regions(iommu);
2971 			continue;
2972 		}
2973 
2974 		iommu_flush_write_buffer(iommu);
2975 		iommu_set_root_entry(iommu);
2976 		iommu_enable_translation(iommu);
2977 		iommu_disable_protect_mem_regions(iommu);
2978 	}
2979 
2980 	return 0;
2981 }
2982 
2983 static void iommu_flush_all(void)
2984 {
2985 	struct dmar_drhd_unit *drhd;
2986 	struct intel_iommu *iommu;
2987 
2988 	for_each_active_iommu(iommu, drhd) {
2989 		iommu->flush.flush_context(iommu, 0, 0, 0,
2990 					   DMA_CCMD_GLOBAL_INVL);
2991 		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2992 					 DMA_TLB_GLOBAL_FLUSH);
2993 	}
2994 }
2995 
2996 static int iommu_suspend(void)
2997 {
2998 	struct dmar_drhd_unit *drhd;
2999 	struct intel_iommu *iommu = NULL;
3000 	unsigned long flag;
3001 
3002 	iommu_flush_all();
3003 
3004 	for_each_active_iommu(iommu, drhd) {
3005 		iommu_disable_translation(iommu);
3006 
3007 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3008 
3009 		iommu->iommu_state[SR_DMAR_FECTL_REG] =
3010 			readl(iommu->reg + DMAR_FECTL_REG);
3011 		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3012 			readl(iommu->reg + DMAR_FEDATA_REG);
3013 		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3014 			readl(iommu->reg + DMAR_FEADDR_REG);
3015 		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3016 			readl(iommu->reg + DMAR_FEUADDR_REG);
3017 
3018 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3019 	}
3020 	return 0;
3021 }
3022 
3023 static void iommu_resume(void)
3024 {
3025 	struct dmar_drhd_unit *drhd;
3026 	struct intel_iommu *iommu = NULL;
3027 	unsigned long flag;
3028 
3029 	if (init_iommu_hw()) {
3030 		if (force_on)
3031 			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3032 		else
3033 			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3034 		return;
3035 	}
3036 
3037 	for_each_active_iommu(iommu, drhd) {
3038 
3039 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3040 
3041 		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3042 			iommu->reg + DMAR_FECTL_REG);
3043 		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3044 			iommu->reg + DMAR_FEDATA_REG);
3045 		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3046 			iommu->reg + DMAR_FEADDR_REG);
3047 		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3048 			iommu->reg + DMAR_FEUADDR_REG);
3049 
3050 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3051 	}
3052 }
3053 
3054 static struct syscore_ops iommu_syscore_ops = {
3055 	.resume		= iommu_resume,
3056 	.suspend	= iommu_suspend,
3057 };
3058 
3059 static void __init init_iommu_pm_ops(void)
3060 {
3061 	register_syscore_ops(&iommu_syscore_ops);
3062 }
3063 
3064 #else
3065 static inline void init_iommu_pm_ops(void) {}
3066 #endif	/* CONFIG_PM */
3067 
3068 static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
3069 {
3070 	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
3071 	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
3072 	    rmrr->end_address <= rmrr->base_address ||
3073 	    arch_rmrr_sanity_check(rmrr))
3074 		return -EINVAL;
3075 
3076 	return 0;
3077 }
3078 
3079 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3080 {
3081 	struct acpi_dmar_reserved_memory *rmrr;
3082 	struct dmar_rmrr_unit *rmrru;
3083 
3084 	rmrr = (struct acpi_dmar_reserved_memory *)header;
3085 	if (rmrr_sanity_check(rmrr)) {
3086 		pr_warn(FW_BUG
3087 			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
3088 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3089 			   rmrr->base_address, rmrr->end_address,
3090 			   dmi_get_system_info(DMI_BIOS_VENDOR),
3091 			   dmi_get_system_info(DMI_BIOS_VERSION),
3092 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
3093 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
3094 	}
3095 
3096 	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3097 	if (!rmrru)
3098 		goto out;
3099 
3100 	rmrru->hdr = header;
3101 
3102 	rmrru->base_address = rmrr->base_address;
3103 	rmrru->end_address = rmrr->end_address;
3104 
3105 	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3106 				((void *)rmrr) + rmrr->header.length,
3107 				&rmrru->devices_cnt);
3108 	if (rmrru->devices_cnt && rmrru->devices == NULL)
3109 		goto free_rmrru;
3110 
3111 	list_add(&rmrru->list, &dmar_rmrr_units);
3112 
3113 	return 0;
3114 free_rmrru:
3115 	kfree(rmrru);
3116 out:
3117 	return -ENOMEM;
3118 }
3119 
3120 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3121 {
3122 	struct dmar_atsr_unit *atsru;
3123 	struct acpi_dmar_atsr *tmp;
3124 
3125 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
3126 				dmar_rcu_check()) {
3127 		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3128 		if (atsr->segment != tmp->segment)
3129 			continue;
3130 		if (atsr->header.length != tmp->header.length)
3131 			continue;
3132 		if (memcmp(atsr, tmp, atsr->header.length) == 0)
3133 			return atsru;
3134 	}
3135 
3136 	return NULL;
3137 }
3138 
3139 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3140 {
3141 	struct acpi_dmar_atsr *atsr;
3142 	struct dmar_atsr_unit *atsru;
3143 
3144 	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3145 		return 0;
3146 
3147 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3148 	atsru = dmar_find_atsr(atsr);
3149 	if (atsru)
3150 		return 0;
3151 
3152 	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3153 	if (!atsru)
3154 		return -ENOMEM;
3155 
3156 	/*
3157 	 * If memory is allocated from slab by ACPI _DSM method, we need to
3158 	 * copy the memory content because the memory buffer will be freed
3159 	 * on return.
3160 	 */
3161 	atsru->hdr = (void *)(atsru + 1);
3162 	memcpy(atsru->hdr, hdr, hdr->length);
3163 	atsru->include_all = atsr->flags & 0x1;
3164 	if (!atsru->include_all) {
3165 		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3166 				(void *)atsr + atsr->header.length,
3167 				&atsru->devices_cnt);
3168 		if (atsru->devices_cnt && atsru->devices == NULL) {
3169 			kfree(atsru);
3170 			return -ENOMEM;
3171 		}
3172 	}
3173 
3174 	list_add_rcu(&atsru->list, &dmar_atsr_units);
3175 
3176 	return 0;
3177 }
3178 
3179 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3180 {
3181 	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3182 	kfree(atsru);
3183 }
3184 
3185 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3186 {
3187 	struct acpi_dmar_atsr *atsr;
3188 	struct dmar_atsr_unit *atsru;
3189 
3190 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3191 	atsru = dmar_find_atsr(atsr);
3192 	if (atsru) {
3193 		list_del_rcu(&atsru->list);
3194 		synchronize_rcu();
3195 		intel_iommu_free_atsr(atsru);
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3202 {
3203 	int i;
3204 	struct device *dev;
3205 	struct acpi_dmar_atsr *atsr;
3206 	struct dmar_atsr_unit *atsru;
3207 
3208 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3209 	atsru = dmar_find_atsr(atsr);
3210 	if (!atsru)
3211 		return 0;
3212 
3213 	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3214 		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3215 					  i, dev)
3216 			return -EBUSY;
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc)
3223 {
3224 	struct dmar_satc_unit *satcu;
3225 	struct acpi_dmar_satc *tmp;
3226 
3227 	list_for_each_entry_rcu(satcu, &dmar_satc_units, list,
3228 				dmar_rcu_check()) {
3229 		tmp = (struct acpi_dmar_satc *)satcu->hdr;
3230 		if (satc->segment != tmp->segment)
3231 			continue;
3232 		if (satc->header.length != tmp->header.length)
3233 			continue;
3234 		if (memcmp(satc, tmp, satc->header.length) == 0)
3235 			return satcu;
3236 	}
3237 
3238 	return NULL;
3239 }
3240 
3241 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg)
3242 {
3243 	struct acpi_dmar_satc *satc;
3244 	struct dmar_satc_unit *satcu;
3245 
3246 	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3247 		return 0;
3248 
3249 	satc = container_of(hdr, struct acpi_dmar_satc, header);
3250 	satcu = dmar_find_satc(satc);
3251 	if (satcu)
3252 		return 0;
3253 
3254 	satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL);
3255 	if (!satcu)
3256 		return -ENOMEM;
3257 
3258 	satcu->hdr = (void *)(satcu + 1);
3259 	memcpy(satcu->hdr, hdr, hdr->length);
3260 	satcu->atc_required = satc->flags & 0x1;
3261 	satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1),
3262 					      (void *)satc + satc->header.length,
3263 					      &satcu->devices_cnt);
3264 	if (satcu->devices_cnt && !satcu->devices) {
3265 		kfree(satcu);
3266 		return -ENOMEM;
3267 	}
3268 	list_add_rcu(&satcu->list, &dmar_satc_units);
3269 
3270 	return 0;
3271 }
3272 
3273 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3274 {
3275 	int sp, ret;
3276 	struct intel_iommu *iommu = dmaru->iommu;
3277 
3278 	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
3279 	if (ret)
3280 		goto out;
3281 
3282 	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3283 		pr_warn("%s: Doesn't support hardware pass through.\n",
3284 			iommu->name);
3285 		return -ENXIO;
3286 	}
3287 
3288 	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3289 	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3290 		pr_warn("%s: Doesn't support large page.\n",
3291 			iommu->name);
3292 		return -ENXIO;
3293 	}
3294 
3295 	/*
3296 	 * Disable translation if already enabled prior to OS handover.
