xref: /openbmc/linux/drivers/infiniband/ulp/iser/iser_verbs.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
4  * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *	- Redistributions of source code must retain the above
17  *	  copyright notice, this list of conditions and the following
18  *	  disclaimer.
19  *
20  *	- Redistributions in binary form must reproduce the above
21  *	  copyright notice, this list of conditions and the following
22  *	  disclaimer in the documentation and/or other materials
23  *	  provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38 
39 #include "iscsi_iser.h"
40 
41 #define ISCSI_ISER_MAX_CONN	8
42 #define ISER_MAX_RX_LEN		(ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN		(ISER_QP_MAX_REQ_DTOS  * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN		(ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 				 ISCSI_ISER_MAX_CONN)
46 
47 static int iser_cq_poll_limit = 512;
48 
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51 
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 	iser_err("cq event %s (%d)\n",
55 		 ib_event_msg(cause->event), cause->event);
56 }
57 
58 static void iser_qp_event_callback(struct ib_event *cause, void *context)
59 {
60 	iser_err("qp event %s (%d)\n",
61 		 ib_event_msg(cause->event), cause->event);
62 }
63 
64 static void iser_event_handler(struct ib_event_handler *handler,
65 				struct ib_event *event)
66 {
67 	iser_err("async event %s (%d) on device %s port %d\n",
68 		 ib_event_msg(event->event), event->event,
69 		 event->device->name, event->element.port_num);
70 }
71 
72 /**
73  * iser_create_device_ib_res - creates Protection Domain (PD), Completion
74  * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
75  * the adapator.
76  *
77  * returns 0 on success, -1 on failure
78  */
79 static int iser_create_device_ib_res(struct iser_device *device)
80 {
81 	struct ib_device_attr *dev_attr = &device->dev_attr;
82 	int ret, i, max_cqe;
83 
84 	ret = ib_query_device(device->ib_device, dev_attr);
85 	if (ret) {
86 		pr_warn("Query device failed for %s\n", device->ib_device->name);
87 		return ret;
88 	}
89 
90 	ret = iser_assign_reg_ops(device);
91 	if (ret)
92 		return ret;
93 
94 	device->comps_used = min_t(int, num_online_cpus(),
95 				 device->ib_device->num_comp_vectors);
96 
97 	device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
98 				GFP_KERNEL);
99 	if (!device->comps)
100 		goto comps_err;
101 
102 	max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
103 
104 	iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
105 		  device->comps_used, device->ib_device->name,
106 		  device->ib_device->num_comp_vectors, max_cqe);
107 
108 	device->pd = ib_alloc_pd(device->ib_device);
109 	if (IS_ERR(device->pd))
110 		goto pd_err;
111 
112 	for (i = 0; i < device->comps_used; i++) {
113 		struct ib_cq_init_attr cq_attr = {};
114 		struct iser_comp *comp = &device->comps[i];
115 
116 		comp->device = device;
117 		cq_attr.cqe = max_cqe;
118 		cq_attr.comp_vector = i;
119 		comp->cq = ib_create_cq(device->ib_device,
120 					iser_cq_callback,
121 					iser_cq_event_callback,
122 					(void *)comp,
123 					&cq_attr);
124 		if (IS_ERR(comp->cq)) {
125 			comp->cq = NULL;
126 			goto cq_err;
127 		}
128 
129 		if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
130 			goto cq_err;
131 
132 		tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
133 			     (unsigned long)comp);
134 	}
135 
136 	if (!iser_always_reg) {
137 		int access = IB_ACCESS_LOCAL_WRITE |
138 			     IB_ACCESS_REMOTE_WRITE |
139 			     IB_ACCESS_REMOTE_READ;
140 
141 		device->mr = ib_get_dma_mr(device->pd, access);
142 		if (IS_ERR(device->mr))
143 			goto dma_mr_err;
144 	}
145 
146 	INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
147 				iser_event_handler);
148 	if (ib_register_event_handler(&device->event_handler))
149 		goto handler_err;
150 
151 	return 0;
152 
153 handler_err:
154 	if (device->mr)
155 		ib_dereg_mr(device->mr);
156 dma_mr_err:
157 	for (i = 0; i < device->comps_used; i++)
158 		tasklet_kill(&device->comps[i].tasklet);
159 cq_err:
160 	for (i = 0; i < device->comps_used; i++) {
161 		struct iser_comp *comp = &device->comps[i];
162 
163 		if (comp->cq)
164 			ib_destroy_cq(comp->cq);
165 	}
166 	ib_dealloc_pd(device->pd);
167 pd_err:
168 	kfree(device->comps);
169 comps_err:
170 	iser_err("failed to allocate an IB resource\n");
171 	return -1;
172 }
173 
174 /**
175  * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
176  * CQ and PD created with the device associated with the adapator.
