xref: /openbmc/linux/drivers/iommu/intel/dmar.c (revision 7ca4282ade77de53b6e9ffa2695566e5d35dab1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
34 
35 #include "../irq_remapping.h"
36 
37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38 struct dmar_res_callback {
39 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
40 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
41 	bool			ignore_unhandled;
42 	bool			print_entry;
43 };
44 
45 /*
46  * Assumptions:
47  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48  *    before IO devices managed by that unit.
49  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50  *    after IO devices managed by that unit.
51  * 3) Hotplug events are rare.
52  *
53  * Locking rules for DMA and interrupt remapping related global data structures:
54  * 1) Use dmar_global_lock in process context
55  * 2) Use RCU in interrupt context
56  */
57 DECLARE_RWSEM(dmar_global_lock);
58 LIST_HEAD(dmar_drhd_units);
59 
60 struct acpi_table_header * __initdata dmar_tbl;
61 static int dmar_dev_scope_status = 1;
62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63 
64 static int alloc_iommu(struct dmar_drhd_unit *drhd);
65 static void free_iommu(struct intel_iommu *iommu);
66 
67 extern const struct iommu_ops intel_iommu_ops;
68 
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71 	/*
72 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 	 * the very end.
74 	 */
75 	if (drhd->include_all)
76 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 	else
78 		list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80 
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83 	struct acpi_dmar_device_scope *scope;
84 
85 	*cnt = 0;
86 	while (start < end) {
87 		scope = start;
88 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 			(*cnt)++;
92 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 			pr_warn("Unsupported device scope\n");
95 		}
96 		start += scope->length;
97 	}
98 	if (*cnt == 0)
99 		return NULL;
100 
101 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103 
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106 	int i;
107 	struct device *tmp_dev;
108 
109 	if (*devices && *cnt) {
110 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 			put_device(tmp_dev);
112 		kfree(*devices);
113 	}
114 
115 	*devices = NULL;
116 	*cnt = 0;
117 }
118 
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121 
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125 	int level = 0;
126 	size_t size;
127 	struct pci_dev *tmp;
128 	struct dmar_pci_notify_info *info;
129 
130 	BUG_ON(dev->is_virtfn);
131 
132 	/*
133 	 * Ignore devices that have a domain number higher than what can
134 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 	 */
136 	if (pci_domain_nr(dev->bus) > U16_MAX)
137 		return NULL;
138 
139 	/* Only generate path[] for device addition event */
140 	if (event == BUS_NOTIFY_ADD_DEVICE)
141 		for (tmp = dev; tmp; tmp = tmp->bus->self)
142 			level++;
143 
144 	size = struct_size(info, path, level);
145 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 	} else {
148 		info = kzalloc(size, GFP_KERNEL);
149 		if (!info) {
150 			pr_warn("Out of memory when allocating notify_info "
151 				"for %s.\n", pci_name(dev));
152 			if (dmar_dev_scope_status == 0)
153 				dmar_dev_scope_status = -ENOMEM;
154 			return NULL;
155 		}
156 	}
157 
158 	info->event = event;
159 	info->dev = dev;
160 	info->seg = pci_domain_nr(dev->bus);
161 	info->level = level;
162 	if (event == BUS_NOTIFY_ADD_DEVICE) {
163 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
164 			level--;
165 			info->path[level].bus = tmp->bus->number;
166 			info->path[level].device = PCI_SLOT(tmp->devfn);
167 			info->path[level].function = PCI_FUNC(tmp->devfn);
168 			if (pci_is_root_bus(tmp->bus))
169 				info->bus = tmp->bus->number;
170 		}
171 	}
172 
173 	return info;
174 }
175 
176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177 {
178 	if ((void *)info != dmar_pci_notify_info_buf)
179 		kfree(info);
180 }
181 
182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 				struct acpi_dmar_pci_path *path, int count)
184 {
185 	int i;
186 
187 	if (info->bus != bus)
188 		goto fallback;
189 	if (info->level != count)
190 		goto fallback;
191 
192 	for (i = 0; i < count; i++) {
193 		if (path[i].device != info->path[i].device ||
194 		    path[i].function != info->path[i].function)
195 			goto fallback;
196 	}
197 
198 	return true;
199 
200 fallback:
201 
202 	if (count != 1)
203 		return false;
204 
205 	i = info->level - 1;
206 	if (bus              == info->path[i].bus &&
207 	    path[0].device   == info->path[i].device &&
208 	    path[0].function == info->path[i].function) {
209 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 			bus, path[0].device, path[0].function);
211 		return true;
212 	}
213 
214 	return false;
215 }
216 
217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 			  void *start, void*end, u16 segment,
220 			  struct dmar_dev_scope *devices,
221 			  int devices_cnt)
222 {
223 	int i, level;
224 	struct device *tmp, *dev = &info->dev->dev;
225 	struct acpi_dmar_device_scope *scope;
226 	struct acpi_dmar_pci_path *path;
227 
228 	if (segment != info->seg)
229 		return 0;
230 
231 	for (; start < end; start += scope->length) {
232 		scope = start;
233 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235 			continue;
236 
237 		path = (struct acpi_dmar_pci_path *)(scope + 1);
238 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 		if (!dmar_match_pci_path(info, scope->bus, path, level))
240 			continue;
241 
242 		/*
243 		 * We expect devices with endpoint scope to have normal PCI
244 		 * headers, and devices with bridge scope to have bridge PCI
245 		 * headers.  However PCI NTB devices may be listed in the
246 		 * DMAR table with bridge scope, even though they have a
247 		 * normal PCI header.  NTB devices are identified by class
248 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 		 * for this special case.
250 		 */
251 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 			pr_warn("Device scope type does not match for %s\n",
257 				pci_name(info->dev));
258 			return -EINVAL;
259 		}
260 
261 		for_each_dev_scope(devices, devices_cnt, i, tmp)
262 			if (tmp == NULL) {
263 				devices[i].bus = info->dev->bus->number;
264 				devices[i].devfn = info->dev->devfn;
265 				rcu_assign_pointer(devices[i].dev,
266 						   get_device(dev));
267 				return 1;
268 			}
269 		BUG_ON(i >= devices_cnt);
270 	}
271 
272 	return 0;
273 }
274 
275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 			  struct dmar_dev_scope *devices, int count)
277 {
278 	int index;
279 	struct device *tmp;
280 
281 	if (info->seg != segment)
282 		return 0;
283 
284 	for_each_active_dev_scope(devices, count, index, tmp)
285 		if (tmp == &info->dev->dev) {
286 			RCU_INIT_POINTER(devices[index].dev, NULL);
287 			synchronize_rcu();
288 			put_device(tmp);
289 			return 1;
290 		}
291 
292 	return 0;
293 }
294 
295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296 {
297 	int ret = 0;
298 	struct dmar_drhd_unit *dmaru;
299 	struct acpi_dmar_hardware_unit *drhd;
300 
301 	for_each_drhd_unit(dmaru) {
302 		if (dmaru->include_all)
303 			continue;
304 
305 		drhd = container_of(dmaru->hdr,
306 				    struct acpi_dmar_hardware_unit, header);
307 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 				((void *)drhd) + drhd->header.length,
309 				dmaru->segment,
310 				dmaru->devices, dmaru->devices_cnt);
311 		if (ret)
312 			break;
313 	}
314 	if (ret >= 0)
315 		ret = dmar_iommu_notify_scope_dev(info);
316 	if (ret < 0 && dmar_dev_scope_status == 0)
317 		dmar_dev_scope_status = ret;
318 
319 	if (ret >= 0)
320 		intel_irq_remap_add_device(info);
321 
322 	return ret;
323 }
324 
325 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
326 {
327 	struct dmar_drhd_unit *dmaru;
328 
329 	for_each_drhd_unit(dmaru)
330 		if (dmar_remove_dev_scope(info, dmaru->segment,
331 			dmaru->devices, dmaru->devices_cnt))
332 			break;
333 	dmar_iommu_notify_scope_dev(info);
334 }
335 
336 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
337 {
338 	struct pci_dev *physfn = pci_physfn(pdev);
339 
340 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
341 }
342 
343 static int dmar_pci_bus_notifier(struct notifier_block *nb,
344 				 unsigned long action, void *data)
345 {
346 	struct pci_dev *pdev = to_pci_dev(data);
347 	struct dmar_pci_notify_info *info;
348 
349 	/* Only care about add/remove events for physical functions.
