xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
56 
57 static int __init iommu_dma_forcedac_setup(char *str)
58 {
59 	int ret = kstrtobool(str, &iommu_dma_forcedac);
60 
61 	if (!ret && iommu_dma_forcedac)
62 		pr_info("Forcing DAC for PCI devices\n");
63 	return ret;
64 }
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
66 
67 static void iommu_dma_entry_dtor(unsigned long data)
68 {
69 	struct page *freelist = (struct page *)data;
70 
71 	while (freelist) {
72 		unsigned long p = (unsigned long)page_address(freelist);
73 
74 		freelist = freelist->freelist;
75 		free_page(p);
76 	}
77 }
78 
79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80 {
81 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 		return cookie->iovad.granule;
83 	return PAGE_SIZE;
84 }
85 
86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87 {
88 	struct iommu_dma_cookie *cookie;
89 
90 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 	if (cookie) {
92 		INIT_LIST_HEAD(&cookie->msi_page_list);
93 		cookie->type = type;
94 	}
95 	return cookie;
96 }
97 
98 /**
99  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100  * @domain: IOMMU domain to prepare for DMA-API usage
101  *
102  * IOMMU drivers should normally call this from their domain_alloc
103  * callback when domain->type == IOMMU_DOMAIN_DMA.
104  */
105 int iommu_get_dma_cookie(struct iommu_domain *domain)
106 {
107 	if (domain->iova_cookie)
108 		return -EEXIST;
109 
110 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 	if (!domain->iova_cookie)
112 		return -ENOMEM;
113 
114 	return 0;
115 }
116 EXPORT_SYMBOL(iommu_get_dma_cookie);
117 
118 /**
119  * iommu_get_msi_cookie - Acquire just MSI remapping resources
120  * @domain: IOMMU domain to prepare
121  * @base: Start address of IOVA region for MSI mappings
122  *
123  * Users who manage their own IOVA allocation and do not want DMA API support,
124  * but would still like to take advantage of automatic MSI remapping, can use
125  * this to initialise their own domain appropriately. Users should reserve a
126  * contiguous IOVA region, starting at @base, large enough to accommodate the
127  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128  * used by the devices attached to @domain.
129  */
130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
131 {
132 	struct iommu_dma_cookie *cookie;
133 
134 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
135 		return -EINVAL;
136 
137 	if (domain->iova_cookie)
138 		return -EEXIST;
139 
140 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
141 	if (!cookie)
142 		return -ENOMEM;
143 
144 	cookie->msi_iova = base;
145 	domain->iova_cookie = cookie;
146 	return 0;
147 }
148 EXPORT_SYMBOL(iommu_get_msi_cookie);
149 
150 /**
151  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
152  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153  *          iommu_get_msi_cookie()
154  *
155  * IOMMU drivers should normally call this from their domain_free callback.
156  */
157 void iommu_put_dma_cookie(struct iommu_domain *domain)
158 {
159 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 	struct iommu_dma_msi_page *msi, *tmp;
161 
162 	if (!cookie)
163 		return;
164 
165 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
166 		put_iova_domain(&cookie->iovad);
167 
168 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 		list_del(&msi->list);
170 		kfree(msi);
171 	}
172 	kfree(cookie);
173 	domain->iova_cookie = NULL;
174 }
175 EXPORT_SYMBOL(iommu_put_dma_cookie);
176 
177 /**
178  * iommu_dma_get_resv_regions - Reserved region driver helper
179  * @dev: Device from iommu_get_resv_regions()
180  * @list: Reserved region list from iommu_get_resv_regions()
181  *
182  * IOMMU drivers can use this to implement their .get_resv_regions callback
183  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
185  * reservation.