3297 	 */
3298 	if (iommu->gcmd & DMA_GCMD_TE)
3299 		iommu_disable_translation(iommu);
3300 
3301 	ret = iommu_init_domains(iommu);
3302 	if (ret == 0)
3303 		ret = iommu_alloc_root_entry(iommu);
3304 	if (ret)
3305 		goto out;
3306 
3307 	intel_svm_check(iommu);
3308 
3309 	if (dmaru->ignored) {
3310 		/*
3311 		 * we always have to disable PMRs or DMA may fail on this device
3312 		 */
3313 		if (force_on)
3314 			iommu_disable_protect_mem_regions(iommu);
3315 		return 0;
3316 	}
3317 
3318 	intel_iommu_init_qi(iommu);
3319 	iommu_flush_write_buffer(iommu);
3320 
3321 #ifdef CONFIG_INTEL_IOMMU_SVM
3322 	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3323 		ret = intel_svm_enable_prq(iommu);
3324 		if (ret)
3325 			goto disable_iommu;
3326 	}
3327 #endif
3328 	ret = dmar_set_interrupt(iommu);
3329 	if (ret)
3330 		goto disable_iommu;
3331 
3332 	iommu_set_root_entry(iommu);
3333 	iommu_enable_translation(iommu);
3334 
3335 	iommu_disable_protect_mem_regions(iommu);
3336 	return 0;
3337 
3338 disable_iommu:
3339 	disable_dmar_iommu(iommu);
3340 out:
3341 	free_dmar_iommu(iommu);
3342 	return ret;
3343 }
3344 
3345 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3346 {
3347 	int ret = 0;
3348 	struct intel_iommu *iommu = dmaru->iommu;
3349 
3350 	if (!intel_iommu_enabled)
3351 		return 0;
3352 	if (iommu == NULL)
3353 		return -EINVAL;
3354 
3355 	if (insert) {
3356 		ret = intel_iommu_add(dmaru);
3357 	} else {
3358 		disable_dmar_iommu(iommu);
3359 		free_dmar_iommu(iommu);
3360 	}
3361 
3362 	return ret;
3363 }
3364 
3365 static void intel_iommu_free_dmars(void)
3366 {
3367 	struct dmar_rmrr_unit *rmrru, *rmrr_n;
3368 	struct dmar_atsr_unit *atsru, *atsr_n;
3369 	struct dmar_satc_unit *satcu, *satc_n;
3370 
3371 	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3372 		list_del(&rmrru->list);
3373 		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3374 		kfree(rmrru);
3375 	}
3376 
3377 	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3378 		list_del(&atsru->list);
3379 		intel_iommu_free_atsr(atsru);
3380 	}
3381 	list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) {
3382 		list_del(&satcu->list);
3383 		dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt);
3384 		kfree(satcu);
3385 	}
3386 }
3387 
3388 static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev)
3389 {
3390 	struct dmar_satc_unit *satcu;
3391 	struct acpi_dmar_satc *satc;
3392 	struct device *tmp;
3393 	int i;
3394 
3395 	dev = pci_physfn(dev);
3396 	rcu_read_lock();
3397 
3398 	list_for_each_entry_rcu(satcu, &dmar_satc_units, list) {
3399 		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3400 		if (satc->segment != pci_domain_nr(dev->bus))
3401 			continue;
3402 		for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp)
3403 			if (to_pci_dev(tmp) == dev)
3404 				goto out;
3405 	}
3406 	satcu = NULL;
3407 out:
3408 	rcu_read_unlock();
3409 	return satcu;
3410 }
3411 
3412 static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu)
3413 {
3414 	int i, ret = 1;
3415 	struct pci_bus *bus;
3416 	struct pci_dev *bridge = NULL;
3417 	struct device *tmp;
3418 	struct acpi_dmar_atsr *atsr;
3419 	struct dmar_atsr_unit *atsru;
3420 	struct dmar_satc_unit *satcu;
3421 
3422 	dev = pci_physfn(dev);
3423 	satcu = dmar_find_matched_satc_unit(dev);
3424 	if (satcu)
3425 		/*
3426 		 * This device supports ATS as it is in SATC table.
3427 		 * When IOMMU is in legacy mode, enabling ATS is done
3428 		 * automatically by HW for the device that requires
3429 		 * ATS, hence OS should not enable this device ATS
3430 		 * to avoid duplicated TLB invalidation.
3431 		 */
3432 		return !(satcu->atc_required && !sm_supported(iommu));
3433 
3434 	for (bus = dev->bus; bus; bus = bus->parent) {
3435 		bridge = bus->self;
3436 		/* If it's an integrated device, allow ATS */
3437 		if (!bridge)
3438 			return 1;
3439 		/* Connected via non-PCIe: no ATS */
3440 		if (!pci_is_pcie(bridge) ||
3441 		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3442 			return 0;
3443 		/* If we found the root port, look it up in the ATSR */
3444 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3445 			break;
3446 	}
3447 
3448 	rcu_read_lock();
3449 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3450 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3451 		if (atsr->segment != pci_domain_nr(dev->bus))
3452 			continue;
3453 
3454 		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3455 			if (tmp == &bridge->dev)
3456 				goto out;
3457 
3458 		if (atsru->include_all)
3459 			goto out;
3460 	}
3461 	ret = 0;
3462 out:
3463 	rcu_read_unlock();
3464 
3465 	return ret;
3466 }
3467 
3468 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3469 {
3470 	int ret;
3471 	struct dmar_rmrr_unit *rmrru;
3472 	struct dmar_atsr_unit *atsru;
3473 	struct dmar_satc_unit *satcu;
3474 	struct acpi_dmar_atsr *atsr;
3475 	struct acpi_dmar_reserved_memory *rmrr;
3476 	struct acpi_dmar_satc *satc;
3477 
3478 	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3479 		return 0;
3480 
3481 	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3482 		rmrr = container_of(rmrru->hdr,
3483 				    struct acpi_dmar_reserved_memory, header);
3484 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3485 			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3486 				((void *)rmrr) + rmrr->header.length,
3487 				rmrr->segment, rmrru->devices,
3488 				rmrru->devices_cnt);
3489 			if (ret < 0)
3490 				return ret;
3491 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3492 			dmar_remove_dev_scope(info, rmrr->segment,
3493 				rmrru->devices, rmrru->devices_cnt);
3494 		}
3495 	}
3496 
3497 	list_for_each_entry(atsru, &dmar_atsr_units, list) {
3498 		if (atsru->include_all)
3499 			continue;
3500 
3501 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3502 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3503 			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3504 					(void *)atsr + atsr->header.length,
3505 					atsr->segment, atsru->devices,
3506 					atsru->devices_cnt);
3507 			if (ret > 0)
3508 				break;
3509 			else if (ret < 0)
3510 				return ret;
3511 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3512 			if (dmar_remove_dev_scope(info, atsr->segment,
3513 					atsru->devices, atsru->devices_cnt))
3514 				break;
3515 		}
3516 	}
3517 	list_for_each_entry(satcu, &dmar_satc_units, list) {
3518 		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3519 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3520 			ret = dmar_insert_dev_scope(info, (void *)(satc + 1),
3521 					(void *)satc + satc->header.length,
3522 					satc->segment, satcu->devices,
3523 					satcu->devices_cnt);
3524 			if (ret > 0)
3525 				break;
3526 			else if (ret < 0)
3527 				return ret;
3528 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3529 			if (dmar_remove_dev_scope(info, satc->segment,
3530 					satcu->devices, satcu->devices_cnt))
3531 				break;
3532 		}
3533 	}
3534 
3535 	return 0;
3536 }
3537 
3538 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3539 				       unsigned long val, void *v)
3540 {
3541 	struct memory_notify *mhp = v;
3542 	unsigned long start_vpfn = mm_to_dma_pfn_start(mhp->start_pfn);
3543 	unsigned long last_vpfn = mm_to_dma_pfn_end(mhp->start_pfn +
3544 			mhp->nr_pages - 1);
3545 
3546 	switch (val) {
3547 	case MEM_GOING_ONLINE:
3548 		if (iommu_domain_identity_map(si_domain,
3549 					      start_vpfn, last_vpfn)) {
3550 			pr_warn("Failed to build identity map for [%lx-%lx]\n",
3551 				start_vpfn, last_vpfn);
