xref: /openbmc/linux/drivers/infiniband/sw/siw/siw_verbs.c (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5 
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 
12 #include <rdma/iw_cm.h>
13 #include <rdma/ib_verbs.h>
14 #include <rdma/ib_user_verbs.h>
15 #include <rdma/uverbs_ioctl.h>
16 
17 #include "siw.h"
18 #include "siw_verbs.h"
19 #include "siw_mem.h"
20 
21 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
22 	[IB_QPS_RESET] = SIW_QP_STATE_IDLE,
23 	[IB_QPS_INIT] = SIW_QP_STATE_IDLE,
24 	[IB_QPS_RTR] = SIW_QP_STATE_RTR,
25 	[IB_QPS_RTS] = SIW_QP_STATE_RTS,
26 	[IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
27 	[IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
28 	[IB_QPS_ERR] = SIW_QP_STATE_ERROR
29 };
30 
31 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
32 	[IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
33 	[IB_QPS_RTS] = "RTS",     [IB_QPS_SQD] = "SQD",   [IB_QPS_SQE] = "SQE",
34 	[IB_QPS_ERR] = "ERR"
35 };
36 
37 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
38 {
39 	struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
40 
41 	kfree(entry);
42 }
43 
44 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
45 {
46 	struct siw_ucontext *uctx = to_siw_ctx(ctx);
47 	size_t size = vma->vm_end - vma->vm_start;
48 	struct rdma_user_mmap_entry *rdma_entry;
49 	struct siw_user_mmap_entry *entry;
50 	int rv = -EINVAL;
51 
52 	/*
53 	 * Must be page aligned
54 	 */
55 	if (vma->vm_start & (PAGE_SIZE - 1)) {
56 		pr_warn("siw: mmap not page aligned\n");
57 		return -EINVAL;
58 	}
59 	rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
60 	if (!rdma_entry) {
61 		siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
62 			vma->vm_pgoff, size);
63 		return -EINVAL;
64 	}
65 	entry = to_siw_mmap_entry(rdma_entry);
66 
67 	rv = remap_vmalloc_range(vma, entry->address, 0);
68 	if (rv) {
69 		pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
70 			size);
71 		goto out;
72 	}
73 out:
74 	rdma_user_mmap_entry_put(rdma_entry);
75 
76 	return rv;
77 }
78 
79 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
80 {
81 	struct siw_device *sdev = to_siw_dev(base_ctx->device);
82 	struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
83 	struct siw_uresp_alloc_ctx uresp = {};
84 	int rv;
85 
86 	if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
87 		rv = -ENOMEM;
88 		goto err_out;
89 	}
90 	ctx->sdev = sdev;
91 
92 	uresp.dev_id = sdev->vendor_part_id;
93 
94 	if (udata->outlen < sizeof(uresp)) {
95 		rv = -EINVAL;
96 		goto err_out;
97 	}
98 	rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
99 	if (rv)
100 		goto err_out;
101 
102 	siw_dbg(base_ctx->device, "success. now %d context(s)\n",
103 		atomic_read(&sdev->num_ctx));
104 
105 	return 0;
106 
107 err_out:
108 	atomic_dec(&sdev->num_ctx);
109 	siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
110 		atomic_read(&sdev->num_ctx));
111 
112 	return rv;
113 }
114 
115 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
116 {
117 	struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
118 
119 	atomic_dec(&uctx->sdev->num_ctx);
120 }
121 
122 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
123 		     struct ib_udata *udata)
124 {
125 	struct siw_device *sdev = to_siw_dev(base_dev);
126 
127 	if (udata->inlen || udata->outlen)
128 		return -EINVAL;
129 
130 	memset(attr, 0, sizeof(*attr));
131 
132 	/* Revisit atomic caps if RFC 7306 gets supported */
133 	attr->atomic_cap = 0;
134 	attr->device_cap_flags =
135 		IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_ALLOW_USER_UNREG;
136 	attr->max_cq = sdev->attrs.max_cq;
137 	attr->max_cqe = sdev->attrs.max_cqe;
138 	attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
139 	attr->max_mr = sdev->attrs.max_mr;
140 	attr->max_mw = sdev->attrs.max_mw;
141 	attr->max_mr_size = ~0ull;
142 	attr->max_pd = sdev->attrs.max_pd;
143 	attr->max_qp = sdev->attrs.max_qp;
144 	attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
145 	attr->max_qp_rd_atom = sdev->attrs.max_ord;
146 	attr->max_qp_wr = sdev->attrs.max_qp_wr;
147 	attr->max_recv_sge = sdev->attrs.max_sge;
148 	attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
149 	attr->max_send_sge = sdev->attrs.max_sge;
150 	attr->max_sge_rd = sdev->attrs.max_sge_rd;
151 	attr->max_srq = sdev->attrs.max_srq;
152 	attr->max_srq_sge = sdev->attrs.max_srq_sge;
153 	attr->max_srq_wr = sdev->attrs.max_srq_wr;
154 	attr->page_size_cap = PAGE_SIZE;
155 	attr->vendor_id = SIW_VENDOR_ID;
156 	attr->vendor_part_id = sdev->vendor_part_id;
157 
158 	memcpy(&attr->sys_image_guid, sdev->netdev->dev_addr, 6);
159 
160 	return 0;
161 }
162 
163 int siw_query_port(struct ib_device *base_dev, u32 port,
164 		   struct ib_port_attr *attr)
165 {
166 	struct siw_device *sdev = to_siw_dev(base_dev);
167 	int rv;
168 
169 	memset(attr, 0, sizeof(*attr));
170 
171 	rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
172 			 &attr->active_width);
173 	attr->gid_tbl_len = 1;
174 	attr->max_msg_sz = -1;
175 	attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
176 	attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
177 	attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
178 		IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