186  */
187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
188 {
189 
190 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
191 		iort_iommu_msi_get_resv_regions(dev, list);
192 
193 }
194 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
195 
196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 		phys_addr_t start, phys_addr_t end)
198 {
199 	struct iova_domain *iovad = &cookie->iovad;
200 	struct iommu_dma_msi_page *msi_page;
201 	int i, num_pages;
202 
203 	start -= iova_offset(iovad, start);
204 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
205 
206 	for (i = 0; i < num_pages; i++) {
207 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
208 		if (!msi_page)
209 			return -ENOMEM;
210 
211 		msi_page->phys = start;
212 		msi_page->iova = start;
213 		INIT_LIST_HEAD(&msi_page->list);
214 		list_add(&msi_page->list, &cookie->msi_page_list);
215 		start += iovad->granule;
216 	}
217 
218 	return 0;
219 }
220 
221 static int iova_reserve_pci_windows(struct pci_dev *dev,
222 		struct iova_domain *iovad)
223 {
224 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 	struct resource_entry *window;
226 	unsigned long lo, hi;
227 	phys_addr_t start = 0, end;
228 
229 	resource_list_for_each_entry(window, &bridge->windows) {
230 		if (resource_type(window->res) != IORESOURCE_MEM)
231 			continue;
232 
233 		lo = iova_pfn(iovad, window->res->start - window->offset);
234 		hi = iova_pfn(iovad, window->res->end - window->offset);
235 		reserve_iova(iovad, lo, hi);
236 	}
237 
238 	/* Get reserved DMA windows from host bridge */
239 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 		end = window->res->start - window->offset;
241 resv_iova:
242 		if (end > start) {
243 			lo = iova_pfn(iovad, start);
244 			hi = iova_pfn(iovad, end);
245 			reserve_iova(iovad, lo, hi);
246 		} else {
247 			/* dma_ranges list should be sorted */
248 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
249 			return -EINVAL;
250 		}
251 
252 		start = window->res->end - window->offset + 1;
253 		/* If window is last entry */
254 		if (window->node.next == &bridge->dma_ranges &&
255 		    end != ~(phys_addr_t)0) {
256 			end = ~(phys_addr_t)0;
257 			goto resv_iova;
258 		}
259 	}
260 
261 	return 0;
262 }
263 
264 static int iova_reserve_iommu_regions(struct device *dev,
265 		struct iommu_domain *domain)
266 {
267 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
268 	struct iova_domain *iovad = &cookie->iovad;
269 	struct iommu_resv_region *region;
270 	LIST_HEAD(resv_regions);
271 	int ret = 0;
272 
273 	if (dev_is_pci(dev)) {
274 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	iommu_get_resv_regions(dev, &resv_regions);
280 	list_for_each_entry(region, &resv_regions, list) {
281 		unsigned long lo, hi;
282 
283 		/* We ARE the software that manages these! */
284 		if (region->type == IOMMU_RESV_SW_MSI)
285 			continue;
286 
287 		lo = iova_pfn(iovad, region->start);
288 		hi = iova_pfn(iovad, region->start + region->length - 1);
289 		reserve_iova(iovad, lo, hi);
290 
291 		if (region->type == IOMMU_RESV_MSI)
292 			ret = cookie_init_hw_msi_region(cookie, region->start,
293 					region->start + region->length);
294 		if (ret)
295 			break;
296 	}
297 	iommu_put_resv_regions(dev, &resv_regions);
298 
299 	return ret;
300 }
301 
302 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
303 {
304 	struct iommu_dma_cookie *cookie;
305 	struct iommu_domain *domain;
306 
307 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
308 	domain = cookie->fq_domain;
309 
310 	domain->ops->flush_iotlb_all(domain);
311 }
312 
313 static bool dev_is_untrusted(struct device *dev)
314 {
315 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
316 }
317 
318 /**
319  * iommu_dma_init_domain - Initialise a DMA mapping domain
320  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
321  * @base: IOVA at which the mappable address space starts
322  * @size: Size of IOVA space
323  * @dev: Device the domain is being initialised for
324  *
325  * @base and @size should be exact multiples of IOMMU page granularity to
326  * avoid rounding surprises. If necessary, we reserve the page at address 0
327  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
328  * any change which could make prior IOVAs invalid will fail.
329  */
330 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
331 		u64 size, struct device *dev)
332 {
333 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
334 	unsigned long order, base_pfn;
335 	struct iova_domain *iovad;
336 
337 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
338 		return -EINVAL;
339 
340 	iovad = &cookie->iovad;
341 
342 	/* Use the smallest supported page size for IOVA granularity */
343 	order = __ffs(domain->pgsize_bitmap);
344 	base_pfn = max_t(unsigned long, 1, base >> order);
345 
346 	/* Check the domain allows at least some access to the device... */
347 	if (domain->geometry.force_aperture) {
348 		if (base > domain->geometry.aperture_end ||
349 		    base + size <= domain->geometry.aperture_start) {
350 			pr_warn("specified DMA range outside IOMMU capability\n");
351 			return -EFAULT;
352 		}
353 		/* ...then finally give it a kicking to make sure it fits */
354 		base_pfn = max_t(unsigned long, base_pfn,
355 				domain->geometry.aperture_start >> order);
356 	}
357 
358 	/* start_pfn is always nonzero for an already-initialised domain */
359 	if (iovad->start_pfn) {
360 		if (1UL << order != iovad->granule ||
361 		    base_pfn != iovad->start_pfn) {
362 			pr_warn("Incompatible range for DMA domain\n");
363 			return -EFAULT;
364 		}
365 
366 		return 0;
367 	}
368 
369 	init_iova_domain(iovad, 1UL << order, base_pfn);
370 
371 	if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) &&
372 	    domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) {
373 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
374 					  iommu_dma_entry_dtor))
375 			pr_warn("iova flush queue initialization failed\n");
376 		else
377 			cookie->fq_domain = domain;
378 	}
379 
380 	if (!dev)
381 		return 0;
382 
383 	return iova_reserve_iommu_regions(dev, domain);
384 }
385 
386 /**
387  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
388  *                    page flags.
389  * @dir: Direction of DMA transfer
390  * @coherent: Is the DMA master cache-coherent?