3552 			return NOTIFY_BAD;
3553 		}
3554 		break;
3555 
3556 	case MEM_OFFLINE:
3557 	case MEM_CANCEL_ONLINE:
3558 		{
3559 			struct dmar_drhd_unit *drhd;
3560 			struct intel_iommu *iommu;
3561 			LIST_HEAD(freelist);
3562 
3563 			domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist);
3564 
3565 			rcu_read_lock();
3566 			for_each_active_iommu(iommu, drhd)
3567 				iommu_flush_iotlb_psi(iommu, si_domain,
3568 					start_vpfn, mhp->nr_pages,
3569 					list_empty(&freelist), 0);
3570 			rcu_read_unlock();
3571 			put_pages_list(&freelist);
3572 		}
3573 		break;
3574 	}
3575 
3576 	return NOTIFY_OK;
3577 }
3578 
3579 static struct notifier_block intel_iommu_memory_nb = {
3580 	.notifier_call = intel_iommu_memory_notifier,
3581 	.priority = 0
3582 };
3583 
3584 static void intel_disable_iommus(void)
3585 {
3586 	struct intel_iommu *iommu = NULL;
3587 	struct dmar_drhd_unit *drhd;
3588 
3589 	for_each_iommu(iommu, drhd)
3590 		iommu_disable_translation(iommu);
3591 }
3592 
3593 void intel_iommu_shutdown(void)
3594 {
3595 	struct dmar_drhd_unit *drhd;
3596 	struct intel_iommu *iommu = NULL;
3597 
3598 	if (no_iommu || dmar_disabled)
3599 		return;
3600 
3601 	down_write(&dmar_global_lock);
3602 
3603 	/* Disable PMRs explicitly here. */
3604 	for_each_iommu(iommu, drhd)
3605 		iommu_disable_protect_mem_regions(iommu);
3606 
3607 	/* Make sure the IOMMUs are switched off */
3608 	intel_disable_iommus();
3609 
3610 	up_write(&dmar_global_lock);
3611 }
3612 
3613 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
3614 {
3615 	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
3616 
3617 	return container_of(iommu_dev, struct intel_iommu, iommu);
3618 }
3619 
3620 static ssize_t version_show(struct device *dev,
3621 			    struct device_attribute *attr, char *buf)
3622 {
3623 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3624 	u32 ver = readl(iommu->reg + DMAR_VER_REG);
3625 	return sysfs_emit(buf, "%d:%d\n",
3626 			  DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
3627 }
3628 static DEVICE_ATTR_RO(version);
3629 
3630 static ssize_t address_show(struct device *dev,
3631 			    struct device_attribute *attr, char *buf)
3632 {
3633 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3634 	return sysfs_emit(buf, "%llx\n", iommu->reg_phys);
3635 }
3636 static DEVICE_ATTR_RO(address);
3637 
3638 static ssize_t cap_show(struct device *dev,
3639 			struct device_attribute *attr, char *buf)
3640 {
3641 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3642 	return sysfs_emit(buf, "%llx\n", iommu->cap);
3643 }
3644 static DEVICE_ATTR_RO(cap);
3645 
3646 static ssize_t ecap_show(struct device *dev,
3647 			 struct device_attribute *attr, char *buf)
3648 {
3649 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3650 	return sysfs_emit(buf, "%llx\n", iommu->ecap);
3651 }
3652 static DEVICE_ATTR_RO(ecap);
3653 
3654 static ssize_t domains_supported_show(struct device *dev,
3655 				      struct device_attribute *attr, char *buf)
3656 {
3657 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3658 	return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap));
3659 }
3660 static DEVICE_ATTR_RO(domains_supported);
3661 
3662 static ssize_t domains_used_show(struct device *dev,
3663 				 struct device_attribute *attr, char *buf)
3664 {
3665 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3666 	return sysfs_emit(buf, "%d\n",
3667 			  bitmap_weight(iommu->domain_ids,
3668 					cap_ndoms(iommu->cap)));
3669 }
3670 static DEVICE_ATTR_RO(domains_used);
3671 
3672 static struct attribute *intel_iommu_attrs[] = {
3673 	&dev_attr_version.attr,
3674 	&dev_attr_address.attr,
3675 	&dev_attr_cap.attr,
3676 	&dev_attr_ecap.attr,
3677 	&dev_attr_domains_supported.attr,
3678 	&dev_attr_domains_used.attr,
3679 	NULL,
3680 };
3681 
3682 static struct attribute_group intel_iommu_group = {
3683 	.name = "intel-iommu",
3684 	.attrs = intel_iommu_attrs,
3685 };
3686 
3687 const struct attribute_group *intel_iommu_groups[] = {
3688 	&intel_iommu_group,
3689 	NULL,
3690 };
3691 
3692 static inline bool has_external_pci(void)
3693 {
3694 	struct pci_dev *pdev = NULL;
3695 
3696 	for_each_pci_dev(pdev)
3697 		if (pdev->external_facing) {
3698 			pci_dev_put(pdev);
3699 			return true;
3700 		}
3701 
3702 	return false;
3703 }
3704 
3705 static int __init platform_optin_force_iommu(void)
3706 {
3707 	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
3708 		return 0;
3709 
3710 	if (no_iommu || dmar_disabled)
3711 		pr_info("Intel-IOMMU force enabled due to platform opt in\n");
3712 
3713 	/*
3714 	 * If Intel-IOMMU is disabled by default, we will apply identity
3715 	 * map for all devices except those marked as being untrusted.
3716 	 */
3717 	if (dmar_disabled)
3718 		iommu_set_default_passthrough(false);
3719 
3720 	dmar_disabled = 0;
3721 	no_iommu = 0;
3722 
3723 	return 1;
3724 }
3725 
3726 static int __init probe_acpi_namespace_devices(void)
3727 {
3728 	struct dmar_drhd_unit *drhd;
3729 	/* To avoid a -Wunused-but-set-variable warning. */
3730 	struct intel_iommu *iommu __maybe_unused;
3731 	struct device *dev;
3732 	int i, ret = 0;
3733 
3734 	for_each_active_iommu(iommu, drhd) {
3735 		for_each_active_dev_scope(drhd->devices,
3736 					  drhd->devices_cnt, i, dev) {
3737 			struct acpi_device_physical_node *pn;
3738 			struct acpi_device *adev;
3739 
3740 			if (dev->bus != &acpi_bus_type)
3741 				continue;
3742 
3743 			adev = to_acpi_device(dev);
3744 			mutex_lock(&adev->physical_node_lock);
3745 			list_for_each_entry(pn,
3746 					    &adev->physical_node_list, node) {
3747 				ret = iommu_probe_device(pn->dev);
3748 				if (ret)
3749 					break;
3750 			}
3751 			mutex_unlock(&adev->physical_node_lock);
3752 
3753 			if (ret)
3754 				return ret;
3755 		}
3756 	}
3757 
3758 	return 0;
3759 }
3760 
3761 static __init int tboot_force_iommu(void)
3762 {
3763 	if (!tboot_enabled())
3764 		return 0;
3765 
3766 	if (no_iommu || dmar_disabled)
3767 		pr_warn("Forcing Intel-IOMMU to enabled\n");
3768 
3769 	dmar_disabled = 0;
3770 	no_iommu = 0;
3771 
3772 	return 1;
3773 }
3774 
3775 int __init intel_iommu_init(void)
3776 {
3777 	int ret = -ENODEV;
3778 	struct dmar_drhd_unit *drhd;
3779 	struct intel_iommu *iommu;
3780 
3781 	/*
3782 	 * Intel IOMMU is required for a TXT/tboot launch or platform
3783 	 * opt in, so enforce that.
3784 	 */
3785 	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
3786 		    platform_optin_force_iommu();
3787 
3788 	down_write(&dmar_global_lock);
3789 	if (dmar_table_init()) {
3790 		if (force_on)
3791 			panic("tboot: Failed to initialize DMAR table\n");
3792 		goto out_free_dmar;
3793 	}
3794 
3795 	if (dmar_dev_scope_init() < 0) {
3796 		if (force_on)
3797 			panic("tboot: Failed to initialize DMAR device scope\n");
3798 		goto out_free_dmar;
3799 	}
3800 
3801 	up_write(&dmar_global_lock);
3802 
3803 	/*
3804 	 * The bus notifier takes the dmar_global_lock, so lockdep will
3805 	 * complain later when we register it under the lock.
3806 	 */
3807 	dmar_register_bus_notifier();
3808 
3809 	down_write(&dmar_global_lock);
3810 
3811 	if (!no_iommu)
3812 		intel_iommu_debugfs_init();
3813 
3814 	if (no_iommu || dmar_disabled) {
3815 		/*
3816 		 * We exit the function here to ensure IOMMU's remapping and
3817 		 * mempool aren't setup, which means that the IOMMU's PMRs
3818 		 * won't be disabled via the call to init_dmars(). So disable
3819 		 * it explicitly here. The PMRs were setup by tboot prior to
3820 		 * calling SENTER, but the kernel is expected to reset/tear
3821 		 * down the PMRs.