350 	 * For VFs we actually do the lookup based on the corresponding
351 	 * PF in device_to_iommu() anyway. */
352 	if (pdev->is_virtfn) {
353 		/*
354 		 * Ensure that the VF device inherits the irq domain of the
355 		 * PF device. Ideally the device would inherit the domain
356 		 * from the bus, but DMAR can have multiple units per bus
357 		 * which makes this impossible. The VF 'bus' could inherit
358 		 * from the PF device, but that's yet another x86'sism to
359 		 * inflict on everybody else.
360 		 */
361 		if (action == BUS_NOTIFY_ADD_DEVICE)
362 			vf_inherit_msi_domain(pdev);
363 		return NOTIFY_DONE;
364 	}
365 
366 	if (action != BUS_NOTIFY_ADD_DEVICE &&
367 	    action != BUS_NOTIFY_REMOVED_DEVICE)
368 		return NOTIFY_DONE;
369 
370 	info = dmar_alloc_pci_notify_info(pdev, action);
371 	if (!info)
372 		return NOTIFY_DONE;
373 
374 	down_write(&dmar_global_lock);
375 	if (action == BUS_NOTIFY_ADD_DEVICE)
376 		dmar_pci_bus_add_dev(info);
377 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
378 		dmar_pci_bus_del_dev(info);
379 	up_write(&dmar_global_lock);
380 
381 	dmar_free_pci_notify_info(info);
382 
383 	return NOTIFY_OK;
384 }
385 
386 static struct notifier_block dmar_pci_bus_nb = {
387 	.notifier_call = dmar_pci_bus_notifier,
388 	.priority = INT_MIN,
389 };
390 
391 static struct dmar_drhd_unit *
392 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
393 {
394 	struct dmar_drhd_unit *dmaru;
395 
396 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
397 				dmar_rcu_check())
398 		if (dmaru->segment == drhd->segment &&
399 		    dmaru->reg_base_addr == drhd->address)
400 			return dmaru;
401 
402 	return NULL;
403 }
404 
405 /*
406  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
407  * structure which uniquely represent one DMA remapping hardware unit
408  * present in the platform
409  */
410 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
411 {
412 	struct acpi_dmar_hardware_unit *drhd;
413 	struct dmar_drhd_unit *dmaru;
414 	int ret;
415 
416 	drhd = (struct acpi_dmar_hardware_unit *)header;
417 	dmaru = dmar_find_dmaru(drhd);
418 	if (dmaru)
419 		goto out;
420 
421 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
422 	if (!dmaru)
423 		return -ENOMEM;
424 
425 	/*
426 	 * If header is allocated from slab by ACPI _DSM method, we need to
427 	 * copy the content because the memory buffer will be freed on return.
428 	 */
429 	dmaru->hdr = (void *)(dmaru + 1);
430 	memcpy(dmaru->hdr, header, header->length);
431 	dmaru->reg_base_addr = drhd->address;
432 	dmaru->segment = drhd->segment;
433 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 					      ((void *)drhd) + drhd->header.length,
436 					      &dmaru->devices_cnt);
437 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 		kfree(dmaru);
439 		return -ENOMEM;
440 	}
441 
442 	ret = alloc_iommu(dmaru);
443 	if (ret) {
444 		dmar_free_dev_scope(&dmaru->devices,
445 				    &dmaru->devices_cnt);
446 		kfree(dmaru);
447 		return ret;
448 	}
449 	dmar_register_drhd_unit(dmaru);
450 
451 out:
452 	if (arg)
453 		(*(int *)arg)++;
454 
455 	return 0;
456 }
457 
458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459 {
460 	if (dmaru->devices && dmaru->devices_cnt)
461 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 	if (dmaru->iommu)
463 		free_iommu(dmaru->iommu);
464 	kfree(dmaru);
465 }
466 
467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 				      void *arg)
469 {
470 	struct acpi_dmar_andd *andd = (void *)header;
471 
472 	/* Check for NUL termination within the designated length */
473 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 		pr_warn(FW_BUG
475 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 			   dmi_get_system_info(DMI_BIOS_VENDOR),
478 			   dmi_get_system_info(DMI_BIOS_VERSION),
479 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
480 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 		return -EINVAL;
482 	}
483 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 		andd->device_name);
485 
486 	return 0;
487 }
488 
489 #ifdef CONFIG_ACPI_NUMA
490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491 {
492 	struct acpi_dmar_rhsa *rhsa;
493 	struct dmar_drhd_unit *drhd;
494 
495 	rhsa = (struct acpi_dmar_rhsa *)header;
496 	for_each_drhd_unit(drhd) {
497 		if (drhd->reg_base_addr == rhsa->base_address) {
498 			int node = pxm_to_node(rhsa->proximity_domain);
499 
500 			if (!node_online(node))
501 				node = NUMA_NO_NODE;
502 			drhd->iommu->node = node;
503 			return 0;
504 		}
505 	}
506 	pr_warn(FW_BUG
507 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 		rhsa->base_address,
510 		dmi_get_system_info(DMI_BIOS_VENDOR),
511 		dmi_get_system_info(DMI_BIOS_VERSION),
512 		dmi_get_system_info(DMI_PRODUCT_VERSION));
513 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514 
515 	return 0;
516 }
517 #else
518 #define	dmar_parse_one_rhsa		dmar_res_noop
519 #endif
520 
521 static void
522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523 {
524 	struct acpi_dmar_hardware_unit *drhd;
525 	struct acpi_dmar_reserved_memory *rmrr;
526 	struct acpi_dmar_atsr *atsr;
527 	struct acpi_dmar_rhsa *rhsa;
528 
529 	switch (header->type) {
530 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
532 				    header);
533 		pr_info("DRHD base: %#016Lx flags: %#x\n",
534 			(unsigned long long)drhd->address, drhd->flags);
535 		break;
536 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
538 				    header);
539 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
540 			(unsigned long long)rmrr->base_address,
541 			(unsigned long long)rmrr->end_address);
542 		break;
543 	case ACPI_DMAR_TYPE_ROOT_ATS:
544 		atsr = container_of(header, struct acpi_dmar_atsr, header);
545 		pr_info("ATSR flags: %#x\n", atsr->flags);
546 		break;
547 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550 		       (unsigned long long)rhsa->base_address,
551 		       rhsa->proximity_domain);
552 		break;
553 	case ACPI_DMAR_TYPE_NAMESPACE:
554 		/* We don't print this here because we need to sanity-check
555 		   it first. So print it in dmar_parse_one_andd() instead. */
556 		break;
557 	}
558 }
559 
560 /**
561  * dmar_table_detect - checks to see if the platform supports DMAR devices
562  */
563 static int __init dmar_table_detect(void)
564 {
565 	acpi_status status = AE_OK;
566 
567 	/* if we could find DMAR table, then there are DMAR devices */
568 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
569 
570 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
571 		pr_warn("Unable to map DMAR\n");
572 		status = AE_NOT_FOUND;
573 	}
574 
575 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
576 }
577 
578 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
579 				       size_t len, struct dmar_res_callback *cb)
580 {
581 	struct acpi_dmar_header *iter, *next;
582 	struct acpi_dmar_header *end = ((void *)start) + len;
583 
584 	for (iter = start; iter < end; iter = next) {
585 		next = (void *)iter + iter->length;
586 		if (iter->length == 0) {
587 			/* Avoid looping forever on bad ACPI tables */
588 			pr_debug(FW_BUG "Invalid 0-length structure\n");
589 			break;
590 		} else if (next > end) {
591 			/* Avoid passing table end */
592 			pr_warn(FW_BUG "Record passes table end\n");
593 			return -EINVAL;
594 		}
595 
596 		if (cb->print_entry)
597 			dmar_table_print_dmar_entry(iter);
598 
599 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
600 			/* continue for forward compatibility */
601 			pr_debug("Unknown DMAR structure type %d\n",
602 				 iter->type);
603 		} else if (cb->cb[iter->type]) {
604 			int ret;
605 
606 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
607 			if (ret)
608 				return ret;
609 		} else if (!cb->ignore_unhandled) {
610 			pr_warn("No handler for DMAR structure type %d\n",
611 				iter->type);
612 			return -EINVAL;
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
620 				       struct dmar_res_callback *cb)
621 {
622 	return dmar_walk_remapping_entries((void *)(dmar + 1),
623 			dmar->header.length - sizeof(*dmar), cb);
624 }
625 
626 /**
627  * parse_dmar_table - parses the DMA reporting table
628  */
629 static int __init
630 parse_dmar_table(void)
631 {
632 	struct acpi_table_dmar *dmar;
633 	int drhd_count = 0;
634 	int ret;
635 	struct dmar_res_callback cb = {
636 		.print_entry = true,
637 		.ignore_unhandled = true,
638 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
639 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
640 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
641 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
642 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
643 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
644 	};
645 
646 	/*
647 	 * Do it again, earlier dmar_tbl mapping could be mapped with
648 	 * fixed map.