179 	attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
180 	attr->state = sdev->state;
181 	/*
182 	 * All zero
183 	 *
184 	 * attr->lid = 0;
185 	 * attr->bad_pkey_cntr = 0;
186 	 * attr->qkey_viol_cntr = 0;
187 	 * attr->sm_lid = 0;
188 	 * attr->lmc = 0;
189 	 * attr->max_vl_num = 0;
190 	 * attr->sm_sl = 0;
191 	 * attr->subnet_timeout = 0;
192 	 * attr->init_type_repy = 0;
193 	 */
194 	return rv;
195 }
196 
197 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
198 			   struct ib_port_immutable *port_immutable)
199 {
200 	struct ib_port_attr attr;
201 	int rv = siw_query_port(base_dev, port, &attr);
202 
203 	if (rv)
204 		return rv;
205 
206 	port_immutable->gid_tbl_len = attr.gid_tbl_len;
207 	port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
208 
209 	return 0;
210 }
211 
212 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
213 		  union ib_gid *gid)
214 {
215 	struct siw_device *sdev = to_siw_dev(base_dev);
216 
217 	/* subnet_prefix == interface_id == 0; */
218 	memset(gid, 0, sizeof(*gid));
219 	memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
220 
221 	return 0;
222 }
223 
224 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
225 {
226 	struct siw_device *sdev = to_siw_dev(pd->device);
227 
228 	if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
229 		atomic_dec(&sdev->num_pd);
230 		return -ENOMEM;
231 	}
232 	siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
233 
234 	return 0;
235 }
236 
237 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
238 {
239 	struct siw_device *sdev = to_siw_dev(pd->device);
240 
241 	siw_dbg_pd(pd, "free PD\n");
242 	atomic_dec(&sdev->num_pd);
243 	return 0;
244 }
245 
246 void siw_qp_get_ref(struct ib_qp *base_qp)
247 {
248 	siw_qp_get(to_siw_qp(base_qp));
249 }
250 
251 void siw_qp_put_ref(struct ib_qp *base_qp)
252 {
253 	siw_qp_put(to_siw_qp(base_qp));
254 }
255 
256 static struct rdma_user_mmap_entry *
257 siw_mmap_entry_insert(struct siw_ucontext *uctx,
258 		      void *address, size_t length,
259 		      u64 *offset)
260 {
261 	struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
262 	int rv;
263 
264 	*offset = SIW_INVAL_UOBJ_KEY;
265 	if (!entry)
266 		return NULL;
267 
268 	entry->address = address;
269 
270 	rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
271 					 &entry->rdma_entry,
272 					 length);
273 	if (rv) {
274 		kfree(entry);
275 		return NULL;
276 	}
277 
278 	*offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
279 
280 	return &entry->rdma_entry;
281 }
282 
283 /*
284  * siw_create_qp()
285  *
286  * Create QP of requested size on given device.
287  *
288  * @qp:		Queue pait
289  * @attrs:	Initial QP attributes.
290  * @udata:	used to provide QP ID, SQ and RQ size back to user.
291  */
292 
293 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
294 		  struct ib_udata *udata)
295 {
296 	struct ib_pd *pd = ibqp->pd;
297 	struct siw_qp *qp = to_siw_qp(ibqp);
298 	struct ib_device *base_dev = pd->device;
299 	struct siw_device *sdev = to_siw_dev(base_dev);
300 	struct siw_ucontext *uctx =
301 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
302 					  base_ucontext);
303 	unsigned long flags;
304 	int num_sqe, num_rqe, rv = 0;
305 	size_t length;
306 
307 	siw_dbg(base_dev, "create new QP\n");
308 
309 	if (attrs->create_flags)
310 		return -EOPNOTSUPP;
311 
312 	if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
313 		siw_dbg(base_dev, "too many QP's\n");
314 		return -ENOMEM;
315 	}
316 	if (attrs->qp_type != IB_QPT_RC) {
317 		siw_dbg(base_dev, "only RC QP's supported\n");
318 		rv = -EOPNOTSUPP;
319 		goto err_atomic;
320 	}
321 	if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
322 	    (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
323 	    (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
324 	    (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
325 		siw_dbg(base_dev, "QP size error\n");
326 		rv = -EINVAL;
327 		goto err_atomic;
328 	}
329 	if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
330 		siw_dbg(base_dev, "max inline send: %d > %d\n",
331 			attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
332 		rv = -EINVAL;
333 		goto err_atomic;
334 	}
335 	/*
336 	 * NOTE: we allow for zero element SQ and RQ WQE's SGL's
337 	 * but not for a QP unable to hold any WQE (SQ + RQ)
338 	 */
339 	if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
340 		siw_dbg(base_dev, "QP must have send or receive queue\n");
341 		rv = -EINVAL;
342 		goto err_atomic;
343 	}
344 
345 	if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
346 		siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
347 		rv = -EINVAL;
348 		goto err_atomic;
349 	}
350 
351 	init_rwsem(&qp->state_lock);
352 	spin_lock_init(&qp->sq_lock);
353 	spin_lock_init(&qp->rq_lock);
354 	spin_lock_init(&qp->orq_lock);
355 
356 	rv = siw_qp_add(sdev, qp);
357 	if (rv)
358 		goto err_atomic;
359 
360 	num_sqe = attrs->cap.max_send_wr;
361 	num_rqe = attrs->cap.max_recv_wr;
362 
363 	/* All queue indices are derived from modulo operations
364 	 * on a free running 'get' (consumer) and 'put' (producer)
365 	 * unsigned counter. Having queue sizes at power of two
366 	 * avoids handling counter wrap around.