3822 		 */
3823 		if (intel_iommu_tboot_noforce) {
3824 			for_each_iommu(iommu, drhd)
3825 				iommu_disable_protect_mem_regions(iommu);
3826 		}
3827 
3828 		/*
3829 		 * Make sure the IOMMUs are switched off, even when we
3830 		 * boot into a kexec kernel and the previous kernel left
3831 		 * them enabled
3832 		 */
3833 		intel_disable_iommus();
3834 		goto out_free_dmar;
3835 	}
3836 
3837 	if (list_empty(&dmar_rmrr_units))
3838 		pr_info("No RMRR found\n");
3839 
3840 	if (list_empty(&dmar_atsr_units))
3841 		pr_info("No ATSR found\n");
3842 
3843 	if (list_empty(&dmar_satc_units))
3844 		pr_info("No SATC found\n");
3845 
3846 	init_no_remapping_devices();
3847 
3848 	ret = init_dmars();
3849 	if (ret) {
3850 		if (force_on)
3851 			panic("tboot: Failed to initialize DMARs\n");
3852 		pr_err("Initialization failed\n");
3853 		goto out_free_dmar;
3854 	}
3855 	up_write(&dmar_global_lock);
3856 
3857 	init_iommu_pm_ops();
3858 
3859 	down_read(&dmar_global_lock);
3860 	for_each_active_iommu(iommu, drhd) {
3861 		/*
3862 		 * The flush queue implementation does not perform
3863 		 * page-selective invalidations that are required for efficient
3864 		 * TLB flushes in virtual environments.  The benefit of batching
3865 		 * is likely to be much lower than the overhead of synchronizing
3866 		 * the virtual and physical IOMMU page-tables.
3867 		 */
3868 		if (cap_caching_mode(iommu->cap) &&
3869 		    !first_level_by_default(IOMMU_DOMAIN_DMA)) {
3870 			pr_info_once("IOMMU batching disallowed due to virtualization\n");
3871 			iommu_set_dma_strict();
3872 		}
3873 		iommu_device_sysfs_add(&iommu->iommu, NULL,
3874 				       intel_iommu_groups,
3875 				       "%s", iommu->name);
3876 		iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
3877 
3878 		iommu_pmu_register(iommu);
3879 	}
3880 	up_read(&dmar_global_lock);
3881 
3882 	if (si_domain && !hw_pass_through)
3883 		register_memory_notifier(&intel_iommu_memory_nb);
3884 
3885 	down_read(&dmar_global_lock);
3886 	if (probe_acpi_namespace_devices())
3887 		pr_warn("ACPI name space devices didn't probe correctly\n");
3888 
3889 	/* Finally, we enable the DMA remapping hardware. */
3890 	for_each_iommu(iommu, drhd) {
3891 		if (!drhd->ignored && !translation_pre_enabled(iommu))
3892 			iommu_enable_translation(iommu);
3893 
3894 		iommu_disable_protect_mem_regions(iommu);
3895 	}
3896 	up_read(&dmar_global_lock);
3897 
3898 	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
3899 
3900 	intel_iommu_enabled = 1;
3901 
3902 	return 0;
3903 
3904 out_free_dmar:
3905 	intel_iommu_free_dmars();
3906 	up_write(&dmar_global_lock);
3907 	return ret;
3908 }
3909 
3910 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
3911 {
3912 	struct device_domain_info *info = opaque;
3913 
3914 	domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff);
3915 	return 0;
3916 }
3917 
3918 /*
3919  * NB - intel-iommu lacks any sort of reference counting for the users of
3920  * dependent devices.  If multiple endpoints have intersecting dependent
3921  * devices, unbinding the driver from any one of them will possibly leave
3922  * the others unable to operate.
3923  */
3924 static void domain_context_clear(struct device_domain_info *info)
3925 {
3926 	if (!dev_is_pci(info->dev))
3927 		domain_context_clear_one(info, info->bus, info->devfn);
3928 
3929 	pci_for_each_dma_alias(to_pci_dev(info->dev),
3930 			       &domain_context_clear_one_cb, info);
3931 }
3932 
3933 static void dmar_remove_one_dev_info(struct device *dev)
3934 {
3935 	struct device_domain_info *info = dev_iommu_priv_get(dev);
3936 	struct dmar_domain *domain = info->domain;
3937 	struct intel_iommu *iommu = info->iommu;
3938 	unsigned long flags;
3939 
3940 	if (!dev_is_real_dma_subdevice(info->dev)) {
3941 		if (dev_is_pci(info->dev) && sm_supported(iommu))
3942 			intel_pasid_tear_down_entry(iommu, info->dev,
3943 					IOMMU_NO_PASID, false);
3944 
3945 		iommu_disable_pci_caps(info);
3946 		domain_context_clear(info);
3947 	}
3948 
3949 	spin_lock_irqsave(&domain->lock, flags);
3950 	list_del(&info->link);
3951 	spin_unlock_irqrestore(&domain->lock, flags);
3952 
3953 	domain_detach_iommu(domain, iommu);
3954 	info->domain = NULL;
3955 }
3956 
3957 /*
3958  * Clear the page table pointer in context or pasid table entries so that
3959  * all DMA requests without PASID from the device are blocked. If the page
3960  * table has been set, clean up the data structures.
3961  */
3962 static void device_block_translation(struct device *dev)
3963 {
3964 	struct device_domain_info *info = dev_iommu_priv_get(dev);
3965 	struct intel_iommu *iommu = info->iommu;
3966 	unsigned long flags;
3967 
3968 	iommu_disable_pci_caps(info);
3969 	if (!dev_is_real_dma_subdevice(dev)) {
3970 		if (sm_supported(iommu))
3971 			intel_pasid_tear_down_entry(iommu, dev,
3972 						    IOMMU_NO_PASID, false);
3973 		else
3974 			domain_context_clear(info);
3975 	}
3976 
3977 	if (!info->domain)
3978 		return;
3979 
3980 	spin_lock_irqsave(&info->domain->lock, flags);
3981 	list_del(&info->link);
3982 	spin_unlock_irqrestore(&info->domain->lock, flags);
3983 
3984 	domain_detach_iommu(info->domain, iommu);
3985 	info->domain = NULL;
3986 }
3987 
3988 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3989 {
3990 	int adjust_width;
3991 
3992 	/* calculate AGAW */
3993 	domain->gaw = guest_width;
3994 	adjust_width = guestwidth_to_adjustwidth(guest_width);
3995 	domain->agaw = width_to_agaw(adjust_width);
3996 
3997 	domain->iommu_coherency = false;
3998 	domain->iommu_superpage = 0;
3999 	domain->max_addr = 0;
4000 
4001 	/* always allocate the top pgd */
4002 	domain->pgd = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
4003 	if (!domain->pgd)
4004 		return -ENOMEM;
4005 	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4006 	return 0;
4007 }
4008 
4009 static int blocking_domain_attach_dev(struct iommu_domain *domain,
4010 				      struct device *dev)
4011 {
4012 	device_block_translation(dev);
4013 	return 0;
4014 }
4015 
4016 static struct iommu_domain blocking_domain = {
4017 	.ops = &(const struct iommu_domain_ops) {
4018 		.attach_dev	= blocking_domain_attach_dev,
4019 		.free		= intel_iommu_domain_free
4020 	}
4021 };
4022 
4023 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4024 {
4025 	struct dmar_domain *dmar_domain;
4026 	struct iommu_domain *domain;
4027 
4028 	switch (type) {
4029 	case IOMMU_DOMAIN_BLOCKED:
4030 		return &blocking_domain;
4031 	case IOMMU_DOMAIN_DMA:
4032 	case IOMMU_DOMAIN_UNMANAGED:
4033 		dmar_domain = alloc_domain(type);
4034 		if (!dmar_domain) {
4035 			pr_err("Can't allocate dmar_domain\n");
4036 			return NULL;
4037 		}
4038 		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4039 			pr_err("Domain initialization failed\n");
4040 			domain_exit(dmar_domain);
4041 			return NULL;
4042 		}
4043 
4044 		domain = &dmar_domain->domain;
4045 		domain->geometry.aperture_start = 0;
4046 		domain->geometry.aperture_end   =
4047 				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
4048 		domain->geometry.force_aperture = true;
4049 
4050 		return domain;
4051 	case IOMMU_DOMAIN_IDENTITY:
4052 		return &si_domain->domain;
4053 	case IOMMU_DOMAIN_SVA:
4054 		return intel_svm_domain_alloc();
4055 	default:
4056 		return NULL;
4057 	}
4058 
4059 	return NULL;
