1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/intel-iommu.h> 23 #include <linux/timer.h> 24 #include <linux/irq.h> 25 #include <linux/interrupt.h> 26 #include <linux/tboot.h> 27 #include <linux/dmi.h> 28 #include <linux/slab.h> 29 #include <linux/iommu.h> 30 #include <linux/numa.h> 31 #include <linux/limits.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/iommu_table.h> 34 35 #include "../irq_remapping.h" 36 37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 38 struct dmar_res_callback { 39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 40 void *arg[ACPI_DMAR_TYPE_RESERVED]; 41 bool ignore_unhandled; 42 bool print_entry; 43 }; 44 45 /* 46 * Assumptions: 47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 48 * before IO devices managed by that unit. 49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 50 * after IO devices managed by that unit. 51 * 3) Hotplug events are rare. 52 * 53 * Locking rules for DMA and interrupt remapping related global data structures: 54 * 1) Use dmar_global_lock in process context 55 * 2) Use RCU in interrupt context 56 */ 57 DECLARE_RWSEM(dmar_global_lock); 58 LIST_HEAD(dmar_drhd_units); 59 60 struct acpi_table_header * __initdata dmar_tbl; 61 static int dmar_dev_scope_status = 1; 62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; 63 64 static int alloc_iommu(struct dmar_drhd_unit *drhd); 65 static void free_iommu(struct intel_iommu *iommu); 66 67 extern const struct iommu_ops intel_iommu_ops; 68 69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70 { 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79 } 80 81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82 { 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102 } 103 104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105 { 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117 } 118 119 /* Optimize out kzalloc()/kfree() for normal cases */ 120 static char dmar_pci_notify_info_buf[64]; 121 122 static struct dmar_pci_notify_info * 123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124 { 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 BUG_ON(dev->is_virtfn); 131 132 /* 133 * Ignore devices that have a domain number higher than what can 134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 135 */ 136 if (pci_domain_nr(dev->bus) > U16_MAX) 137 return NULL; 138 139 /* Only generate path[] for device addition event */ 140 if (event == BUS_NOTIFY_ADD_DEVICE) 141 for (tmp = dev; tmp; tmp = tmp->bus->self) 142 level++; 143 144 size = struct_size(info, path, level); 145 if (size <= sizeof(dmar_pci_notify_info_buf)) { 146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 147 } else { 148 info = kzalloc(size, GFP_KERNEL); 149 if (!info) { 150 pr_warn("Out of memory when allocating notify_info " 151 "for %s.\n", pci_name(dev)); 152 if (dmar_dev_scope_status == 0) 153 dmar_dev_scope_status = -ENOMEM; 154 return NULL; 155 } 156 } 157 158 info->event = event; 159 info->dev = dev; 160 info->seg = pci_domain_nr(dev->bus); 161 info->level = level; 162 if (event == BUS_NOTIFY_ADD_DEVICE) { 163 for (tmp = dev; tmp; tmp = tmp->bus->self) { 164 level--; 165 info->path[level].bus = tmp->bus->number; 166 info->path[level].device = PCI_SLOT(tmp->devfn); 167 info->path[level].function = PCI_FUNC(tmp->devfn); 168 if (pci_is_root_bus(tmp->bus)) 169 info->bus = tmp->bus->number; 170 } 171 } 172 173 return info; 174 } 175 176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 177 { 178 if ((void *)info != dmar_pci_notify_info_buf) 179 kfree(info); 180 } 181 182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 183 struct acpi_dmar_pci_path *path, int count) 184 { 185 int i; 186 187 if (info->bus != bus) 188 goto fallback; 189 if (info->level != count) 190 goto fallback; 191 192 for (i = 0; i < count; i++) { 193 if (path[i].device != info->path[i].device || 194 path[i].function != info->path[i].function) 195 goto fallback; 196 } 197 198 return true; 199 200 fallback: 201 202 if (count != 1) 203 return false; 204 205 i = info->level - 1; 206 if (bus == info->path[i].bus && 207 path[0].device == info->path[i].device && 208 path[0].function == info->path[i].function) { 209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 210 bus, path[0].device, path[0].function); 211 return true; 212 } 213 214 return false; 215 } 216 217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 219 void *start, void*end, u16 segment, 220 struct dmar_dev_scope *devices, 221 int devices_cnt) 222 { 223 int i, level; 224 struct device *tmp, *dev = &info->dev->dev; 225 struct acpi_dmar_device_scope *scope; 226 struct acpi_dmar_pci_path *path; 227 228 if (segment != info->seg) 229 return 0; 230 231 for (; start < end; start += scope->length) { 232 scope = start; 233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 235 continue; 236 237 path = (struct acpi_dmar_pci_path *)(scope + 1); 238 level = (scope->length - sizeof(*scope)) / sizeof(*path); 239 if (!dmar_match_pci_path(info, scope->bus, path, level)) 240 continue; 241 242 /* 243 * We expect devices with endpoint scope to have normal PCI 244 * headers, and devices with bridge scope to have bridge PCI 245 * headers. However PCI NTB devices may be listed in the 246 * DMAR table with bridge scope, even though they have a 247 * normal PCI header. NTB devices are identified by class 248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 249 * for this special case. 250 */ 251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 256 pr_warn("Device scope type does not match for %s\n", 257 pci_name(info->dev)); 258 return -EINVAL; 259 } 260 261 for_each_dev_scope(devices, devices_cnt, i, tmp) 262 if (tmp == NULL) { 263 devices[i].bus = info->dev->bus->number; 264 devices[i].devfn = info->dev->devfn; 265 rcu_assign_pointer(devices[i].dev, 266 get_device(dev)); 267 return 1; 268 } 269 BUG_ON(i >= devices_cnt); 270 } 271 272 return 0; 273 } 274 275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 276 struct dmar_dev_scope *devices, int count) 277 { 278 int index; 279 struct device *tmp; 280 281 if (info->seg != segment) 282 return 0; 283 284 for_each_active_dev_scope(devices, count, index, tmp) 285 if (tmp == &info->dev->dev) { 286 RCU_INIT_POINTER(devices[index].dev, NULL); 287 synchronize_rcu(); 288 put_device(tmp); 289 return 1; 290 } 291 292 return 0; 293 } 294 295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 296 { 297 int ret = 0; 298 struct dmar_drhd_unit *dmaru; 299 struct acpi_dmar_hardware_unit *drhd; 300 301 for_each_drhd_unit(dmaru) { 302 if (dmaru->include_all) 303 continue; 304 305 drhd = container_of(dmaru->hdr, 306 struct acpi_dmar_hardware_unit, header); 307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 308 ((void *)drhd) + drhd->header.length, 309 dmaru->segment, 310 dmaru->devices, dmaru->devices_cnt); 311 if (ret) 312 break; 313 } 314 if (ret >= 0) 315 ret = dmar_iommu_notify_scope_dev(info); 316 if (ret < 0 && dmar_dev_scope_status == 0) 317 dmar_dev_scope_status = ret; 318 319 if (ret >= 0) 320 intel_irq_remap_add_device(info); 321 322 return ret; 323 } 324 325 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 326 { 327 struct dmar_drhd_unit *dmaru; 328 329 for_each_drhd_unit(dmaru) 330 if (dmar_remove_dev_scope(info, dmaru->segment, 331 dmaru->devices, dmaru->devices_cnt)) 332 break; 333 dmar_iommu_notify_scope_dev(info); 334 } 335 336 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 337 { 338 struct pci_dev *physfn = pci_physfn(pdev); 339 340 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 341 } 342 343 static int dmar_pci_bus_notifier(struct notifier_block *nb, 344 unsigned long action, void *data) 345 { 346 struct pci_dev *pdev = to_pci_dev(data); 347 struct dmar_pci_notify_info *info; 348 349 /* Only care about add/remove events for physical functions. 