367 	 */
368 	if (num_sqe)
369 		num_sqe = roundup_pow_of_two(num_sqe);
370 	else {
371 		/* Zero sized SQ is not supported */
372 		rv = -EINVAL;
373 		goto err_out_xa;
374 	}
375 	if (num_rqe)
376 		num_rqe = roundup_pow_of_two(num_rqe);
377 
378 	if (udata)
379 		qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
380 	else
381 		qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
382 
383 	if (qp->sendq == NULL) {
384 		rv = -ENOMEM;
385 		goto err_out_xa;
386 	}
387 	if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
388 		if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
389 			qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
390 		else {
391 			rv = -EINVAL;
392 			goto err_out_xa;
393 		}
394 	}
395 	qp->pd = pd;
396 	qp->scq = to_siw_cq(attrs->send_cq);
397 	qp->rcq = to_siw_cq(attrs->recv_cq);
398 
399 	if (attrs->srq) {
400 		/*
401 		 * SRQ support.
402 		 * Verbs 6.3.7: ignore RQ size, if SRQ present
403 		 * Verbs 6.3.5: do not check PD of SRQ against PD of QP
404 		 */
405 		qp->srq = to_siw_srq(attrs->srq);
406 		qp->attrs.rq_size = 0;
407 		siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
408 			qp->base_qp.qp_num);
409 	} else if (num_rqe) {
410 		if (udata)
411 			qp->recvq =
412 				vmalloc_user(num_rqe * sizeof(struct siw_rqe));
413 		else
414 			qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
415 
416 		if (qp->recvq == NULL) {
417 			rv = -ENOMEM;
418 			goto err_out_xa;
419 		}
420 		qp->attrs.rq_size = num_rqe;
421 	}
422 	qp->attrs.sq_size = num_sqe;
423 	qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
424 	qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
425 
426 	/* Make those two tunables fixed for now. */
427 	qp->tx_ctx.gso_seg_limit = 1;
428 	qp->tx_ctx.zcopy_tx = zcopy_tx;
429 
430 	qp->attrs.state = SIW_QP_STATE_IDLE;
431 
432 	if (udata) {
433 		struct siw_uresp_create_qp uresp = {};
434 
435 		uresp.num_sqe = num_sqe;
436 		uresp.num_rqe = num_rqe;
437 		uresp.qp_id = qp_id(qp);
438 
439 		if (qp->sendq) {
440 			length = num_sqe * sizeof(struct siw_sqe);
441 			qp->sq_entry =
442 				siw_mmap_entry_insert(uctx, qp->sendq,
443 						      length, &uresp.sq_key);
444 			if (!qp->sq_entry) {
445 				rv = -ENOMEM;
446 				goto err_out_xa;
447 			}
448 		}
449 
450 		if (qp->recvq) {
451 			length = num_rqe * sizeof(struct siw_rqe);
452 			qp->rq_entry =
453 				siw_mmap_entry_insert(uctx, qp->recvq,
454 						      length, &uresp.rq_key);
455 			if (!qp->rq_entry) {
456 				uresp.sq_key = SIW_INVAL_UOBJ_KEY;
457 				rv = -ENOMEM;
458 				goto err_out_xa;
459 			}
460 		}
461 
462 		if (udata->outlen < sizeof(uresp)) {
463 			rv = -EINVAL;
464 			goto err_out_xa;
465 		}
466 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
467 		if (rv)
468 			goto err_out_xa;
469 	}
470 	qp->tx_cpu = siw_get_tx_cpu(sdev);
471 	if (qp->tx_cpu < 0) {
472 		rv = -EINVAL;
473 		goto err_out_xa;
474 	}
475 	INIT_LIST_HEAD(&qp->devq);
476 	spin_lock_irqsave(&sdev->lock, flags);
477 	list_add_tail(&qp->devq, &sdev->qp_list);
478 	spin_unlock_irqrestore(&sdev->lock, flags);
479 
480 	return 0;
481 
482 err_out_xa:
483 	xa_erase(&sdev->qp_xa, qp_id(qp));
484 	if (uctx) {
485 		rdma_user_mmap_entry_remove(qp->sq_entry);
486 		rdma_user_mmap_entry_remove(qp->rq_entry);
487 	}
488 	vfree(qp->sendq);
489 	vfree(qp->recvq);
490 
491 err_atomic:
492 	atomic_dec(&sdev->num_qp);
493 	return rv;
494 }
495 
496 /*
497  * Minimum siw_query_qp() verb interface.
