xref: /openbmc/linux/drivers/input/input.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
28 
29 #define INPUT_DEVICES	256
30 
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
33 
34 /*
35  * input_mutex protects access to both input_dev_list and input_handler_list.
36  * This also causes input_[un]register_device and input_[un]register_handler
37  * be mutually exclusive which simplifies locking in drivers implementing
38  * input handlers.
39  */
40 static DEFINE_MUTEX(input_mutex);
41 
42 static struct input_handler *input_table[8];
43 
44 static inline int is_event_supported(unsigned int code,
45 				     unsigned long *bm, unsigned int max)
46 {
47 	return code <= max && test_bit(code, bm);
48 }
49 
50 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
51 {
52 	if (fuzz) {
53 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
54 			return old_val;
55 
56 		if (value > old_val - fuzz && value < old_val + fuzz)
57 			return (old_val * 3 + value) / 4;
58 
59 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
60 			return (old_val + value) / 2;
61 	}
62 
63 	return value;
64 }
65 
66 /*
67  * Pass event through all open handles. This function is called with
68  * dev->event_lock held and interrupts disabled.
69  */
70 static void input_pass_event(struct input_dev *dev,
71 			     unsigned int type, unsigned int code, int value)
72 {
73 	struct input_handle *handle;
74 
75 	rcu_read_lock();
76 
77 	handle = rcu_dereference(dev->grab);
78 	if (handle)
79 		handle->handler->event(handle, type, code, value);
80 	else
81 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
82 			if (handle->open)
83 				handle->handler->event(handle,
84 							type, code, value);
85 	rcu_read_unlock();
86 }
87 
88 /*
89  * Generate software autorepeat event. Note that we take
90  * dev->event_lock here to avoid racing with input_event
91  * which may cause keys get "stuck".
92  */
93 static void input_repeat_key(unsigned long data)
94 {
95 	struct input_dev *dev = (void *) data;
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(&dev->event_lock, flags);
99 
100 	if (test_bit(dev->repeat_key, dev->key) &&
101 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
102 
103 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
104 
105 		if (dev->sync) {
106 			/*
107 			 * Only send SYN_REPORT if we are not in a middle
108 			 * of driver parsing a new hardware packet.
109 			 * Otherwise assume that the driver will send
110 			 * SYN_REPORT once it's done.
111 			 */
112 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
113 		}
114 
115 		if (dev->rep[REP_PERIOD])
116 			mod_timer(&dev->timer, jiffies +
117 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
118 	}
119 
120 	spin_unlock_irqrestore(&dev->event_lock, flags);
121 }
122 
123 static void input_start_autorepeat(struct input_dev *dev, int code)
124 {
125 	if (test_bit(EV_REP, dev->evbit) &&
126 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
127 	    dev->timer.data) {
128 		dev->repeat_key = code;
129 		mod_timer(&dev->timer,
130 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
131 	}
132 }
133 
134 #define INPUT_IGNORE_EVENT	0
135 #define INPUT_PASS_TO_HANDLERS	1
136 #define INPUT_PASS_TO_DEVICE	2
137 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
138 
139 static void input_handle_event(struct input_dev *dev,
140 			       unsigned int type, unsigned int code, int value)
141 {
142 	int disposition = INPUT_IGNORE_EVENT;
143 
144 	switch (type) {
145 
146 	case EV_SYN:
147 		switch (code) {
148 		case SYN_CONFIG:
149 			disposition = INPUT_PASS_TO_ALL;
150 			break;
151 
152 		case SYN_REPORT:
153 			if (!dev->sync) {
154 				dev->sync = 1;
155 				disposition = INPUT_PASS_TO_HANDLERS;
156 			}
157 			break;
158 		}
159 		break;
160 
161 	case EV_KEY:
162 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
163 		    !!test_bit(code, dev->key) != value) {
164 
165 			if (value != 2) {
166 				__change_bit(code, dev->key);
167 				if (value)
168 					input_start_autorepeat(dev, code);
169 			}
170 
171 			disposition = INPUT_PASS_TO_HANDLERS;
172 		}
173 		break;
174 
175 	case EV_SW:
176 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
177 		    !!test_bit(code, dev->sw) != value) {
178 
179 			__change_bit(code, dev->sw);
180 			disposition = INPUT_PASS_TO_HANDLERS;
181 		}
182 		break;
183 
184 	case EV_ABS:
185 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
186 
187 			value = input_defuzz_abs_event(value,
188 					dev->abs[code], dev->absfuzz[code]);
189 
190 			if (dev->abs[code] != value) {
191 				dev->abs[code] = value;
192 				disposition = INPUT_PASS_TO_HANDLERS;
193 			}
194 		}
195 		break;
196 
197 	case EV_REL:
198 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
199 			disposition = INPUT_PASS_TO_HANDLERS;
200 
201 		break;
202 
203 	case EV_MSC:
204 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
205 			disposition = INPUT_PASS_TO_ALL;
206 
207 		break;
208 
209 	case EV_LED:
210 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
211 		    !!test_bit(code, dev->led) != value) {
212 
213 			__change_bit(code, dev->led);
214 			disposition = INPUT_PASS_TO_ALL;
215 		}
216 		break;
217 
218 	case EV_SND:
219 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
220 
221 			if (!!test_bit(code, dev->snd) != !!value)
222 				__change_bit(code, dev->snd);
223 			disposition = INPUT_PASS_TO_ALL;
224 		}
225 		break;
226 
227 	case EV_REP:
228 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
229 			dev->rep[code] = value;
230 			disposition = INPUT_PASS_TO_ALL;
231 		}
232 		break;
233 
234 	case EV_FF:
235 		if (value >= 0)
236 			disposition = INPUT_PASS_TO_ALL;
237 		break;
238 	}
239 
240 	if (type != EV_SYN)
241 		dev->sync = 0;
242 
243 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
244 		dev->event(dev, type, code, value);
245 
246 	if (disposition & INPUT_PASS_TO_HANDLERS)
247 		input_pass_event(dev, type, code, value);
248 }
249 
250 /**
251  * input_event() - report new input event
252  * @dev: device that generated the event
253  * @type: type of the event
254  * @code: event code
255  * @value: value of the event
256  *
257  * This function should be used by drivers implementing various input
258  * devices. See also input_inject_event().