177  */
178 static void iser_free_device_ib_res(struct iser_device *device)
179 {
180 	int i;
181 
182 	for (i = 0; i < device->comps_used; i++) {
183 		struct iser_comp *comp = &device->comps[i];
184 
185 		tasklet_kill(&comp->tasklet);
186 		ib_destroy_cq(comp->cq);
187 		comp->cq = NULL;
188 	}
189 
190 	(void)ib_unregister_event_handler(&device->event_handler);
191 	if (device->mr)
192 		(void)ib_dereg_mr(device->mr);
193 	ib_dealloc_pd(device->pd);
194 
195 	kfree(device->comps);
196 	device->comps = NULL;
197 
198 	device->mr = NULL;
199 	device->pd = NULL;
200 }
201 
202 /**
203  * iser_alloc_fmr_pool - Creates FMR pool and page_vector
204  *
205  * returns 0 on success, or errno code on failure
206  */
207 int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
208 			unsigned cmds_max,
209 			unsigned int size)
210 {
211 	struct iser_device *device = ib_conn->device;
212 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
213 	struct iser_page_vec *page_vec;
214 	struct iser_fr_desc *desc;
215 	struct ib_fmr_pool *fmr_pool;
216 	struct ib_fmr_pool_param params;
217 	int ret;
218 
219 	INIT_LIST_HEAD(&fr_pool->list);
220 	spin_lock_init(&fr_pool->lock);
221 
222 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
223 	if (!desc)
224 		return -ENOMEM;
225 
226 	page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
227 			   GFP_KERNEL);
228 	if (!page_vec) {
229 		ret = -ENOMEM;
230 		goto err_frpl;
231 	}
232 
233 	page_vec->pages = (u64 *)(page_vec + 1);
234 
235 	params.page_shift        = SHIFT_4K;
236 	params.max_pages_per_fmr = size;
237 	/* make the pool size twice the max number of SCSI commands *
238 	 * the ML is expected to queue, watermark for unmap at 50%  */
239 	params.pool_size	 = cmds_max * 2;
240 	params.dirty_watermark	 = cmds_max;
241 	params.cache		 = 0;
242 	params.flush_function	 = NULL;
243 	params.access		 = (IB_ACCESS_LOCAL_WRITE  |
244 				    IB_ACCESS_REMOTE_WRITE |
245 				    IB_ACCESS_REMOTE_READ);
246 
247 	fmr_pool = ib_create_fmr_pool(device->pd, &params);
248 	if (IS_ERR(fmr_pool)) {
249 		ret = PTR_ERR(fmr_pool);
250 		iser_err("FMR allocation failed, err %d\n", ret);
251 		goto err_fmr;
252 	}
253 
254 	desc->rsc.page_vec = page_vec;
255 	desc->rsc.fmr_pool = fmr_pool;
256 	list_add(&desc->list, &fr_pool->list);
257 
258 	return 0;
259 
260 err_fmr:
261 	kfree(page_vec);
262 err_frpl:
263 	kfree(desc);
264 
265 	return ret;
266 }
267 
268 /**
269  * iser_free_fmr_pool - releases the FMR pool and page vec
270  */
271 void iser_free_fmr_pool(struct ib_conn *ib_conn)
272 {
273 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
274 	struct iser_fr_desc *desc;
275 
276 	desc = list_first_entry(&fr_pool->list,
277 				struct iser_fr_desc, list);
278 	list_del(&desc->list);
279 
280 	iser_info("freeing conn %p fmr pool %p\n",
281 		  ib_conn, desc->rsc.fmr_pool);
282 
283 	ib_destroy_fmr_pool(desc->rsc.fmr_pool);
284 	kfree(desc->rsc.page_vec);
285 	kfree(desc);
286 }
287 
288 static int
289 iser_alloc_reg_res(struct ib_device *ib_device,
290 		   struct ib_pd *pd,
291 		   struct iser_reg_resources *res,
292 		   unsigned int size)
293 {
294 	int ret;
295 
296 	res->frpl = ib_alloc_fast_reg_page_list(ib_device, size);
297 	if (IS_ERR(res->frpl)) {
298 		ret = PTR_ERR(res->frpl);
299 		iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
300 			 ret);
301 		return PTR_ERR(res->frpl);
302 	}
303 
304 	res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size);
305 	if (IS_ERR(res->mr)) {
306 		ret = PTR_ERR(res->mr);
307 		iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
308 		goto fast_reg_mr_failure;
309 	}
310 	res->mr_valid = 1;
311 
312 	return 0;
313 
314 fast_reg_mr_failure:
315 	ib_free_fast_reg_page_list(res->frpl);
316 
317 	return ret;
318 }
319 
320 static void
321 iser_free_reg_res(struct iser_reg_resources *rsc)
322 {
323 	ib_dereg_mr(rsc->mr);
324 	ib_free_fast_reg_page_list(rsc->frpl);
325 }
326 
327 static int
328 iser_alloc_pi_ctx(struct ib_device *ib_device,
329 		  struct ib_pd *pd,
330 		  struct iser_fr_desc *desc,
331 		  unsigned int size)
332 {
333 	struct iser_pi_context *pi_ctx = NULL;
334 	int ret;
335 
336 	desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
337 	if (!desc->pi_ctx)
338 		return -ENOMEM;
339 
340 	pi_ctx = desc->pi_ctx;
341 
342 	ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size);
343 	if (ret) {
344 		iser_err("failed to allocate reg_resources\n");
345 		goto alloc_reg_res_err;
346 	}
347 
348 	pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
349 	if (IS_ERR(pi_ctx->sig_mr)) {
350 		ret = PTR_ERR(pi_ctx->sig_mr);
351 		goto sig_mr_failure;
352 	}
353 	pi_ctx->sig_mr_valid = 1;
354 	desc->pi_ctx->sig_protected = 0;
355 
356 	return 0;
357 
358 sig_mr_failure:
359 	iser_free_reg_res(&pi_ctx->rsc);
360 alloc_reg_res_err:
361 	kfree(desc->pi_ctx);
362 
363 	return ret;
364 }
365 
366 static void
367 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
368 {
369 	iser_free_reg_res(&pi_ctx->rsc);
370 	ib_dereg_mr(pi_ctx->sig_mr);
371 	kfree(pi_ctx);
372 }
373 
374 static struct iser_fr_desc *
375 iser_create_fastreg_desc(struct ib_device *ib_device,
376 			 struct ib_pd *pd,
377 			 bool pi_enable,
378 			 unsigned int size)
379 {
380 	struct iser_fr_desc *desc;
381 	int ret;
382 
383 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
384 	if (!desc)
385 		return ERR_PTR(-ENOMEM);
386 
387 	ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size);
388 	if (ret)
389 		goto reg_res_alloc_failure;
390 
391 	if (pi_enable) {
392 		ret = iser_alloc_pi_ctx(ib_device, pd, desc, size);
393 		if (ret)
394 			goto pi_ctx_alloc_failure;
395 	}
396 
397 	return desc;
398 
399 pi_ctx_alloc_failure:
400 	iser_free_reg_res(&desc->rsc);
401 reg_res_alloc_failure:
402 	kfree(desc);
403 
404 	return ERR_PTR(ret);
405 }
406 
407 /**
408  * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
409  * for fast registration work requests.