649 	 */
650 	dmar_table_detect();
651 
652 	/*
653 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
654 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
655 	 */
656 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
657 
658 	dmar = (struct acpi_table_dmar *)dmar_tbl;
659 	if (!dmar)
660 		return -ENODEV;
661 
662 	if (dmar->width < PAGE_SHIFT - 1) {
663 		pr_warn("Invalid DMAR haw\n");
664 		return -EINVAL;
665 	}
666 
667 	pr_info("Host address width %d\n", dmar->width + 1);
668 	ret = dmar_walk_dmar_table(dmar, &cb);
669 	if (ret == 0 && drhd_count == 0)
670 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
671 
672 	return ret;
673 }
674 
675 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
676 				 int cnt, struct pci_dev *dev)
677 {
678 	int index;
679 	struct device *tmp;
680 
681 	while (dev) {
682 		for_each_active_dev_scope(devices, cnt, index, tmp)
683 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
684 				return 1;
685 
686 		/* Check our parent */
687 		dev = dev->bus->self;
688 	}
689 
690 	return 0;
691 }
692 
693 struct dmar_drhd_unit *
694 dmar_find_matched_drhd_unit(struct pci_dev *dev)
695 {
696 	struct dmar_drhd_unit *dmaru;
697 	struct acpi_dmar_hardware_unit *drhd;
698 
699 	dev = pci_physfn(dev);
700 
701 	rcu_read_lock();
702 	for_each_drhd_unit(dmaru) {
703 		drhd = container_of(dmaru->hdr,
704 				    struct acpi_dmar_hardware_unit,
705 				    header);
706 
707 		if (dmaru->include_all &&
708 		    drhd->segment == pci_domain_nr(dev->bus))
709 			goto out;
710 
711 		if (dmar_pci_device_match(dmaru->devices,
712 					  dmaru->devices_cnt, dev))
713 			goto out;
714 	}
715 	dmaru = NULL;
716 out:
717 	rcu_read_unlock();
718 
719 	return dmaru;
720 }
721 
722 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
723 					      struct acpi_device *adev)
724 {
725 	struct dmar_drhd_unit *dmaru;
726 	struct acpi_dmar_hardware_unit *drhd;
727 	struct acpi_dmar_device_scope *scope;
728 	struct device *tmp;
729 	int i;
730 	struct acpi_dmar_pci_path *path;
731 
732 	for_each_drhd_unit(dmaru) {
733 		drhd = container_of(dmaru->hdr,
734 				    struct acpi_dmar_hardware_unit,
735 				    header);
736 
737 		for (scope = (void *)(drhd + 1);
738 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
739 		     scope = ((void *)scope) + scope->length) {
740 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
741 				continue;
742 			if (scope->enumeration_id != device_number)
743 				continue;
744 
745 			path = (void *)(scope + 1);
746 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
747 				dev_name(&adev->dev), dmaru->reg_base_addr,
748 				scope->bus, path->device, path->function);
749 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
750 				if (tmp == NULL) {
751 					dmaru->devices[i].bus = scope->bus;
752 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
753 									    path->function);
754 					rcu_assign_pointer(dmaru->devices[i].dev,
755 							   get_device(&adev->dev));
756 					return;
757 				}
758 			BUG_ON(i >= dmaru->devices_cnt);
759 		}
760 	}
761 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
762 		device_number, dev_name(&adev->dev));
763 }
764 
765 static int __init dmar_acpi_dev_scope_init(void)
766 {
767 	struct acpi_dmar_andd *andd;
768 
769 	if (dmar_tbl == NULL)
770 		return -ENODEV;
771 
772 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
773 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
774 	     andd = ((void *)andd) + andd->header.length) {
775 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
776 			acpi_handle h;
777 			struct acpi_device *adev;
778 
779 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
780 							  andd->device_name,
781 							  &h))) {
782 				pr_err("Failed to find handle for ACPI object %s\n",
783 				       andd->device_name);
784 				continue;
785 			}
786 			if (acpi_bus_get_device(h, &adev)) {
787 				pr_err("Failed to get device for ACPI object %s\n",
788 				       andd->device_name);
789 				continue;
790 			}
791 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
792 		}
793 	}
794 	return 0;
795 }
796 
797 int __init dmar_dev_scope_init(void)
798 {
799 	struct pci_dev *dev = NULL;
800 	struct dmar_pci_notify_info *info;
801 
802 	if (dmar_dev_scope_status != 1)
803 		return dmar_dev_scope_status;
804 
805 	if (list_empty(&dmar_drhd_units)) {
806 		dmar_dev_scope_status = -ENODEV;
807 	} else {
808 		dmar_dev_scope_status = 0;
809 
810 		dmar_acpi_dev_scope_init();
811 
812 		for_each_pci_dev(dev) {
813 			if (dev->is_virtfn)
814 				continue;
815 
816 			info = dmar_alloc_pci_notify_info(dev,
817 					BUS_NOTIFY_ADD_DEVICE);
818 			if (!info) {
819 				return dmar_dev_scope_status;
820 			} else {
821 				dmar_pci_bus_add_dev(info);
822 				dmar_free_pci_notify_info(info);
823 			}
824 		}
825 	}
826 
827 	return dmar_dev_scope_status;
828 }
829 
830 void __init dmar_register_bus_notifier(void)
831 {
832 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
833 }
834 
835 
836 int __init dmar_table_init(void)
837 {
838 	static int dmar_table_initialized;
839 	int ret;
840 
841 	if (dmar_table_initialized == 0) {
842 		ret = parse_dmar_table();
843 		if (ret < 0) {
844 			if (ret != -ENODEV)
845 				pr_info("Parse DMAR table failure.\n");
846 		} else  if (list_empty(&dmar_drhd_units)) {
847 			pr_info("No DMAR devices found\n");
848 			ret = -ENODEV;
849 		}
850 
851 		if (ret < 0)
852 			dmar_table_initialized = ret;
853 		else
854 			dmar_table_initialized = 1;
855 	}
856 
857 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
858 }
859 
860 static void warn_invalid_dmar(u64 addr, const char *message)
861 {
862 	pr_warn_once(FW_BUG
863 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
864 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
865 		addr, message,
866 		dmi_get_system_info(DMI_BIOS_VENDOR),
867 		dmi_get_system_info(DMI_BIOS_VERSION),
868 		dmi_get_system_info(DMI_PRODUCT_VERSION));
869 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
870 }
871 
872 static int __ref
873 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
874 {
875 	struct acpi_dmar_hardware_unit *drhd;
876 	void __iomem *addr;
877 	u64 cap, ecap;
878 
879 	drhd = (void *)entry;
880 	if (!drhd->address) {
881 		warn_invalid_dmar(0, "");
882 		return -EINVAL;
883 	}
884 
885 	if (arg)
886 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
887 	else
888 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
889 	if (!addr) {
890 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
891 		return -EINVAL;
892 	}
893 
894 	cap = dmar_readq(addr + DMAR_CAP_REG);
895 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
896 
897 	if (arg)
898 		iounmap(addr);
899 	else
900 		early_iounmap(addr, VTD_PAGE_SIZE);
901 
902 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
903 		warn_invalid_dmar(drhd->address, " returns all ones");
904 		return -EINVAL;
905 	}
906 
907 	return 0;
908 }
909 
910 int __init detect_intel_iommu(void)
911 {
912 	int ret;
913 	struct dmar_res_callback validate_drhd_cb = {
914 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
915 		.ignore_unhandled = true,
916 	};
917 
918 	down_write(&dmar_global_lock);
919 	ret = dmar_table_detect();
920 	if (!ret)
921 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
922 					   &validate_drhd_cb);
923 	if (!ret && !no_iommu && !iommu_detected &&
924 	    (!dmar_disabled || dmar_platform_optin())) {
925 		iommu_detected = 1;
926 		/* Make sure ACS will be enabled */
927 		pci_request_acs();
928 	}
929 
930 #ifdef CONFIG_X86
931 	if (!ret) {
932 		x86_init.iommu.iommu_init = intel_iommu_init;
933 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
934 	}
935 
936 #endif
937 
938 	if (dmar_tbl) {
939 		acpi_put_table(dmar_tbl);
940 		dmar_tbl = NULL;
941 	}
942 	up_write(&dmar_global_lock);
943 
944 	return ret ? ret : 1;
945 }
946 
947 static void unmap_iommu(struct intel_iommu *iommu)
948 {
949 	iounmap(iommu->reg);
950 	release_mem_region(iommu->reg_phys, iommu->reg_size);
951 }
952 
953 /**
954  * map_iommu: map the iommu's registers
955  * @iommu: the iommu to map
956  * @phys_addr: the physical address of the base resgister
957  *
958  * Memory map the iommu's registers.  Start w/ a single page, and
959  * possibly expand if that turns out to be insufficent.