391  * @attrs: DMA attributes for the mapping
392  *
393  * Return: corresponding IOMMU API page protection flags
394  */
395 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
396 		     unsigned long attrs)
397 {
398 	int prot = coherent ? IOMMU_CACHE : 0;
399 
400 	if (attrs & DMA_ATTR_PRIVILEGED)
401 		prot |= IOMMU_PRIV;
402 
403 	switch (dir) {
404 	case DMA_BIDIRECTIONAL:
405 		return prot | IOMMU_READ | IOMMU_WRITE;
406 	case DMA_TO_DEVICE:
407 		return prot | IOMMU_READ;
408 	case DMA_FROM_DEVICE:
409 		return prot | IOMMU_WRITE;
410 	default:
411 		return 0;
412 	}
413 }
414 
415 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
416 		size_t size, u64 dma_limit, struct device *dev)
417 {
418 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
419 	struct iova_domain *iovad = &cookie->iovad;
420 	unsigned long shift, iova_len, iova = 0;
421 
422 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
423 		cookie->msi_iova += size;
424 		return cookie->msi_iova - size;
425 	}
426 
427 	shift = iova_shift(iovad);
428 	iova_len = size >> shift;
429 	/*
430 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
431 	 * will come back to bite us badly, so we have to waste a bit of space
432 	 * rounding up anything cacheable to make sure that can't happen. The
433 	 * order of the unadjusted size will still match upon freeing.
434 	 */
435 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
436 		iova_len = roundup_pow_of_two(iova_len);
437 
438 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
439 
440 	if (domain->geometry.force_aperture)
441 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
442 
443 	/* Try to get PCI devices a SAC address */
444 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
445 		iova = alloc_iova_fast(iovad, iova_len,
446 				       DMA_BIT_MASK(32) >> shift, false);
447 
448 	if (!iova)
449 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
450 				       true);
451 
452 	return (dma_addr_t)iova << shift;
453 }
454 
455 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
456 		dma_addr_t iova, size_t size, struct page *freelist)
457 {
458 	struct iova_domain *iovad = &cookie->iovad;
459 
460 	/* The MSI case is only ever cleaning up its most recent allocation */
461 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
462 		cookie->msi_iova -= size;
463 	else if (cookie->fq_domain)	/* non-strict mode */
464 		queue_iova(iovad, iova_pfn(iovad, iova),
465 				size >> iova_shift(iovad),
466 				(unsigned long)freelist);
467 	else
468 		free_iova_fast(iovad, iova_pfn(iovad, iova),
469 				size >> iova_shift(iovad));
470 }
471 
472 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
473 		size_t size)
474 {
475 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
476 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
477 	struct iova_domain *iovad = &cookie->iovad;
478 	size_t iova_off = iova_offset(iovad, dma_addr);
479 	struct iommu_iotlb_gather iotlb_gather;
480 	size_t unmapped;
481 
482 	dma_addr -= iova_off;
483 	size = iova_align(iovad, size + iova_off);
484 	iommu_iotlb_gather_init(&iotlb_gather);
485 
486 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
487 	WARN_ON(unmapped != size);
488 
489 	if (!cookie->fq_domain)
490 		iommu_iotlb_sync(domain, &iotlb_gather);
491 	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
492 }
493 
494 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
495 		size_t size, enum dma_data_direction dir,
496 		unsigned long attrs)
497 {
498 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
499 	phys_addr_t phys;
500 
501 	phys = iommu_iova_to_phys(domain, dma_addr);
502 	if (WARN_ON(!phys))
503 		return;
504 
505 	__iommu_dma_unmap(dev, dma_addr, size);
506 
507 	if (unlikely(is_swiotlb_buffer(phys)))
508 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
509 }
510 
511 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
512 		size_t size, int prot, u64 dma_mask)
513 {
514 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
515 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
516 	struct iova_domain *iovad = &cookie->iovad;
517 	size_t iova_off = iova_offset(iovad, phys);
518 	dma_addr_t iova;
519 
520 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
521 	    iommu_deferred_attach(dev, domain))
522 		return DMA_MAPPING_ERROR;
523 
524 	size = iova_align(iovad, size + iova_off);
525 
526 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
527 	if (!iova)
528 		return DMA_MAPPING_ERROR;
529 
530 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
531 		iommu_dma_free_iova(cookie, iova, size, NULL);
532 		return DMA_MAPPING_ERROR;
533 	}
534 	return iova + iova_off;
535 }
536 
537 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
538 		size_t org_size, dma_addr_t dma_mask, bool coherent,
539 		enum dma_data_direction dir, unsigned long attrs)
540 {
541 	int prot = dma_info_to_prot(dir, coherent, attrs);
542 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
543 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
544 	struct iova_domain *iovad = &cookie->iovad;
545 	size_t aligned_size = org_size;
546 	void *padding_start;
547 	size_t padding_size;
548 	dma_addr_t iova;
549 
550 	/*
551 	 * If both the physical buffer start address and size are
552 	 * page aligned, we don't need to use a bounce page.