410  * returns 0 on success, or errno code on failure
411  */
412 int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
413 			    unsigned cmds_max,
414 			    unsigned int size)
415 {
416 	struct iser_device *device = ib_conn->device;
417 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
418 	struct iser_fr_desc *desc;
419 	int i, ret;
420 
421 	INIT_LIST_HEAD(&fr_pool->list);
422 	spin_lock_init(&fr_pool->lock);
423 	fr_pool->size = 0;
424 	for (i = 0; i < cmds_max; i++) {
425 		desc = iser_create_fastreg_desc(device->ib_device, device->pd,
426 						ib_conn->pi_support, size);
427 		if (IS_ERR(desc)) {
428 			ret = PTR_ERR(desc);
429 			goto err;
430 		}
431 
432 		list_add_tail(&desc->list, &fr_pool->list);
433 		fr_pool->size++;
434 	}
435 
436 	return 0;
437 
438 err:
439 	iser_free_fastreg_pool(ib_conn);
440 	return ret;
441 }
442 
443 /**
444  * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
445  */
446 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
447 {
448 	struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
449 	struct iser_fr_desc *desc, *tmp;
450 	int i = 0;
451 
452 	if (list_empty(&fr_pool->list))
453 		return;
454 
455 	iser_info("freeing conn %p fr pool\n", ib_conn);
456 
457 	list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) {
458 		list_del(&desc->list);
459 		iser_free_reg_res(&desc->rsc);
460 		if (desc->pi_ctx)
461 			iser_free_pi_ctx(desc->pi_ctx);
462 		kfree(desc);
463 		++i;
464 	}
465 
466 	if (i < fr_pool->size)
467 		iser_warn("pool still has %d regions registered\n",
468 			  fr_pool->size - i);
469 }
470 
471 /**
472  * iser_create_ib_conn_res - Queue-Pair (QP)
473  *
474  * returns 0 on success, -1 on failure
475  */
476 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
477 {
478 	struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
479 						   ib_conn);
480 	struct iser_device	*device;
481 	struct ib_device_attr *dev_attr;
482 	struct ib_qp_init_attr	init_attr;
483 	int			ret = -ENOMEM;
484 	int index, min_index = 0;
485 
486 	BUG_ON(ib_conn->device == NULL);
487 
488 	device = ib_conn->device;
489 	dev_attr = &device->dev_attr;
490 
491 	memset(&init_attr, 0, sizeof init_attr);
492 
493 	mutex_lock(&ig.connlist_mutex);
494 	/* select the CQ with the minimal number of usages */
495 	for (index = 0; index < device->comps_used; index++) {
496 		if (device->comps[index].active_qps <
497 		    device->comps[min_index].active_qps)
498 			min_index = index;
499 	}
500 	ib_conn->comp = &device->comps[min_index];
501 	ib_conn->comp->active_qps++;
502 	mutex_unlock(&ig.connlist_mutex);
503 	iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
504 
505 	init_attr.event_handler = iser_qp_event_callback;
506 	init_attr.qp_context	= (void *)ib_conn;
507 	init_attr.send_cq	= ib_conn->comp->cq;
508 	init_attr.recv_cq	= ib_conn->comp->cq;
509 	init_attr.cap.max_recv_wr  = ISER_QP_MAX_RECV_DTOS;
510 	init_attr.cap.max_send_sge = 2;
511 	init_attr.cap.max_recv_sge = 1;
512 	init_attr.sq_sig_type	= IB_SIGNAL_REQ_WR;
513 	init_attr.qp_type	= IB_QPT_RC;
514 	if (ib_conn->pi_support) {
515 		init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
516 		init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
517 		iser_conn->max_cmds =
518 			ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
519 	} else {
520 		if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
521 			init_attr.cap.max_send_wr  = ISER_QP_MAX_REQ_DTOS + 1;
522 			iser_conn->max_cmds =
523 				ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
524 		} else {
525 			init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
526 			iser_conn->max_cmds =
527 				ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
528 			iser_dbg("device %s supports max_send_wr %d\n",
529 				 device->ib_device->name, dev_attr->max_qp_wr);
530 		}
531 	}
532 
533 	ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
534 	if (ret)
535 		goto out_err;
536 
537 	ib_conn->qp = ib_conn->cma_id->qp;
538 	iser_info("setting conn %p cma_id %p qp %p\n",
539 		  ib_conn, ib_conn->cma_id,
540 		  ib_conn->cma_id->qp);
541 	return ret;
542 
543 out_err:
544 	mutex_lock(&ig.connlist_mutex);
545 	ib_conn->comp->active_qps--;
546 	mutex_unlock(&ig.connlist_mutex);
547 	iser_err("unable to alloc mem or create resource, err %d\n", ret);
548 
549 	return ret;
550 }
551 
552 /**
553  * based on the resolved device node GUID see if there already allocated
554  * device for this device. If there's no such, create one.