4060 }
4061 
4062 static void intel_iommu_domain_free(struct iommu_domain *domain)
4063 {
4064 	if (domain != &si_domain->domain && domain != &blocking_domain)
4065 		domain_exit(to_dmar_domain(domain));
4066 }
4067 
4068 static int prepare_domain_attach_device(struct iommu_domain *domain,
4069 					struct device *dev)
4070 {
4071 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4072 	struct intel_iommu *iommu;
4073 	int addr_width;
4074 
4075 	iommu = device_to_iommu(dev, NULL, NULL);
4076 	if (!iommu)
4077 		return -ENODEV;
4078 
4079 	if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap))
4080 		return -EINVAL;
4081 
4082 	/* check if this iommu agaw is sufficient for max mapped address */
4083 	addr_width = agaw_to_width(iommu->agaw);
4084 	if (addr_width > cap_mgaw(iommu->cap))
4085 		addr_width = cap_mgaw(iommu->cap);
4086 
4087 	if (dmar_domain->max_addr > (1LL << addr_width))
4088 		return -EINVAL;
4089 	dmar_domain->gaw = addr_width;
4090 
4091 	/*
4092 	 * Knock out extra levels of page tables if necessary
4093 	 */
4094 	while (iommu->agaw < dmar_domain->agaw) {
4095 		struct dma_pte *pte;
4096 
4097 		pte = dmar_domain->pgd;
4098 		if (dma_pte_present(pte)) {
4099 			dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte));
4100 			free_pgtable_page(pte);
4101 		}
4102 		dmar_domain->agaw--;
4103 	}
4104 
4105 	return 0;
4106 }
4107 
4108 static int intel_iommu_attach_device(struct iommu_domain *domain,
4109 				     struct device *dev)
4110 {
4111 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4112 	int ret;
4113 
4114 	if (info->domain)
4115 		device_block_translation(dev);
4116 
4117 	ret = prepare_domain_attach_device(domain, dev);
4118 	if (ret)
4119 		return ret;
4120 
4121 	return dmar_domain_attach_device(to_dmar_domain(domain), dev);
4122 }
4123 
4124 static int intel_iommu_map(struct iommu_domain *domain,
4125 			   unsigned long iova, phys_addr_t hpa,
4126 			   size_t size, int iommu_prot, gfp_t gfp)
4127 {
4128 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4129 	u64 max_addr;
4130 	int prot = 0;
4131 
4132 	if (iommu_prot & IOMMU_READ)
4133 		prot |= DMA_PTE_READ;
4134 	if (iommu_prot & IOMMU_WRITE)
4135 		prot |= DMA_PTE_WRITE;
4136 	if (dmar_domain->set_pte_snp)
4137 		prot |= DMA_PTE_SNP;
4138 
4139 	max_addr = iova + size;
4140 	if (dmar_domain->max_addr < max_addr) {
4141 		u64 end;
4142 
4143 		/* check if minimum agaw is sufficient for mapped address */
4144 		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4145 		if (end < max_addr) {
4146 			pr_err("%s: iommu width (%d) is not "
4147 			       "sufficient for the mapped address (%llx)\n",
4148 			       __func__, dmar_domain->gaw, max_addr);
4149 			return -EFAULT;
4150 		}
4151 		dmar_domain->max_addr = max_addr;
4152 	}
4153 	/* Round up size to next multiple of PAGE_SIZE, if it and
4154 	   the low bits of hpa would take us onto the next page */
4155 	size = aligned_nrpages(hpa, size);
4156 	return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4157 				hpa >> VTD_PAGE_SHIFT, size, prot, gfp);
4158 }
4159 
4160 static int intel_iommu_map_pages(struct iommu_domain *domain,
4161 				 unsigned long iova, phys_addr_t paddr,
4162 				 size_t pgsize, size_t pgcount,
4163 				 int prot, gfp_t gfp, size_t *mapped)
4164 {
4165 	unsigned long pgshift = __ffs(pgsize);
4166 	size_t size = pgcount << pgshift;
4167 	int ret;
4168 
4169 	if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G)
4170 		return -EINVAL;
4171 
4172 	if (!IS_ALIGNED(iova | paddr, pgsize))
4173 		return -EINVAL;
4174 
4175 	ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp);
4176 	if (!ret && mapped)
4177 		*mapped = size;
4178 
4179 	return ret;
4180 }
4181 
4182 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4183 				unsigned long iova, size_t size,
4184 				struct iommu_iotlb_gather *gather)
4185 {
4186 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4187 	unsigned long start_pfn, last_pfn;
4188 	int level = 0;
4189 
4190 	/* Cope with horrid API which requires us to unmap more than the
4191 	   size argument if it happens to be a large-page mapping. */
4192 	if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT,
4193 				     &level, GFP_ATOMIC)))
4194 		return 0;
4195 
4196 	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4197 		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4198 
4199 	start_pfn = iova >> VTD_PAGE_SHIFT;
4200 	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4201 
4202 	domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist);
4203 
4204 	if (dmar_domain->max_addr == iova + size)
4205 		dmar_domain->max_addr = iova;
4206 
4207 	/*
4208 	 * We do not use page-selective IOTLB invalidation in flush queue,
4209 	 * so there is no need to track page and sync iotlb.
4210 	 */
4211 	if (!iommu_iotlb_gather_queued(gather))
4212 		iommu_iotlb_gather_add_page(domain, gather, iova, size);
4213 
4214 	return size;
4215 }
4216 
4217 static size_t intel_iommu_unmap_pages(struct iommu_domain *domain,
4218 				      unsigned long iova,
4219 				      size_t pgsize, size_t pgcount,
4220 				      struct iommu_iotlb_gather *gather)
4221 {
4222 	unsigned long pgshift = __ffs(pgsize);
4223 	size_t size = pgcount << pgshift;
4224 
4225 	return intel_iommu_unmap(domain, iova, size, gather);
4226 }
4227 
4228 static void intel_iommu_tlb_sync(struct iommu_domain *domain,
4229 				 struct iommu_iotlb_gather *gather)
4230 {
4231 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4232 	unsigned long iova_pfn = IOVA_PFN(gather->start);
4233 	size_t size = gather->end - gather->start;
4234 	struct iommu_domain_info *info;
4235 	unsigned long start_pfn;
4236 	unsigned long nrpages;
4237 	unsigned long i;
4238 
4239 	nrpages = aligned_nrpages(gather->start, size);
4240 	start_pfn = mm_to_dma_pfn_start(iova_pfn);
4241 
4242 	xa_for_each(&dmar_domain->iommu_array, i, info)
4243 		iommu_flush_iotlb_psi(info->iommu, dmar_domain,
4244 				      start_pfn, nrpages,
4245 				      list_empty(&gather->freelist), 0);
4246 
4247 	put_pages_list(&gather->freelist);
4248 }
4249 
4250 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4251 					    dma_addr_t iova)
4252 {
4253 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4254 	struct dma_pte *pte;
4255 	int level = 0;
4256 	u64 phys = 0;
4257 
4258 	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level,
4259 			     GFP_ATOMIC);
4260 	if (pte && dma_pte_present(pte))
4261 		phys = dma_pte_addr(pte) +
4262 			(iova & (BIT_MASK(level_to_offset_bits(level) +
4263 						VTD_PAGE_SHIFT) - 1));
4264 
4265 	return phys;
4266 }
4267 
4268 static bool domain_support_force_snooping(struct dmar_domain *domain)
4269 {
4270 	struct device_domain_info *info;
4271 	bool support = true;
4272 
4273 	assert_spin_locked(&domain->lock);
4274 	list_for_each_entry(info, &domain->devices, link) {
4275 		if (!ecap_sc_support(info->iommu->ecap)) {
4276 			support = false;
4277 			break;
4278 		}
4279 	}
4280 
4281 	return support;
4282 }
4283 
4284 static void domain_set_force_snooping(struct dmar_domain *domain)
4285 {
4286 	struct device_domain_info *info;
4287 
4288 	assert_spin_locked(&domain->lock);
4289 	/*
4290 	 * Second level page table supports per-PTE snoop control. The
4291 	 * iommu_map() interface will handle this by setting SNP bit.