960  */
961 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
962 {
963 	int map_size, err=0;
964 
965 	iommu->reg_phys = phys_addr;
966 	iommu->reg_size = VTD_PAGE_SIZE;
967 
968 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
969 		pr_err("Can't reserve memory\n");
970 		err = -EBUSY;
971 		goto out;
972 	}
973 
974 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
975 	if (!iommu->reg) {
976 		pr_err("Can't map the region\n");
977 		err = -ENOMEM;
978 		goto release;
979 	}
980 
981 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
982 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
983 
984 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
985 		err = -EINVAL;
986 		warn_invalid_dmar(phys_addr, " returns all ones");
987 		goto unmap;
988 	}
989 	iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
990 
991 	/* the registers might be more than one page */
992 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
993 			 cap_max_fault_reg_offset(iommu->cap));
994 	map_size = VTD_PAGE_ALIGN(map_size);
995 	if (map_size > iommu->reg_size) {
996 		iounmap(iommu->reg);
997 		release_mem_region(iommu->reg_phys, iommu->reg_size);
998 		iommu->reg_size = map_size;
999 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1000 					iommu->name)) {
1001 			pr_err("Can't reserve memory\n");
1002 			err = -EBUSY;
1003 			goto out;
1004 		}
1005 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1006 		if (!iommu->reg) {
1007 			pr_err("Can't map the region\n");
1008 			err = -ENOMEM;
1009 			goto release;
1010 		}
1011 	}
1012 	err = 0;
1013 	goto out;
1014 
1015 unmap:
1016 	iounmap(iommu->reg);
1017 release:
1018 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1019 out:
1020 	return err;
1021 }
1022 
1023 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1024 {
1025 	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1026 					    DMAR_UNITS_SUPPORTED);
1027 	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1028 		iommu->seq_id = -1;
1029 	} else {
1030 		set_bit(iommu->seq_id, dmar_seq_ids);
1031 		sprintf(iommu->name, "dmar%d", iommu->seq_id);
1032 	}
1033 
1034 	return iommu->seq_id;
1035 }
1036 
1037 static void dmar_free_seq_id(struct intel_iommu *iommu)
1038 {
1039 	if (iommu->seq_id >= 0) {
1040 		clear_bit(iommu->seq_id, dmar_seq_ids);
1041 		iommu->seq_id = -1;
1042 	}
1043 }
1044 
1045 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1046 {
1047 	struct intel_iommu *iommu;
1048 	u32 ver, sts;
1049 	int agaw = -1;
1050 	int msagaw = -1;
1051 	int err;
1052 
1053 	if (!drhd->reg_base_addr) {
1054 		warn_invalid_dmar(0, "");
1055 		return -EINVAL;
1056 	}
1057 
1058 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1059 	if (!iommu)
1060 		return -ENOMEM;
1061 
1062 	if (dmar_alloc_seq_id(iommu) < 0) {
1063 		pr_err("Failed to allocate seq_id\n");
1064 		err = -ENOSPC;
1065 		goto error;
1066 	}
1067 
1068 	err = map_iommu(iommu, drhd->reg_base_addr);
1069 	if (err) {
1070 		pr_err("Failed to map %s\n", iommu->name);
1071 		goto error_free_seq_id;
1072 	}
1073 
1074 	err = -EINVAL;
1075 	if (cap_sagaw(iommu->cap) == 0) {
1076 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1077 			iommu->name);
1078 		drhd->ignored = 1;
1079 	}
1080 
1081 	if (!drhd->ignored) {
1082 		agaw = iommu_calculate_agaw(iommu);
1083 		if (agaw < 0) {
1084 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1085 			       iommu->seq_id);
1086 			drhd->ignored = 1;
1087 		}
1088 	}
1089 	if (!drhd->ignored) {
1090 		msagaw = iommu_calculate_max_sagaw(iommu);
1091 		if (msagaw < 0) {
1092 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1093 			       iommu->seq_id);
1094 			drhd->ignored = 1;
1095 			agaw = -1;
1096 		}
1097 	}
1098 	iommu->agaw = agaw;
1099 	iommu->msagaw = msagaw;
1100 	iommu->segment = drhd->segment;
1101 
1102 	iommu->node = NUMA_NO_NODE;
1103 
1104 	ver = readl(iommu->reg + DMAR_VER_REG);
1105 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1106 		iommu->name,
1107 		(unsigned long long)drhd->reg_base_addr,
1108 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1109 		(unsigned long long)iommu->cap,
1110 		(unsigned long long)iommu->ecap);
1111 
1112 	/* Reflect status in gcmd */
1113 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1114 	if (sts & DMA_GSTS_IRES)
1115 		iommu->gcmd |= DMA_GCMD_IRE;
1116 	if (sts & DMA_GSTS_TES)
1117 		iommu->gcmd |= DMA_GCMD_TE;
1118 	if (sts & DMA_GSTS_QIES)
1119 		iommu->gcmd |= DMA_GCMD_QIE;
1120 
1121 	raw_spin_lock_init(&iommu->register_lock);
1122 
1123 	/*
1124 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1125 	 * be set yet. When intel_iommu_init() runs, it registers the units
1126 	 * present at boot time, then sets intel_iommu_enabled.
1127 	 */
1128 	if (intel_iommu_enabled && !drhd->ignored) {
1129 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1130 					     intel_iommu_groups,
1131 					     "%s", iommu->name);
1132 		if (err)
1133 			goto err_unmap;
1134 
1135 		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1136 
1137 		err = iommu_device_register(&iommu->iommu);
1138 		if (err)
1139 			goto err_unmap;
1140 	}
1141 
1142 	drhd->iommu = iommu;
1143 	iommu->drhd = drhd;
1144 
1145 	return 0;
1146 
1147 err_unmap:
1148 	unmap_iommu(iommu);
1149 error_free_seq_id:
1150 	dmar_free_seq_id(iommu);
1151 error:
1152 	kfree(iommu);
1153 	return err;
1154 }
1155 
1156 static void free_iommu(struct intel_iommu *iommu)
1157 {
1158 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1159 		iommu_device_unregister(&iommu->iommu);
1160 		iommu_device_sysfs_remove(&iommu->iommu);
1161 	}
1162 
1163 	if (iommu->irq) {
1164 		if (iommu->pr_irq) {
1165 			free_irq(iommu->pr_irq, iommu);
1166 			dmar_free_hwirq(iommu->pr_irq);
1167 			iommu->pr_irq = 0;
1168 		}
1169 		free_irq(iommu->irq, iommu);
1170 		dmar_free_hwirq(iommu->irq);
1171 		iommu->irq = 0;
1172 	}
1173 
1174 	if (iommu->qi) {
1175 		free_page((unsigned long)iommu->qi->desc);
1176 		kfree(iommu->qi->desc_status);
1177 		kfree(iommu->qi);
1178 	}
1179 
1180 	if (iommu->reg)
1181 		unmap_iommu(iommu);
1182 
1183 	dmar_free_seq_id(iommu);
1184 	kfree(iommu);
1185 }
1186 
1187 /*
1188  * Reclaim all the submitted descriptors which have completed its work.