555  */
556 static
557 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
558 {
559 	struct iser_device *device;
560 
561 	mutex_lock(&ig.device_list_mutex);
562 
563 	list_for_each_entry(device, &ig.device_list, ig_list)
564 		/* find if there's a match using the node GUID */
565 		if (device->ib_device->node_guid == cma_id->device->node_guid)
566 			goto inc_refcnt;
567 
568 	device = kzalloc(sizeof *device, GFP_KERNEL);
569 	if (device == NULL)
570 		goto out;
571 
572 	/* assign this device to the device */
573 	device->ib_device = cma_id->device;
574 	/* init the device and link it into ig device list */
575 	if (iser_create_device_ib_res(device)) {
576 		kfree(device);
577 		device = NULL;
578 		goto out;
579 	}
580 	list_add(&device->ig_list, &ig.device_list);
581 
582 inc_refcnt:
583 	device->refcount++;
584 out:
585 	mutex_unlock(&ig.device_list_mutex);
586 	return device;
587 }
588 
589 /* if there's no demand for this device, release it */
590 static void iser_device_try_release(struct iser_device *device)
591 {
592 	mutex_lock(&ig.device_list_mutex);
593 	device->refcount--;
594 	iser_info("device %p refcount %d\n", device, device->refcount);
595 	if (!device->refcount) {
596 		iser_free_device_ib_res(device);
597 		list_del(&device->ig_list);
598 		kfree(device);
599 	}
600 	mutex_unlock(&ig.device_list_mutex);
601 }
602 
603 /**
604  * Called with state mutex held
605  **/
606 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
607 				     enum iser_conn_state comp,
608 				     enum iser_conn_state exch)
609 {
610 	int ret;
611 
612 	ret = (iser_conn->state == comp);
613 	if (ret)
614 		iser_conn->state = exch;
615 
616 	return ret;
617 }
618 
619 void iser_release_work(struct work_struct *work)
620 {
621 	struct iser_conn *iser_conn;
622 
623 	iser_conn = container_of(work, struct iser_conn, release_work);
624 
625 	/* Wait for conn_stop to complete */
626 	wait_for_completion(&iser_conn->stop_completion);
627 	/* Wait for IB resouces cleanup to complete */
628 	wait_for_completion(&iser_conn->ib_completion);
629 
630 	mutex_lock(&iser_conn->state_mutex);
631 	iser_conn->state = ISER_CONN_DOWN;
632 	mutex_unlock(&iser_conn->state_mutex);
633 
634 	iser_conn_release(iser_conn);
635 }
636 
637 /**
638  * iser_free_ib_conn_res - release IB related resources
639  * @iser_conn: iser connection struct
640  * @destroy: indicator if we need to try to release the
641  *     iser device and memory regoins pool (only iscsi
642  *     shutdown and DEVICE_REMOVAL will use this).
643  *
644  * This routine is called with the iser state mutex held
645  * so the cm_id removal is out of here. It is Safe to
646  * be invoked multiple times.
647  */
648 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
649 				  bool destroy)
650 {
651 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
652 	struct iser_device *device = ib_conn->device;
653 
654 	iser_info("freeing conn %p cma_id %p qp %p\n",
655 		  iser_conn, ib_conn->cma_id, ib_conn->qp);
656 
657 	if (ib_conn->qp != NULL) {
658 		ib_conn->comp->active_qps--;
659 		rdma_destroy_qp(ib_conn->cma_id);
660 		ib_conn->qp = NULL;
661 	}
662 
663 	if (destroy) {
664 		if (iser_conn->rx_descs)
665 			iser_free_rx_descriptors(iser_conn);
666 
667 		if (device != NULL) {
668 			iser_device_try_release(device);
669 			ib_conn->device = NULL;
670 		}
671 	}
672 }
673 
674 /**
675  * Frees all conn objects and deallocs conn descriptor
676  */
677 void iser_conn_release(struct iser_conn *iser_conn)
678 {
679 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
680 
681 	mutex_lock(&ig.connlist_mutex);
682 	list_del(&iser_conn->conn_list);
683 	mutex_unlock(&ig.connlist_mutex);
684 
685 	mutex_lock(&iser_conn->state_mutex);
686 	/* In case we endup here without ep_disconnect being invoked. */
687 	if (iser_conn->state != ISER_CONN_DOWN) {
688 		iser_warn("iser conn %p state %d, expected state down.\n",
689 			  iser_conn, iser_conn->state);
690 		iscsi_destroy_endpoint(iser_conn->ep);
691 		iser_conn->state = ISER_CONN_DOWN;
692 	}
693 	/*
694 	 * In case we never got to bind stage, we still need to
695 	 * release IB resources (which is safe to call more than once).
696 	 */
697 	iser_free_ib_conn_res(iser_conn, true);
698 	mutex_unlock(&iser_conn->state_mutex);
699 
700 	if (ib_conn->cma_id != NULL) {
701 		rdma_destroy_id(ib_conn->cma_id);
702 		ib_conn->cma_id = NULL;
703 	}
704 
705 	kfree(iser_conn);
706 }
707 
708 /**
709  * triggers start of the disconnect procedures and wait for them to be done
710  * Called with state mutex held
711  */
712 int iser_conn_terminate(struct iser_conn *iser_conn)
713 {
714 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
715 	struct ib_send_wr *bad_wr;
716 	int err = 0;
717 
718 	/* terminate the iser conn only if the conn state is UP */
719 	if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
720 				       ISER_CONN_TERMINATING))
721 		return 0;
722 
723 	iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
724 
725 	/* suspend queuing of new iscsi commands */
726 	if (iser_conn->iscsi_conn)
727 		iscsi_suspend_queue(iser_conn->iscsi_conn);
728 
729 	/*
730 	 * In case we didn't already clean up the cma_id (peer initiated
731 	 * a disconnection), we need to Cause the CMA to change the QP
732 	 * state to ERROR.