553 	 */
554 	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
555 	    iova_offset(iovad, phys | org_size)) {
556 		aligned_size = iova_align(iovad, org_size);
557 		phys = swiotlb_tbl_map_single(dev, phys, org_size,
558 					      aligned_size, dir, attrs);
559 
560 		if (phys == DMA_MAPPING_ERROR)
561 			return DMA_MAPPING_ERROR;
562 
563 		/* Cleanup the padding area. */
564 		padding_start = phys_to_virt(phys);
565 		padding_size = aligned_size;
566 
567 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
568 		    (dir == DMA_TO_DEVICE ||
569 		     dir == DMA_BIDIRECTIONAL)) {
570 			padding_start += org_size;
571 			padding_size -= org_size;
572 		}
573 
574 		memset(padding_start, 0, padding_size);
575 	}
576 
577 	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
578 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
579 		swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
580 	return iova;
581 }
582 
583 static void __iommu_dma_free_pages(struct page **pages, int count)
584 {
585 	while (count--)
586 		__free_page(pages[count]);
587 	kvfree(pages);
588 }
589 
590 static struct page **__iommu_dma_alloc_pages(struct device *dev,
591 		unsigned int count, unsigned long order_mask, gfp_t gfp)
592 {
593 	struct page **pages;
594 	unsigned int i = 0, nid = dev_to_node(dev);
595 
596 	order_mask &= (2U << MAX_ORDER) - 1;
597 	if (!order_mask)
598 		return NULL;
599 
600 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
601 	if (!pages)
602 		return NULL;
603 
604 	/* IOMMU can map any pages, so himem can also be used here */
605 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
606 
607 	/* It makes no sense to muck about with huge pages */
608 	gfp &= ~__GFP_COMP;
609 
610 	while (count) {
611 		struct page *page = NULL;
612 		unsigned int order_size;
613 
614 		/*
615 		 * Higher-order allocations are a convenience rather
616 		 * than a necessity, hence using __GFP_NORETRY until
617 		 * falling back to minimum-order allocations.
618 		 */
619 		for (order_mask &= (2U << __fls(count)) - 1;
620 		     order_mask; order_mask &= ~order_size) {
621 			unsigned int order = __fls(order_mask);
622 			gfp_t alloc_flags = gfp;
623 
624 			order_size = 1U << order;
625 			if (order_mask > order_size)
626 				alloc_flags |= __GFP_NORETRY;
627 			page = alloc_pages_node(nid, alloc_flags, order);
628 			if (!page)
629 				continue;
630 			if (order)
631 				split_page(page, order);
632 			break;
633 		}
634 		if (!page) {
635 			__iommu_dma_free_pages(pages, i);
636 			return NULL;
637 		}
638 		count -= order_size;
639 		while (order_size--)
640 			pages[i++] = page++;
641 	}
642 	return pages;
643 }
644 
645 /*
646  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
647  * but an IOMMU which supports smaller pages might not map the whole thing.
648  */
649 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
650 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
651 		unsigned long attrs)
652 {
653 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
654 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
655 	struct iova_domain *iovad = &cookie->iovad;
656 	bool coherent = dev_is_dma_coherent(dev);
657 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
658 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
659 	struct page **pages;
660 	dma_addr_t iova;
661 
662 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
663 	    iommu_deferred_attach(dev, domain))
664 		return NULL;
665 
666 	min_size = alloc_sizes & -alloc_sizes;
667 	if (min_size < PAGE_SIZE) {
668 		min_size = PAGE_SIZE;
669 		alloc_sizes |= PAGE_SIZE;
670 	} else {
671 		size = ALIGN(size, min_size);
672 	}
673 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
674 		alloc_sizes = min_size;
675 
676 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
677 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
678 					gfp);
679 	if (!pages)
680 		return NULL;
681 
682 	size = iova_align(iovad, size);
683 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
684 	if (!iova)
685 		goto out_free_pages;
686 
687 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
688 		goto out_free_iova;
689 
690 	if (!(ioprot & IOMMU_CACHE)) {
691 		struct scatterlist *sg;
692 		int i;
693 
694 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
695 			arch_dma_prep_coherent(sg_page(sg), sg->length);
696 	}
697 
698 	if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
699 			< size)
700 		goto out_free_sg;
701 
702 	sgt->sgl->dma_address = iova;
703 	sgt->sgl->dma_length = size;
704 	return pages;
705 
706 out_free_sg:
707 	sg_free_table(sgt);
708 out_free_iova:
709 	iommu_dma_free_iova(cookie, iova, size, NULL);
710 out_free_pages:
711 	__iommu_dma_free_pages(pages, count);
712 	return NULL;
713 }
714 
715 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
716 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
717 		unsigned long attrs)
718 {
719 	struct page **pages;
720 	struct sg_table sgt;
721 	void *vaddr;
722 
723 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
724 						attrs);
725 	if (!pages)
726 		return NULL;
727 	*dma_handle = sgt.sgl->dma_address;
728 	sg_free_table(&sgt);
729 	vaddr = dma_common_pages_remap(pages, size, prot,
730 			__builtin_return_address(0));
731 	if (!vaddr)
732 		goto out_unmap;
733 	return vaddr;
734 
735 out_unmap:
736 	__iommu_dma_unmap(dev, *dma_handle, size);
737 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
738 	return NULL;
739 }
740 
741 #ifdef CONFIG_DMA_REMAP
742 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
743 		size_t size, enum dma_data_direction dir, gfp_t gfp,
744 		unsigned long attrs)