259  */
260 
261 void input_event(struct input_dev *dev,
262 		 unsigned int type, unsigned int code, int value)
263 {
264 	unsigned long flags;
265 
266 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
267 
268 		spin_lock_irqsave(&dev->event_lock, flags);
269 		add_input_randomness(type, code, value);
270 		input_handle_event(dev, type, code, value);
271 		spin_unlock_irqrestore(&dev->event_lock, flags);
272 	}
273 }
274 EXPORT_SYMBOL(input_event);
275 
276 /**
277  * input_inject_event() - send input event from input handler
278  * @handle: input handle to send event through
279  * @type: type of the event
280  * @code: event code
281  * @value: value of the event
282  *
283  * Similar to input_event() but will ignore event if device is
284  * "grabbed" and handle injecting event is not the one that owns
285  * the device.
286  */
287 void input_inject_event(struct input_handle *handle,
288 			unsigned int type, unsigned int code, int value)
289 {
290 	struct input_dev *dev = handle->dev;
291 	struct input_handle *grab;
292 	unsigned long flags;
293 
294 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
295 		spin_lock_irqsave(&dev->event_lock, flags);
296 
297 		rcu_read_lock();
298 		grab = rcu_dereference(dev->grab);
299 		if (!grab || grab == handle)
300 			input_handle_event(dev, type, code, value);
301 		rcu_read_unlock();
302 
303 		spin_unlock_irqrestore(&dev->event_lock, flags);
304 	}
305 }
306 EXPORT_SYMBOL(input_inject_event);
307 
308 /**
309  * input_grab_device - grabs device for exclusive use
310  * @handle: input handle that wants to own the device
311  *
312  * When a device is grabbed by an input handle all events generated by
313  * the device are delivered only to this handle. Also events injected
314  * by other input handles are ignored while device is grabbed.
315  */
316 int input_grab_device(struct input_handle *handle)
317 {
318 	struct input_dev *dev = handle->dev;
319 	int retval;
320 
321 	retval = mutex_lock_interruptible(&dev->mutex);
322 	if (retval)
323 		return retval;
324 
325 	if (dev->grab) {
326 		retval = -EBUSY;
327 		goto out;
328 	}
329 
330 	rcu_assign_pointer(dev->grab, handle);
331 	synchronize_rcu();
332 
333  out:
334 	mutex_unlock(&dev->mutex);
335 	return retval;
336 }
337 EXPORT_SYMBOL(input_grab_device);
338 
339 static void __input_release_device(struct input_handle *handle)
340 {
341 	struct input_dev *dev = handle->dev;
342 
343 	if (dev->grab == handle) {
344 		rcu_assign_pointer(dev->grab, NULL);
345 		/* Make sure input_pass_event() notices that grab is gone */
346 		synchronize_rcu();
347 
348 		list_for_each_entry(handle, &dev->h_list, d_node)
349 			if (handle->open && handle->handler->start)
350 				handle->handler->start(handle);
351 	}
352 }
353 
354 /**
355  * input_release_device - release previously grabbed device
356  * @handle: input handle that owns the device
357  *
358  * Releases previously grabbed device so that other input handles can
359  * start receiving input events. Upon release all handlers attached
360  * to the device have their start() method called so they have a change
361  * to synchronize device state with the rest of the system.
362  */
363 void input_release_device(struct input_handle *handle)
364 {
365 	struct input_dev *dev = handle->dev;
366 
367 	mutex_lock(&dev->mutex);
368 	__input_release_device(handle);
369 	mutex_unlock(&dev->mutex);
370 }
371 EXPORT_SYMBOL(input_release_device);
372 
373 /**
374  * input_open_device - open input device
375  * @handle: handle through which device is being accessed
376  *
377  * This function should be called by input handlers when they
378  * want to start receive events from given input device.
379  */
380 int input_open_device(struct input_handle *handle)
381 {
382 	struct input_dev *dev = handle->dev;
383 	int retval;
384 
385 	retval = mutex_lock_interruptible(&dev->mutex);
386 	if (retval)
387 		return retval;
388 
389 	if (dev->going_away) {
390 		retval = -ENODEV;
391 		goto out;
392 	}
393 
394 	handle->open++;
395 
396 	if (!dev->users++ && dev->open)
397 		retval = dev->open(dev);
398 
399 	if (retval) {
400 		dev->users--;
401 		if (!--handle->open) {
402 			/*
403 			 * Make sure we are not delivering any more events
404 			 * through this handle
405 			 */
406 			synchronize_rcu();
407 		}
408 	}
409 
410  out:
411 	mutex_unlock(&dev->mutex);
412 	return retval;
413 }
414 EXPORT_SYMBOL(input_open_device);
415 
416 int input_flush_device(struct input_handle *handle, struct file *file)
417 {
418 	struct input_dev *dev = handle->dev;
419 	int retval;
420 
421 	retval = mutex_lock_interruptible(&dev->mutex);
422 	if (retval)
423 		return retval;
424 
425 	if (dev->flush)
426 		retval = dev->flush(dev, file);
427 
428 	mutex_unlock(&dev->mutex);
429 	return retval;
430 }
431 EXPORT_SYMBOL(input_flush_device);
432 
433 /**
434  * input_close_device - close input device
435  * @handle: handle through which device is being accessed
436  *
437  * This function should be called by input handlers when they
438  * want to stop receive events from given input device.