498  *
499  * @qp_attr_mask is not used but all available information is provided
500  */
501 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
502 		 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
503 {
504 	struct siw_qp *qp;
505 	struct siw_device *sdev;
506 
507 	if (base_qp && qp_attr && qp_init_attr) {
508 		qp = to_siw_qp(base_qp);
509 		sdev = to_siw_dev(base_qp->device);
510 	} else {
511 		return -EINVAL;
512 	}
513 	qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
514 	qp_attr->cap.max_send_wr = qp->attrs.sq_size;
515 	qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
516 	qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
517 	qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
518 	qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
519 	qp_attr->max_rd_atomic = qp->attrs.irq_size;
520 	qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
521 
522 	qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
523 				   IB_ACCESS_REMOTE_WRITE |
524 				   IB_ACCESS_REMOTE_READ;
525 
526 	qp_init_attr->qp_type = base_qp->qp_type;
527 	qp_init_attr->send_cq = base_qp->send_cq;
528 	qp_init_attr->recv_cq = base_qp->recv_cq;
529 	qp_init_attr->srq = base_qp->srq;
530 
531 	qp_init_attr->cap = qp_attr->cap;
532 
533 	return 0;
534 }
535 
536 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
537 			int attr_mask, struct ib_udata *udata)
538 {
539 	struct siw_qp_attrs new_attrs;
540 	enum siw_qp_attr_mask siw_attr_mask = 0;
541 	struct siw_qp *qp = to_siw_qp(base_qp);
542 	int rv = 0;
543 
544 	if (!attr_mask)
545 		return 0;
546 
547 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
548 		return -EOPNOTSUPP;
549 
550 	memset(&new_attrs, 0, sizeof(new_attrs));
551 
552 	if (attr_mask & IB_QP_ACCESS_FLAGS) {
553 		siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
554 
555 		if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
556 			new_attrs.flags |= SIW_RDMA_READ_ENABLED;
557 		if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
558 			new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
559 		if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
560 			new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
561 	}
562 	if (attr_mask & IB_QP_STATE) {
563 		siw_dbg_qp(qp, "desired IB QP state: %s\n",
564 			   ib_qp_state_to_string[attr->qp_state]);
565 
566 		new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
567 
568 		if (new_attrs.state > SIW_QP_STATE_RTS)
569 			qp->tx_ctx.tx_suspend = 1;
570 
571 		siw_attr_mask |= SIW_QP_ATTR_STATE;
572 	}
573 	if (!siw_attr_mask)
574 		goto out;
575 
576 	down_write(&qp->state_lock);
577 
578 	rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
579 
580 	up_write(&qp->state_lock);
581 out:
582 	return rv;
583 }
584 
585 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
586 {
587 	struct siw_qp *qp = to_siw_qp(base_qp);
588 	struct siw_ucontext *uctx =
589 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
590 					  base_ucontext);
591 	struct siw_qp_attrs qp_attrs;
592 
593 	siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
594 
595 	/*
596 	 * Mark QP as in process of destruction to prevent from
597 	 * any async callbacks to RDMA core
598 	 */
599 	qp->attrs.flags |= SIW_QP_IN_DESTROY;
600 	qp->rx_stream.rx_suspend = 1;
601 
602 	if (uctx) {
603 		rdma_user_mmap_entry_remove(qp->sq_entry);
604 		rdma_user_mmap_entry_remove(qp->rq_entry);
605 	}
606 
607 	down_write(&qp->state_lock);
608 
609 	qp_attrs.state = SIW_QP_STATE_ERROR;
610 	siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
611 
612 	if (qp->cep) {
613 		siw_cep_put(qp->cep);
614 		qp->cep = NULL;
615 	}
616 	up_write(&qp->state_lock);
617 
618 	kfree(qp->tx_ctx.mpa_crc_hd);
619 	kfree(qp->rx_stream.mpa_crc_hd);
620 
621 	qp->scq = qp->rcq = NULL;
622 
623 	siw_qp_put(qp);
624 
625 	return 0;
626 }
627 
628 /*
629  * siw_copy_inline_sgl()
630  *
631  * Prepare sgl of inlined data for sending. For userland callers
632  * function checks if given buffer addresses and len's are within
633  * process context bounds.
634  * Data from all provided sge's are copied together into the wqe,
635  * referenced by a single sge.
636  */
637 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
638 			       struct siw_sqe *sqe)
639 {
640 	struct ib_sge *core_sge = core_wr->sg_list;
641 	void *kbuf = &sqe->sge[1];
642 	int num_sge = core_wr->num_sge, bytes = 0;
643 
644 	sqe->sge[0].laddr = (uintptr_t)kbuf;
645 	sqe->sge[0].lkey = 0;
646 
647 	while (num_sge--) {
648 		if (!core_sge->length) {
649 			core_sge++;
650 			continue;
651 		}
652 		bytes += core_sge->length;
653 		if (bytes > SIW_MAX_INLINE) {
654 			bytes = -EINVAL;
655 			break;
656 		}
657 		memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
658 		       core_sge->length);
659 
660 		kbuf += core_sge->length;
661 		core_sge++;
662 	}
663 	sqe->sge[0].length = bytes > 0 ? bytes : 0;
664 	sqe->num_sge = bytes > 0 ? 1 : 0;
665 
666 	return bytes;
667 }
668 
669 /* Complete SQ WR's without processing */
670 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
671 			   const struct ib_send_wr **bad_wr)
672 {
673 	struct siw_sqe sqe = {};
674 	int rv = 0;
675 
676 	while (wr) {
677 		sqe.id = wr->wr_id;
678 		sqe.opcode = wr->opcode;
679 		rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR);
680 		if (rv) {
681 			if (bad_wr)
682 				*bad_wr = wr;
683 			break;
684 		}
685 		wr = wr->next;
686 	}
687 	return rv;
688 }
689 
690 /* Complete RQ WR's without processing */
691 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
692 			   const struct ib_recv_wr **bad_wr)
693 {
694 	struct siw_rqe rqe = {};
695 	int rv = 0;
696 
697 	while (wr) {
698 		rqe.id = wr->wr_id;
699 		rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
700 		if (rv) {
701 			if (bad_wr)
702 				*bad_wr = wr;
703 			break;
704 		}
705 		wr = wr->next;
706 	}
707 	return rv;
708 }
709 
710 /*
711  * siw_post_send()
712  *
713  * Post a list of S-WR's to a SQ.