1189  */
1190 static inline void reclaim_free_desc(struct q_inval *qi)
1191 {
1192 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1193 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1194 		qi->desc_status[qi->free_tail] = QI_FREE;
1195 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1196 		qi->free_cnt++;
1197 	}
1198 }
1199 
1200 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1201 {
1202 	u32 fault;
1203 	int head, tail;
1204 	struct q_inval *qi = iommu->qi;
1205 	int shift = qi_shift(iommu);
1206 
1207 	if (qi->desc_status[wait_index] == QI_ABORT)
1208 		return -EAGAIN;
1209 
1210 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1211 
1212 	/*
1213 	 * If IQE happens, the head points to the descriptor associated
1214 	 * with the error. No new descriptors are fetched until the IQE
1215 	 * is cleared.
1216 	 */
1217 	if (fault & DMA_FSTS_IQE) {
1218 		head = readl(iommu->reg + DMAR_IQH_REG);
1219 		if ((head >> shift) == index) {
1220 			struct qi_desc *desc = qi->desc + head;
1221 
1222 			/*
1223 			 * desc->qw2 and desc->qw3 are either reserved or
1224 			 * used by software as private data. We won't print
1225 			 * out these two qw's for security consideration.
1226 			 */
1227 			pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1228 			       (unsigned long long)desc->qw0,
1229 			       (unsigned long long)desc->qw1);
1230 			memcpy(desc, qi->desc + (wait_index << shift),
1231 			       1 << shift);
1232 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1233 			return -EINVAL;
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * If ITE happens, all pending wait_desc commands are aborted.
1239 	 * No new descriptors are fetched until the ITE is cleared.
1240 	 */
1241 	if (fault & DMA_FSTS_ITE) {
1242 		head = readl(iommu->reg + DMAR_IQH_REG);
1243 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1244 		head |= 1;
1245 		tail = readl(iommu->reg + DMAR_IQT_REG);
1246 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1247 
1248 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1249 
1250 		do {
1251 			if (qi->desc_status[head] == QI_IN_USE)
1252 				qi->desc_status[head] = QI_ABORT;
1253 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1254 		} while (head != tail);
1255 
1256 		if (qi->desc_status[wait_index] == QI_ABORT)
1257 			return -EAGAIN;
1258 	}
1259 
1260 	if (fault & DMA_FSTS_ICE)
1261 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Function to submit invalidation descriptors of all types to the queued
1268  * invalidation interface(QI). Multiple descriptors can be submitted at a
1269  * time, a wait descriptor will be appended to each submission to ensure
1270  * hardware has completed the invalidation before return. Wait descriptors
1271  * can be part of the submission but it will not be polled for completion.
1272  */
1273 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1274 		   unsigned int count, unsigned long options)
1275 {
1276 	struct q_inval *qi = iommu->qi;
1277 	struct qi_desc wait_desc;
1278 	int wait_index, index;
1279 	unsigned long flags;
1280 	int offset, shift;
1281 	int rc, i;
1282 
1283 	if (!qi)
1284 		return 0;
1285 
1286 restart:
1287 	rc = 0;
1288 
1289 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1290 	/*
1291 	 * Check if we have enough empty slots in the queue to submit,
1292 	 * the calculation is based on:
1293 	 * # of desc + 1 wait desc + 1 space between head and tail
1294 	 */
1295 	while (qi->free_cnt < count + 2) {
1296 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1297 		cpu_relax();
1298 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1299 	}
1300 
1301 	index = qi->free_head;
1302 	wait_index = (index + count) % QI_LENGTH;
1303 	shift = qi_shift(iommu);
1304 
1305 	for (i = 0; i < count; i++) {
1306 		offset = ((index + i) % QI_LENGTH) << shift;
1307 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1308 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1309 	}
1310 	qi->desc_status[wait_index] = QI_IN_USE;
1311 
1312 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1313 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1314 	if (options & QI_OPT_WAIT_DRAIN)
1315 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1316 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1317 	wait_desc.qw2 = 0;
1318 	wait_desc.qw3 = 0;
1319 
1320 	offset = wait_index << shift;
1321 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1322 
1323 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1324 	qi->free_cnt -= count + 1;
1325 
1326 	/*
1327 	 * update the HW tail register indicating the presence of
1328 	 * new descriptors.
1329 	 */
1330 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1331 
1332 	while (qi->desc_status[wait_index] != QI_DONE) {
1333 		/*
1334 		 * We will leave the interrupts disabled, to prevent interrupt
1335 		 * context to queue another cmd while a cmd is already submitted
1336 		 * and waiting for completion on this cpu. This is to avoid
1337 		 * a deadlock where the interrupt context can wait indefinitely
1338 		 * for free slots in the queue.
1339 		 */
1340 		rc = qi_check_fault(iommu, index, wait_index);
1341 		if (rc)
1342 			break;
1343 
1344 		raw_spin_unlock(&qi->q_lock);
1345 		cpu_relax();
1346 		raw_spin_lock(&qi->q_lock);
1347 	}
1348 
1349 	for (i = 0; i < count; i++)
1350 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1351 
1352 	reclaim_free_desc(qi);
1353 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1354 
1355 	if (rc == -EAGAIN)
1356 		goto restart;
1357 
1358 	return rc;
1359 }
1360 
1361 /*
1362  * Flush the global interrupt entry cache.
1363  */
1364 void qi_global_iec(struct intel_iommu *iommu)
1365 {
1366 	struct qi_desc desc;
1367 
1368 	desc.qw0 = QI_IEC_TYPE;
1369 	desc.qw1 = 0;
1370 	desc.qw2 = 0;
1371 	desc.qw3 = 0;
1372 
1373 	/* should never fail */
1374 	qi_submit_sync(iommu, &desc, 1, 0);
1375 }
1376 
1377 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1378 		      u64 type)
1379 {
1380 	struct qi_desc desc;
1381 
1382 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1383 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1384 	desc.qw1 = 0;
1385 	desc.qw2 = 0;
1386 	desc.qw3 = 0;
1387 
1388 	qi_submit_sync(iommu, &desc, 1, 0);
1389 }
1390 
1391 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1392 		    unsigned int size_order, u64 type)
1393 {
1394 	u8 dw = 0, dr = 0;
1395 
1396 	struct qi_desc desc;
1397 	int ih = 0;
1398 
1399 	if (cap_write_drain(iommu->cap))
1400 		dw = 1;
1401 
1402 	if (cap_read_drain(iommu->cap))
1403 		dr = 1;
1404 
1405 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1406 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1407 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1408 		| QI_IOTLB_AM(size_order);
1409 	desc.qw2 = 0;
1410 	desc.qw3 = 0;
1411 
1412 	qi_submit_sync(iommu, &desc, 1, 0);
1413 }
1414 
1415 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1416 			u16 qdep, u64 addr, unsigned mask)
1417 {
1418 	struct qi_desc desc;
1419 
1420 	if (mask) {
1421 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1422 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1423 	} else
1424 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1425 
1426 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1427 		qdep = 0;
1428 
1429 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1430 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1431 	desc.qw2 = 0;
1432 	desc.qw3 = 0;
1433 
1434 	qi_submit_sync(iommu, &desc, 1, 0);
1435 }
1436 
1437 /* PASID-based IOTLB invalidation */
1438 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1439 		     unsigned long npages, bool ih)
1440 {
1441 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1442 
1443 	/*
1444 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1445 	 * a positive value for Page-selective-within-PASID invalidation.
1446 	 * 0 is not a valid input.
1447 	 */
1448 	if (WARN_ON(!npages)) {
1449 		pr_err("Invalid input npages = %ld\n", npages);
1450 		return;
1451 	}
1452 
1453 	if (npages == -1) {
1454 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1455 				QI_EIOTLB_DID(did) |
1456 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1457 				QI_EIOTLB_TYPE;
1458 		desc.qw1 = 0;
1459 	} else {
1460 		int mask = ilog2(__roundup_pow_of_two(npages));
1461 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1462 
1463 		if (WARN_ON_ONCE(!ALIGN(addr, align)))
1464 			addr &= ~(align - 1);
1465 
1466 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1467 				QI_EIOTLB_DID(did) |
1468 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1469 				QI_EIOTLB_TYPE;
1470 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1471 				QI_EIOTLB_IH(ih) |
1472 				QI_EIOTLB_AM(mask);
1473 	}
1474 
1475 	qi_submit_sync(iommu, &desc, 1, 0);
1476 }
1477 
1478 /* PASID-based device IOTLB Invalidate */
1479 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1480 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1481 {
1482 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1483 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1484 
1485 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1486 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1487 		QI_DEV_IOTLB_PFSID(pfsid);
1488 
1489 	/*
1490 	 * If S bit is 0, we only flush a single page. If S bit is set,
1491 	 * The least significant zero bit indicates the invalidation address
1492 	 * range. VT-d spec 6.5.2.6.