745 {
746 	struct dma_sgt_handle *sh;
747 
748 	sh = kmalloc(sizeof(*sh), gfp);
749 	if (!sh)
750 		return NULL;
751 
752 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
753 						    PAGE_KERNEL, attrs);
754 	if (!sh->pages) {
755 		kfree(sh);
756 		return NULL;
757 	}
758 	return &sh->sgt;
759 }
760 
761 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
762 		struct sg_table *sgt, enum dma_data_direction dir)
763 {
764 	struct dma_sgt_handle *sh = sgt_handle(sgt);
765 
766 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
767 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
768 	sg_free_table(&sh->sgt);
769 }
770 #endif /* CONFIG_DMA_REMAP */
771 
772 static void iommu_dma_sync_single_for_cpu(struct device *dev,
773 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
774 {
775 	phys_addr_t phys;
776 
777 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
778 		return;
779 
780 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
781 	if (!dev_is_dma_coherent(dev))
782 		arch_sync_dma_for_cpu(phys, size, dir);
783 
784 	if (is_swiotlb_buffer(phys))
785 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
786 }
787 
788 static void iommu_dma_sync_single_for_device(struct device *dev,
789 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
790 {
791 	phys_addr_t phys;
792 
793 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
794 		return;
795 
796 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
797 	if (is_swiotlb_buffer(phys))
798 		swiotlb_sync_single_for_device(dev, phys, size, dir);
799 
800 	if (!dev_is_dma_coherent(dev))
801 		arch_sync_dma_for_device(phys, size, dir);
802 }
803 
804 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
805 		struct scatterlist *sgl, int nelems,
806 		enum dma_data_direction dir)
807 {
808 	struct scatterlist *sg;
809 	int i;
810 
811 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
812 		return;
813 
814 	for_each_sg(sgl, sg, nelems, i) {
815 		if (!dev_is_dma_coherent(dev))
816 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
817 
818 		if (is_swiotlb_buffer(sg_phys(sg)))
819 			swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
820 						    sg->length, dir);
821 	}
822 }
823 
824 static void iommu_dma_sync_sg_for_device(struct device *dev,
825 		struct scatterlist *sgl, int nelems,
826 		enum dma_data_direction dir)
827 {
828 	struct scatterlist *sg;
829 	int i;
830 
831 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
832 		return;
833 
834 	for_each_sg(sgl, sg, nelems, i) {
835 		if (is_swiotlb_buffer(sg_phys(sg)))
836 			swiotlb_sync_single_for_device(dev, sg_phys(sg),
837 						       sg->length, dir);
838 
839 		if (!dev_is_dma_coherent(dev))
840 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
841 	}
842 }
843 
844 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
845 		unsigned long offset, size_t size, enum dma_data_direction dir,
846 		unsigned long attrs)
847 {
848 	phys_addr_t phys = page_to_phys(page) + offset;
849 	bool coherent = dev_is_dma_coherent(dev);
850 	dma_addr_t dma_handle;
851 
852 	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
853 			coherent, dir, attrs);
854 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
855 	    dma_handle != DMA_MAPPING_ERROR)
856 		arch_sync_dma_for_device(phys, size, dir);
857 	return dma_handle;
858 }
859 
860 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
861 		size_t size, enum dma_data_direction dir, unsigned long attrs)
862 {
863 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
864 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
865 	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
866 }
867 
868 /*
869  * Prepare a successfully-mapped scatterlist to give back to the caller.
870  *
871  * At this point the segments are already laid out by iommu_dma_map_sg() to
872  * avoid individually crossing any boundaries, so we merely need to check a
873  * segment's start address to avoid concatenating across one.
874  */
875 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
876 		dma_addr_t dma_addr)
877 {
878 	struct scatterlist *s, *cur = sg;
879 	unsigned long seg_mask = dma_get_seg_boundary(dev);
880 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
881 	int i, count = 0;
882 
883 	for_each_sg(sg, s, nents, i) {
884 		/* Restore this segment's original unaligned fields first */
885 		unsigned int s_iova_off = sg_dma_address(s);
886 		unsigned int s_length = sg_dma_len(s);
887 		unsigned int s_iova_len = s->length;
888 
889 		s->offset += s_iova_off;
890 		s->length = s_length;
891 		sg_dma_address(s) = DMA_MAPPING_ERROR;
892 		sg_dma_len(s) = 0;
893 
894 		/*
895 		 * Now fill in the real DMA data. If...
896 		 * - there is a valid output segment to append to
897 		 * - and this segment starts on an IOVA page boundary
898 		 * - but doesn't fall at a segment boundary
899 		 * - and wouldn't make the resulting output segment too long
900 		 */
901 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
902 		    (max_len - cur_len >= s_length)) {
903 			/* ...then concatenate it with the previous one */
904 			cur_len += s_length;
905 		} else {
906 			/* Otherwise start the next output segment */
907 			if (i > 0)
908 				cur = sg_next(cur);
909 			cur_len = s_length;
910 			count++;
911 
912 			sg_dma_address(cur) = dma_addr + s_iova_off;
913 		}
914 
915 		sg_dma_len(cur) = cur_len;
916 		dma_addr += s_iova_len;
917 
918 		if (s_length + s_iova_off < s_iova_len)
919 			cur_len = 0;
920 	}
921 	return count;
922 }
923 
924 /*
925  * If mapping failed, then just restore the original list,
926  * but making sure the DMA fields are invalidated.