733 	 */
734 	if (ib_conn->cma_id) {
735 		err = rdma_disconnect(ib_conn->cma_id);
736 		if (err)
737 			iser_err("Failed to disconnect, conn: 0x%p err %d\n",
738 				 iser_conn, err);
739 
740 		/* post an indication that all flush errors were consumed */
741 		err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
742 		if (err) {
743 			iser_err("conn %p failed to post beacon", ib_conn);
744 			return 1;
745 		}
746 
747 		wait_for_completion(&ib_conn->flush_comp);
748 	}
749 
750 	return 1;
751 }
752 
753 /**
754  * Called with state mutex held
755  **/
756 static void iser_connect_error(struct rdma_cm_id *cma_id)
757 {
758 	struct iser_conn *iser_conn;
759 
760 	iser_conn = (struct iser_conn *)cma_id->context;
761 	iser_conn->state = ISER_CONN_TERMINATING;
762 }
763 
764 static void
765 iser_calc_scsi_params(struct iser_conn *iser_conn,
766 		      unsigned int max_sectors)
767 {
768 	struct iser_device *device = iser_conn->ib_conn.device;
769 	unsigned short sg_tablesize, sup_sg_tablesize;
770 
771 	sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
772 	sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE,
773 				 device->dev_attr.max_fast_reg_page_list_len);
774 
775 	if (sg_tablesize > sup_sg_tablesize) {
776 		sg_tablesize = sup_sg_tablesize;
777 		iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512;
778 	} else {
779 		iser_conn->scsi_max_sectors = max_sectors;
780 	}
781 
782 	iser_conn->scsi_sg_tablesize = sg_tablesize;
783 
784 	iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n",
785 		 iser_conn, iser_conn->scsi_sg_tablesize,
786 		 iser_conn->scsi_max_sectors);
787 }
788 
789 /**
790  * Called with state mutex held
791  **/
792 static void iser_addr_handler(struct rdma_cm_id *cma_id)
793 {
794 	struct iser_device *device;
795 	struct iser_conn   *iser_conn;
796 	struct ib_conn   *ib_conn;
797 	int    ret;
798 
799 	iser_conn = (struct iser_conn *)cma_id->context;
800 	if (iser_conn->state != ISER_CONN_PENDING)
801 		/* bailout */
802 		return;
803 
804 	ib_conn = &iser_conn->ib_conn;
805 	device = iser_device_find_by_ib_device(cma_id);
806 	if (!device) {
807 		iser_err("device lookup/creation failed\n");
808 		iser_connect_error(cma_id);
809 		return;
810 	}
811 
812 	ib_conn->device = device;
813 
814 	/* connection T10-PI support */
815 	if (iser_pi_enable) {
816 		if (!(device->dev_attr.device_cap_flags &
817 		      IB_DEVICE_SIGNATURE_HANDOVER)) {
818 			iser_warn("T10-PI requested but not supported on %s, "
819 				  "continue without T10-PI\n",
820 				  ib_conn->device->ib_device->name);
821 			ib_conn->pi_support = false;
822 		} else {
823 			ib_conn->pi_support = true;
824 		}
825 	}
826 
827 	iser_calc_scsi_params(iser_conn, iser_max_sectors);
828 
829 	ret = rdma_resolve_route(cma_id, 1000);
830 	if (ret) {
831 		iser_err("resolve route failed: %d\n", ret);
832 		iser_connect_error(cma_id);
833 		return;
834 	}
835 }
836 
837 /**
838  * Called with state mutex held
839  **/
840 static void iser_route_handler(struct rdma_cm_id *cma_id)
841 {
842 	struct rdma_conn_param conn_param;
843 	int    ret;
844 	struct iser_cm_hdr req_hdr;
845 	struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
846 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
847 	struct iser_device *device = ib_conn->device;
848 
849 	if (iser_conn->state != ISER_CONN_PENDING)
850 		/* bailout */
851 		return;
852 
853 	ret = iser_create_ib_conn_res(ib_conn);
854 	if (ret)
855 		goto failure;
856 
857 	memset(&conn_param, 0, sizeof conn_param);
858 	conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
859 	conn_param.initiator_depth     = 1;
860 	conn_param.retry_count	       = 7;
861 	conn_param.rnr_retry_count     = 6;
862 
863 	memset(&req_hdr, 0, sizeof(req_hdr));
864 	req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
865 			ISER_SEND_W_INV_NOT_SUPPORTED);
866 	conn_param.private_data		= (void *)&req_hdr;
867 	conn_param.private_data_len	= sizeof(struct iser_cm_hdr);
868 
869 	ret = rdma_connect(cma_id, &conn_param);
870 	if (ret) {
871 		iser_err("failure connecting: %d\n", ret);
872 		goto failure;
873 	}
874 
875 	return;
876 failure:
877 	iser_connect_error(cma_id);
878 }
879 
880 static void iser_connected_handler(struct rdma_cm_id *cma_id)
881 {
882 	struct iser_conn *iser_conn;
883 	struct ib_qp_attr attr;
884 	struct ib_qp_init_attr init_attr;
885 
886 	iser_conn = (struct iser_conn *)cma_id->context;
887 	if (iser_conn->state != ISER_CONN_PENDING)
888 		/* bailout */
889 		return;
890 
891 	(void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
892 	iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
893 
894 	iser_conn->state = ISER_CONN_UP;
895 	complete(&iser_conn->up_completion);
896 }
897 
898 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
899 {
900 	struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
901 
902 	if (iser_conn_terminate(iser_conn)) {
903 		if (iser_conn->iscsi_conn)
904 			iscsi_conn_failure(iser_conn->iscsi_conn,
905 					   ISCSI_ERR_CONN_FAILED);
906 		else
907 			iser_err("iscsi_iser connection isn't bound\n");
908 	}
909 }
910 
911 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
912 				 bool destroy)
913 {
914 	struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
915 
916 	/*
917 	 * We are not guaranteed that we visited disconnected_handler
918 	 * by now, call it here to be safe that we handle CM drep
919 	 * and flush errors.