1493 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1494 	 * size order = 0 is PAGE_SIZE 4KB
1495 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1496 	 * ECAP.
1497 	 */
1498 	if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1499 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1500 				    addr, size_order);
1501 
1502 	/* Take page address */
1503 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1504 
1505 	if (size_order) {
1506 		/*
1507 		 * Existing 0s in address below size_order may be the least
1508 		 * significant bit, we must set them to 1s to avoid having
1509 		 * smaller size than desired.
1510 		 */
1511 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1512 					VTD_PAGE_SHIFT);
1513 		/* Clear size_order bit to indicate size */
1514 		desc.qw1 &= ~mask;
1515 		/* Set the S bit to indicate flushing more than 1 page */
1516 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1517 	}
1518 
1519 	qi_submit_sync(iommu, &desc, 1, 0);
1520 }
1521 
1522 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1523 			  u64 granu, u32 pasid)
1524 {
1525 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1526 
1527 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1528 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1529 	qi_submit_sync(iommu, &desc, 1, 0);
1530 }
1531 
1532 /*
1533  * Disable Queued Invalidation interface.
1534  */
1535 void dmar_disable_qi(struct intel_iommu *iommu)
1536 {
1537 	unsigned long flags;
1538 	u32 sts;
1539 	cycles_t start_time = get_cycles();
1540 
1541 	if (!ecap_qis(iommu->ecap))
1542 		return;
1543 
1544 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1545 
1546 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1547 	if (!(sts & DMA_GSTS_QIES))
1548 		goto end;
1549 
1550 	/*
1551 	 * Give a chance to HW to complete the pending invalidation requests.
1552 	 */
1553 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1554 		readl(iommu->reg + DMAR_IQH_REG)) &&
1555 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1556 		cpu_relax();
1557 
1558 	iommu->gcmd &= ~DMA_GCMD_QIE;
1559 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1560 
1561 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1562 		      !(sts & DMA_GSTS_QIES), sts);
1563 end:
1564 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1565 }
1566 
1567 /*
1568  * Enable queued invalidation.
1569  */
1570 static void __dmar_enable_qi(struct intel_iommu *iommu)
1571 {
1572 	u32 sts;
1573 	unsigned long flags;
1574 	struct q_inval *qi = iommu->qi;
1575 	u64 val = virt_to_phys(qi->desc);
1576 
1577 	qi->free_head = qi->free_tail = 0;
1578 	qi->free_cnt = QI_LENGTH;
1579 
1580 	/*
1581 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1582 	 * is present.
1583 	 */
1584 	if (ecap_smts(iommu->ecap))
1585 		val |= (1 << 11) | 1;
1586 
1587 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1588 
1589 	/* write zero to the tail reg */
1590 	writel(0, iommu->reg + DMAR_IQT_REG);
1591 
1592 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1593 
1594 	iommu->gcmd |= DMA_GCMD_QIE;
1595 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1596 
1597 	/* Make sure hardware complete it */
1598 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1599 
1600 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1601 }
1602 
1603 /*
1604  * Enable Queued Invalidation interface. This is a must to support
1605  * interrupt-remapping. Also used by DMA-remapping, which replaces
1606  * register based IOTLB invalidation.
1607  */
1608 int dmar_enable_qi(struct intel_iommu *iommu)
1609 {
1610 	struct q_inval *qi;
1611 	struct page *desc_page;
1612 
1613 	if (!ecap_qis(iommu->ecap))
1614 		return -ENOENT;
1615 
1616 	/*
1617 	 * queued invalidation is already setup and enabled.
1618 	 */
1619 	if (iommu->qi)
1620 		return 0;
1621 
1622 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1623 	if (!iommu->qi)
1624 		return -ENOMEM;
1625 
1626 	qi = iommu->qi;
1627 
1628 	/*
1629 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1630 	 * if the remapping hardware supports scalable mode translation.
1631 	 */
1632 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1633 				     !!ecap_smts(iommu->ecap));
1634 	if (!desc_page) {
1635 		kfree(qi);
1636 		iommu->qi = NULL;
1637 		return -ENOMEM;
1638 	}
1639 
1640 	qi->desc = page_address(desc_page);
1641 
1642 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1643 	if (!qi->desc_status) {
1644 		free_page((unsigned long) qi->desc);
1645 		kfree(qi);
1646 		iommu->qi = NULL;
1647 		return -ENOMEM;
1648 	}
1649 
1650 	raw_spin_lock_init(&qi->q_lock);
1651 
1652 	__dmar_enable_qi(iommu);
1653 
1654 	return 0;
1655 }
1656 
1657 /* iommu interrupt handling. Most stuff are MSI-like. */
1658 
1659 enum faulttype {
1660 	DMA_REMAP,
1661 	INTR_REMAP,
1662 	UNKNOWN,
1663 };
1664 
1665 static const char *dma_remap_fault_reasons[] =
1666 {
1667 	"Software",
1668 	"Present bit in root entry is clear",
1669 	"Present bit in context entry is clear",
1670 	"Invalid context entry",
1671 	"Access beyond MGAW",
1672 	"PTE Write access is not set",
1673 	"PTE Read access is not set",
1674 	"Next page table ptr is invalid",
1675 	"Root table address invalid",
1676 	"Context table ptr is invalid",
1677 	"non-zero reserved fields in RTP",
1678 	"non-zero reserved fields in CTP",
1679 	"non-zero reserved fields in PTE",
1680 	"PCE for translation request specifies blocking",
1681 };
1682 
1683 static const char * const dma_remap_sm_fault_reasons[] = {
1684 	"SM: Invalid Root Table Address",
1685 	"SM: TTM 0 for request with PASID",
1686 	"SM: TTM 0 for page group request",
1687 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1688 	"SM: Error attempting to access Root Entry",
1689 	"SM: Present bit in Root Entry is clear",
1690 	"SM: Non-zero reserved field set in Root Entry",
1691 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1692 	"SM: Error attempting to access Context Entry",
1693 	"SM: Present bit in Context Entry is clear",
1694 	"SM: Non-zero reserved field set in the Context Entry",
1695 	"SM: Invalid Context Entry",
1696 	"SM: DTE field in Context Entry is clear",
1697 	"SM: PASID Enable field in Context Entry is clear",
1698 	"SM: PASID is larger than the max in Context Entry",
1699 	"SM: PRE field in Context-Entry is clear",
1700 	"SM: RID_PASID field error in Context-Entry",
1701 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1702 	"SM: Error attempting to access the PASID Directory Entry",
1703 	"SM: Present bit in Directory Entry is clear",
1704 	"SM: Non-zero reserved field set in PASID Directory Entry",
1705 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1706 	"SM: Error attempting to access PASID Table Entry",
1707 	"SM: Present bit in PASID Table Entry is clear",
1708 	"SM: Non-zero reserved field set in PASID Table Entry",
1709 	"SM: Invalid Scalable-Mode PASID Table Entry",
1710 	"SM: ERE field is clear in PASID Table Entry",
1711 	"SM: SRE field is clear in PASID Table Entry",
1712 	"Unknown", "Unknown",/* 0x5E-0x5F */
1713 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1714 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1715 	"SM: Error attempting to access first-level paging entry",
1716 	"SM: Present bit in first-level paging entry is clear",
1717 	"SM: Non-zero reserved field set in first-level paging entry",
1718 	"SM: Error attempting to access FL-PML4 entry",
1719 	"SM: First-level entry address beyond MGAW in Nested translation",
1720 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1721 	"SM: Read permission error in first-level paging entry in Nested translation",
1722 	"SM: Write permission error in first-level paging entry in Nested translation",
1723 	"SM: Error attempting to access second-level paging entry",
1724 	"SM: Read/Write permission error in second-level paging entry",
1725 	"SM: Non-zero reserved field set in second-level paging entry",
1726 	"SM: Invalid second-level page table pointer",
1727 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1728 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1729 	"SM: Address in first-level translation is not canonical",
1730 	"SM: U/S set 0 for first-level translation with user privilege",
1731 	"SM: No execute permission for request with PASID and ER=1",
1732 	"SM: Address beyond the DMA hardware max",
1733 	"SM: Second-level entry address beyond the max",
1734 	"SM: No write permission for Write/AtomicOp request",