439  */
440 void input_close_device(struct input_handle *handle)
441 {
442 	struct input_dev *dev = handle->dev;
443 
444 	mutex_lock(&dev->mutex);
445 
446 	__input_release_device(handle);
447 
448 	if (!--dev->users && dev->close)
449 		dev->close(dev);
450 
451 	if (!--handle->open) {
452 		/*
453 		 * synchronize_rcu() makes sure that input_pass_event()
454 		 * completed and that no more input events are delivered
455 		 * through this handle
456 		 */
457 		synchronize_rcu();
458 	}
459 
460 	mutex_unlock(&dev->mutex);
461 }
462 EXPORT_SYMBOL(input_close_device);
463 
464 /*
465  * Prepare device for unregistering
466  */
467 static void input_disconnect_device(struct input_dev *dev)
468 {
469 	struct input_handle *handle;
470 	int code;
471 
472 	/*
473 	 * Mark device as going away. Note that we take dev->mutex here
474 	 * not to protect access to dev->going_away but rather to ensure
475 	 * that there are no threads in the middle of input_open_device()
476 	 */
477 	mutex_lock(&dev->mutex);
478 	dev->going_away = 1;
479 	mutex_unlock(&dev->mutex);
480 
481 	spin_lock_irq(&dev->event_lock);
482 
483 	/*
484 	 * Simulate keyup events for all pressed keys so that handlers
485 	 * are not left with "stuck" keys. The driver may continue
486 	 * generate events even after we done here but they will not
487 	 * reach any handlers.
488 	 */
489 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
490 		for (code = 0; code <= KEY_MAX; code++) {
491 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
492 			    test_bit(code, dev->key)) {
493 				input_pass_event(dev, EV_KEY, code, 0);
494 			}
495 		}
496 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
497 	}
498 
499 	list_for_each_entry(handle, &dev->h_list, d_node)
500 		handle->open = 0;
501 
502 	spin_unlock_irq(&dev->event_lock);
503 }
504 
505 static int input_fetch_keycode(struct input_dev *dev, int scancode)
506 {
507 	switch (dev->keycodesize) {
508 		case 1:
509 			return ((u8 *)dev->keycode)[scancode];
510 
511 		case 2:
512 			return ((u16 *)dev->keycode)[scancode];
513 
514 		default:
515 			return ((u32 *)dev->keycode)[scancode];
516 	}
517 }
518 
519 static int input_default_getkeycode(struct input_dev *dev,
520 				    int scancode, int *keycode)
521 {
522 	if (!dev->keycodesize)
523 		return -EINVAL;
524 
525 	if (scancode < 0 || scancode >= dev->keycodemax)
526 		return -EINVAL;
527 
528 	*keycode = input_fetch_keycode(dev, scancode);
529 
530 	return 0;
531 }
532 
533 static int input_default_setkeycode(struct input_dev *dev,
534 				    int scancode, int keycode)
535 {
536 	int old_keycode;
537 	int i;
538 
539 	if (scancode < 0 || scancode >= dev->keycodemax)
540 		return -EINVAL;
541 
542 	if (keycode < 0 || keycode > KEY_MAX)
543 		return -EINVAL;
544 
545 	if (!dev->keycodesize)
546 		return -EINVAL;
547 
548 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
549 		return -EINVAL;
550 
551 	switch (dev->keycodesize) {
552 		case 1: {
553 			u8 *k = (u8 *)dev->keycode;
554 			old_keycode = k[scancode];
555 			k[scancode] = keycode;
556 			break;
557 		}
558 		case 2: {
559 			u16 *k = (u16 *)dev->keycode;
560 			old_keycode = k[scancode];
561 			k[scancode] = keycode;
562 			break;
563 		}
564 		default: {
565 			u32 *k = (u32 *)dev->keycode;
566 			old_keycode = k[scancode];
567 			k[scancode] = keycode;
568 			break;
569 		}
570 	}
571 
572 	clear_bit(old_keycode, dev->keybit);
573 	set_bit(keycode, dev->keybit);
574 
575 	for (i = 0; i < dev->keycodemax; i++) {
576 		if (input_fetch_keycode(dev, i) == old_keycode) {
577 			set_bit(old_keycode, dev->keybit);
578 			break; /* Setting the bit twice is useless, so break */
579 		}
580 	}
581 
582 	return 0;
583 }
584 
585 
586 #define MATCH_BIT(bit, max) \
587 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
588 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
589 				break; \
590 		if (i != BITS_TO_LONGS(max)) \
591 			continue;
592 
593 static const struct input_device_id *input_match_device(const struct input_device_id *id,
594 							struct input_dev *dev)
595 {
596 	int i;
597 
598 	for (; id->flags || id->driver_info; id++) {
599 
600 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
601 			if (id->bustype != dev->id.bustype)
602 				continue;
603 
604 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
605 			if (id->vendor != dev->id.vendor)
606 				continue;
607 
608 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
609 			if (id->product != dev->id.product)
610 				continue;
611 
612 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
613 			if (id->version != dev->id.version)
614 				continue;
615 
616 		MATCH_BIT(evbit,  EV_MAX);
617 		MATCH_BIT(keybit, KEY_MAX);
618 		MATCH_BIT(relbit, REL_MAX);
619 		MATCH_BIT(absbit, ABS_MAX);
620 		MATCH_BIT(mscbit, MSC_MAX);
621 		MATCH_BIT(ledbit, LED_MAX);
622 		MATCH_BIT(sndbit, SND_MAX);
623 		MATCH_BIT(ffbit,  FF_MAX);
624 		MATCH_BIT(swbit,  SW_MAX);
625 
626 		return id;
627 	}
628 
629 	return NULL;
630 }
631 
632 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
633 {
634 	const struct input_device_id *id;
635 	int error;
636 
637 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
638 		return -ENODEV;
639 
640 	id = input_match_device(handler->id_table, dev);
641 	if (!id)
642 		return -ENODEV;
643 
644 	error = handler->connect(handler, dev, id);
645 	if (error && error != -ENODEV)
646 		printk(KERN_ERR
647 			"input: failed to attach handler %s to device %s, "
648 			"error: %d\n",
649 			handler->name, kobject_name(&dev->dev.kobj), error);
650 
651 	return error;
652 }
653 
654 
655 #ifdef CONFIG_PROC_FS
656 
657 static struct proc_dir_entry *proc_bus_input_dir;
658 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
659 static int input_devices_state;
660 
661 static inline void input_wakeup_procfs_readers(void)
662 {
663 	input_devices_state++;
664 	wake_up(&input_devices_poll_wait);
665 }
666 
667 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
668 {
669 	int state = input_devices_state;
670 
671 	poll_wait(file, &input_devices_poll_wait, wait);