920 	 */
921 	iser_disconnected_handler(cma_id);
922 	iser_free_ib_conn_res(iser_conn, destroy);
923 	complete(&iser_conn->ib_completion);
924 };
925 
926 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
927 {
928 	struct iser_conn *iser_conn;
929 	int ret = 0;
930 
931 	iser_conn = (struct iser_conn *)cma_id->context;
932 	iser_info("%s (%d): status %d conn %p id %p\n",
933 		  rdma_event_msg(event->event), event->event,
934 		  event->status, cma_id->context, cma_id);
935 
936 	mutex_lock(&iser_conn->state_mutex);
937 	switch (event->event) {
938 	case RDMA_CM_EVENT_ADDR_RESOLVED:
939 		iser_addr_handler(cma_id);
940 		break;
941 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
942 		iser_route_handler(cma_id);
943 		break;
944 	case RDMA_CM_EVENT_ESTABLISHED:
945 		iser_connected_handler(cma_id);
946 		break;
947 	case RDMA_CM_EVENT_ADDR_ERROR:
948 	case RDMA_CM_EVENT_ROUTE_ERROR:
949 	case RDMA_CM_EVENT_CONNECT_ERROR:
950 	case RDMA_CM_EVENT_UNREACHABLE:
951 	case RDMA_CM_EVENT_REJECTED:
952 		iser_connect_error(cma_id);
953 		break;
954 	case RDMA_CM_EVENT_DISCONNECTED:
955 	case RDMA_CM_EVENT_ADDR_CHANGE:
956 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
957 		iser_cleanup_handler(cma_id, false);
958 		break;
959 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
960 		/*
961 		 * we *must* destroy the device as we cannot rely
962 		 * on iscsid to be around to initiate error handling.
963 		 * also if we are not in state DOWN implicitly destroy
964 		 * the cma_id.
965 		 */
966 		iser_cleanup_handler(cma_id, true);
967 		if (iser_conn->state != ISER_CONN_DOWN) {
968 			iser_conn->ib_conn.cma_id = NULL;
969 			ret = 1;
970 		}
971 		break;
972 	default:
973 		iser_err("Unexpected RDMA CM event: %s (%d)\n",
974 			 rdma_event_msg(event->event), event->event);
975 		break;
976 	}
977 	mutex_unlock(&iser_conn->state_mutex);
978 
979 	return ret;
980 }
981 
982 void iser_conn_init(struct iser_conn *iser_conn)
983 {
984 	iser_conn->state = ISER_CONN_INIT;
985 	iser_conn->ib_conn.post_recv_buf_count = 0;
986 	init_completion(&iser_conn->ib_conn.flush_comp);
987 	init_completion(&iser_conn->stop_completion);
988 	init_completion(&iser_conn->ib_completion);
989 	init_completion(&iser_conn->up_completion);
990 	INIT_LIST_HEAD(&iser_conn->conn_list);
991 	mutex_init(&iser_conn->state_mutex);
992 }
993 
994  /**
995  * starts the process of connecting to the target
996  * sleeps until the connection is established or rejected
997  */
998 int iser_connect(struct iser_conn   *iser_conn,
999 		 struct sockaddr    *src_addr,
1000 		 struct sockaddr    *dst_addr,
1001 		 int                 non_blocking)
1002 {
1003 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
1004 	int err = 0;
1005 
1006 	mutex_lock(&iser_conn->state_mutex);
1007 
1008 	sprintf(iser_conn->name, "%pISp", dst_addr);
1009 
1010 	iser_info("connecting to: %s\n", iser_conn->name);
1011 
1012 	/* the device is known only --after-- address resolution */
1013 	ib_conn->device = NULL;
1014 
1015 	iser_conn->state = ISER_CONN_PENDING;
1016 
1017 	ib_conn->beacon.wr_id = ISER_BEACON_WRID;
1018 	ib_conn->beacon.opcode = IB_WR_SEND;
1019 
1020 	ib_conn->cma_id = rdma_create_id(iser_cma_handler,
1021 					 (void *)iser_conn,
1022 					 RDMA_PS_TCP, IB_QPT_RC);
1023 	if (IS_ERR(ib_conn->cma_id)) {
1024 		err = PTR_ERR(ib_conn->cma_id);
1025 		iser_err("rdma_create_id failed: %d\n", err);
1026 		goto id_failure;
1027 	}
1028 
1029 	err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
1030 	if (err) {
1031 		iser_err("rdma_resolve_addr failed: %d\n", err);
1032 		goto addr_failure;
1033 	}
1034 
1035 	if (!non_blocking) {
1036 		wait_for_completion_interruptible(&iser_conn->up_completion);
1037 
1038 		if (iser_conn->state != ISER_CONN_UP) {
1039 			err =  -EIO;
1040 			goto connect_failure;
1041 		}
1042 	}
1043 	mutex_unlock(&iser_conn->state_mutex);
1044 
1045 	mutex_lock(&ig.connlist_mutex);
1046 	list_add(&iser_conn->conn_list, &ig.connlist);
1047 	mutex_unlock(&ig.connlist_mutex);
1048 	return 0;
1049 
1050 id_failure:
1051 	ib_conn->cma_id = NULL;