1735 	"SM: No read permission for Read/AtomicOp request",
1736 	"SM: Invalid address-interrupt address",
1737 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1738 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1739 };
1740 
1741 static const char *irq_remap_fault_reasons[] =
1742 {
1743 	"Detected reserved fields in the decoded interrupt-remapped request",
1744 	"Interrupt index exceeded the interrupt-remapping table size",
1745 	"Present field in the IRTE entry is clear",
1746 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1747 	"Detected reserved fields in the IRTE entry",
1748 	"Blocked a compatibility format interrupt request",
1749 	"Blocked an interrupt request due to source-id verification failure",
1750 };
1751 
1752 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1753 {
1754 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1755 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1756 		*fault_type = INTR_REMAP;
1757 		return irq_remap_fault_reasons[fault_reason - 0x20];
1758 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1759 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1760 		*fault_type = DMA_REMAP;
1761 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1762 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1763 		*fault_type = DMA_REMAP;
1764 		return dma_remap_fault_reasons[fault_reason];
1765 	} else {
1766 		*fault_type = UNKNOWN;
1767 		return "Unknown";
1768 	}
1769 }
1770 
1771 
1772 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1773 {
1774 	if (iommu->irq == irq)
1775 		return DMAR_FECTL_REG;
1776 	else if (iommu->pr_irq == irq)
1777 		return DMAR_PECTL_REG;
1778 	else
1779 		BUG();
1780 }
1781 
1782 void dmar_msi_unmask(struct irq_data *data)
1783 {
1784 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1785 	int reg = dmar_msi_reg(iommu, data->irq);
1786 	unsigned long flag;
1787 
1788 	/* unmask it */
1789 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1790 	writel(0, iommu->reg + reg);
1791 	/* Read a reg to force flush the post write */
1792 	readl(iommu->reg + reg);
1793 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1794 }
1795 
1796 void dmar_msi_mask(struct irq_data *data)
1797 {
1798 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1799 	int reg = dmar_msi_reg(iommu, data->irq);
1800 	unsigned long flag;
1801 
1802 	/* mask it */
1803 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1804 	writel(DMA_FECTL_IM, iommu->reg + reg);
1805 	/* Read a reg to force flush the post write */
1806 	readl(iommu->reg + reg);
1807 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1808 }
1809 
1810 void dmar_msi_write(int irq, struct msi_msg *msg)
1811 {
1812 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1813 	int reg = dmar_msi_reg(iommu, irq);
1814 	unsigned long flag;
1815 
1816 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1817 	writel(msg->data, iommu->reg + reg + 4);
1818 	writel(msg->address_lo, iommu->reg + reg + 8);
1819 	writel(msg->address_hi, iommu->reg + reg + 12);
1820 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1821 }
1822 
1823 void dmar_msi_read(int irq, struct msi_msg *msg)
1824 {
1825 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1826 	int reg = dmar_msi_reg(iommu, irq);
1827 	unsigned long flag;
1828 
1829 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1830 	msg->data = readl(iommu->reg + reg + 4);
1831 	msg->address_lo = readl(iommu->reg + reg + 8);
1832 	msg->address_hi = readl(iommu->reg + reg + 12);
1833 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1834 }
1835 
1836 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1837 		u8 fault_reason, u32 pasid, u16 source_id,
1838 		unsigned long long addr)
1839 {
1840 	const char *reason;
1841 	int fault_type;
1842 
1843 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1844 
1845 	if (fault_type == INTR_REMAP)
1846 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1847 			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1848 			PCI_FUNC(source_id & 0xFF), addr >> 48,
1849 			fault_reason, reason);
1850 	else
1851 		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1852 		       type ? "DMA Read" : "DMA Write",
1853 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1854 		       PCI_FUNC(source_id & 0xFF), pasid, addr,
1855 		       fault_reason, reason);
1856 	return 0;
1857 }
1858 
1859 #define PRIMARY_FAULT_REG_LEN (16)
1860 irqreturn_t dmar_fault(int irq, void *dev_id)
1861 {
1862 	struct intel_iommu *iommu = dev_id;
1863 	int reg, fault_index;
1864 	u32 fault_status;
1865 	unsigned long flag;
1866 	static DEFINE_RATELIMIT_STATE(rs,
1867 				      DEFAULT_RATELIMIT_INTERVAL,
1868 				      DEFAULT_RATELIMIT_BURST);
1869 
1870 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1871 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1872 	if (fault_status && __ratelimit(&rs))
1873 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1874 
1875 	/* TBD: ignore advanced fault log currently */
1876 	if (!(fault_status & DMA_FSTS_PPF))
1877 		goto unlock_exit;
1878 
1879 	fault_index = dma_fsts_fault_record_index(fault_status);
1880 	reg = cap_fault_reg_offset(iommu->cap);
1881 	while (1) {
1882 		/* Disable printing, simply clear the fault when ratelimited */
1883 		bool ratelimited = !__ratelimit(&rs);
1884 		u8 fault_reason;
1885 		u16 source_id;
1886 		u64 guest_addr;
1887 		u32 pasid;
1888 		int type;
1889 		u32 data;
1890 		bool pasid_present;
1891 
1892 		/* highest 32 bits */
1893 		data = readl(iommu->reg + reg +
1894 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1895 		if (!(data & DMA_FRCD_F))
1896 			break;
1897 
1898 		if (!ratelimited) {
1899 			fault_reason = dma_frcd_fault_reason(data);
1900 			type = dma_frcd_type(data);
1901 
1902 			pasid = dma_frcd_pasid_value(data);
1903 			data = readl(iommu->reg + reg +
1904 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1905 			source_id = dma_frcd_source_id(data);
1906 
1907 			pasid_present = dma_frcd_pasid_present(data);
1908 			guest_addr = dmar_readq(iommu->reg + reg +
1909 					fault_index * PRIMARY_FAULT_REG_LEN);
1910 			guest_addr = dma_frcd_page_addr(guest_addr);
1911 		}
1912 
1913 		/* clear the fault */
1914 		writel(DMA_FRCD_F, iommu->reg + reg +
1915 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
1916 
1917 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1918 
1919 		if (!ratelimited)
1920 			/* Using pasid -1 if pasid is not present */
1921 			dmar_fault_do_one(iommu, type, fault_reason,
1922 					  pasid_present ? pasid : -1,
1923 					  source_id, guest_addr);
1924 
1925 		fault_index++;
1926 		if (fault_index >= cap_num_fault_regs(iommu->cap))
1927 			fault_index = 0;
1928 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1929 	}
1930 
1931 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1932 	       iommu->reg + DMAR_FSTS_REG);
1933 
1934 unlock_exit:
1935 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1936 	return IRQ_HANDLED;
1937 }
1938 
1939 int dmar_set_interrupt(struct intel_iommu *iommu)
1940 {
1941 	int irq, ret;
1942 
1943 	/*
1944 	 * Check if the fault interrupt is already initialized.
1945 	 */
1946 	if (iommu->irq)
1947 		return 0;
1948 
1949 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1950 	if (irq > 0) {
1951 		iommu->irq = irq;
1952 	} else {
1953 		pr_err("No free IRQ vectors\n");
1954 		return -EINVAL;
1955 	}
1956 
1957 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1958 	if (ret)
1959 		pr_err("Can't request irq\n");
1960 	return ret;
1961 }
1962 
1963 int __init enable_drhd_fault_handling(void)
1964 {
1965 	struct dmar_drhd_unit *drhd;
1966 	struct intel_iommu *iommu;
1967 
1968 	/*
1969 	 * Enable fault control interrupt.
1970 	 */
1971 	for_each_iommu(iommu, drhd) {
1972 		u32 fault_status;
1973 		int ret = dmar_set_interrupt(iommu);
1974 
1975 		if (ret) {
1976 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1977 			       (unsigned long long)drhd->reg_base_addr, ret);
1978 			return -1;
1979 		}
1980 
1981 		/*
1982 		 * Clear any previous faults.
1983 		 */
1984 		dmar_fault(iommu->irq, iommu);
1985 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1986 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Re-enable Queued Invalidation interface.
1994  */
1995 int dmar_reenable_qi(struct intel_iommu *iommu)
1996 {
1997 	if (!ecap_qis(iommu->ecap))
1998 		return -ENOENT;
1999 
2000 	if (!iommu->qi)
2001 		return -ENOENT;
2002 
2003 	/*
2004 	 * First disable queued invalidation.