672 	if (state != input_devices_state)
673 		return POLLIN | POLLRDNORM;
674 
675 	return 0;
676 }
677 
678 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
679 {
680 	if (mutex_lock_interruptible(&input_mutex))
681 		return NULL;
682 
683 	return seq_list_start(&input_dev_list, *pos);
684 }
685 
686 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
687 {
688 	return seq_list_next(v, &input_dev_list, pos);
689 }
690 
691 static void input_devices_seq_stop(struct seq_file *seq, void *v)
692 {
693 	mutex_unlock(&input_mutex);
694 }
695 
696 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
697 				   unsigned long *bitmap, int max)
698 {
699 	int i;
700 
701 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
702 		if (bitmap[i])
703 			break;
704 
705 	seq_printf(seq, "B: %s=", name);
706 	for (; i >= 0; i--)
707 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
708 	seq_putc(seq, '\n');
709 }
710 
711 static int input_devices_seq_show(struct seq_file *seq, void *v)
712 {
713 	struct input_dev *dev = container_of(v, struct input_dev, node);
714 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
715 	struct input_handle *handle;
716 
717 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
718 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
719 
720 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
721 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
722 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
723 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
724 	seq_printf(seq, "H: Handlers=");
725 
726 	list_for_each_entry(handle, &dev->h_list, d_node)
727 		seq_printf(seq, "%s ", handle->name);
728 	seq_putc(seq, '\n');
729 
730 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
731 	if (test_bit(EV_KEY, dev->evbit))
732 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
733 	if (test_bit(EV_REL, dev->evbit))
734 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
735 	if (test_bit(EV_ABS, dev->evbit))
736 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
737 	if (test_bit(EV_MSC, dev->evbit))
738 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
739 	if (test_bit(EV_LED, dev->evbit))
740 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
741 	if (test_bit(EV_SND, dev->evbit))
742 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
743 	if (test_bit(EV_FF, dev->evbit))
744 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
745 	if (test_bit(EV_SW, dev->evbit))
746 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
747 
748 	seq_putc(seq, '\n');
749 
750 	kfree(path);
751 	return 0;
752 }
753 
754 static struct seq_operations input_devices_seq_ops = {
755 	.start	= input_devices_seq_start,
756 	.next	= input_devices_seq_next,
757 	.stop	= input_devices_seq_stop,
758 	.show	= input_devices_seq_show,
759 };
760 
761 static int input_proc_devices_open(struct inode *inode, struct file *file)
762 {
763 	return seq_open(file, &input_devices_seq_ops);
764 }
765 
766 static const struct file_operations input_devices_fileops = {
767 	.owner		= THIS_MODULE,
768 	.open		= input_proc_devices_open,
769 	.poll		= input_proc_devices_poll,
770 	.read		= seq_read,
771 	.llseek		= seq_lseek,
772 	.release	= seq_release,
773 };
774 
775 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
776 {
777 	if (mutex_lock_interruptible(&input_mutex))
778 		return NULL;
779 
780 	seq->private = (void *)(unsigned long)*pos;
781 	return seq_list_start(&input_handler_list, *pos);
782 }
783 
784 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
785 {
786 	seq->private = (void *)(unsigned long)(*pos + 1);
787 	return seq_list_next(v, &input_handler_list, pos);
788 }
789 
790 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
791 {
792 	mutex_unlock(&input_mutex);
793 }
794 
795 static int input_handlers_seq_show(struct seq_file *seq, void *v)
796 {
797 	struct input_handler *handler = container_of(v, struct input_handler, node);
798 
799 	seq_printf(seq, "N: Number=%ld Name=%s",
800 		   (unsigned long)seq->private, handler->name);
801 	if (handler->fops)
802 		seq_printf(seq, " Minor=%d", handler->minor);
803 	seq_putc(seq, '\n');
804 
805 	return 0;
806 }
807 static struct seq_operations input_handlers_seq_ops = {
808 	.start	= input_handlers_seq_start,
809 	.next	= input_handlers_seq_next,
810 	.stop	= input_handlers_seq_stop,
811 	.show	= input_handlers_seq_show,
812 };
813 
814 static int input_proc_handlers_open(struct inode *inode, struct file *file)
815 {
816 	return seq_open(file, &input_handlers_seq_ops);
817 }
818 
819 static const struct file_operations input_handlers_fileops = {
820 	.owner		= THIS_MODULE,
821 	.open		= input_proc_handlers_open,
822 	.read		= seq_read,
823 	.llseek		= seq_lseek,
824 	.release	= seq_release,
825 };
826 
827 static int __init input_proc_init(void)
828 {
829 	struct proc_dir_entry *entry;
830 
831 	proc_bus_input_dir = proc_mkdir("input", proc_bus);
832 	if (!proc_bus_input_dir)
833 		return -ENOMEM;
834 
835 	proc_bus_input_dir->owner = THIS_MODULE;
836 
837 	entry = create_proc_entry("devices", 0, proc_bus_input_dir);
838 	if (!entry)
839 		goto fail1;
840 
841 	entry->owner = THIS_MODULE;
842 	entry->proc_fops = &input_devices_fileops;
843 
844 	entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
845 	if (!entry)
846 		goto fail2;
847 
848 	entry->owner = THIS_MODULE;
849 	entry->proc_fops = &input_handlers_fileops;
850 
851 	return 0;
852 
853  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
854  fail1: remove_proc_entry("input", proc_bus);
855 	return -ENOMEM;
856 }
857 
858 static void input_proc_exit(void)
859 {
860 	remove_proc_entry("devices", proc_bus_input_dir);
861 	remove_proc_entry("handlers", proc_bus_input_dir);
862 	remove_proc_entry("input", proc_bus);
863 }
864 
865 #else /* !CONFIG_PROC_FS */
866 static inline void input_wakeup_procfs_readers(void) { }
867 static inline int input_proc_init(void) { return 0; }
868 static inline void input_proc_exit(void) { }
869 #endif
870 
871 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