1052 addr_failure:
1053 	iser_conn->state = ISER_CONN_DOWN;
1054 connect_failure:
1055 	mutex_unlock(&iser_conn->state_mutex);
1056 	iser_conn_release(iser_conn);
1057 	return err;
1058 }
1059 
1060 int iser_post_recvl(struct iser_conn *iser_conn)
1061 {
1062 	struct ib_recv_wr rx_wr, *rx_wr_failed;
1063 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
1064 	struct ib_sge	  sge;
1065 	int ib_ret;
1066 
1067 	sge.addr   = iser_conn->login_resp_dma;
1068 	sge.length = ISER_RX_LOGIN_SIZE;
1069 	sge.lkey   = ib_conn->device->pd->local_dma_lkey;
1070 
1071 	rx_wr.wr_id   = (uintptr_t)iser_conn->login_resp_buf;
1072 	rx_wr.sg_list = &sge;
1073 	rx_wr.num_sge = 1;
1074 	rx_wr.next    = NULL;
1075 
1076 	ib_conn->post_recv_buf_count++;
1077 	ib_ret	= ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1078 	if (ib_ret) {
1079 		iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1080 		ib_conn->post_recv_buf_count--;
1081 	}
1082 	return ib_ret;
1083 }
1084 
1085 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1086 {
1087 	struct ib_recv_wr *rx_wr, *rx_wr_failed;
1088 	int i, ib_ret;
1089 	struct ib_conn *ib_conn = &iser_conn->ib_conn;
1090 	unsigned int my_rx_head = iser_conn->rx_desc_head;
1091 	struct iser_rx_desc *rx_desc;
1092 
1093 	for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1094 		rx_desc		= &iser_conn->rx_descs[my_rx_head];
1095 		rx_wr->wr_id	= (uintptr_t)rx_desc;
1096 		rx_wr->sg_list	= &rx_desc->rx_sg;
1097 		rx_wr->num_sge	= 1;
1098 		rx_wr->next	= rx_wr + 1;
1099 		my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1100 	}
1101 
1102 	rx_wr--;
1103 	rx_wr->next = NULL; /* mark end of work requests list */
1104 
1105 	ib_conn->post_recv_buf_count += count;
1106 	ib_ret	= ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1107 	if (ib_ret) {
1108 		iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1109 		ib_conn->post_recv_buf_count -= count;
1110 	} else
1111 		iser_conn->rx_desc_head = my_rx_head;
1112 	return ib_ret;
1113 }
1114 
1115 
1116 /**
1117  * iser_start_send - Initiate a Send DTO operation
1118  *
1119  * returns 0 on success, -1 on failure
1120  */
1121 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1122 		   bool signal)
1123 {
1124 	struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc);
1125 	int ib_ret;
1126 
1127 	ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1128 				      tx_desc->dma_addr, ISER_HEADERS_LEN,
1129 				      DMA_TO_DEVICE);
1130 
1131 	wr->next = NULL;
1132 	wr->wr_id = (uintptr_t)tx_desc;
1133 	wr->sg_list = tx_desc->tx_sg;
1134 	wr->num_sge = tx_desc->num_sge;
1135 	wr->opcode = IB_WR_SEND;
1136 	wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
1137 
1138 	ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0], &bad_wr);
1139 	if (ib_ret)
1140 		iser_err("ib_post_send failed, ret:%d opcode:%d\n",
1141 			 ib_ret, bad_wr->opcode);
1142 
1143 	return ib_ret;
1144 }
1145 
1146 /**
1147  * is_iser_tx_desc - Indicate if the completion wr_id
1148  *     is a TX descriptor or not.
1149  * @iser_conn: iser connection
1150  * @wr_id: completion WR identifier
1151  *
1152  * Since we cannot rely on wc opcode in FLUSH errors
1153  * we must work around it by checking if the wr_id address
1154  * falls in the iser connection rx_descs buffer. If so
1155  * it is an RX descriptor, otherwize it is a TX.
1156  */
1157 static inline bool
1158 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1159 {
1160 	void *start = iser_conn->rx_descs;
1161 	int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1162 
1163 	if (wr_id >= start && wr_id < start + len)
1164 		return false;
1165 
1166 	return true;
1167 }
1168 
1169 /**
1170  * iser_handle_comp_error() - Handle error completion
1171  * @ib_conn:   connection RDMA resources
1172  * @wc:        work completion
1173  *
1174  * Notes: We may handle a FLUSH error completion and in this case
1175  *        we only cleanup in case TX type was DATAOUT. For non-FLUSH
1176  *        error completion we should also notify iscsi layer that
1177  *        connection is failed (in case we passed bind stage).