350 * For VFs we actually do the lookup based on the corresponding 351 * PF in device_to_iommu() anyway. */ 352 if (pdev->is_virtfn) { 353 /* 354 * Ensure that the VF device inherits the irq domain of the 355 * PF device. Ideally the device would inherit the domain 356 * from the bus, but DMAR can have multiple units per bus 357 * which makes this impossible. The VF 'bus' could inherit 358 * from the PF device, but that's yet another x86'sism to 359 * inflict on everybody else. 360 */ 361 if (action == BUS_NOTIFY_ADD_DEVICE) 362 vf_inherit_msi_domain(pdev); 363 return NOTIFY_DONE; 364 } 365 366 if (action != BUS_NOTIFY_ADD_DEVICE && 367 action != BUS_NOTIFY_REMOVED_DEVICE) 368 return NOTIFY_DONE; 369 370 info = dmar_alloc_pci_notify_info(pdev, action); 371 if (!info) 372 return NOTIFY_DONE; 373 374 down_write(&dmar_global_lock); 375 if (action == BUS_NOTIFY_ADD_DEVICE) 376 dmar_pci_bus_add_dev(info); 377 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 378 dmar_pci_bus_del_dev(info); 379 up_write(&dmar_global_lock); 380 381 dmar_free_pci_notify_info(info); 382 383 return NOTIFY_OK; 384 } 385 386 static struct notifier_block dmar_pci_bus_nb = { 387 .notifier_call = dmar_pci_bus_notifier, 388 .priority = INT_MIN, 389 }; 390 391 static struct dmar_drhd_unit * 392 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 393 { 394 struct dmar_drhd_unit *dmaru; 395 396 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 397 dmar_rcu_check()) 398 if (dmaru->segment == drhd->segment && 399 dmaru->reg_base_addr == drhd->address) 400 return dmaru; 401 402 return NULL; 403 } 404 405 /* 406 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 407 * structure which uniquely represent one DMA remapping hardware unit 408 * present in the platform 409 */ 410 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 411 { 412 struct acpi_dmar_hardware_unit *drhd; 413 struct dmar_drhd_unit *dmaru; 414 int ret; 415 416 drhd = (struct acpi_dmar_hardware_unit *)header; 417 dmaru = dmar_find_dmaru(drhd); 418 if (dmaru) 419 goto out; 420 421 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 422 if (!dmaru) 423 return -ENOMEM; 424 425 /* 426 * If header is allocated from slab by ACPI _DSM method, we need to 427 * copy the content because the memory buffer will be freed on return. 428 */ 429 dmaru->hdr = (void *)(dmaru + 1); 430 memcpy(dmaru->hdr, header, header->length); 431 dmaru->reg_base_addr = drhd->address; 432 dmaru->segment = drhd->segment; 433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 435 ((void *)drhd) + drhd->header.length, 436 &dmaru->devices_cnt); 437 if (dmaru->devices_cnt && dmaru->devices == NULL) { 438 kfree(dmaru); 439 return -ENOMEM; 440 } 441 442 ret = alloc_iommu(dmaru); 443 if (ret) { 444 dmar_free_dev_scope(&dmaru->devices, 445 &dmaru->devices_cnt); 446 kfree(dmaru); 447 return ret; 448 } 449 dmar_register_drhd_unit(dmaru); 450 451 out: 452 if (arg) 453 (*(int *)arg)++; 454 455 return 0; 456 } 457 458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 459 { 460 if (dmaru->devices && dmaru->devices_cnt) 461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 462 if (dmaru->iommu) 463 free_iommu(dmaru->iommu); 464 kfree(dmaru); 465 } 466 467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 468 void *arg) 469 { 470 struct acpi_dmar_andd *andd = (void *)header; 471 472 /* Check for NUL termination within the designated length */ 473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 474 pr_warn(FW_BUG 475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 477 dmi_get_system_info(DMI_BIOS_VENDOR), 478 dmi_get_system_info(DMI_BIOS_VERSION), 479 dmi_get_system_info(DMI_PRODUCT_VERSION)); 480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 481 return -EINVAL; 482 } 483 pr_info("ANDD device: %x name: %s\n", andd->device_number, 484 andd->device_name); 485 486 return 0; 487 } 488 489 #ifdef CONFIG_ACPI_NUMA 490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 491 { 492 struct acpi_dmar_rhsa *rhsa; 493 struct dmar_drhd_unit *drhd; 494 495 rhsa = (struct acpi_dmar_rhsa *)header; 496 for_each_drhd_unit(drhd) { 497 if (drhd->reg_base_addr == rhsa->base_address) { 498 int node = pxm_to_node(rhsa->proximity_domain); 499 500 if (!node_online(node)) 501 node = NUMA_NO_NODE; 502 drhd->iommu->node = node; 503 return 0; 504 } 505 } 506 pr_warn(FW_BUG 507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 509 rhsa->base_address, 510 dmi_get_system_info(DMI_BIOS_VENDOR), 511 dmi_get_system_info(DMI_BIOS_VERSION), 512 dmi_get_system_info(DMI_PRODUCT_VERSION)); 513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 514 515 return 0; 516 } 517 #else 518 #define dmar_parse_one_rhsa dmar_res_noop 519 #endif 520 521 static void 522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 523 { 524 struct acpi_dmar_hardware_unit *drhd; 525 struct acpi_dmar_reserved_memory *rmrr; 526 struct acpi_dmar_atsr *atsr; 527 struct acpi_dmar_rhsa *rhsa; 528 529 switch (header->type) { 530 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 531 drhd = container_of(header, struct acpi_dmar_hardware_unit, 532 header); 533 pr_info("DRHD base: %#016Lx flags: %#x\n", 534 (unsigned long long)drhd->address, drhd->flags); 535 break; 536 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 537 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 538 header); 539 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 540 (unsigned long long)rmrr->base_address, 541 (unsigned long long)rmrr->end_address); 542 break; 543 case ACPI_DMAR_TYPE_ROOT_ATS: 544 atsr = container_of(header, struct acpi_dmar_atsr, header); 545 pr_info("ATSR flags: %#x\n", atsr->flags); 546 break; 547 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 548 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 549 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 550 (unsigned long long)rhsa->base_address, 551 rhsa->proximity_domain); 552 break; 553 case ACPI_DMAR_TYPE_NAMESPACE: 554 /* We don't print this here because we need to sanity-check 555 it first. So print it in dmar_parse_one_andd() instead. */ 556 break; 557 } 558 } 559 560 /** 561 * dmar_table_detect - checks to see if the platform supports DMAR devices 562 */ 563 static int __init dmar_table_detect(void) 564 { 565 acpi_status status = AE_OK; 566 567 /* if we could find DMAR table, then there are DMAR devices */ 568 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 569 570 if (ACPI_SUCCESS(status) && !dmar_tbl) { 571 pr_warn("Unable to map DMAR\n"); 572 status = AE_NOT_FOUND; 573 } 574 575 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 576 } 577 578 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 579 size_t len, struct dmar_res_callback *cb) 580 { 581 struct acpi_dmar_header *iter, *next; 582 struct acpi_dmar_header *end = ((void *)start) + len; 583 584 for (iter = start; iter < end; iter = next) { 585 next = (void *)iter + iter->length; 586 if (iter->length == 0) { 587 /* Avoid looping forever on bad ACPI tables */ 588 pr_debug(FW_BUG "Invalid 0-length structure\n"); 589 break; 590 } else if (next > end) { 591 /* Avoid passing table end */ 592 pr_warn(FW_BUG "Record passes table end\n"); 593 return -EINVAL; 594 } 595 596 if (cb->print_entry) 597 dmar_table_print_dmar_entry(iter); 598 599 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 600 /* continue for forward compatibility */ 601 pr_debug("Unknown DMAR structure type %d\n", 602 iter->type); 603 } else if (cb->cb[iter->type]) { 604 int ret; 605 606 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 607 if (ret) 608 return ret; 609 } else if (!cb->ignore_unhandled) { 610 pr_warn("No handler for DMAR structure type %d\n", 611 iter->type); 612 return -EINVAL; 613 } 614 } 615 616 return 0; 617 } 618 619 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 620 struct dmar_res_callback *cb) 621 { 622 return dmar_walk_remapping_entries((void *)(dmar + 1), 623 dmar->header.length - sizeof(*dmar), cb); 624 } 625 626 /** 627 * parse_dmar_table - parses the DMA reporting table 628 */ 629 static int __init 630 parse_dmar_table(void) 631 { 632 struct acpi_table_dmar *dmar; 633 int drhd_count = 0; 634 int ret; 635 struct dmar_res_callback cb = { 636 .print_entry = true, 637 .ignore_unhandled = true, 638 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 639 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 640 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 641 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 642 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 643 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 644 }; 645 646 /* 647 * Do it again, earlier dmar_tbl mapping could be mapped with 648 * fixed map. 649 */ 650 dmar_table_detect(); 651 652 /* 653 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 654 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 655 */ 656 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 657 658 dmar = (struct acpi_table_dmar *)dmar_tbl; 659 if (!dmar) 660 return -ENODEV; 661 662 if (dmar->width < PAGE_SHIFT - 1) { 663 pr_warn("Invalid DMAR haw\n"); 664 return -EINVAL; 665 } 666 667 pr_info("Host address width %d\n", dmar->width + 1); 668 ret = dmar_walk_dmar_table(dmar, &cb); 669 if (ret == 0 && drhd_count == 0) 670 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 671 672 return ret; 673 } 674 675 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 676 int cnt, struct pci_dev *dev) 677 { 678 int index; 679 struct device *tmp; 680 681 while (dev) { 682 for_each_active_dev_scope(devices, cnt, index, tmp) 683 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 684 return 1; 685 686 /* Check our parent */ 687 dev = dev->bus->self; 688 } 689 690 return 0; 691 } 692 693 struct dmar_drhd_unit * 694 dmar_find_matched_drhd_unit(struct pci_dev *dev) 695 { 696 struct dmar_drhd_unit *dmaru; 697 struct acpi_dmar_hardware_unit *drhd; 698 699 dev = pci_physfn(dev); 700 701 rcu_read_lock(); 702 for_each_drhd_unit(dmaru) { 703 drhd = container_of(dmaru->hdr, 704 struct acpi_dmar_hardware_unit, 705 header); 706 707 if (dmaru->include_all && 708 drhd->segment == pci_domain_nr(dev->bus)) 709 goto out; 710 711 if (dmar_pci_device_match(dmaru->devices, 712 dmaru->devices_cnt, dev)) 713 goto out; 714 } 715 dmaru = NULL; 716 out: 717 rcu_read_unlock(); 718 719 return dmaru; 720 } 721 722 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 723 struct acpi_device *adev) 724 { 725 struct dmar_drhd_unit *dmaru; 726 struct acpi_dmar_hardware_unit *drhd; 727 struct acpi_dmar_device_scope *scope; 728 struct device *tmp; 729 int i; 730 struct acpi_dmar_pci_path *path; 731 732 for_each_drhd_unit(dmaru) { 733 drhd = container_of(dmaru->hdr, 734 struct acpi_dmar_hardware_unit, 735 header); 736 737 for (scope = (void *)(drhd + 1); 738 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 739 scope = ((void *)scope) + scope->length) { 740 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 741 continue; 742 if (scope->enumeration_id != device_number) 743 continue; 744 745 path = (void *)(scope + 1); 746 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 747 dev_name(&adev->dev), dmaru->reg_base_addr, 748 scope->bus, path->device, path->function); 749 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 750 if (tmp == NULL) { 751 dmaru->devices[i].bus = scope->bus; 752 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 753 path->function); 754 rcu_assign_pointer(dmaru->devices[i].dev, 755 get_device(&adev->dev)); 756 return; 757 } 758 BUG_ON(i >= dmaru->devices_cnt); 759 } 760 } 761 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 762 device_number, dev_name(&adev->dev)); 763 } 764 765 static int __init dmar_acpi_dev_scope_init(void) 766 { 767 struct acpi_dmar_andd *andd; 768 769 if (dmar_tbl == NULL) 770 return -ENODEV; 771 772 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 773 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 774 andd = ((void *)andd) + andd->header.length) { 775 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 776 acpi_handle h; 777 struct acpi_device *adev; 778 779 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 780 andd->device_name, 781 &h))) { 782 pr_err("Failed to find handle for ACPI object %s\n", 783 andd->device_name); 784 continue; 785 } 786 if (acpi_bus_get_device(h, &adev)) { 787 pr_err("Failed to get device for ACPI object %s\n", 788 andd->device_name); 789 continue; 790 } 791 dmar_acpi_insert_dev_scope(andd->device_number, adev); 792 } 793 } 794 return 0; 795 } 796 797 int __init dmar_dev_scope_init(void) 798 { 799 struct pci_dev *dev = NULL; 800 struct dmar_pci_notify_info *info; 801 802 if (dmar_dev_scope_status != 1) 803 return dmar_dev_scope_status; 804 805 if (list_empty(&dmar_drhd_units)) { 806 dmar_dev_scope_status = -ENODEV; 807 } else { 808 dmar_dev_scope_status = 0; 809 810 dmar_acpi_dev_scope_init(); 811 812 for_each_pci_dev(dev) { 813 if (dev->is_virtfn) 814 continue; 815 816 info = dmar_alloc_pci_notify_info(dev, 817 BUS_NOTIFY_ADD_DEVICE); 818 if (!info) { 819 return dmar_dev_scope_status; 820 } else { 821 dmar_pci_bus_add_dev(info); 822 dmar_free_pci_notify_info(info); 823 } 824 } 825 } 826 827 return dmar_dev_scope_status; 828 } 829 830 void __init dmar_register_bus_notifier(void) 831 { 832 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 833 } 834 835 836 int __init dmar_table_init(void) 837 { 838 static int dmar_table_initialized; 839 int ret; 840 841 if (dmar_table_initialized == 0) { 842 ret = parse_dmar_table(); 843 if (ret < 0) { 844 if (ret != -ENODEV) 845 pr_info("Parse DMAR table failure.\n"); 846 } else if (list_empty(&dmar_drhd_units)) { 847 pr_info("No DMAR devices found\n"); 848 ret = -ENODEV; 849 } 850 851 if (ret < 0) 852 dmar_table_initialized = ret; 853 else 854 dmar_table_initialized = 1; 855 } 856 857 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 858 } 859 860 static void warn_invalid_dmar(u64 addr, const char *message) 861 { 862 pr_warn_once(FW_BUG 863 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 864 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 865 addr, message, 866 dmi_get_system_info(DMI_BIOS_VENDOR), 867 dmi_get_system_info(DMI_BIOS_VERSION), 868 dmi_get_system_info(DMI_PRODUCT_VERSION)); 869 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 870 } 871 872 static int __ref 873 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 874 { 875 struct acpi_dmar_hardware_unit *drhd; 876 void __iomem *addr; 877 u64 cap, ecap; 878 879 drhd = (void *)entry; 880 if (!drhd->address) { 881 warn_invalid_dmar(0, ""); 882 return -EINVAL; 883 } 884 885 if (arg) 886 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 887 else 888 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 889 if (!addr) { 890 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 891 return -EINVAL; 892 } 893 894 cap = dmar_readq(addr + DMAR_CAP_REG); 895 ecap = dmar_readq(addr + DMAR_ECAP_REG); 896 897 if (arg) 898 iounmap(addr); 899 else 900 early_iounmap(addr, VTD_PAGE_SIZE); 901 902 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 903 warn_invalid_dmar(drhd->address, " returns all ones"); 904 return -EINVAL; 905 } 906 907 return 0; 908 } 909 910 int __init detect_intel_iommu(void) 911 { 912 int ret; 913 struct dmar_res_callback validate_drhd_cb = { 914 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 915 .ignore_unhandled = true, 916 }; 917 918 down_write(&dmar_global_lock); 919 ret = dmar_table_detect(); 920 if (!ret) 921 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 922 &validate_drhd_cb); 923 if (!ret && !no_iommu && !iommu_detected && 924 (!dmar_disabled || dmar_platform_optin())) { 925 iommu_detected = 1; 926 /* Make sure ACS will be enabled */ 927 pci_request_acs(); 928 } 929 930 #ifdef CONFIG_X86 931 if (!ret) { 932 x86_init.iommu.iommu_init = intel_iommu_init; 933 x86_platform.iommu_shutdown = intel_iommu_shutdown; 934 } 935 936 #endif 937 938 if (dmar_tbl) { 939 acpi_put_table(dmar_tbl); 940 dmar_tbl = NULL; 941 } 942 up_write(&dmar_global_lock); 943 944 return ret ? ret : 1; 945 } 946 947 static void unmap_iommu(struct intel_iommu *iommu) 948 { 949 iounmap(iommu->reg); 950 release_mem_region(iommu->reg_phys, iommu->reg_size); 951 } 952 953 /** 954 * map_iommu: map the iommu's registers 955 * @iommu: the iommu to map 956 * @phys_addr: the physical address of the base resgister 957 * 958 * Memory map the iommu's registers. Start w/ a single page, and 959 * possibly expand if that turns out to be insufficent. 