872 static ssize_t input_dev_show_##name(struct device *dev,		\
873 				     struct device_attribute *attr,	\
874 				     char *buf)				\
875 {									\
876 	struct input_dev *input_dev = to_input_dev(dev);		\
877 									\
878 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
879 			 input_dev->name ? input_dev->name : "");	\
880 }									\
881 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
882 
883 INPUT_DEV_STRING_ATTR_SHOW(name);
884 INPUT_DEV_STRING_ATTR_SHOW(phys);
885 INPUT_DEV_STRING_ATTR_SHOW(uniq);
886 
887 static int input_print_modalias_bits(char *buf, int size,
888 				     char name, unsigned long *bm,
889 				     unsigned int min_bit, unsigned int max_bit)
890 {
891 	int len = 0, i;
892 
893 	len += snprintf(buf, max(size, 0), "%c", name);
894 	for (i = min_bit; i < max_bit; i++)
895 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
896 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
897 	return len;
898 }
899 
900 static int input_print_modalias(char *buf, int size, struct input_dev *id,
901 				int add_cr)
902 {
903 	int len;
904 
905 	len = snprintf(buf, max(size, 0),
906 		       "input:b%04Xv%04Xp%04Xe%04X-",
907 		       id->id.bustype, id->id.vendor,
908 		       id->id.product, id->id.version);
909 
910 	len += input_print_modalias_bits(buf + len, size - len,
911 				'e', id->evbit, 0, EV_MAX);
912 	len += input_print_modalias_bits(buf + len, size - len,
913 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
914 	len += input_print_modalias_bits(buf + len, size - len,
915 				'r', id->relbit, 0, REL_MAX);
916 	len += input_print_modalias_bits(buf + len, size - len,
917 				'a', id->absbit, 0, ABS_MAX);
918 	len += input_print_modalias_bits(buf + len, size - len,
919 				'm', id->mscbit, 0, MSC_MAX);
920 	len += input_print_modalias_bits(buf + len, size - len,
921 				'l', id->ledbit, 0, LED_MAX);
922 	len += input_print_modalias_bits(buf + len, size - len,
923 				's', id->sndbit, 0, SND_MAX);
924 	len += input_print_modalias_bits(buf + len, size - len,
925 				'f', id->ffbit, 0, FF_MAX);
926 	len += input_print_modalias_bits(buf + len, size - len,
927 				'w', id->swbit, 0, SW_MAX);
928 
929 	if (add_cr)
930 		len += snprintf(buf + len, max(size - len, 0), "\n");
931 
932 	return len;
933 }
934 
935 static ssize_t input_dev_show_modalias(struct device *dev,
936 				       struct device_attribute *attr,
937 				       char *buf)
938 {
939 	struct input_dev *id = to_input_dev(dev);
940 	ssize_t len;
941 
942 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
943 
944 	return min_t(int, len, PAGE_SIZE);
945 }
946 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
947 
948 static struct attribute *input_dev_attrs[] = {
949 	&dev_attr_name.attr,
950 	&dev_attr_phys.attr,
951 	&dev_attr_uniq.attr,
952 	&dev_attr_modalias.attr,
953 	NULL
954 };
955 
956 static struct attribute_group input_dev_attr_group = {
957 	.attrs	= input_dev_attrs,
958 };
959 
960 #define INPUT_DEV_ID_ATTR(name)						\
961 static ssize_t input_dev_show_id_##name(struct device *dev,		\
962 					struct device_attribute *attr,	\
963 					char *buf)			\
964 {									\
965 	struct input_dev *input_dev = to_input_dev(dev);		\
966 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
967 }									\
968 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
969 
970 INPUT_DEV_ID_ATTR(bustype);
971 INPUT_DEV_ID_ATTR(vendor);
972 INPUT_DEV_ID_ATTR(product);
973 INPUT_DEV_ID_ATTR(version);
974 
975 static struct attribute *input_dev_id_attrs[] = {
976 	&dev_attr_bustype.attr,
977 	&dev_attr_vendor.attr,
978 	&dev_attr_product.attr,
979 	&dev_attr_version.attr,
980 	NULL
981 };
982 
983 static struct attribute_group input_dev_id_attr_group = {
984 	.name	= "id",
985 	.attrs	= input_dev_id_attrs,
986 };
987 
988 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
989 			      int max, int add_cr)
990 {
991 	int i;
992 	int len = 0;
993 
994 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
995 		if (bitmap[i])
996 			break;
997 
998 	for (; i >= 0; i--)
999 		len += snprintf(buf + len, max(buf_size - len, 0),
1000 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1001 
1002 	if (add_cr)
1003 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1004 
1005 	return len;
1006 }
1007 
1008 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1009 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1010 				       struct device_attribute *attr,	\
1011 				       char *buf)			\
1012 {									\
1013 	struct input_dev *input_dev = to_input_dev(dev);		\
1014 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1015 				     input_dev->bm##bit, ev##_MAX, 1);	\
1016 	return min_t(int, len, PAGE_SIZE);				\
1017 }									\
1018 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1019 
1020 INPUT_DEV_CAP_ATTR(EV, ev);
1021 INPUT_DEV_CAP_ATTR(KEY, key);
1022 INPUT_DEV_CAP_ATTR(REL, rel);
1023 INPUT_DEV_CAP_ATTR(ABS, abs);
1024 INPUT_DEV_CAP_ATTR(MSC, msc);
1025 INPUT_DEV_CAP_ATTR(LED, led);
1026 INPUT_DEV_CAP_ATTR(SND, snd);
1027 INPUT_DEV_CAP_ATTR(FF, ff);
1028 INPUT_DEV_CAP_ATTR(SW, sw);
1029 
1030 static struct attribute *input_dev_caps_attrs[] = {
1031 	&dev_attr_ev.attr,
1032 	&dev_attr_key.attr,
1033 	&dev_attr_rel.attr,
1034 	&dev_attr_abs.attr,
1035 	&dev_attr_msc.attr,
1036 	&dev_attr_led.attr,
1037 	&dev_attr_snd.attr,
1038 	&dev_attr_ff.attr,
1039 	&dev_attr_sw.attr,
1040 	NULL
1041 };
1042 
1043 static struct attribute_group input_dev_caps_attr_group = {
1044 	.name	= "capabilities",
1045 	.attrs	= input_dev_caps_attrs,
1046 };
1047 
1048 static struct attribute_group *input_dev_attr_groups[] = {
1049 	&input_dev_attr_group,
1050 	&input_dev_id_attr_group,
1051 	&input_dev_caps_attr_group,
1052 	NULL
1053 };
1054 
1055 static void input_dev_release(struct device *device)
1056 {
1057 	struct input_dev *dev = to_input_dev(device);
1058 
1059 	input_ff_destroy(dev);
1060 	kfree(dev);
1061 
1062 	module_put(THIS_MODULE);
1063 }
1064 
1065 /*
1066  * Input uevent interface - loading event handlers based on
1067  * device bitfields.