1178  */
1179 static void
1180 iser_handle_comp_error(struct ib_conn *ib_conn,
1181 		       struct ib_wc *wc)
1182 {
1183 	void *wr_id = (void *)(uintptr_t)wc->wr_id;
1184 	struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1185 						   ib_conn);
1186 
1187 	if (wc->status != IB_WC_WR_FLUSH_ERR)
1188 		if (iser_conn->iscsi_conn)
1189 			iscsi_conn_failure(iser_conn->iscsi_conn,
1190 					   ISCSI_ERR_CONN_FAILED);
1191 
1192 	if (wc->wr_id == ISER_FASTREG_LI_WRID)
1193 		return;
1194 
1195 	if (is_iser_tx_desc(iser_conn, wr_id)) {
1196 		struct iser_tx_desc *desc = wr_id;
1197 
1198 		if (desc->type == ISCSI_TX_DATAOUT)
1199 			kmem_cache_free(ig.desc_cache, desc);
1200 	} else {
1201 		ib_conn->post_recv_buf_count--;
1202 	}
1203 }
1204 
1205 /**
1206  * iser_handle_wc - handle a single work completion
1207  * @wc: work completion
1208  *
1209  * Soft-IRQ context, work completion can be either
1210  * SEND or RECV, and can turn out successful or
1211  * with error (or flush error).
1212  */
1213 static void iser_handle_wc(struct ib_wc *wc)
1214 {
1215 	struct ib_conn *ib_conn;
1216 	struct iser_tx_desc *tx_desc;
1217 	struct iser_rx_desc *rx_desc;
1218 
1219 	ib_conn = wc->qp->qp_context;
1220 	if (likely(wc->status == IB_WC_SUCCESS)) {
1221 		if (wc->opcode == IB_WC_RECV) {
1222 			rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1223 			iser_rcv_completion(rx_desc, wc->byte_len,
1224 					    ib_conn);
1225 		} else
1226 		if (wc->opcode == IB_WC_SEND) {
1227 			tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1228 			iser_snd_completion(tx_desc, ib_conn);
1229 		} else {
1230 			iser_err("Unknown wc opcode %d\n", wc->opcode);
1231 		}
1232 	} else {
1233 		if (wc->status != IB_WC_WR_FLUSH_ERR)
1234 			iser_err("%s (%d): wr id %llx vend_err %x\n",
1235 				 ib_wc_status_msg(wc->status), wc->status,
1236 				 wc->wr_id, wc->vendor_err);
1237 		else
1238 			iser_dbg("%s (%d): wr id %llx\n",
1239 				 ib_wc_status_msg(wc->status), wc->status,
1240 				 wc->wr_id);
1241 
1242 		if (wc->wr_id == ISER_BEACON_WRID)
1243 			/* all flush errors were consumed */
1244 			complete(&ib_conn->flush_comp);
1245 		else
1246 			iser_handle_comp_error(ib_conn, wc);
1247 	}
1248 }
1249 
1250 /**
1251  * iser_cq_tasklet_fn - iSER completion polling loop
1252  * @data: iSER completion context
1253  *
1254  * Soft-IRQ context, polling connection CQ until
1255  * either CQ was empty or we exausted polling budget
1256  */
1257 static void iser_cq_tasklet_fn(unsigned long data)
1258 {
1259 	struct iser_comp *comp = (struct iser_comp *)data;
1260 	struct ib_cq *cq = comp->cq;
1261 	struct ib_wc *const wcs = comp->wcs;
1262 	int i, n, completed = 0;
1263 
1264 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1265 		for (i = 0; i < n; i++)
1266 			iser_handle_wc(&wcs[i]);
1267 
1268 		completed += n;
1269 		if (completed >= iser_cq_poll_limit)
1270 			break;
1271 	}
1272 
1273 	/*
1274 	 * It is assumed here that arming CQ only once its empty
1275 	 * would not cause interrupts to be missed.
1276 	 */
1277 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1278 
1279 	iser_dbg("got %d completions\n", completed);
1280 }
1281 
1282 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1283 {
1284 	struct iser_comp *comp = cq_context;
1285 
1286 	tasklet_schedule(&comp->tasklet);
1287 }
1288 
1289 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1290 			     enum iser_data_dir cmd_dir, sector_t *sector)
1291 {
1292 	struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1293 	struct iser_fr_desc *desc = reg->mem_h;
1294 	unsigned long sector_size = iser_task->sc->device->sector_size;
1295 	struct ib_mr_status mr_status;
1296 	int ret;
1297 
1298 	if (desc && desc->pi_ctx->sig_protected) {
1299 		desc->pi_ctx->sig_protected = 0;
1300 		ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1301 					 IB_MR_CHECK_SIG_STATUS, &mr_status);
1302 		if (ret) {
1303 			pr_err("ib_check_mr_status failed, ret %d\n", ret);
1304 			goto err;
1305 		}
1306 
1307 		if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1308 			sector_t sector_off = mr_status.sig_err.sig_err_offset;
1309 
1310 			do_div(sector_off, sector_size + 8);
1311 			*sector = scsi_get_lba(iser_task->sc) + sector_off;
1312 
1313 			pr_err("PI error found type %d at sector %llx "
1314 			       "expected %x vs actual %x\n",
1315 			       mr_status.sig_err.err_type,
1316 			       (unsigned long long)*sector,
1317 			       mr_status.sig_err.expected,
1318 			       mr_status.sig_err.actual);
1319 
1320 			switch (mr_status.sig_err.err_type) {
1321 			case IB_SIG_BAD_GUARD:
1322 				return 0x1;
1323 			case IB_SIG_BAD_REFTAG:
1324 				return 0x3;
1325 			case IB_SIG_BAD_APPTAG:
1326 				return 0x2;
1327 			}
1328 		}
1329 	}
1330 
1331 	return 0;
1332 err:
1333 	/* Not alot we can do here, return ambiguous guard error */
1334 	return 0x1;
1335 }
1336