4292 	 */
4293 	if (!domain->use_first_level) {
4294 		domain->set_pte_snp = true;
4295 		return;
4296 	}
4297 
4298 	list_for_each_entry(info, &domain->devices, link)
4299 		intel_pasid_setup_page_snoop_control(info->iommu, info->dev,
4300 						     IOMMU_NO_PASID);
4301 }
4302 
4303 static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain)
4304 {
4305 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4306 	unsigned long flags;
4307 
4308 	if (dmar_domain->force_snooping)
4309 		return true;
4310 
4311 	spin_lock_irqsave(&dmar_domain->lock, flags);
4312 	if (!domain_support_force_snooping(dmar_domain)) {
4313 		spin_unlock_irqrestore(&dmar_domain->lock, flags);
4314 		return false;
4315 	}
4316 
4317 	domain_set_force_snooping(dmar_domain);
4318 	dmar_domain->force_snooping = true;
4319 	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4320 
4321 	return true;
4322 }
4323 
4324 static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap)
4325 {
4326 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4327 
4328 	switch (cap) {
4329 	case IOMMU_CAP_CACHE_COHERENCY:
4330 	case IOMMU_CAP_DEFERRED_FLUSH:
4331 		return true;
4332 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
4333 		return dmar_platform_optin();
4334 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
4335 		return ecap_sc_support(info->iommu->ecap);
4336 	default:
4337 		return false;
4338 	}
4339 }
4340 
4341 static struct iommu_device *intel_iommu_probe_device(struct device *dev)
4342 {
4343 	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4344 	struct device_domain_info *info;
4345 	struct intel_iommu *iommu;
4346 	u8 bus, devfn;
4347 	int ret;
4348 
4349 	iommu = device_to_iommu(dev, &bus, &devfn);
4350 	if (!iommu || !iommu->iommu.ops)
4351 		return ERR_PTR(-ENODEV);
4352 
4353 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4354 	if (!info)
4355 		return ERR_PTR(-ENOMEM);
4356 
4357 	if (dev_is_real_dma_subdevice(dev)) {
4358 		info->bus = pdev->bus->number;
4359 		info->devfn = pdev->devfn;
4360 		info->segment = pci_domain_nr(pdev->bus);
4361 	} else {
4362 		info->bus = bus;
4363 		info->devfn = devfn;
4364 		info->segment = iommu->segment;
4365 	}
4366 
4367 	info->dev = dev;
4368 	info->iommu = iommu;
4369 	if (dev_is_pci(dev)) {
4370 		if (ecap_dev_iotlb_support(iommu->ecap) &&
4371 		    pci_ats_supported(pdev) &&
4372 		    dmar_ats_supported(pdev, iommu)) {
4373 			info->ats_supported = 1;
4374 			info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev);
4375 
4376 			/*
4377 			 * For IOMMU that supports device IOTLB throttling
4378 			 * (DIT), we assign PFSID to the invalidation desc
4379 			 * of a VF such that IOMMU HW can gauge queue depth
4380 			 * at PF level. If DIT is not set, PFSID will be
4381 			 * treated as reserved, which should be set to 0.
4382 			 */
4383 			if (ecap_dit(iommu->ecap))
4384 				info->pfsid = pci_dev_id(pci_physfn(pdev));
4385 			info->ats_qdep = pci_ats_queue_depth(pdev);
4386 		}
4387 		if (sm_supported(iommu)) {
4388 			if (pasid_supported(iommu)) {
4389 				int features = pci_pasid_features(pdev);
4390 
4391 				if (features >= 0)
4392 					info->pasid_supported = features | 1;
4393 			}
4394 
4395 			if (info->ats_supported && ecap_prs(iommu->ecap) &&
4396 			    pci_pri_supported(pdev))
4397 				info->pri_supported = 1;
4398 		}
4399 	}
4400 
4401 	dev_iommu_priv_set(dev, info);
4402 
4403 	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
4404 		ret = intel_pasid_alloc_table(dev);
4405 		if (ret) {
4406 			dev_err(dev, "PASID table allocation failed\n");
4407 			dev_iommu_priv_set(dev, NULL);
4408 			kfree(info);
4409 			return ERR_PTR(ret);
4410 		}
4411 	}
4412 
4413 	return &iommu->iommu;
4414 }
4415 
4416 static void intel_iommu_release_device(struct device *dev)
4417 {
4418 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4419 
4420 	dmar_remove_one_dev_info(dev);
4421 	intel_pasid_free_table(dev);
4422 	dev_iommu_priv_set(dev, NULL);
4423 	kfree(info);
4424 	set_dma_ops(dev, NULL);
4425 }
4426 
4427 static void intel_iommu_probe_finalize(struct device *dev)
4428 {
4429 	set_dma_ops(dev, NULL);
4430 	iommu_setup_dma_ops(dev, 0, U64_MAX);
4431 }
4432 
4433 static void intel_iommu_get_resv_regions(struct device *device,
4434 					 struct list_head *head)
4435 {
4436 	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
4437 	struct iommu_resv_region *reg;
4438 	struct dmar_rmrr_unit *rmrr;
4439 	struct device *i_dev;
4440 	int i;
4441 
4442 	rcu_read_lock();
4443 	for_each_rmrr_units(rmrr) {
4444 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
4445 					  i, i_dev) {
4446 			struct iommu_resv_region *resv;
4447 			enum iommu_resv_type type;
4448 			size_t length;
4449 
4450 			if (i_dev != device &&
4451 			    !is_downstream_to_pci_bridge(device, i_dev))
4452 				continue;
4453 
4454 			length = rmrr->end_address - rmrr->base_address + 1;
4455 
4456 			type = device_rmrr_is_relaxable(device) ?
4457 				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
4458 
4459 			resv = iommu_alloc_resv_region(rmrr->base_address,
4460 						       length, prot, type,
4461 						       GFP_ATOMIC);
4462 			if (!resv)
4463 				break;
4464 
4465 			list_add_tail(&resv->list, head);
4466 		}
4467 	}
4468 	rcu_read_unlock();
4469 
4470 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
4471 	if (dev_is_pci(device)) {
4472 		struct pci_dev *pdev = to_pci_dev(device);
4473 
4474 		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
4475 			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
4476 					IOMMU_RESV_DIRECT_RELAXABLE,
4477 					GFP_KERNEL);
4478 			if (reg)
4479 				list_add_tail(&reg->list, head);
4480 		}
4481 	}
4482 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
4483 
4484 	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
4485 				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
4486 				      0, IOMMU_RESV_MSI, GFP_KERNEL);
4487 	if (!reg)
4488 		return;
4489 	list_add_tail(&reg->list, head);
4490 }
4491 
4492 static struct iommu_group *intel_iommu_device_group(struct device *dev)
4493 {
4494 	if (dev_is_pci(dev))
4495 		return pci_device_group(dev);
4496 	return generic_device_group(dev);
4497 }
4498 
4499 static int intel_iommu_enable_sva(struct device *dev)
4500 {
4501 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4502 	struct intel_iommu *iommu;
4503 
4504 	if (!info || dmar_disabled)
4505 		return -EINVAL;
4506 
4507 	iommu = info->iommu;
4508 	if (!iommu)
4509 		return -EINVAL;
4510 
4511 	if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE))
4512 		return -ENODEV;
4513 
4514 	if (!info->pasid_enabled || !info->ats_enabled)
4515 		return -EINVAL;
4516 
4517 	/*
4518 	 * Devices having device-specific I/O fault handling should not
4519 	 * support PCI/PRI. The IOMMU side has no means to check the
4520 	 * capability of device-specific IOPF.  Therefore, IOMMU can only
4521 	 * default that if the device driver enables SVA on a non-PRI
4522 	 * device, it will handle IOPF in its own way.
4523 	 */
4524 	if (!info->pri_supported)
4525 		return 0;
4526 
4527 	/* Devices supporting PRI should have it enabled. */
4528 	if (!info->pri_enabled)
4529 		return -EINVAL;
4530 
4531 	return 0;
4532 }
4533 
4534 static int intel_iommu_enable_iopf(struct device *dev)
4535 {
4536 	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4537 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4538 	struct intel_iommu *iommu;
4539 	int ret;
4540 
4541 	if (!pdev || !info || !info->ats_enabled || !info->pri_supported)
4542 		return -ENODEV;
4543 
4544 	if (info->pri_enabled)
4545 		return -EBUSY;
4546 
4547 	iommu = info->iommu;
4548 	if (!iommu)
4549 		return -EINVAL;
4550 
4551 	/* PASID is required in PRG Response Message. */
4552 	if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev))
4553 		return -EINVAL;
4554 
4555 	ret = pci_reset_pri(pdev);
4556 	if (ret)
4557 		return ret;
4558 
4559 	ret = iopf_queue_add_device(iommu->iopf_queue, dev);
4560 	if (ret)
4561 		return ret;
4562 
4563 	ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev);
4564 	if (ret)
4565 		goto iopf_remove_device;
4566 
4567 	ret = pci_enable_pri(pdev, PRQ_DEPTH);
4568 	if (ret)
4569 		goto iopf_unregister_handler;
4570 	info->pri_enabled = 1;
4571 
4572 	return 0;
4573 
4574 iopf_unregister_handler:
4575 	iommu_unregister_device_fault_handler(dev);
4576 iopf_remove_device:
4577 	iopf_queue_remove_device(iommu->iopf_queue, dev);
4578 
4579 	return ret;
4580 }
4581 
4582 static int intel_iommu_disable_iopf(struct device *dev)
4583 {
4584 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4585 	struct intel_iommu *iommu = info->iommu;
4586 
4587 	if (!info->pri_enabled)
4588 		return -EINVAL;
4589 
4590 	/*
4591 	 * PCIe spec states that by clearing PRI enable bit, the Page
4592 	 * Request Interface will not issue new page requests, but has
4593 	 * outstanding page requests that have been transmitted or are
4594 	 * queued for transmission. This is supposed to be called after
4595 	 * the device driver has stopped DMA, all PASIDs have been
4596 	 * unbound and the outstanding PRQs have been drained.