714  *
715  * @base_qp:	Base QP contained in siw QP
716  * @wr:		Null terminated list of user WR's
717  * @bad_wr:	Points to failing WR in case of synchronous failure.
718  */
719 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
720 		  const struct ib_send_wr **bad_wr)
721 {
722 	struct siw_qp *qp = to_siw_qp(base_qp);
723 	struct siw_wqe *wqe = tx_wqe(qp);
724 
725 	unsigned long flags;
726 	int rv = 0;
727 
728 	if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
729 		siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
730 		*bad_wr = wr;
731 		return -EINVAL;
732 	}
733 
734 	/*
735 	 * Try to acquire QP state lock. Must be non-blocking
736 	 * to accommodate kernel clients needs.
737 	 */
738 	if (!down_read_trylock(&qp->state_lock)) {
739 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
740 			/*
741 			 * ERROR state is final, so we can be sure
742 			 * this state will not change as long as the QP
743 			 * exists.
744 			 *
745 			 * This handles an ib_drain_sq() call with
746 			 * a concurrent request to set the QP state
747 			 * to ERROR.
748 			 */
749 			rv = siw_sq_flush_wr(qp, wr, bad_wr);
750 		} else {
751 			siw_dbg_qp(qp, "QP locked, state %d\n",
752 				   qp->attrs.state);
753 			*bad_wr = wr;
754 			rv = -ENOTCONN;
755 		}
756 		return rv;
757 	}
758 	if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
759 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
760 			/*
761 			 * Immediately flush this WR to CQ, if QP
762 			 * is in ERROR state. SQ is guaranteed to
763 			 * be empty, so WR complets in-order.
764 			 *
765 			 * Typically triggered by ib_drain_sq().
766 			 */
767 			rv = siw_sq_flush_wr(qp, wr, bad_wr);
768 		} else {
769 			siw_dbg_qp(qp, "QP out of state %d\n",
770 				   qp->attrs.state);
771 			*bad_wr = wr;
772 			rv = -ENOTCONN;
773 		}
774 		up_read(&qp->state_lock);
775 		return rv;
776 	}
777 	spin_lock_irqsave(&qp->sq_lock, flags);
778 
779 	while (wr) {
780 		u32 idx = qp->sq_put % qp->attrs.sq_size;
781 		struct siw_sqe *sqe = &qp->sendq[idx];
782 
783 		if (sqe->flags) {
784 			siw_dbg_qp(qp, "sq full\n");
785 			rv = -ENOMEM;
786 			break;
787 		}
788 		if (wr->num_sge > qp->attrs.sq_max_sges) {
789 			siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
790 			rv = -EINVAL;
791 			break;
792 		}
793 		sqe->id = wr->wr_id;
794 
795 		if ((wr->send_flags & IB_SEND_SIGNALED) ||
796 		    (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
797 			sqe->flags |= SIW_WQE_SIGNALLED;
798 
799 		if (wr->send_flags & IB_SEND_FENCE)
800 			sqe->flags |= SIW_WQE_READ_FENCE;
801 
802 		switch (wr->opcode) {
803 		case IB_WR_SEND:
804 		case IB_WR_SEND_WITH_INV:
805 			if (wr->send_flags & IB_SEND_SOLICITED)
806 				sqe->flags |= SIW_WQE_SOLICITED;
807 
808 			if (!(wr->send_flags & IB_SEND_INLINE)) {
809 				siw_copy_sgl(wr->sg_list, sqe->sge,
810 					     wr->num_sge);
811 				sqe->num_sge = wr->num_sge;
812 			} else {
813 				rv = siw_copy_inline_sgl(wr, sqe);
814 				if (rv <= 0) {
815 					rv = -EINVAL;
816 					break;
817 				}
818 				sqe->flags |= SIW_WQE_INLINE;
819 				sqe->num_sge = 1;
820 			}
821 			if (wr->opcode == IB_WR_SEND)
822 				sqe->opcode = SIW_OP_SEND;
823 			else {
824 				sqe->opcode = SIW_OP_SEND_REMOTE_INV;
825 				sqe->rkey = wr->ex.invalidate_rkey;
826 			}
827 			break;
828 
829 		case IB_WR_RDMA_READ_WITH_INV:
830 		case IB_WR_RDMA_READ:
831 			/*
832 			 * iWarp restricts RREAD sink to SGL containing
833 			 * 1 SGE only. we could relax to SGL with multiple
834 			 * elements referring the SAME ltag or even sending
835 			 * a private per-rreq tag referring to a checked
836 			 * local sgl with MULTIPLE ltag's.
837 			 */
838 			if (unlikely(wr->num_sge != 1)) {
839 				rv = -EINVAL;
840 				break;
841 			}
842 			siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
843 			/*
844 			 * NOTE: zero length RREAD is allowed!