1068  */
1069 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1070 				   const char *name, unsigned long *bitmap, int max)
1071 {
1072 	int len;
1073 
1074 	if (add_uevent_var(env, "%s=", name))
1075 		return -ENOMEM;
1076 
1077 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1078 				 sizeof(env->buf) - env->buflen,
1079 				 bitmap, max, 0);
1080 	if (len >= (sizeof(env->buf) - env->buflen))
1081 		return -ENOMEM;
1082 
1083 	env->buflen += len;
1084 	return 0;
1085 }
1086 
1087 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1088 					 struct input_dev *dev)
1089 {
1090 	int len;
1091 
1092 	if (add_uevent_var(env, "MODALIAS="))
1093 		return -ENOMEM;
1094 
1095 	len = input_print_modalias(&env->buf[env->buflen - 1],
1096 				   sizeof(env->buf) - env->buflen,
1097 				   dev, 0);
1098 	if (len >= (sizeof(env->buf) - env->buflen))
1099 		return -ENOMEM;
1100 
1101 	env->buflen += len;
1102 	return 0;
1103 }
1104 
1105 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1106 	do {								\
1107 		int err = add_uevent_var(env, fmt, val);		\
1108 		if (err)						\
1109 			return err;					\
1110 	} while (0)
1111 
1112 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1113 	do {								\
1114 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1115 		if (err)						\
1116 			return err;					\
1117 	} while (0)
1118 
1119 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1120 	do {								\
1121 		int err = input_add_uevent_modalias_var(env, dev);	\
1122 		if (err)						\
1123 			return err;					\
1124 	} while (0)
1125 
1126 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1127 {
1128 	struct input_dev *dev = to_input_dev(device);
1129 
1130 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1131 				dev->id.bustype, dev->id.vendor,
1132 				dev->id.product, dev->id.version);
1133 	if (dev->name)
1134 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1135 	if (dev->phys)
1136 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1137 	if (dev->uniq)
1138 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1139 
1140 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1141 	if (test_bit(EV_KEY, dev->evbit))
1142 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1143 	if (test_bit(EV_REL, dev->evbit))
1144 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1145 	if (test_bit(EV_ABS, dev->evbit))
1146 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1147 	if (test_bit(EV_MSC, dev->evbit))
1148 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1149 	if (test_bit(EV_LED, dev->evbit))
1150 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1151 	if (test_bit(EV_SND, dev->evbit))
1152 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1153 	if (test_bit(EV_FF, dev->evbit))
1154 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1155 	if (test_bit(EV_SW, dev->evbit))
1156 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1157 
1158 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1159 
1160 	return 0;
1161 }
1162 
1163 static struct device_type input_dev_type = {
1164 	.groups		= input_dev_attr_groups,
1165 	.release	= input_dev_release,
1166 	.uevent		= input_dev_uevent,
1167 };
1168 
1169 struct class input_class = {
1170 	.name		= "input",
1171 };
1172 EXPORT_SYMBOL_GPL(input_class);
1173 
1174 /**
1175  * input_allocate_device - allocate memory for new input device
1176  *
1177  * Returns prepared struct input_dev or NULL.
1178  *
1179  * NOTE: Use input_free_device() to free devices that have not been
1180  * registered; input_unregister_device() should be used for already
1181  * registered devices.
1182  */
1183 struct input_dev *input_allocate_device(void)
1184 {
1185 	struct input_dev *dev;
1186 
1187 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1188 	if (dev) {
1189 		dev->dev.type = &input_dev_type;
1190 		dev->dev.class = &input_class;
1191 		device_initialize(&dev->dev);
1192 		mutex_init(&dev->mutex);
1193 		spin_lock_init(&dev->event_lock);
1194 		INIT_LIST_HEAD(&dev->h_list);
1195 		INIT_LIST_HEAD(&dev->node);
1196 
1197 		__module_get(THIS_MODULE);
1198 	}
1199 
1200 	return dev;
1201 }
1202 EXPORT_SYMBOL(input_allocate_device);
1203 
1204 /**
1205  * input_free_device - free memory occupied by input_dev structure
1206  * @dev: input device to free
1207  *
1208  * This function should only be used if input_register_device()
1209  * was not called yet or if it failed. Once device was registered
1210  * use input_unregister_device() and memory will be freed once last
1211  * reference to the device is dropped.