927  */
928 static void __invalidate_sg(struct scatterlist *sg, int nents)
929 {
930 	struct scatterlist *s;
931 	int i;
932 
933 	for_each_sg(sg, s, nents, i) {
934 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
935 			s->offset += sg_dma_address(s);
936 		if (sg_dma_len(s))
937 			s->length = sg_dma_len(s);
938 		sg_dma_address(s) = DMA_MAPPING_ERROR;
939 		sg_dma_len(s) = 0;
940 	}
941 }
942 
943 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
944 		int nents, enum dma_data_direction dir, unsigned long attrs)
945 {
946 	struct scatterlist *s;
947 	int i;
948 
949 	for_each_sg(sg, s, nents, i)
950 		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
951 				sg_dma_len(s), dir, attrs);
952 }
953 
954 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
955 		int nents, enum dma_data_direction dir, unsigned long attrs)
956 {
957 	struct scatterlist *s;
958 	int i;
959 
960 	for_each_sg(sg, s, nents, i) {
961 		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
962 				s->length, dma_get_mask(dev),
963 				dev_is_dma_coherent(dev), dir, attrs);
964 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
965 			goto out_unmap;
966 		sg_dma_len(s) = s->length;
967 	}
968 
969 	return nents;
970 
971 out_unmap:
972 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
973 	return 0;
974 }
975 
976 /*
977  * The DMA API client is passing in a scatterlist which could describe
978  * any old buffer layout, but the IOMMU API requires everything to be
979  * aligned to IOMMU pages. Hence the need for this complicated bit of
980  * impedance-matching, to be able to hand off a suitably-aligned list,
981  * but still preserve the original offsets and sizes for the caller.
982  */
983 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
984 		int nents, enum dma_data_direction dir, unsigned long attrs)
985 {
986 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
987 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
988 	struct iova_domain *iovad = &cookie->iovad;
989 	struct scatterlist *s, *prev = NULL;
990 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
991 	dma_addr_t iova;
992 	size_t iova_len = 0;
993 	unsigned long mask = dma_get_seg_boundary(dev);
994 	int i;
995 
996 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
997 	    iommu_deferred_attach(dev, domain))
998 		return 0;
999 
1000 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1001 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1002 
1003 	if (dev_is_untrusted(dev))
1004 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1005 
1006 	/*
1007 	 * Work out how much IOVA space we need, and align the segments to
1008 	 * IOVA granules for the IOMMU driver to handle. With some clever
1009 	 * trickery we can modify the list in-place, but reversibly, by
1010 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1011 	 */
1012 	for_each_sg(sg, s, nents, i) {
1013 		size_t s_iova_off = iova_offset(iovad, s->offset);
1014 		size_t s_length = s->length;
1015 		size_t pad_len = (mask - iova_len + 1) & mask;
1016 
1017 		sg_dma_address(s) = s_iova_off;
1018 		sg_dma_len(s) = s_length;
1019 		s->offset -= s_iova_off;
1020 		s_length = iova_align(iovad, s_length + s_iova_off);
1021 		s->length = s_length;
1022 
1023 		/*
1024 		 * Due to the alignment of our single IOVA allocation, we can
1025 		 * depend on these assumptions about the segment boundary mask:
1026 		 * - If mask size >= IOVA size, then the IOVA range cannot
1027 		 *   possibly fall across a boundary, so we don't care.
1028 		 * - If mask size < IOVA size, then the IOVA range must start
1029 		 *   exactly on a boundary, therefore we can lay things out
1030 		 *   based purely on segment lengths without needing to know
1031 		 *   the actual addresses beforehand.
1032 		 * - The mask must be a power of 2, so pad_len == 0 if
1033 		 *   iova_len == 0, thus we cannot dereference prev the first
1034 		 *   time through here (i.e. before it has a meaningful value).
1035 		 */
1036 		if (pad_len && pad_len < s_length - 1) {
1037 			prev->length += pad_len;
1038 			iova_len += pad_len;
1039 		}
1040 
1041 		iova_len += s_length;
1042 		prev = s;
1043 	}
1044 
1045 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1046 	if (!iova)
1047 		goto out_restore_sg;
1048 
1049 	/*
1050 	 * We'll leave any physical concatenation to the IOMMU driver's
1051 	 * implementation - it knows better than we do.
1052 	 */
1053 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1054 		goto out_free_iova;
1055 
1056 	return __finalise_sg(dev, sg, nents, iova);
1057 
1058 out_free_iova:
1059 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1060 out_restore_sg:
1061 	__invalidate_sg(sg, nents);
1062 	return 0;
1063 }
1064 
1065 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1066 		int nents, enum dma_data_direction dir, unsigned long attrs)
1067 {
1068 	dma_addr_t start, end;
1069 	struct scatterlist *tmp;
1070 	int i;
1071 
1072 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1073 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1074 
1075 	if (dev_is_untrusted(dev)) {
1076 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1077 		return;
1078 	}
1079 
1080 	/*
1081 	 * The scatterlist segments are mapped into a single
1082 	 * contiguous IOVA allocation, so this is incredibly easy.