845 			 */
846 			sqe->raddr = rdma_wr(wr)->remote_addr;
847 			sqe->rkey = rdma_wr(wr)->rkey;
848 			sqe->num_sge = 1;
849 
850 			if (wr->opcode == IB_WR_RDMA_READ)
851 				sqe->opcode = SIW_OP_READ;
852 			else
853 				sqe->opcode = SIW_OP_READ_LOCAL_INV;
854 			break;
855 
856 		case IB_WR_RDMA_WRITE:
857 			if (!(wr->send_flags & IB_SEND_INLINE)) {
858 				siw_copy_sgl(wr->sg_list, &sqe->sge[0],
859 					     wr->num_sge);
860 				sqe->num_sge = wr->num_sge;
861 			} else {
862 				rv = siw_copy_inline_sgl(wr, sqe);
863 				if (unlikely(rv < 0)) {
864 					rv = -EINVAL;
865 					break;
866 				}
867 				sqe->flags |= SIW_WQE_INLINE;
868 				sqe->num_sge = 1;
869 			}
870 			sqe->raddr = rdma_wr(wr)->remote_addr;
871 			sqe->rkey = rdma_wr(wr)->rkey;
872 			sqe->opcode = SIW_OP_WRITE;
873 			break;
874 
875 		case IB_WR_REG_MR:
876 			sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
877 			sqe->rkey = reg_wr(wr)->key;
878 			sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
879 			sqe->opcode = SIW_OP_REG_MR;
880 			break;
881 
882 		case IB_WR_LOCAL_INV:
883 			sqe->rkey = wr->ex.invalidate_rkey;
884 			sqe->opcode = SIW_OP_INVAL_STAG;
885 			break;
886 
887 		default:
888 			siw_dbg_qp(qp, "ib wr type %d unsupported\n",
889 				   wr->opcode);
890 			rv = -EINVAL;
891 			break;
892 		}
893 		siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
894 			   sqe->opcode, sqe->flags,
895 			   (void *)(uintptr_t)sqe->id);
896 
897 		if (unlikely(rv < 0))
898 			break;
899 
900 		/* make SQE only valid after completely written */
901 		smp_wmb();
902 		sqe->flags |= SIW_WQE_VALID;
903 
904 		qp->sq_put++;
905 		wr = wr->next;
906 	}
907 
908 	/*
909 	 * Send directly if SQ processing is not in progress.
910 	 * Eventual immediate errors (rv < 0) do not affect the involved
911 	 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
912 	 * processing, if new work is already pending. But rv must be passed
913 	 * to caller.
914 	 */
915 	if (wqe->wr_status != SIW_WR_IDLE) {
916 		spin_unlock_irqrestore(&qp->sq_lock, flags);
917 		goto skip_direct_sending;
918 	}
919 	rv = siw_activate_tx(qp);
920 	spin_unlock_irqrestore(&qp->sq_lock, flags);
921 
922 	if (rv <= 0)
923 		goto skip_direct_sending;
924 
925 	if (rdma_is_kernel_res(&qp->base_qp.res)) {
926 		rv = siw_sq_start(qp);
927 	} else {
928 		qp->tx_ctx.in_syscall = 1;
929 
930 		if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
931 			siw_qp_cm_drop(qp, 0);
932 
933 		qp->tx_ctx.in_syscall = 0;
934 	}
935 skip_direct_sending:
936 
937 	up_read(&qp->state_lock);
938 
939 	if (rv >= 0)
940 		return 0;
941 	/*
942 	 * Immediate error
943 	 */
944 	siw_dbg_qp(qp, "error %d\n", rv);
945 
946 	*bad_wr = wr;
947 	return rv;
948 }
949 
950 /*
951  * siw_post_receive()
952  *
953  * Post a list of R-WR's to a RQ.
954  *
955  * @base_qp:	Base QP contained in siw QP
956  * @wr:		Null terminated list of user WR's
957  * @bad_wr:	Points to failing WR in case of synchronous failure.
958  */
959 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
960 		     const struct ib_recv_wr **bad_wr)
961 {
962 	struct siw_qp *qp = to_siw_qp(base_qp);
963 	unsigned long flags;
964 	int rv = 0;
965 
966 	if (qp->srq || qp->attrs.rq_size == 0) {
967 		*bad_wr = wr;
968 		return -EINVAL;
969 	}
970 	if (!rdma_is_kernel_res(&qp->base_qp.res)) {
971 		siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
972 		*bad_wr = wr;
973 		return -EINVAL;
974 	}
975 
976 	/*
977 	 * Try to acquire QP state lock. Must be non-blocking
978 	 * to accommodate kernel clients needs.
979 	 */
980 	if (!down_read_trylock(&qp->state_lock)) {
981 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
982 			/*
983 			 * ERROR state is final, so we can be sure
984 			 * this state will not change as long as the QP
985 			 * exists.
986 			 *
987 			 * This handles an ib_drain_rq() call with
988 			 * a concurrent request to set the QP state
989 			 * to ERROR.
990 			 */
991 			rv = siw_rq_flush_wr(qp, wr, bad_wr);
992 		} else {
993 			siw_dbg_qp(qp, "QP locked, state %d\n",
994 				   qp->attrs.state);
995 			*bad_wr = wr;
996 			rv = -ENOTCONN;
997 		}
998 		return rv;
999 	}
1000 	if (qp->attrs.state > SIW_QP_STATE_RTS) {
1001 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1002 			/*
1003 			 * Immediately flush this WR to CQ, if QP
1004 			 * is in ERROR state. RQ is guaranteed to
1005 			 * be empty, so WR complets in-order.
1006 			 *
1007 			 * Typically triggered by ib_drain_rq().