4597 	 */
4598 	pci_disable_pri(to_pci_dev(dev));
4599 	info->pri_enabled = 0;
4600 
4601 	/*
4602 	 * With PRI disabled and outstanding PRQs drained, unregistering
4603 	 * fault handler and removing device from iopf queue should never
4604 	 * fail.
4605 	 */
4606 	WARN_ON(iommu_unregister_device_fault_handler(dev));
4607 	WARN_ON(iopf_queue_remove_device(iommu->iopf_queue, dev));
4608 
4609 	return 0;
4610 }
4611 
4612 static int
4613 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
4614 {
4615 	switch (feat) {
4616 	case IOMMU_DEV_FEAT_IOPF:
4617 		return intel_iommu_enable_iopf(dev);
4618 
4619 	case IOMMU_DEV_FEAT_SVA:
4620 		return intel_iommu_enable_sva(dev);
4621 
4622 	default:
4623 		return -ENODEV;
4624 	}
4625 }
4626 
4627 static int
4628 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
4629 {
4630 	switch (feat) {
4631 	case IOMMU_DEV_FEAT_IOPF:
4632 		return intel_iommu_disable_iopf(dev);
4633 
4634 	case IOMMU_DEV_FEAT_SVA:
4635 		return 0;
4636 
4637 	default:
4638 		return -ENODEV;
4639 	}
4640 }
4641 
4642 static bool intel_iommu_is_attach_deferred(struct device *dev)
4643 {
4644 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4645 
4646 	return translation_pre_enabled(info->iommu) && !info->domain;
4647 }
4648 
4649 /*
4650  * Check that the device does not live on an external facing PCI port that is
4651  * marked as untrusted. Such devices should not be able to apply quirks and
4652  * thus not be able to bypass the IOMMU restrictions.
4653  */
4654 static bool risky_device(struct pci_dev *pdev)
4655 {
4656 	if (pdev->untrusted) {
4657 		pci_info(pdev,
4658 			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
4659 			 pdev->vendor, pdev->device);
4660 		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
4661 		return true;
4662 	}
4663 	return false;
4664 }
4665 
4666 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain,
4667 				       unsigned long iova, size_t size)
4668 {
4669 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4670 	unsigned long pages = aligned_nrpages(iova, size);
4671 	unsigned long pfn = iova >> VTD_PAGE_SHIFT;
4672 	struct iommu_domain_info *info;
4673 	unsigned long i;
4674 
4675 	xa_for_each(&dmar_domain->iommu_array, i, info)
4676 		__mapping_notify_one(info->iommu, dmar_domain, pfn, pages);
4677 }
4678 
4679 static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid)
4680 {
4681 	struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
4682 	struct dev_pasid_info *curr, *dev_pasid = NULL;
4683 	struct dmar_domain *dmar_domain;
4684 	struct iommu_domain *domain;
4685 	unsigned long flags;
4686 
4687 	domain = iommu_get_domain_for_dev_pasid(dev, pasid, 0);
4688 	if (WARN_ON_ONCE(!domain))
4689 		goto out_tear_down;
4690 
4691 	/*
4692 	 * The SVA implementation needs to handle its own stuffs like the mm
4693 	 * notification. Before consolidating that code into iommu core, let
4694 	 * the intel sva code handle it.
4695 	 */
4696 	if (domain->type == IOMMU_DOMAIN_SVA) {
4697 		intel_svm_remove_dev_pasid(dev, pasid);
4698 		goto out_tear_down;
4699 	}
4700 
4701 	dmar_domain = to_dmar_domain(domain);
4702 	spin_lock_irqsave(&dmar_domain->lock, flags);
4703 	list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) {
4704 		if (curr->dev == dev && curr->pasid == pasid) {
4705 			list_del(&curr->link_domain);
4706 			dev_pasid = curr;
4707 			break;
4708 		}
4709 	}
4710 	WARN_ON_ONCE(!dev_pasid);
4711 	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4712 
4713 	domain_detach_iommu(dmar_domain, iommu);
4714 	kfree(dev_pasid);
4715 out_tear_down:
4716 	intel_pasid_tear_down_entry(iommu, dev, pasid, false);
4717 	intel_drain_pasid_prq(dev, pasid);
4718 }
4719 
4720 static int intel_iommu_set_dev_pasid(struct iommu_domain *domain,
4721 				     struct device *dev, ioasid_t pasid)
4722 {
4723 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4724 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4725 	struct intel_iommu *iommu = info->iommu;
4726 	struct dev_pasid_info *dev_pasid;
4727 	unsigned long flags;
4728 	int ret;
4729 
4730 	if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
4731 		return -EOPNOTSUPP;
4732 
4733 	if (context_copied(iommu, info->bus, info->devfn))
4734 		return -EBUSY;
4735 
4736 	ret = prepare_domain_attach_device(domain, dev);
4737 	if (ret)
4738 		return ret;
4739 
4740 	dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL);
4741 	if (!dev_pasid)
4742 		return -ENOMEM;
4743 
4744 	ret = domain_attach_iommu(dmar_domain, iommu);
4745 	if (ret)
4746 		goto out_free;
4747 
4748 	if (domain_type_is_si(dmar_domain))
4749 		ret = intel_pasid_setup_pass_through(iommu, dmar_domain,
4750 						     dev, pasid);
4751 	else if (dmar_domain->use_first_level)
4752 		ret = domain_setup_first_level(iommu, dmar_domain,
4753 					       dev, pasid);
4754 	else
4755 		ret = intel_pasid_setup_second_level(iommu, dmar_domain,
4756 						     dev, pasid);
4757 	if (ret)
4758 		goto out_detach_iommu;
4759 
4760 	dev_pasid->dev = dev;
4761 	dev_pasid->pasid = pasid;
4762 	spin_lock_irqsave(&dmar_domain->lock, flags);
4763 	list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids);
4764 	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4765 
4766 	return 0;
4767 out_detach_iommu:
4768 	domain_detach_iommu(dmar_domain, iommu);
4769 out_free:
4770 	kfree(dev_pasid);
4771 	return ret;
4772 }
4773 
4774 static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type)
4775 {
4776 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4777 	struct intel_iommu *iommu = info->iommu;
4778 	struct iommu_hw_info_vtd *vtd;
4779 
4780 	vtd = kzalloc(sizeof(*vtd), GFP_KERNEL);
4781 	if (!vtd)
4782 		return ERR_PTR(-ENOMEM);
4783 
4784 	vtd->cap_reg = iommu->cap;
4785 	vtd->ecap_reg = iommu->ecap;
4786 	*length = sizeof(*vtd);
4787 	*type = IOMMU_HW_INFO_TYPE_INTEL_VTD;
4788 	return vtd;
4789 }
4790 
4791 const struct iommu_ops intel_iommu_ops = {
4792 	.capable		= intel_iommu_capable,
4793 	.hw_info		= intel_iommu_hw_info,
4794 	.domain_alloc		= intel_iommu_domain_alloc,
4795 	.probe_device		= intel_iommu_probe_device,
4796 	.probe_finalize		= intel_iommu_probe_finalize,
4797 	.release_device		= intel_iommu_release_device,
4798 	.get_resv_regions	= intel_iommu_get_resv_regions,
4799 	.device_group		= intel_iommu_device_group,
4800 	.dev_enable_feat	= intel_iommu_dev_enable_feat,
4801 	.dev_disable_feat	= intel_iommu_dev_disable_feat,
4802 	.is_attach_deferred	= intel_iommu_is_attach_deferred,
4803 	.def_domain_type	= device_def_domain_type,
4804 	.remove_dev_pasid	= intel_iommu_remove_dev_pasid,
4805 	.pgsize_bitmap		= SZ_4K,
4806 #ifdef CONFIG_INTEL_IOMMU_SVM
4807 	.page_response		= intel_svm_page_response,
4808 #endif
4809 	.default_domain_ops = &(const struct iommu_domain_ops) {
4810 		.attach_dev		= intel_iommu_attach_device,
4811 		.set_dev_pasid		= intel_iommu_set_dev_pasid,
4812 		.map_pages		= intel_iommu_map_pages,
4813 		.unmap_pages		= intel_iommu_unmap_pages,
4814 		.iotlb_sync_map		= intel_iommu_iotlb_sync_map,
4815 		.flush_iotlb_all        = intel_flush_iotlb_all,
4816 		.iotlb_sync		= intel_iommu_tlb_sync,
4817 		.iova_to_phys		= intel_iommu_iova_to_phys,
4818 		.free			= intel_iommu_domain_free,
4819 		.enforce_cache_coherency = intel_iommu_enforce_cache_coherency,
4820 	}
4821 };
4822 
4823 static void quirk_iommu_igfx(struct pci_dev *dev)
4824 {
4825 	if (risky_device(dev))
4826 		return;
4827 
4828 	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
4829 	dmar_map_gfx = 0;
4830 }
4831 
4832 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4833 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
4834 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
4835 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
4836 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
4837 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
4838 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
4839 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
4840 
4841 /* Broadwell igfx malfunctions with dmar */
4842 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
4843 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
4844 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
4845 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
4846 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
4847 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
4848 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
4849 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
4850 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
4851 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
4852 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
4853 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
4854 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
4855 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
4856 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
4857 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
4858 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
4859 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
4860 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
4861 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
4862 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
4863 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
4864 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
4865 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
4866 
4867 static void quirk_iommu_rwbf(struct pci_dev *dev)
4868 {
4869 	if (risky_device(dev))
4870 		return;
4871 
4872 	/*
4873 	 * Mobile 4 Series Chipset neglects to set RWBF capability,
4874 	 * but needs it. Same seems to hold for the desktop versions.