1083 	 */
1084 	start = sg_dma_address(sg);
1085 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1086 		if (sg_dma_len(tmp) == 0)
1087 			break;
1088 		sg = tmp;
1089 	}
1090 	end = sg_dma_address(sg) + sg_dma_len(sg);
1091 	__iommu_dma_unmap(dev, start, end - start);
1092 }
1093 
1094 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1095 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1096 {
1097 	return __iommu_dma_map(dev, phys, size,
1098 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1099 			dma_get_mask(dev));
1100 }
1101 
1102 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1103 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1104 {
1105 	__iommu_dma_unmap(dev, handle, size);
1106 }
1107 
1108 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1109 {
1110 	size_t alloc_size = PAGE_ALIGN(size);
1111 	int count = alloc_size >> PAGE_SHIFT;
1112 	struct page *page = NULL, **pages = NULL;
1113 
1114 	/* Non-coherent atomic allocation? Easy */
1115 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1116 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1117 		return;
1118 
1119 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1120 		/*
1121 		 * If it the address is remapped, then it's either non-coherent
1122 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1123 		 */
1124 		pages = dma_common_find_pages(cpu_addr);
1125 		if (!pages)
1126 			page = vmalloc_to_page(cpu_addr);
1127 		dma_common_free_remap(cpu_addr, alloc_size);
1128 	} else {
1129 		/* Lowmem means a coherent atomic or CMA allocation */
1130 		page = virt_to_page(cpu_addr);
1131 	}
1132 
1133 	if (pages)
1134 		__iommu_dma_free_pages(pages, count);
1135 	if (page)
1136 		dma_free_contiguous(dev, page, alloc_size);
1137 }
1138 
1139 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1140 		dma_addr_t handle, unsigned long attrs)
1141 {
1142 	__iommu_dma_unmap(dev, handle, size);
1143 	__iommu_dma_free(dev, size, cpu_addr);
1144 }
1145 
1146 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1147 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1148 {
1149 	bool coherent = dev_is_dma_coherent(dev);
1150 	size_t alloc_size = PAGE_ALIGN(size);
1151 	int node = dev_to_node(dev);
1152 	struct page *page = NULL;
1153 	void *cpu_addr;
1154 
1155 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1156 	if (!page)
1157 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1158 	if (!page)
1159 		return NULL;
1160 
1161 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1162 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1163 
1164 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1165 				prot, __builtin_return_address(0));
1166 		if (!cpu_addr)
1167 			goto out_free_pages;
1168 
1169 		if (!coherent)
1170 			arch_dma_prep_coherent(page, size);
1171 	} else {
1172 		cpu_addr = page_address(page);
1173 	}
1174 
1175 	*pagep = page;
1176 	memset(cpu_addr, 0, alloc_size);
1177 	return cpu_addr;
1178 out_free_pages:
1179 	dma_free_contiguous(dev, page, alloc_size);
1180 	return NULL;
1181 }
1182 
1183 static void *iommu_dma_alloc(struct device *dev, size_t size,
1184 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1185 {
1186 	bool coherent = dev_is_dma_coherent(dev);
1187 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1188 	struct page *page = NULL;
1189 	void *cpu_addr;
1190 
1191 	gfp |= __GFP_ZERO;
1192 
1193 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1194 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1195 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1196 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1197 	}
1198 
1199 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1200 	    !gfpflags_allow_blocking(gfp) && !coherent)
1201 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1202 					       gfp, NULL);
1203 	else
1204 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1205 	if (!cpu_addr)
1206 		return NULL;
1207 
1208 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1209 			dev->coherent_dma_mask);
1210 	if (*handle == DMA_MAPPING_ERROR) {
1211 		__iommu_dma_free(dev, size, cpu_addr);
1212 		return NULL;
1213 	}
1214 
1215 	return cpu_addr;
1216 }
1217 
1218 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1219 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1220 		unsigned long attrs)
1221 {
1222 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1223 	unsigned long pfn, off = vma->vm_pgoff;
1224 	int ret;
1225 
1226 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1227 
1228 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1229 		return ret;
1230 
1231 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1232 		return -ENXIO;
1233 
1234 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1235 		struct page **pages = dma_common_find_pages(cpu_addr);
1236 
1237 		if (pages)
1238 			return vm_map_pages(vma, pages, nr_pages);
1239 		pfn = vmalloc_to_pfn(cpu_addr);
1240 	} else {
1241 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1242 	}
1243 
1244 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1245 			       vma->vm_end - vma->vm_start,
1246 			       vma->vm_page_prot);
1247 }
1248 
1249 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1250 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1251 		unsigned long attrs)
1252 {
1253 	struct page *page;
1254 	int ret;
1255 