1008 			 */
1009 			rv = siw_rq_flush_wr(qp, wr, bad_wr);
1010 		} else {
1011 			siw_dbg_qp(qp, "QP out of state %d\n",
1012 				   qp->attrs.state);
1013 			*bad_wr = wr;
1014 			rv = -ENOTCONN;
1015 		}
1016 		up_read(&qp->state_lock);
1017 		return rv;
1018 	}
1019 	/*
1020 	 * Serialize potentially multiple producers.
1021 	 * Not needed for single threaded consumer side.
1022 	 */
1023 	spin_lock_irqsave(&qp->rq_lock, flags);
1024 
1025 	while (wr) {
1026 		u32 idx = qp->rq_put % qp->attrs.rq_size;
1027 		struct siw_rqe *rqe = &qp->recvq[idx];
1028 
1029 		if (rqe->flags) {
1030 			siw_dbg_qp(qp, "RQ full\n");
1031 			rv = -ENOMEM;
1032 			break;
1033 		}
1034 		if (wr->num_sge > qp->attrs.rq_max_sges) {
1035 			siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1036 			rv = -EINVAL;
1037 			break;
1038 		}
1039 		rqe->id = wr->wr_id;
1040 		rqe->num_sge = wr->num_sge;
1041 		siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1042 
1043 		/* make sure RQE is completely written before valid */
1044 		smp_wmb();
1045 
1046 		rqe->flags = SIW_WQE_VALID;
1047 
1048 		qp->rq_put++;
1049 		wr = wr->next;
1050 	}
1051 	spin_unlock_irqrestore(&qp->rq_lock, flags);
1052 
1053 	up_read(&qp->state_lock);
1054 
1055 	if (rv < 0) {
1056 		siw_dbg_qp(qp, "error %d\n", rv);
1057 		*bad_wr = wr;
1058 	}
1059 	return rv > 0 ? 0 : rv;
1060 }
1061 
1062 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1063 {
1064 	struct siw_cq *cq = to_siw_cq(base_cq);
1065 	struct siw_device *sdev = to_siw_dev(base_cq->device);
1066 	struct siw_ucontext *ctx =
1067 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1068 					  base_ucontext);
1069 
1070 	siw_dbg_cq(cq, "free CQ resources\n");
1071 
1072 	siw_cq_flush(cq);
1073 
1074 	if (ctx)
1075 		rdma_user_mmap_entry_remove(cq->cq_entry);
1076 
1077 	atomic_dec(&sdev->num_cq);
1078 
1079 	vfree(cq->queue);
1080 	return 0;
1081 }
1082 
1083 /*
1084  * siw_create_cq()
1085  *
1086  * Populate CQ of requested size
1087  *
1088  * @base_cq: CQ as allocated by RDMA midlayer
1089  * @attr: Initial CQ attributes
1090  * @udata: relates to user context
1091  */
1092 
1093 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1094 		  struct ib_udata *udata)
1095 {
1096 	struct siw_device *sdev = to_siw_dev(base_cq->device);
1097 	struct siw_cq *cq = to_siw_cq(base_cq);
1098 	int rv, size = attr->cqe;
1099 
1100 	if (attr->flags)
1101 		return -EOPNOTSUPP;
1102 
1103 	if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1104 		siw_dbg(base_cq->device, "too many CQ's\n");
1105 		rv = -ENOMEM;
1106 		goto err_out;
1107 	}
1108 	if (size < 1 || size > sdev->attrs.max_cqe) {
1109 		siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1110 		rv = -EINVAL;
1111 		goto err_out;
1112 	}
1113 	size = roundup_pow_of_two(size);
1114 	cq->base_cq.cqe = size;
1115 	cq->num_cqe = size;
1116 
1117 	if (udata)
1118 		cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1119 					 sizeof(struct siw_cq_ctrl));
1120 	else
1121 		cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1122 				    sizeof(struct siw_cq_ctrl));
1123 
1124 	if (cq->queue == NULL) {
1125 		rv = -ENOMEM;
1126 		goto err_out;
1127 	}
1128 	get_random_bytes(&cq->id, 4);
1129 	siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1130 
1131 	spin_lock_init(&cq->lock);
1132 
1133 	cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1134 
1135 	if (udata) {
1136 		struct siw_uresp_create_cq uresp = {};
1137 		struct siw_ucontext *ctx =
1138 			rdma_udata_to_drv_context(udata, struct siw_ucontext,
1139 						  base_ucontext);
1140 		size_t length = size * sizeof(struct siw_cqe) +
1141 			sizeof(struct siw_cq_ctrl);
1142 
1143 		cq->cq_entry =
1144 			siw_mmap_entry_insert(ctx, cq->queue,
1145 					      length, &uresp.cq_key);
1146 		if (!cq->cq_entry) {
1147 			rv = -ENOMEM;
1148 			goto err_out;
1149 		}
1150 
1151 		uresp.cq_id = cq->id;
1152 		uresp.num_cqe = size;
1153 
1154 		if (udata->outlen < sizeof(uresp)) {
1155 			rv = -EINVAL;
1156 			goto err_out;
1157 		}
1158 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1159 		if (rv)
1160 			goto err_out;
1161 	}
1162 	return 0;
1163 
1164 err_out:
1165 	siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1166 
1167 	if (cq && cq->queue) {
1168 		struct siw_ucontext *ctx =
1169 			rdma_udata_to_drv_context(udata, struct siw_ucontext,
1170 						  base_ucontext);
1171 		if (ctx)
1172 			rdma_user_mmap_entry_remove(cq->cq_entry);
1173 		vfree(cq->queue);
1174 	}
1175 	atomic_dec(&sdev->num_cq);
1176 
1177 	return rv;
1178 }
1179 
1180 /*
1181  * siw_poll_cq()
1182  *
1183  * Reap CQ entries if available and copy work completion status into
1184  * array of WC's provided by caller. Returns number of reaped CQE's.