960 */ 961 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 962 { 963 int map_size, err=0; 964 965 iommu->reg_phys = phys_addr; 966 iommu->reg_size = VTD_PAGE_SIZE; 967 968 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 969 pr_err("Can't reserve memory\n"); 970 err = -EBUSY; 971 goto out; 972 } 973 974 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 975 if (!iommu->reg) { 976 pr_err("Can't map the region\n"); 977 err = -ENOMEM; 978 goto release; 979 } 980 981 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 982 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 983 984 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 985 err = -EINVAL; 986 warn_invalid_dmar(phys_addr, " returns all ones"); 987 goto unmap; 988 } 989 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 990 991 /* the registers might be more than one page */ 992 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 993 cap_max_fault_reg_offset(iommu->cap)); 994 map_size = VTD_PAGE_ALIGN(map_size); 995 if (map_size > iommu->reg_size) { 996 iounmap(iommu->reg); 997 release_mem_region(iommu->reg_phys, iommu->reg_size); 998 iommu->reg_size = map_size; 999 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1000 iommu->name)) { 1001 pr_err("Can't reserve memory\n"); 1002 err = -EBUSY; 1003 goto out; 1004 } 1005 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1006 if (!iommu->reg) { 1007 pr_err("Can't map the region\n"); 1008 err = -ENOMEM; 1009 goto release; 1010 } 1011 } 1012 err = 0; 1013 goto out; 1014 1015 unmap: 1016 iounmap(iommu->reg); 1017 release: 1018 release_mem_region(iommu->reg_phys, iommu->reg_size); 1019 out: 1020 return err; 1021 } 1022 1023 static int dmar_alloc_seq_id(struct intel_iommu *iommu) 1024 { 1025 iommu->seq_id = find_first_zero_bit(dmar_seq_ids, 1026 DMAR_UNITS_SUPPORTED); 1027 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { 1028 iommu->seq_id = -1; 1029 } else { 1030 set_bit(iommu->seq_id, dmar_seq_ids); 1031 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1032 } 1033 1034 return iommu->seq_id; 1035 } 1036 1037 static void dmar_free_seq_id(struct intel_iommu *iommu) 1038 { 1039 if (iommu->seq_id >= 0) { 1040 clear_bit(iommu->seq_id, dmar_seq_ids); 1041 iommu->seq_id = -1; 1042 } 1043 } 1044 1045 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1046 { 1047 struct intel_iommu *iommu; 1048 u32 ver, sts; 1049 int agaw = -1; 1050 int msagaw = -1; 1051 int err; 1052 1053 if (!drhd->reg_base_addr) { 1054 warn_invalid_dmar(0, ""); 1055 return -EINVAL; 1056 } 1057 1058 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1059 if (!iommu) 1060 return -ENOMEM; 1061 1062 if (dmar_alloc_seq_id(iommu) < 0) { 1063 pr_err("Failed to allocate seq_id\n"); 1064 err = -ENOSPC; 1065 goto error; 1066 } 1067 1068 err = map_iommu(iommu, drhd->reg_base_addr); 1069 if (err) { 1070 pr_err("Failed to map %s\n", iommu->name); 1071 goto error_free_seq_id; 1072 } 1073 1074 err = -EINVAL; 1075 if (cap_sagaw(iommu->cap) == 0) { 1076 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1077 iommu->name); 1078 drhd->ignored = 1; 1079 } 1080 1081 if (!drhd->ignored) { 1082 agaw = iommu_calculate_agaw(iommu); 1083 if (agaw < 0) { 1084 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1085 iommu->seq_id); 1086 drhd->ignored = 1; 1087 } 1088 } 1089 if (!drhd->ignored) { 1090 msagaw = iommu_calculate_max_sagaw(iommu); 1091 if (msagaw < 0) { 1092 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1093 iommu->seq_id); 1094 drhd->ignored = 1; 1095 agaw = -1; 1096 } 1097 } 1098 iommu->agaw = agaw; 1099 iommu->msagaw = msagaw; 1100 iommu->segment = drhd->segment; 1101 1102 iommu->node = NUMA_NO_NODE; 1103 1104 ver = readl(iommu->reg + DMAR_VER_REG); 1105 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1106 iommu->name, 1107 (unsigned long long)drhd->reg_base_addr, 1108 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1109 (unsigned long long)iommu->cap, 1110 (unsigned long long)iommu->ecap); 1111 1112 /* Reflect status in gcmd */ 1113 sts = readl(iommu->reg + DMAR_GSTS_REG); 1114 if (sts & DMA_GSTS_IRES) 1115 iommu->gcmd |= DMA_GCMD_IRE; 1116 if (sts & DMA_GSTS_TES) 1117 iommu->gcmd |= DMA_GCMD_TE; 1118 if (sts & DMA_GSTS_QIES) 1119 iommu->gcmd |= DMA_GCMD_QIE; 1120 1121 raw_spin_lock_init(&iommu->register_lock); 1122 1123 /* 1124 * This is only for hotplug; at boot time intel_iommu_enabled won't 1125 * be set yet. When intel_iommu_init() runs, it registers the units 1126 * present at boot time, then sets intel_iommu_enabled. 1127 */ 1128 if (intel_iommu_enabled && !drhd->ignored) { 1129 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1130 intel_iommu_groups, 1131 "%s", iommu->name); 1132 if (err) 1133 goto err_unmap; 1134 1135 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); 1136 1137 err = iommu_device_register(&iommu->iommu); 1138 if (err) 1139 goto err_unmap; 1140 } 1141 1142 drhd->iommu = iommu; 1143 iommu->drhd = drhd; 1144 1145 return 0; 1146 1147 err_unmap: 1148 unmap_iommu(iommu); 1149 error_free_seq_id: 1150 dmar_free_seq_id(iommu); 1151 error: 1152 kfree(iommu); 1153 return err; 1154 } 1155 1156 static void free_iommu(struct intel_iommu *iommu) 1157 { 1158 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1159 iommu_device_unregister(&iommu->iommu); 1160 iommu_device_sysfs_remove(&iommu->iommu); 1161 } 1162 1163 if (iommu->irq) { 1164 if (iommu->pr_irq) { 1165 free_irq(iommu->pr_irq, iommu); 1166 dmar_free_hwirq(iommu->pr_irq); 1167 iommu->pr_irq = 0; 1168 } 1169 free_irq(iommu->irq, iommu); 1170 dmar_free_hwirq(iommu->irq); 1171 iommu->irq = 0; 1172 } 1173 1174 if (iommu->qi) { 1175 free_page((unsigned long)iommu->qi->desc); 1176 kfree(iommu->qi->desc_status); 1177 kfree(iommu->qi); 1178 } 1179 1180 if (iommu->reg) 1181 unmap_iommu(iommu); 1182 1183 dmar_free_seq_id(iommu); 1184 kfree(iommu); 1185 } 1186 1187 /* 1188 * Reclaim all the submitted descriptors which have completed its work. 1189 */ 1190 static inline void reclaim_free_desc(struct q_inval *qi) 1191 { 1192 while (qi->desc_status[qi->free_tail] == QI_DONE || 1193 qi->desc_status[qi->free_tail] == QI_ABORT) { 1194 qi->desc_status[qi->free_tail] = QI_FREE; 1195 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1196 qi->free_cnt++; 1197 } 1198 } 1199 1200 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1201 { 1202 u32 fault; 1203 int head, tail; 1204 struct q_inval *qi = iommu->qi; 1205 int shift = qi_shift(iommu); 1206 1207 if (qi->desc_status[wait_index] == QI_ABORT) 1208 return -EAGAIN; 1209 1210 fault = readl(iommu->reg + DMAR_FSTS_REG); 1211 1212 /* 1213 * If IQE happens, the head points to the descriptor associated 1214 * with the error. No new descriptors are fetched until the IQE 1215 * is cleared. 1216 */ 1217 if (fault & DMA_FSTS_IQE) { 1218 head = readl(iommu->reg + DMAR_IQH_REG); 1219 if ((head >> shift) == index) { 1220 struct qi_desc *desc = qi->desc + head; 1221 1222 /* 1223 * desc->qw2 and desc->qw3 are either reserved or 1224 * used by software as private data. We won't print 1225 * out these two qw's for security consideration. 1226 */ 1227 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", 1228 (unsigned long long)desc->qw0, 1229 (unsigned long long)desc->qw1); 1230 memcpy(desc, qi->desc + (wait_index << shift), 1231 1 << shift); 1232 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1233 return -EINVAL; 1234 } 1235 } 1236 1237 /* 1238 * If ITE happens, all pending wait_desc commands are aborted. 1239 * No new descriptors are fetched until the ITE is cleared. 