4875 	 */
4876 	pci_info(dev, "Forcing write-buffer flush capability\n");
4877 	rwbf_quirk = 1;
4878 }
4879 
4880 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4881 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4882 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4883 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4884 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4885 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4886 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4887 
4888 #define GGC 0x52
4889 #define GGC_MEMORY_SIZE_MASK	(0xf << 8)
4890 #define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
4891 #define GGC_MEMORY_SIZE_1M	(0x1 << 8)
4892 #define GGC_MEMORY_SIZE_2M	(0x3 << 8)
4893 #define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
4894 #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
4895 #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
4896 #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
4897 
4898 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4899 {
4900 	unsigned short ggc;
4901 
4902 	if (risky_device(dev))
4903 		return;
4904 
4905 	if (pci_read_config_word(dev, GGC, &ggc))
4906 		return;
4907 
4908 	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4909 		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4910 		dmar_map_gfx = 0;
4911 	} else if (dmar_map_gfx) {
4912 		/* we have to ensure the gfx device is idle before we flush */
4913 		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
4914 		iommu_set_dma_strict();
4915 	}
4916 }
4917 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4918 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4919 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4920 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4921 
4922 static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
4923 {
4924 	unsigned short ver;
4925 
4926 	if (!IS_GFX_DEVICE(dev))
4927 		return;
4928 
4929 	ver = (dev->device >> 8) & 0xff;
4930 	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
4931 	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
4932 	    ver != 0x9a && ver != 0xa7 && ver != 0x7d)
4933 		return;
4934 
4935 	if (risky_device(dev))
4936 		return;
4937 
4938 	pci_info(dev, "Skip IOMMU disabling for graphics\n");
4939 	iommu_skip_te_disable = 1;
4940 }
4941 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
4942 
4943 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4944    ISOCH DMAR unit for the Azalia sound device, but not give it any
4945    TLB entries, which causes it to deadlock. Check for that.  We do
4946    this in a function called from init_dmars(), instead of in a PCI
4947    quirk, because we don't want to print the obnoxious "BIOS broken"
4948    message if VT-d is actually disabled.
4949 */
4950 static void __init check_tylersburg_isoch(void)
4951 {
4952 	struct pci_dev *pdev;
4953 	uint32_t vtisochctrl;
4954 
4955 	/* If there's no Azalia in the system anyway, forget it. */
4956 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4957 	if (!pdev)
4958 		return;
4959 
4960 	if (risky_device(pdev)) {
4961 		pci_dev_put(pdev);
4962 		return;
4963 	}
4964 
4965 	pci_dev_put(pdev);
4966 
4967 	/* System Management Registers. Might be hidden, in which case
4968 	   we can't do the sanity check. But that's OK, because the
4969 	   known-broken BIOSes _don't_ actually hide it, so far. */
4970 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4971 	if (!pdev)
4972 		return;
4973 
4974 	if (risky_device(pdev)) {
4975 		pci_dev_put(pdev);
4976 		return;
4977 	}
4978 
4979 	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4980 		pci_dev_put(pdev);
4981 		return;
4982 	}
4983 
4984 	pci_dev_put(pdev);
4985 
4986 	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4987 	if (vtisochctrl & 1)
4988 		return;
4989 
4990 	/* Drop all bits other than the number of TLB entries */
4991 	vtisochctrl &= 0x1c;
4992 
4993 	/* If we have the recommended number of TLB entries (16), fine. */
4994 	if (vtisochctrl == 0x10)
4995 		return;
4996 
4997 	/* Zero TLB entries? You get to ride the short bus to school. */
4998 	if (!vtisochctrl) {
4999 		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5000 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5001 		     dmi_get_system_info(DMI_BIOS_VENDOR),
5002 		     dmi_get_system_info(DMI_BIOS_VERSION),
5003 		     dmi_get_system_info(DMI_PRODUCT_VERSION));
5004 		iommu_identity_mapping |= IDENTMAP_AZALIA;
5005 		return;
5006 	}
5007 
5008 	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5009 	       vtisochctrl);
5010 }
5011 
5012 /*
5013  * Here we deal with a device TLB defect where device may inadvertently issue ATS
5014  * invalidation completion before posted writes initiated with translated address
5015  * that utilized translations matching the invalidation address range, violating
5016  * the invalidation completion ordering.
5017  * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is
5018  * vulnerable to this defect. In other words, any dTLB invalidation initiated not
5019  * under the control of the trusted/privileged host device driver must use this
5020  * quirk.
5021  * Device TLBs are invalidated under the following six conditions:
5022  * 1. Device driver does DMA API unmap IOVA
5023  * 2. Device driver unbind a PASID from a process, sva_unbind_device()
5024  * 3. PASID is torn down, after PASID cache is flushed. e.g. process
5025  *    exit_mmap() due to crash
5026  * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where
5027  *    VM has to free pages that were unmapped
5028  * 5. Userspace driver unmaps a DMA buffer
5029  * 6. Cache invalidation in vSVA usage (upcoming)
5030  *
5031  * For #1 and #2, device drivers are responsible for stopping DMA traffic
5032  * before unmap/unbind. For #3, iommu driver gets mmu_notifier to
5033  * invalidate TLB the same way as normal user unmap which will use this quirk.
5034  * The dTLB invalidation after PASID cache flush does not need this quirk.
5035  *
5036  * As a reminder, #6 will *NEED* this quirk as we enable nested translation.
5037  */
5038 void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
5039 			       unsigned long address, unsigned long mask,
5040 			       u32 pasid, u16 qdep)
5041 {
5042 	u16 sid;
5043 
5044 	if (likely(!info->dtlb_extra_inval))
5045 		return;
5046 
5047 	sid = PCI_DEVID(info->bus, info->devfn);
5048 	if (pasid == IOMMU_NO_PASID) {
5049 		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
5050 				   qdep, address, mask);
5051 	} else {
5052 		qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid,
5053 					 pasid, qdep, address, mask);
5054 	}
5055 }
5056 
5057 #define ecmd_get_status_code(res)	(((res) & 0xff) >> 1)
5058 
5059 /*
5060  * Function to submit a command to the enhanced command interface. The
5061  * valid enhanced command descriptions are defined in Table 47 of the
5062  * VT-d spec. The VT-d hardware implementation may support some but not
5063  * all commands, which can be determined by checking the Enhanced
5064  * Command Capability Register.
5065  *
5066  * Return values:
5067  *  - 0: Command successful without any error;
5068  *  - Negative: software error value;
5069  *  - Nonzero positive: failure status code defined in Table 48.
5070  */
5071 int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob)
5072 {
5073 	unsigned long flags;
5074 	u64 res;
5075 	int ret;
5076 
5077 	if (!cap_ecmds(iommu->cap))
5078 		return -ENODEV;
5079 
5080 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
5081 
5082 	res = dmar_readq(iommu->reg + DMAR_ECRSP_REG);
5083 	if (res & DMA_ECMD_ECRSP_IP) {
5084 		ret = -EBUSY;
5085 		goto err;
5086 	}
5087 
5088 	/*
5089 	 * Unconditionally write the operand B, because
5090 	 * - There is no side effect if an ecmd doesn't require an
5091 	 *   operand B, but we set the register to some value.
5092 	 * - It's not invoked in any critical path. The extra MMIO
5093 	 *   write doesn't bring any performance concerns.
5094 	 */
5095 	dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob);
5096 	dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT));
5097 
5098 	IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq,
5099 		      !(res & DMA_ECMD_ECRSP_IP), res);
5100 
5101 	if (res & DMA_ECMD_ECRSP_IP) {
5102 		ret = -ETIMEDOUT;
5103 		goto err;
5104 	}
5105 
5106 	ret = ecmd_get_status_code(res);
5107 err:
5108 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
5109 
5110 	return ret;
5111 }
5112