1212  *
1213  * Device should be allocated by input_allocate_device().
1214  *
1215  * NOTE: If there are references to the input device then memory
1216  * will not be freed until last reference is dropped.
1217  */
1218 void input_free_device(struct input_dev *dev)
1219 {
1220 	if (dev)
1221 		input_put_device(dev);
1222 }
1223 EXPORT_SYMBOL(input_free_device);
1224 
1225 /**
1226  * input_set_capability - mark device as capable of a certain event
1227  * @dev: device that is capable of emitting or accepting event
1228  * @type: type of the event (EV_KEY, EV_REL, etc...)
1229  * @code: event code
1230  *
1231  * In addition to setting up corresponding bit in appropriate capability
1232  * bitmap the function also adjusts dev->evbit.
1233  */
1234 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1235 {
1236 	switch (type) {
1237 	case EV_KEY:
1238 		__set_bit(code, dev->keybit);
1239 		break;
1240 
1241 	case EV_REL:
1242 		__set_bit(code, dev->relbit);
1243 		break;
1244 
1245 	case EV_ABS:
1246 		__set_bit(code, dev->absbit);
1247 		break;
1248 
1249 	case EV_MSC:
1250 		__set_bit(code, dev->mscbit);
1251 		break;
1252 
1253 	case EV_SW:
1254 		__set_bit(code, dev->swbit);
1255 		break;
1256 
1257 	case EV_LED:
1258 		__set_bit(code, dev->ledbit);
1259 		break;
1260 
1261 	case EV_SND:
1262 		__set_bit(code, dev->sndbit);
1263 		break;
1264 
1265 	case EV_FF:
1266 		__set_bit(code, dev->ffbit);
1267 		break;
1268 
1269 	default:
1270 		printk(KERN_ERR
1271 			"input_set_capability: unknown type %u (code %u)\n",
1272 			type, code);
1273 		dump_stack();
1274 		return;
1275 	}
1276 
1277 	__set_bit(type, dev->evbit);
1278 }
1279 EXPORT_SYMBOL(input_set_capability);
1280 
1281 /**
1282  * input_register_device - register device with input core
1283  * @dev: device to be registered
1284  *
1285  * This function registers device with input core. The device must be
1286  * allocated with input_allocate_device() and all it's capabilities
1287  * set up before registering.
1288  * If function fails the device must be freed with input_free_device().
1289  * Once device has been successfully registered it can be unregistered
1290  * with input_unregister_device(); input_free_device() should not be
1291  * called in this case.
1292  */
1293 int input_register_device(struct input_dev *dev)
1294 {
1295 	static atomic_t input_no = ATOMIC_INIT(0);
1296 	struct input_handler *handler;
1297 	const char *path;
1298 	int error;
1299 
1300 	__set_bit(EV_SYN, dev->evbit);
1301 
1302 	/*
1303 	 * If delay and period are pre-set by the driver, then autorepeating
1304 	 * is handled by the driver itself and we don't do it in input.c.
1305 	 */
1306 
1307 	init_timer(&dev->timer);
1308 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1309 		dev->timer.data = (long) dev;
1310 		dev->timer.function = input_repeat_key;
1311 		dev->rep[REP_DELAY] = 250;
1312 		dev->rep[REP_PERIOD] = 33;
1313 	}
1314 
1315 	if (!dev->getkeycode)
1316 		dev->getkeycode = input_default_getkeycode;
1317 
1318 	if (!dev->setkeycode)
1319 		dev->setkeycode = input_default_setkeycode;
1320 
1321 	snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1322 		 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1323 
1324 	if (dev->cdev.dev)
1325 		dev->dev.parent = dev->cdev.dev;
1326 
1327 	error = device_add(&dev->dev);
1328 	if (error)
1329 		return error;
1330 
1331 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1332 	printk(KERN_INFO "input: %s as %s\n",
1333 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1334 	kfree(path);
1335 
1336 	error = mutex_lock_interruptible(&input_mutex);
1337 	if (error) {
1338 		device_del(&dev->dev);
1339 		return error;
1340 	}
1341 
1342 	list_add_tail(&dev->node, &input_dev_list);
1343 
1344 	list_for_each_entry(handler, &input_handler_list, node)
1345 		input_attach_handler(dev, handler);
1346 
1347 	input_wakeup_procfs_readers();
1348 
1349 	mutex_unlock(&input_mutex);
1350 
1351 	return 0;
1352 }
1353 EXPORT_SYMBOL(input_register_device);
1354 
1355 /**
1356  * input_unregister_device - unregister previously registered device
1357  * @dev: device to be unregistered
1358  *
1359  * This function unregisters an input device. Once device is unregistered
1360  * the caller should not try to access it as it may get freed at any moment.
1361  */
1362 void input_unregister_device(struct input_dev *dev)
1363 {
1364 	struct input_handle *handle, *next;
1365 
1366 	input_disconnect_device(dev);
1367 
1368 	mutex_lock(&input_mutex);
1369 
1370 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1371 		handle->handler->disconnect(handle);
1372 	WARN_ON(!list_empty(&dev->h_list));
1373 
1374 	del_timer_sync(&dev->timer);
1375 	list_del_init(&dev->node);
1376 
1377 	input_wakeup_procfs_readers();
1378 
1379 	mutex_unlock(&input_mutex);
1380 
1381 	device_unregister(&dev->dev);
1382 }
1383 EXPORT_SYMBOL(input_unregister_device);
1384 
1385 /**
1386  * input_register_handler - register a new input handler
1387  * @handler: handler to be registered
1388  *
1389  * This function registers a new input handler (interface) for input
1390  * devices in the system and attaches it to all input devices that
1391  * are compatible with the handler.