2005 	 */
2006 	dmar_disable_qi(iommu);
2007 	/*
2008 	 * Then enable queued invalidation again. Since there is no pending
2009 	 * invalidation requests now, it's safe to re-enable queued
2010 	 * invalidation.
2011 	 */
2012 	__dmar_enable_qi(iommu);
2013 
2014 	return 0;
2015 }
2016 
2017 /*
2018  * Check interrupt remapping support in DMAR table description.
2019  */
2020 int __init dmar_ir_support(void)
2021 {
2022 	struct acpi_table_dmar *dmar;
2023 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2024 	if (!dmar)
2025 		return 0;
2026 	return dmar->flags & 0x1;
2027 }
2028 
2029 /* Check whether DMAR units are in use */
2030 static inline bool dmar_in_use(void)
2031 {
2032 	return irq_remapping_enabled || intel_iommu_enabled;
2033 }
2034 
2035 static int __init dmar_free_unused_resources(void)
2036 {
2037 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2038 
2039 	if (dmar_in_use())
2040 		return 0;
2041 
2042 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2043 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2044 
2045 	down_write(&dmar_global_lock);
2046 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2047 		list_del(&dmaru->list);
2048 		dmar_free_drhd(dmaru);
2049 	}
2050 	up_write(&dmar_global_lock);
2051 
2052 	return 0;
2053 }
2054 
2055 late_initcall(dmar_free_unused_resources);
2056 IOMMU_INIT_POST(detect_intel_iommu);
2057 
2058 /*
2059  * DMAR Hotplug Support
2060  * For more details, please refer to Intel(R) Virtualization Technology
2061  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2062  * "Remapping Hardware Unit Hot Plug".
2063  */
2064 static guid_t dmar_hp_guid =
2065 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2066 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2067 
2068 /*
2069  * Currently there's only one revision and BIOS will not check the revision id,
2070  * so use 0 for safety.
2071  */
2072 #define	DMAR_DSM_REV_ID			0
2073 #define	DMAR_DSM_FUNC_DRHD		1
2074 #define	DMAR_DSM_FUNC_ATSR		2
2075 #define	DMAR_DSM_FUNC_RHSA		3
2076 
2077 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2078 {
2079 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2080 }
2081 
2082 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2083 				  dmar_res_handler_t handler, void *arg)
2084 {
2085 	int ret = -ENODEV;
2086 	union acpi_object *obj;
2087 	struct acpi_dmar_header *start;
2088 	struct dmar_res_callback callback;
2089 	static int res_type[] = {
2090 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2091 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2092 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2093 	};
2094 
2095 	if (!dmar_detect_dsm(handle, func))
2096 		return 0;
2097 
2098 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2099 				      func, NULL, ACPI_TYPE_BUFFER);
2100 	if (!obj)
2101 		return -ENODEV;
2102 
2103 	memset(&callback, 0, sizeof(callback));
2104 	callback.cb[res_type[func]] = handler;
2105 	callback.arg[res_type[func]] = arg;
2106 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2107 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2108 
2109 	ACPI_FREE(obj);
2110 
2111 	return ret;
2112 }
2113 
2114 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2115 {
2116 	int ret;
2117 	struct dmar_drhd_unit *dmaru;
2118 
2119 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2120 	if (!dmaru)
2121 		return -ENODEV;
2122 
2123 	ret = dmar_ir_hotplug(dmaru, true);
2124 	if (ret == 0)
2125 		ret = dmar_iommu_hotplug(dmaru, true);
2126 
2127 	return ret;
2128 }
2129 
2130 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2131 {
2132 	int i, ret;
2133 	struct device *dev;
2134 	struct dmar_drhd_unit *dmaru;
2135 
2136 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2137 	if (!dmaru)
2138 		return 0;
2139 
2140 	/*
2141 	 * All PCI devices managed by this unit should have been destroyed.
2142 	 */
2143 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2144 		for_each_active_dev_scope(dmaru->devices,
2145 					  dmaru->devices_cnt, i, dev)
2146 			return -EBUSY;
2147 	}
2148 
2149 	ret = dmar_ir_hotplug(dmaru, false);
2150 	if (ret == 0)
2151 		ret = dmar_iommu_hotplug(dmaru, false);
2152 
2153 	return ret;
2154 }
2155 
2156 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2157 {
2158 	struct dmar_drhd_unit *dmaru;
2159 
2160 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2161 	if (dmaru) {
2162 		list_del_rcu(&dmaru->list);
2163 		synchronize_rcu();
2164 		dmar_free_drhd(dmaru);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int dmar_hotplug_insert(acpi_handle handle)
2171 {
2172 	int ret;
2173 	int drhd_count = 0;
2174 
2175 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2176 				     &dmar_validate_one_drhd, (void *)1);
2177 	if (ret)
2178 		goto out;
2179 
2180 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2181 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2182 	if (ret == 0 && drhd_count == 0) {
2183 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2184 		goto out;
2185 	} else if (ret) {
2186 		goto release_drhd;
2187 	}
2188 
2189 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2190 				     &dmar_parse_one_rhsa, NULL);
2191 	if (ret)
2192 		goto release_drhd;
2193 
2194 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2195 				     &dmar_parse_one_atsr, NULL);
2196 	if (ret)
2197 		goto release_atsr;
2198 
2199 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2200 				     &dmar_hp_add_drhd, NULL);
2201 	if (!ret)
2202 		return 0;
2203 
2204 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2205 			       &dmar_hp_remove_drhd, NULL);
2206 release_atsr:
2207 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2208 			       &dmar_release_one_atsr, NULL);
2209 release_drhd:
2210 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2211 			       &dmar_hp_release_drhd, NULL);
2212 out:
2213 	return ret;
2214 }
2215 
2216 static int dmar_hotplug_remove(acpi_handle handle)
2217 {
2218 	int ret;
2219 
2220 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2221 				     &dmar_check_one_atsr, NULL);
2222 	if (ret)
2223 		return ret;
2224 
2225 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2226 				     &dmar_hp_remove_drhd, NULL);
2227 	if (ret == 0) {
2228 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2229 					       &dmar_release_one_atsr, NULL));
2230 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2231 					       &dmar_hp_release_drhd, NULL));
2232 	} else {
2233 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2234 				       &dmar_hp_add_drhd, NULL);
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2241 				       void *context, void **retval)
2242 {
2243 	acpi_handle *phdl = retval;
2244 
2245 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2246 		*phdl = handle;
2247 		return AE_CTRL_TERMINATE;
2248 	}
2249 
2250 	return AE_OK;
2251 }
2252 
2253 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2254 {
2255 	int ret;
2256 	acpi_handle tmp = NULL;
2257 	acpi_status status;
2258 
2259 	if (!dmar_in_use())
2260 		return 0;
2261 
2262 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2263 		tmp = handle;
2264 	} else {
2265 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2266 					     ACPI_UINT32_MAX,
2267 					     dmar_get_dsm_handle,
2268 					     NULL, NULL, &tmp);
2269 		if (ACPI_FAILURE(status)) {
2270 			pr_warn("Failed to locate _DSM method.\n");
2271 			return -ENXIO;
2272 		}
2273 	}
2274 	if (tmp == NULL)
2275 		return 0;
2276 
2277 	down_write(&dmar_global_lock);
2278 	if (insert)
2279 		ret = dmar_hotplug_insert(tmp);
2280 	else
2281 		ret = dmar_hotplug_remove(tmp);
2282 	up_write(&dmar_global_lock);
2283 
2284 	return ret;
2285 }
2286 
2287 int dmar_device_add(acpi_handle handle)
2288 {
2289 	return dmar_device_hotplug(handle, true);
2290 }
2291 
2292 int dmar_device_remove(acpi_handle handle)
2293 {
2294 	return dmar_device_hotplug(handle, false);
2295 }
2296 
2297 /*
2298  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2299  *
2300  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2301  * the ACPI DMAR table. This means that the platform boot firmware has made
2302  * sure no device can issue DMA outside of RMRR regions.
2303  */
2304 bool dmar_platform_optin(void)
2305 {
2306 	struct acpi_table_dmar *dmar;
2307 	acpi_status status;
2308 	bool ret;
2309 
2310 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2311 				(struct acpi_table_header **)&dmar);
2312 	if (ACPI_FAILURE(status))
2313 		return false;
2314 
2315 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2316 	acpi_put_table((struct acpi_table_header *)dmar);
2317 
2318 	return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2321