1240 */ 1241 if (fault & DMA_FSTS_ITE) { 1242 head = readl(iommu->reg + DMAR_IQH_REG); 1243 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1244 head |= 1; 1245 tail = readl(iommu->reg + DMAR_IQT_REG); 1246 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1247 1248 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1249 1250 do { 1251 if (qi->desc_status[head] == QI_IN_USE) 1252 qi->desc_status[head] = QI_ABORT; 1253 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1254 } while (head != tail); 1255 1256 if (qi->desc_status[wait_index] == QI_ABORT) 1257 return -EAGAIN; 1258 } 1259 1260 if (fault & DMA_FSTS_ICE) 1261 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * Function to submit invalidation descriptors of all types to the queued 1268 * invalidation interface(QI). Multiple descriptors can be submitted at a 1269 * time, a wait descriptor will be appended to each submission to ensure 1270 * hardware has completed the invalidation before return. Wait descriptors 1271 * can be part of the submission but it will not be polled for completion. 1272 */ 1273 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1274 unsigned int count, unsigned long options) 1275 { 1276 struct q_inval *qi = iommu->qi; 1277 struct qi_desc wait_desc; 1278 int wait_index, index; 1279 unsigned long flags; 1280 int offset, shift; 1281 int rc, i; 1282 1283 if (!qi) 1284 return 0; 1285 1286 restart: 1287 rc = 0; 1288 1289 raw_spin_lock_irqsave(&qi->q_lock, flags); 1290 /* 1291 * Check if we have enough empty slots in the queue to submit, 1292 * the calculation is based on: 1293 * # of desc + 1 wait desc + 1 space between head and tail 1294 */ 1295 while (qi->free_cnt < count + 2) { 1296 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1297 cpu_relax(); 1298 raw_spin_lock_irqsave(&qi->q_lock, flags); 1299 } 1300 1301 index = qi->free_head; 1302 wait_index = (index + count) % QI_LENGTH; 1303 shift = qi_shift(iommu); 1304 1305 for (i = 0; i < count; i++) { 1306 offset = ((index + i) % QI_LENGTH) << shift; 1307 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1308 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1309 } 1310 qi->desc_status[wait_index] = QI_IN_USE; 1311 1312 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1313 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1314 if (options & QI_OPT_WAIT_DRAIN) 1315 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1316 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1317 wait_desc.qw2 = 0; 1318 wait_desc.qw3 = 0; 1319 1320 offset = wait_index << shift; 1321 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1322 1323 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1324 qi->free_cnt -= count + 1; 1325 1326 /* 1327 * update the HW tail register indicating the presence of 1328 * new descriptors. 1329 */ 1330 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1331 1332 while (qi->desc_status[wait_index] != QI_DONE) { 1333 /* 1334 * We will leave the interrupts disabled, to prevent interrupt 1335 * context to queue another cmd while a cmd is already submitted 1336 * and waiting for completion on this cpu. This is to avoid 1337 * a deadlock where the interrupt context can wait indefinitely 1338 * for free slots in the queue. 1339 */ 1340 rc = qi_check_fault(iommu, index, wait_index); 1341 if (rc) 1342 break; 1343 1344 raw_spin_unlock(&qi->q_lock); 1345 cpu_relax(); 1346 raw_spin_lock(&qi->q_lock); 1347 } 1348 1349 for (i = 0; i < count; i++) 1350 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1351 1352 reclaim_free_desc(qi); 1353 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1354 1355 if (rc == -EAGAIN) 1356 goto restart; 1357 1358 return rc; 1359 } 1360 1361 /* 1362 * Flush the global interrupt entry cache. 1363 */ 1364 void qi_global_iec(struct intel_iommu *iommu) 1365 { 1366 struct qi_desc desc; 1367 1368 desc.qw0 = QI_IEC_TYPE; 1369 desc.qw1 = 0; 1370 desc.qw2 = 0; 1371 desc.qw3 = 0; 1372 1373 /* should never fail */ 1374 qi_submit_sync(iommu, &desc, 1, 0); 1375 } 1376 1377 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1378 u64 type) 1379 { 1380 struct qi_desc desc; 1381 1382 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1383 | QI_CC_GRAN(type) | QI_CC_TYPE; 1384 desc.qw1 = 0; 1385 desc.qw2 = 0; 1386 desc.qw3 = 0; 1387 1388 qi_submit_sync(iommu, &desc, 1, 0); 1389 } 1390 1391 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1392 unsigned int size_order, u64 type) 1393 { 1394 u8 dw = 0, dr = 0; 1395 1396 struct qi_desc desc; 1397 int ih = 0; 1398 1399 if (cap_write_drain(iommu->cap)) 1400 dw = 1; 1401 1402 if (cap_read_drain(iommu->cap)) 1403 dr = 1; 1404 1405 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1406 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1407 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1408 | QI_IOTLB_AM(size_order); 1409 desc.qw2 = 0; 1410 desc.qw3 = 0; 1411 1412 qi_submit_sync(iommu, &desc, 1, 0); 1413 } 1414 1415 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1416 u16 qdep, u64 addr, unsigned mask) 1417 { 1418 struct qi_desc desc; 1419 1420 if (mask) { 1421 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1422 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1423 } else 1424 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1425 1426 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1427 qdep = 0; 1428 1429 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1430 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1431 desc.qw2 = 0; 1432 desc.qw3 = 0; 1433 1434 qi_submit_sync(iommu, &desc, 1, 0); 1435 } 1436 1437 /* PASID-based IOTLB invalidation */ 1438 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1439 unsigned long npages, bool ih) 1440 { 1441 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1442 1443 /* 1444 * npages == -1 means a PASID-selective invalidation, otherwise, 1445 * a positive value for Page-selective-within-PASID invalidation. 1446 * 0 is not a valid input. 1447 */ 1448 if (WARN_ON(!npages)) { 1449 pr_err("Invalid input npages = %ld\n", npages); 1450 return; 1451 } 1452 1453 if (npages == -1) { 1454 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1455 QI_EIOTLB_DID(did) | 1456 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1457 QI_EIOTLB_TYPE; 1458 desc.qw1 = 0; 1459 } else { 1460 int mask = ilog2(__roundup_pow_of_two(npages)); 1461 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1462 1463 if (WARN_ON_ONCE(!ALIGN(addr, align))) 1464 addr &= ~(align - 1); 1465 1466 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1467 QI_EIOTLB_DID(did) | 1468 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1469 QI_EIOTLB_TYPE; 1470 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1471 QI_EIOTLB_IH(ih) | 1472 QI_EIOTLB_AM(mask); 1473 } 1474 1475 qi_submit_sync(iommu, &desc, 1, 0); 1476 } 1477 1478 /* PASID-based device IOTLB Invalidate */ 1479 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1480 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1481 { 1482 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1483 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1484 1485 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1486 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1487 QI_DEV_IOTLB_PFSID(pfsid); 1488 1489 /* 1490 * If S bit is 0, we only flush a single page. If S bit is set, 1491 * The least significant zero bit indicates the invalidation address 1492 * range. VT-d spec 6.5.2.6. 1493 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1494 * size order = 0 is PAGE_SIZE 4KB 1495 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1496 * ECAP. 1497 */ 1498 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0)) 1499 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1500 addr, size_order); 1501 1502 /* Take page address */ 1503 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1504 1505 if (size_order) { 1506 /* 1507 * Existing 0s in address below size_order may be the least 1508 * significant bit, we must set them to 1s to avoid having 1509 * smaller size than desired. 