1256 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1257 		struct page **pages = dma_common_find_pages(cpu_addr);
1258 
1259 		if (pages) {
1260 			return sg_alloc_table_from_pages(sgt, pages,
1261 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1262 					0, size, GFP_KERNEL);
1263 		}
1264 
1265 		page = vmalloc_to_page(cpu_addr);
1266 	} else {
1267 		page = virt_to_page(cpu_addr);
1268 	}
1269 
1270 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1271 	if (!ret)
1272 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1273 	return ret;
1274 }
1275 
1276 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1277 {
1278 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1279 
1280 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1281 }
1282 
1283 static const struct dma_map_ops iommu_dma_ops = {
1284 	.alloc			= iommu_dma_alloc,
1285 	.free			= iommu_dma_free,
1286 	.alloc_pages		= dma_common_alloc_pages,
1287 	.free_pages		= dma_common_free_pages,
1288 #ifdef CONFIG_DMA_REMAP
1289 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1290 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1291 #endif
1292 	.mmap			= iommu_dma_mmap,
1293 	.get_sgtable		= iommu_dma_get_sgtable,
1294 	.map_page		= iommu_dma_map_page,
1295 	.unmap_page		= iommu_dma_unmap_page,
1296 	.map_sg			= iommu_dma_map_sg,
1297 	.unmap_sg		= iommu_dma_unmap_sg,
1298 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1299 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1300 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1301 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1302 	.map_resource		= iommu_dma_map_resource,
1303 	.unmap_resource		= iommu_dma_unmap_resource,
1304 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1305 };
1306 
1307 /*
1308  * The IOMMU core code allocates the default DMA domain, which the underlying
1309  * IOMMU driver needs to support via the dma-iommu layer.
1310  */
1311 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1312 {
1313 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1314 
1315 	if (!domain)
1316 		goto out_err;
1317 
1318 	/*
1319 	 * The IOMMU core code allocates the default DMA domain, which the
1320 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1321 	 */
1322 	if (domain->type == IOMMU_DOMAIN_DMA) {
1323 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1324 			goto out_err;
1325 		dev->dma_ops = &iommu_dma_ops;
1326 	}
1327 
1328 	return;
1329 out_err:
1330 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1331 		 dev_name(dev));
1332 }
1333 
1334 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1335 		phys_addr_t msi_addr, struct iommu_domain *domain)
1336 {
1337 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1338 	struct iommu_dma_msi_page *msi_page;
1339 	dma_addr_t iova;
1340 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1341 	size_t size = cookie_msi_granule(cookie);
1342 
1343 	msi_addr &= ~(phys_addr_t)(size - 1);
1344 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1345 		if (msi_page->phys == msi_addr)
1346 			return msi_page;
1347 
1348 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1349 	if (!msi_page)
1350 		return NULL;
1351 
1352 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1353 	if (!iova)
1354 		goto out_free_page;
1355 
1356 	if (iommu_map(domain, iova, msi_addr, size, prot))
1357 		goto out_free_iova;
1358 
1359 	INIT_LIST_HEAD(&msi_page->list);
1360 	msi_page->phys = msi_addr;
1361 	msi_page->iova = iova;
1362 	list_add(&msi_page->list, &cookie->msi_page_list);
1363 	return msi_page;
1364 
1365 out_free_iova:
1366 	iommu_dma_free_iova(cookie, iova, size, NULL);
1367 out_free_page:
1368 	kfree(msi_page);
1369 	return NULL;
1370 }
1371 
1372 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1373 {
1374 	struct device *dev = msi_desc_to_dev(desc);
1375 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1376 	struct iommu_dma_msi_page *msi_page;
1377 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1378 
1379 	if (!domain || !domain->iova_cookie) {
1380 		desc->iommu_cookie = NULL;
1381 		return 0;
1382 	}
1383 
1384 	/*
1385 	 * In fact the whole prepare operation should already be serialised by
1386 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1387 	 * on its own, so consider this locking as failsafe documentation...
1388 	 */
1389 	mutex_lock(&msi_prepare_lock);
1390 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1391 	mutex_unlock(&msi_prepare_lock);
1392 
1393 	msi_desc_set_iommu_cookie(desc, msi_page);
1394 
1395 	if (!msi_page)
1396 		return -ENOMEM;
1397 	return 0;
1398 }
1399 
1400 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1401 			       struct msi_msg *msg)
1402 {
1403 	struct device *dev = msi_desc_to_dev(desc);
1404 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1405 	const struct iommu_dma_msi_page *msi_page;
1406 
1407 	msi_page = msi_desc_get_iommu_cookie(desc);
1408 
1409 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1410 		return;
1411 
1412 	msg->address_hi = upper_32_bits(msi_page->iova);
1413 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1414 	msg->address_lo += lower_32_bits(msi_page->iova);
1415 }
1416 
1417 static int iommu_dma_init(void)
1418 {
1419 	if (is_kdump_kernel())
1420 		static_branch_enable(&iommu_deferred_attach_enabled);
1421 
1422 	return iova_cache_get();
1423 }
1424 arch_initcall(iommu_dma_init);
1425