1392  */
1393 int input_register_handler(struct input_handler *handler)
1394 {
1395 	struct input_dev *dev;
1396 	int retval;
1397 
1398 	retval = mutex_lock_interruptible(&input_mutex);
1399 	if (retval)
1400 		return retval;
1401 
1402 	INIT_LIST_HEAD(&handler->h_list);
1403 
1404 	if (handler->fops != NULL) {
1405 		if (input_table[handler->minor >> 5]) {
1406 			retval = -EBUSY;
1407 			goto out;
1408 		}
1409 		input_table[handler->minor >> 5] = handler;
1410 	}
1411 
1412 	list_add_tail(&handler->node, &input_handler_list);
1413 
1414 	list_for_each_entry(dev, &input_dev_list, node)
1415 		input_attach_handler(dev, handler);
1416 
1417 	input_wakeup_procfs_readers();
1418 
1419  out:
1420 	mutex_unlock(&input_mutex);
1421 	return retval;
1422 }
1423 EXPORT_SYMBOL(input_register_handler);
1424 
1425 /**
1426  * input_unregister_handler - unregisters an input handler
1427  * @handler: handler to be unregistered
1428  *
1429  * This function disconnects a handler from its input devices and
1430  * removes it from lists of known handlers.
1431  */
1432 void input_unregister_handler(struct input_handler *handler)
1433 {
1434 	struct input_handle *handle, *next;
1435 
1436 	mutex_lock(&input_mutex);
1437 
1438 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1439 		handler->disconnect(handle);
1440 	WARN_ON(!list_empty(&handler->h_list));
1441 
1442 	list_del_init(&handler->node);
1443 
1444 	if (handler->fops != NULL)
1445 		input_table[handler->minor >> 5] = NULL;
1446 
1447 	input_wakeup_procfs_readers();
1448 
1449 	mutex_unlock(&input_mutex);
1450 }
1451 EXPORT_SYMBOL(input_unregister_handler);
1452 
1453 /**
1454  * input_register_handle - register a new input handle
1455  * @handle: handle to register
1456  *
1457  * This function puts a new input handle onto device's
1458  * and handler's lists so that events can flow through
1459  * it once it is opened using input_open_device().
1460  *
1461  * This function is supposed to be called from handler's
1462  * connect() method.
1463  */
1464 int input_register_handle(struct input_handle *handle)
1465 {
1466 	struct input_handler *handler = handle->handler;
1467 	struct input_dev *dev = handle->dev;
1468 	int error;
1469 
1470 	/*
1471 	 * We take dev->mutex here to prevent race with
1472 	 * input_release_device().
1473 	 */
1474 	error = mutex_lock_interruptible(&dev->mutex);
1475 	if (error)
1476 		return error;
1477 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1478 	mutex_unlock(&dev->mutex);
1479 	synchronize_rcu();
1480 
1481 	/*
1482 	 * Since we are supposed to be called from ->connect()
1483 	 * which is mutually exclusive with ->disconnect()
1484 	 * we can't be racing with input_unregister_handle()
1485 	 * and so separate lock is not needed here.
1486 	 */
1487 	list_add_tail(&handle->h_node, &handler->h_list);
1488 
1489 	if (handler->start)
1490 		handler->start(handle);
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(input_register_handle);
1495 
1496 /**
1497  * input_unregister_handle - unregister an input handle
1498  * @handle: handle to unregister
1499  *
1500  * This function removes input handle from device's
1501  * and handler's lists.
1502  *
1503  * This function is supposed to be called from handler's
1504  * disconnect() method.
1505  */
1506 void input_unregister_handle(struct input_handle *handle)
1507 {
1508 	struct input_dev *dev = handle->dev;
1509 
1510 	list_del_init(&handle->h_node);
1511 
1512 	/*
1513 	 * Take dev->mutex to prevent race with input_release_device().
1514 	 */
1515 	mutex_lock(&dev->mutex);
1516 	list_del_rcu(&handle->d_node);
1517 	mutex_unlock(&dev->mutex);
1518 	synchronize_rcu();
1519 }
1520 EXPORT_SYMBOL(input_unregister_handle);
1521 
1522 static int input_open_file(struct inode *inode, struct file *file)
1523 {
1524 	struct input_handler *handler = input_table[iminor(inode) >> 5];
1525 	const struct file_operations *old_fops, *new_fops = NULL;
1526 	int err;
1527 
1528 	/* No load-on-demand here? */
1529 	if (!handler || !(new_fops = fops_get(handler->fops)))
1530 		return -ENODEV;
1531 
1532 	/*
1533 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1534 	 * not "no device". Oh, well...
1535 	 */
1536 	if (!new_fops->open) {
1537 		fops_put(new_fops);
1538 		return -ENODEV;
1539 	}
1540 	old_fops = file->f_op;
1541 	file->f_op = new_fops;
1542 
1543 	err = new_fops->open(inode, file);
1544 
1545 	if (err) {
1546 		fops_put(file->f_op);
1547 		file->f_op = fops_get(old_fops);
1548 	}
1549 	fops_put(old_fops);
1550 	return err;
1551 }
1552 
1553 static const struct file_operations input_fops = {
1554 	.owner = THIS_MODULE,
1555 	.open = input_open_file,
1556 };
1557 
1558 static int __init input_init(void)
1559 {
1560 	int err;
1561 
1562 	err = class_register(&input_class);
1563 	if (err) {
1564 		printk(KERN_ERR "input: unable to register input_dev class\n");
1565 		return err;
1566 	}
1567 
1568 	err = input_proc_init();
1569 	if (err)
1570 		goto fail1;
1571 
1572 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1573 	if (err) {
1574 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1575 		goto fail2;
1576 	}
1577 
1578 	return 0;
1579 
1580  fail2:	input_proc_exit();
1581  fail1:	class_unregister(&input_class);
1582 	return err;
1583 }
1584 
1585 static void __exit input_exit(void)
1586 {
1587 	input_proc_exit();
1588 	unregister_chrdev(INPUT_MAJOR, "input");
1589 	class_unregister(&input_class);
1590 }
1591 
1592 subsys_initcall(input_init);
1593 module_exit(input_exit);
1594