1510 */ 1511 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1512 VTD_PAGE_SHIFT); 1513 /* Clear size_order bit to indicate size */ 1514 desc.qw1 &= ~mask; 1515 /* Set the S bit to indicate flushing more than 1 page */ 1516 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1517 } 1518 1519 qi_submit_sync(iommu, &desc, 1, 0); 1520 } 1521 1522 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1523 u64 granu, u32 pasid) 1524 { 1525 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1526 1527 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1528 QI_PC_GRAN(granu) | QI_PC_TYPE; 1529 qi_submit_sync(iommu, &desc, 1, 0); 1530 } 1531 1532 /* 1533 * Disable Queued Invalidation interface. 1534 */ 1535 void dmar_disable_qi(struct intel_iommu *iommu) 1536 { 1537 unsigned long flags; 1538 u32 sts; 1539 cycles_t start_time = get_cycles(); 1540 1541 if (!ecap_qis(iommu->ecap)) 1542 return; 1543 1544 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1545 1546 sts = readl(iommu->reg + DMAR_GSTS_REG); 1547 if (!(sts & DMA_GSTS_QIES)) 1548 goto end; 1549 1550 /* 1551 * Give a chance to HW to complete the pending invalidation requests. 1552 */ 1553 while ((readl(iommu->reg + DMAR_IQT_REG) != 1554 readl(iommu->reg + DMAR_IQH_REG)) && 1555 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1556 cpu_relax(); 1557 1558 iommu->gcmd &= ~DMA_GCMD_QIE; 1559 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1560 1561 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1562 !(sts & DMA_GSTS_QIES), sts); 1563 end: 1564 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1565 } 1566 1567 /* 1568 * Enable queued invalidation. 1569 */ 1570 static void __dmar_enable_qi(struct intel_iommu *iommu) 1571 { 1572 u32 sts; 1573 unsigned long flags; 1574 struct q_inval *qi = iommu->qi; 1575 u64 val = virt_to_phys(qi->desc); 1576 1577 qi->free_head = qi->free_tail = 0; 1578 qi->free_cnt = QI_LENGTH; 1579 1580 /* 1581 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1582 * is present. 1583 */ 1584 if (ecap_smts(iommu->ecap)) 1585 val |= (1 << 11) | 1; 1586 1587 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1588 1589 /* write zero to the tail reg */ 1590 writel(0, iommu->reg + DMAR_IQT_REG); 1591 1592 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1593 1594 iommu->gcmd |= DMA_GCMD_QIE; 1595 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1596 1597 /* Make sure hardware complete it */ 1598 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1599 1600 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1601 } 1602 1603 /* 1604 * Enable Queued Invalidation interface. This is a must to support 1605 * interrupt-remapping. Also used by DMA-remapping, which replaces 1606 * register based IOTLB invalidation. 1607 */ 1608 int dmar_enable_qi(struct intel_iommu *iommu) 1609 { 1610 struct q_inval *qi; 1611 struct page *desc_page; 1612 1613 if (!ecap_qis(iommu->ecap)) 1614 return -ENOENT; 1615 1616 /* 1617 * queued invalidation is already setup and enabled. 1618 */ 1619 if (iommu->qi) 1620 return 0; 1621 1622 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1623 if (!iommu->qi) 1624 return -ENOMEM; 1625 1626 qi = iommu->qi; 1627 1628 /* 1629 * Need two pages to accommodate 256 descriptors of 256 bits each 1630 * if the remapping hardware supports scalable mode translation. 1631 */ 1632 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1633 !!ecap_smts(iommu->ecap)); 1634 if (!desc_page) { 1635 kfree(qi); 1636 iommu->qi = NULL; 1637 return -ENOMEM; 1638 } 1639 1640 qi->desc = page_address(desc_page); 1641 1642 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1643 if (!qi->desc_status) { 1644 free_page((unsigned long) qi->desc); 1645 kfree(qi); 1646 iommu->qi = NULL; 1647 return -ENOMEM; 1648 } 1649 1650 raw_spin_lock_init(&qi->q_lock); 1651 1652 __dmar_enable_qi(iommu); 1653 1654 return 0; 1655 } 1656 1657 /* iommu interrupt handling. Most stuff are MSI-like. */ 1658 1659 enum faulttype { 1660 DMA_REMAP, 1661 INTR_REMAP, 1662 UNKNOWN, 1663 }; 1664 1665 static const char *dma_remap_fault_reasons[] = 1666 { 1667 "Software", 1668 "Present bit in root entry is clear", 1669 "Present bit in context entry is clear", 1670 "Invalid context entry", 1671 "Access beyond MGAW", 1672 "PTE Write access is not set", 1673 "PTE Read access is not set", 1674 "Next page table ptr is invalid", 1675 "Root table address invalid", 1676 "Context table ptr is invalid", 1677 "non-zero reserved fields in RTP", 1678 "non-zero reserved fields in CTP", 1679 "non-zero reserved fields in PTE", 1680 "PCE for translation request specifies blocking", 1681 }; 1682 1683 static const char * const dma_remap_sm_fault_reasons[] = { 1684 "SM: Invalid Root Table Address", 1685 "SM: TTM 0 for request with PASID", 1686 "SM: TTM 0 for page group request", 1687 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1688 "SM: Error attempting to access Root Entry", 1689 "SM: Present bit in Root Entry is clear", 1690 "SM: Non-zero reserved field set in Root Entry", 1691 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1692 "SM: Error attempting to access Context Entry", 1693 "SM: Present bit in Context Entry is clear", 1694 "SM: Non-zero reserved field set in the Context Entry", 1695 "SM: Invalid Context Entry", 1696 "SM: DTE field in Context Entry is clear", 1697 "SM: PASID Enable field in Context Entry is clear", 1698 "SM: PASID is larger than the max in Context Entry", 1699 "SM: PRE field in Context-Entry is clear", 1700 "SM: RID_PASID field error in Context-Entry", 1701 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1702 "SM: Error attempting to access the PASID Directory Entry", 1703 "SM: Present bit in Directory Entry is clear", 1704 "SM: Non-zero reserved field set in PASID Directory Entry", 1705 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1706 "SM: Error attempting to access PASID Table Entry", 1707 "SM: Present bit in PASID Table Entry is clear", 1708 "SM: Non-zero reserved field set in PASID Table Entry", 1709 "SM: Invalid Scalable-Mode PASID Table Entry", 1710 "SM: ERE field is clear in PASID Table Entry", 1711 "SM: SRE field is clear in PASID Table Entry", 1712 "Unknown", "Unknown",/* 0x5E-0x5F */ 1713 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1714 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1715 "SM: Error attempting to access first-level paging entry", 1716 "SM: Present bit in first-level paging entry is clear", 1717 "SM: Non-zero reserved field set in first-level paging entry", 1718 "SM: Error attempting to access FL-PML4 entry", 1719 "SM: First-level entry address beyond MGAW in Nested translation", 1720 "SM: Read permission error in FL-PML4 entry in Nested translation", 1721 "SM: Read permission error in first-level paging entry in Nested translation", 1722 "SM: Write permission error in first-level paging entry in Nested translation", 1723 "SM: Error attempting to access second-level paging entry", 1724 "SM: Read/Write permission error in second-level paging entry", 1725 "SM: Non-zero reserved field set in second-level paging entry", 1726 "SM: Invalid second-level page table pointer", 1727 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1728 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1729 "SM: Address in first-level translation is not canonical", 1730 "SM: U/S set 0 for first-level translation with user privilege", 1731 "SM: No execute permission for request with PASID and ER=1", 1732 "SM: Address beyond the DMA hardware max", 1733 "SM: Second-level entry address beyond the max", 1734 "SM: No write permission for Write/AtomicOp request", 1735 "SM: No read permission for Read/AtomicOp request", 1736 "SM: Invalid address-interrupt address", 1737 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1738 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1739 }; 1740 1741 static const char *irq_remap_fault_reasons[] = 1742 { 1743 "Detected reserved fields in the decoded interrupt-remapped request", 1744 "Interrupt index exceeded the interrupt-remapping table size", 1745 "Present field in the IRTE entry is clear", 1746 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1747 "Detected reserved fields in the IRTE entry", 1748 "Blocked a compatibility format interrupt request", 1749 "Blocked an interrupt request due to source-id verification failure", 1750 }; 1751 1752 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1753 { 1754 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1755 ARRAY_SIZE(irq_remap_fault_reasons))) { 1756 *fault_type = INTR_REMAP; 1757 return irq_remap_fault_reasons[fault_reason - 0x20]; 1758 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1759 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1760 *fault_type = DMA_REMAP; 1761 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1762 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1763 *fault_type = DMA_REMAP; 1764 return dma_remap_fault_reasons[fault_reason]; 1765 } else { 1766 *fault_type = UNKNOWN; 1767 return "Unknown"; 1768 } 1769 } 1770 1771 1772 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1773 { 1774 if (iommu->irq == irq) 1775 return DMAR_FECTL_REG; 1776 else if (iommu->pr_irq == irq) 1777 return DMAR_PECTL_REG; 1778 else 1779 BUG(); 1780 } 1781 1782 void dmar_msi_unmask(struct irq_data *data) 1783 { 1784 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1785 int reg = dmar_msi_reg(iommu, data->irq); 1786 unsigned long flag; 1787 1788 /* unmask it */ 1789 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1790 writel(0, iommu->reg + reg); 1791 /* Read a reg to force flush the post write */ 1792 readl(iommu->reg + reg); 1793 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1794 } 1795 1796 void dmar_msi_mask(struct irq_data *data) 1797 { 1798 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1799 int reg = dmar_msi_reg(iommu, data->irq); 1800 unsigned long flag; 1801 1802 /* mask it */ 1803 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1804 writel(DMA_FECTL_IM, iommu->reg + reg); 1805 /* Read a reg to force flush the post write */ 1806 readl(iommu->reg + reg); 1807 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1808 } 1809 1810 void dmar_msi_write(int irq, struct msi_msg *msg) 1811 { 1812 struct intel_iommu *iommu = irq_get_handler_data(irq); 1813 int reg = dmar_msi_reg(iommu, irq); 1814 unsigned long flag; 1815 1816 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1817 writel(msg->data, iommu->reg + reg + 4); 1818 writel(msg->address_lo, iommu->reg + reg + 8); 1819 writel(msg->address_hi, iommu->reg + reg + 12); 1820 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1821 } 1822 1823 void dmar_msi_read(int irq, struct msi_msg *msg) 1824 { 1825 struct intel_iommu *iommu = irq_get_handler_data(irq); 1826 int reg = dmar_msi_reg(iommu, irq); 1827 unsigned long flag; 1828 1829 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1830 msg->data = readl(iommu->reg + reg + 4); 1831 msg->address_lo = readl(iommu->reg + reg + 8); 1832 msg->address_hi = readl(iommu->reg + reg + 12); 1833 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1834 } 1835 1836 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1837 u8 fault_reason, u32 pasid, u16 source_id, 1838 unsigned long long addr) 1839 { 1840 const char *reason; 1841 int fault_type; 1842 1843 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1844 1845 if (fault_type == INTR_REMAP) 1846 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", 1847 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1848 PCI_FUNC(source_id & 0xFF), addr >> 48, 1849 fault_reason, reason); 1850 else 1851 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", 1852 type ? "DMA Read" : "DMA Write", 1853 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1854 PCI_FUNC(source_id & 0xFF), pasid, addr, 1855 fault_reason, reason); 1856 return 0; 1857 } 1858 1859 #define PRIMARY_FAULT_REG_LEN (16) 1860 irqreturn_t dmar_fault(int irq, void *dev_id) 1861 { 1862 struct intel_iommu *iommu = dev_id; 1863 int reg, fault_index; 1864 u32 fault_status; 1865 unsigned long flag; 1866 static DEFINE_RATELIMIT_STATE(rs, 1867 DEFAULT_RATELIMIT_INTERVAL, 1868 DEFAULT_RATELIMIT_BURST); 1869 1870 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1871 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1872 if (fault_status && __ratelimit(&rs)) 1873 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1874 1875 /* TBD: ignore advanced fault log currently */ 1876 if (!(fault_status & DMA_FSTS_PPF)) 1877 goto unlock_exit; 1878 1879 fault_index = dma_fsts_fault_record_index(fault_status); 1880 reg = cap_fault_reg_offset(iommu->cap); 1881 while (1) { 1882 /* Disable printing, simply clear the fault when ratelimited */ 1883 bool ratelimited = !__ratelimit(&rs); 1884 u8 fault_reason; 1885 u16 source_id; 1886 u64 guest_addr; 1887 u32 pasid; 1888 int type; 1889 u32 data; 1890 bool pasid_present; 1891 1892 /* highest 32 bits */ 1893 data = readl(iommu->reg + reg + 1894 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1895 if (!(data & DMA_FRCD_F)) 1896 break; 1897 1898 if (!ratelimited) { 1899 fault_reason = dma_frcd_fault_reason(data); 1900 type = dma_frcd_type(data); 1901 1902 pasid = dma_frcd_pasid_value(data); 1903 data = readl(iommu->reg + reg + 1904 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1905 source_id = dma_frcd_source_id(data); 1906 1907 pasid_present = dma_frcd_pasid_present(data); 1908 guest_addr = dmar_readq(iommu->reg + reg + 1909 fault_index * PRIMARY_FAULT_REG_LEN); 1910 guest_addr = dma_frcd_page_addr(guest_addr); 1911 } 1912 1913 /* clear the fault */ 1914 writel(DMA_FRCD_F, iommu->reg + reg + 1915 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1916 1917 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1918 1919 if (!ratelimited) 1920 /* Using pasid -1 if pasid is not present */ 1921 dmar_fault_do_one(iommu, type, fault_reason, 1922 pasid_present ? pasid : -1, 1923 source_id, guest_addr); 1924 1925 fault_index++; 1926 if (fault_index >= cap_num_fault_regs(iommu->cap)) 1927 fault_index = 0; 1928 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1929 } 1930 1931 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 1932 iommu->reg + DMAR_FSTS_REG); 1933 1934 unlock_exit: 1935 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1936 return IRQ_HANDLED; 1937 } 1938 1939 int dmar_set_interrupt(struct intel_iommu *iommu) 1940 { 1941 int irq, ret; 1942 1943 /* 1944 * Check if the fault interrupt is already initialized. 1945 */ 1946 if (iommu->irq) 1947 return 0; 1948 1949 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 1950 if (irq > 0) { 1951 iommu->irq = irq; 1952 } else { 1953 pr_err("No free IRQ vectors\n"); 1954 return -EINVAL; 1955 } 1956 1957 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 1958 if (ret) 1959 pr_err("Can't request irq\n"); 1960 return ret; 1961 } 1962 1963 int __init enable_drhd_fault_handling(void) 1964 { 1965 struct dmar_drhd_unit *drhd; 1966 struct intel_iommu *iommu; 1967 1968 /* 1969 * Enable fault control interrupt. 1970 */ 1971 for_each_iommu(iommu, drhd) { 1972 u32 fault_status; 1973 int ret = dmar_set_interrupt(iommu); 1974 1975 if (ret) { 1976 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 1977 (unsigned long long)drhd->reg_base_addr, ret); 1978 return -1; 1979 } 1980 1981 /* 1982 * Clear any previous faults. 1983 */ 1984 dmar_fault(iommu->irq, iommu); 1985 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1986 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 1987 } 1988 1989 return 0; 1990 } 1991 1992 /* 1993 * Re-enable Queued Invalidation interface. 1994 */ 1995 int dmar_reenable_qi(struct intel_iommu *iommu) 1996 { 1997 if (!ecap_qis(iommu->ecap)) 1998 return -ENOENT; 1999 2000 if (!iommu->qi) 2001 return -ENOENT; 2002 2003 /* 2004 * First disable queued invalidation. 2005 */ 2006 dmar_disable_qi(iommu); 2007 /* 2008 * Then enable queued invalidation again. Since there is no pending 2009 * invalidation requests now, it's safe to re-enable queued 2010 * invalidation. 2011 */ 2012 __dmar_enable_qi(iommu); 2013 2014 return 0; 2015 } 2016 2017 /* 2018 * Check interrupt remapping support in DMAR table description. 2019 */ 2020 int __init dmar_ir_support(void) 2021 { 2022 struct acpi_table_dmar *dmar; 2023 dmar = (struct acpi_table_dmar *)dmar_tbl; 2024 if (!dmar) 2025 return 0; 2026 return dmar->flags & 0x1; 2027 } 2028 2029 /* Check whether DMAR units are in use */ 2030 static inline bool dmar_in_use(void) 2031 { 2032 return irq_remapping_enabled || intel_iommu_enabled; 2033 } 2034 2035 static int __init dmar_free_unused_resources(void) 2036 { 2037 struct dmar_drhd_unit *dmaru, *dmaru_n; 2038 2039 if (dmar_in_use()) 2040 return 0; 2041 2042 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2043 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2044 2045 down_write(&dmar_global_lock); 2046 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2047 list_del(&dmaru->list); 2048 dmar_free_drhd(dmaru); 2049 } 2050 up_write(&dmar_global_lock); 2051 2052 return 0; 2053 } 2054 2055 late_initcall(dmar_free_unused_resources); 2056 IOMMU_INIT_POST(detect_intel_iommu); 2057 2058 /* 2059 * DMAR Hotplug Support 2060 * For more details, please refer to Intel(R) Virtualization Technology 2061 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2062 * "Remapping Hardware Unit Hot Plug". 2063 */ 2064 static guid_t dmar_hp_guid = 2065 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2066 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2067 2068 /* 2069 * Currently there's only one revision and BIOS will not check the revision id, 2070 * so use 0 for safety. 2071 */ 2072 #define DMAR_DSM_REV_ID 0 2073 #define DMAR_DSM_FUNC_DRHD 1 2074 #define DMAR_DSM_FUNC_ATSR 2 2075 #define DMAR_DSM_FUNC_RHSA 3 2076 2077 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2078 { 2079 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2080 } 2081 2082 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2083 dmar_res_handler_t handler, void *arg) 2084 { 2085 int ret = -ENODEV; 2086 union acpi_object *obj; 2087 struct acpi_dmar_header *start; 2088 struct dmar_res_callback callback; 2089 static int res_type[] = { 2090 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2091 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2092 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2093 }; 2094 2095 if (!dmar_detect_dsm(handle, func)) 2096 return 0; 2097 2098 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2099 func, NULL, ACPI_TYPE_BUFFER); 2100 if (!obj) 2101 return -ENODEV; 2102 2103 memset(&callback, 0, sizeof(callback)); 2104 callback.cb[res_type[func]] = handler; 2105 callback.arg[res_type[func]] = arg; 2106 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2107 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2108 2109 ACPI_FREE(obj); 2110 2111 return ret; 2112 } 2113 2114 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2115 { 2116 int ret; 2117 struct dmar_drhd_unit *dmaru; 2118 2119 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2120 if (!dmaru) 2121 return -ENODEV; 2122 2123 ret = dmar_ir_hotplug(dmaru, true); 2124 if (ret == 0) 2125 ret = dmar_iommu_hotplug(dmaru, true); 2126 2127 return ret; 2128 } 2129 2130 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2131 { 2132 int i, ret; 2133 struct device *dev; 2134 struct dmar_drhd_unit *dmaru; 2135 2136 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2137 if (!dmaru) 2138 return 0; 2139 2140 /* 2141 * All PCI devices managed by this unit should have been destroyed. 2142 */ 2143 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2144 for_each_active_dev_scope(dmaru->devices, 2145 dmaru->devices_cnt, i, dev) 2146 return -EBUSY; 2147 } 2148 2149 ret = dmar_ir_hotplug(dmaru, false); 2150 if (ret == 0) 2151 ret = dmar_iommu_hotplug(dmaru, false); 2152 2153 return ret; 2154 } 2155 2156 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2157 { 2158 struct dmar_drhd_unit *dmaru; 2159 2160 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2161 if (dmaru) { 2162 list_del_rcu(&dmaru->list); 2163 synchronize_rcu(); 2164 dmar_free_drhd(dmaru); 2165 } 2166 2167 return 0; 2168 } 2169 2170 static int dmar_hotplug_insert(acpi_handle handle) 2171 { 2172 int ret; 2173 int drhd_count = 0; 2174 2175 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2176 &dmar_validate_one_drhd, (void *)1); 2177 if (ret) 2178 goto out; 2179 2180 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2181 &dmar_parse_one_drhd, (void *)&drhd_count); 2182 if (ret == 0 && drhd_count == 0) { 2183 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2184 goto out; 2185 } else if (ret) { 2186 goto release_drhd; 2187 } 2188 2189 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2190 &dmar_parse_one_rhsa, NULL); 2191 if (ret) 2192 goto release_drhd; 2193 2194 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2195 &dmar_parse_one_atsr, NULL); 2196 if (ret) 2197 goto release_atsr; 2198 2199 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2200 &dmar_hp_add_drhd, NULL); 2201 if (!ret) 2202 return 0; 2203 2204 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2205 &dmar_hp_remove_drhd, NULL); 2206 release_atsr: 2207 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2208 &dmar_release_one_atsr, NULL); 2209 release_drhd: 2210 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2211 &dmar_hp_release_drhd, NULL); 2212 out: 2213 return ret; 2214 } 2215 2216 static int dmar_hotplug_remove(acpi_handle handle) 2217 { 2218 int ret; 2219 2220 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2221 &dmar_check_one_atsr, NULL); 2222 if (ret) 2223 return ret; 2224 2225 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2226 &dmar_hp_remove_drhd, NULL); 2227 if (ret == 0) { 2228 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2229 &dmar_release_one_atsr, NULL)); 2230 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2231 &dmar_hp_release_drhd, NULL)); 2232 } else { 2233 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2234 &dmar_hp_add_drhd, NULL); 2235 } 2236 2237 return ret; 2238 } 2239 2240 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2241 void *context, void **retval) 2242 { 2243 acpi_handle *phdl = retval; 2244 2245 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2246 *phdl = handle; 2247 return AE_CTRL_TERMINATE; 2248 } 2249 2250 return AE_OK; 2251 } 2252 2253 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2254 { 2255 int ret; 2256 acpi_handle tmp = NULL; 2257 acpi_status status; 2258 2259 if (!dmar_in_use()) 2260 return 0; 2261 2262 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2263 tmp = handle; 2264 } else { 2265 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2266 ACPI_UINT32_MAX, 2267 dmar_get_dsm_handle, 2268 NULL, NULL, &tmp); 2269 if (ACPI_FAILURE(status)) { 2270 pr_warn("Failed to locate _DSM method.\n"); 2271 return -ENXIO; 2272 } 2273 } 2274 if (tmp == NULL) 2275 return 0; 2276 2277 down_write(&dmar_global_lock); 2278 if (insert) 2279 ret = dmar_hotplug_insert(tmp); 2280 else 2281 ret = dmar_hotplug_remove(tmp); 2282 up_write(&dmar_global_lock); 2283 2284 return ret; 2285 } 2286 2287 int dmar_device_add(acpi_handle handle) 2288 { 2289 return dmar_device_hotplug(handle, true); 2290 } 2291 2292 int dmar_device_remove(acpi_handle handle) 2293 { 2294 return dmar_device_hotplug(handle, false); 2295 } 2296 2297 /* 2298 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2299 * 2300 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2301 * the ACPI DMAR table. This means that the platform boot firmware has made 2302 * sure no device can issue DMA outside of RMRR regions. 2303 */ 2304 bool dmar_platform_optin(void) 2305 { 2306 struct acpi_table_dmar *dmar; 2307 acpi_status status; 2308 bool ret; 2309 2310 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2311 (struct acpi_table_header **)&dmar); 2312 if (ACPI_FAILURE(status)) 2313 return false; 2314 2315 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2316 acpi_put_table((struct acpi_table_header *)dmar); 2317 2318 return ret; 2319 } 2320 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2321