1185  *
1186  * @base_cq:	Base CQ contained in siw CQ.
1187  * @num_cqe:	Maximum number of CQE's to reap.
1188  * @wc:		Array of work completions to be filled by siw.
1189  */
1190 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1191 {
1192 	struct siw_cq *cq = to_siw_cq(base_cq);
1193 	int i;
1194 
1195 	for (i = 0; i < num_cqe; i++) {
1196 		if (!siw_reap_cqe(cq, wc))
1197 			break;
1198 		wc++;
1199 	}
1200 	return i;
1201 }
1202 
1203 /*
1204  * siw_req_notify_cq()
1205  *
1206  * Request notification for new CQE's added to that CQ.
1207  * Defined flags:
1208  * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1209  *   event if a WQE with notification flag set enters the CQ
1210  * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1211  *   event if a WQE enters the CQ.
1212  * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1213  *   number of not reaped CQE's regardless of its notification
1214  *   type and current or new CQ notification settings.
1215  *
1216  * @base_cq:	Base CQ contained in siw CQ.
1217  * @flags:	Requested notification flags.
1218  */
1219 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1220 {
1221 	struct siw_cq *cq = to_siw_cq(base_cq);
1222 
1223 	siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1224 
1225 	if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1226 		/*
1227 		 * Enable CQ event for next solicited completion.
1228 		 * and make it visible to all associated producers.
1229 		 */
1230 		smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1231 	else
1232 		/*
1233 		 * Enable CQ event for any signalled completion.
1234 		 * and make it visible to all associated producers.
1235 		 */
1236 		smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1237 
1238 	if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1239 		return cq->cq_put - cq->cq_get;
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * siw_dereg_mr()
1246  *
1247  * Release Memory Region.
1248  *
1249  * @base_mr: Base MR contained in siw MR.
1250  * @udata: points to user context, unused.
1251  */
1252 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1253 {
1254 	struct siw_mr *mr = to_siw_mr(base_mr);
1255 	struct siw_device *sdev = to_siw_dev(base_mr->device);
1256 
1257 	siw_dbg_mem(mr->mem, "deregister MR\n");
1258 
1259 	atomic_dec(&sdev->num_mr);
1260 
1261 	siw_mr_drop_mem(mr);
1262 	kfree_rcu(mr, rcu);
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * siw_reg_user_mr()
1269  *
1270  * Register Memory Region.
1271  *
1272  * @pd:		Protection Domain
1273  * @start:	starting address of MR (virtual address)
1274  * @len:	len of MR
1275  * @rnic_va:	not used by siw
1276  * @rights:	MR access rights
1277  * @udata:	user buffer to communicate STag and Key.
1278  */
1279 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1280 			      u64 rnic_va, int rights, struct ib_udata *udata)
1281 {
1282 	struct siw_mr *mr = NULL;
1283 	struct siw_umem *umem = NULL;
1284 	struct siw_ureq_reg_mr ureq;
1285 	struct siw_device *sdev = to_siw_dev(pd->device);
1286 
1287 	unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1288 	int rv;
1289 
1290 	siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1291 		   (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1292 		   (unsigned long long)len);
1293 
1294 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1295 		siw_dbg_pd(pd, "too many mr's\n");
1296 		rv = -ENOMEM;
1297 		goto err_out;
1298 	}
1299 	if (!len) {
1300 		rv = -EINVAL;
1301 		goto err_out;
1302 	}
1303 	if (mem_limit != RLIM_INFINITY) {
1304 		unsigned long num_pages =
1305 			(PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1306 		mem_limit >>= PAGE_SHIFT;
1307 
1308 		if (num_pages > mem_limit - current->mm->locked_vm) {
1309 			siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1310 				   num_pages, mem_limit,
1311 				   current->mm->locked_vm);
1312 			rv = -ENOMEM;
1313 			goto err_out;
1314 		}
1315 	}
1316 	umem = siw_umem_get(start, len, ib_access_writable(rights));
1317 	if (IS_ERR(umem)) {
1318 		rv = PTR_ERR(umem);
1319 		siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1320 		umem = NULL;
1321 		goto err_out;
1322 	}
1323 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1324 	if (!mr) {
1325 		rv = -ENOMEM;
1326 		goto err_out;
1327 	}
1328 	rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1329 	if (rv)
1330 		goto err_out;
1331 
1332 	if (udata) {
1333 		struct siw_uresp_reg_mr uresp = {};
1334 		struct siw_mem *mem = mr->mem;
1335 
1336 		if (udata->inlen < sizeof(ureq)) {
1337 			rv = -EINVAL;
1338 			goto err_out;
1339 		}
1340 		rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1341 		if (rv)
1342 			goto err_out;
1343 
1344 		mr->base_mr.lkey |= ureq.stag_key;
1345 		mr->base_mr.rkey |= ureq.stag_key;
1346 		mem->stag |= ureq.stag_key;
1347 		uresp.stag = mem->stag;
1348 
1349 		if (udata->outlen < sizeof(uresp)) {
1350 			rv = -EINVAL;
1351 			goto err_out;
1352 		}
1353 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1354 		if (rv)
1355 			goto err_out;
1356 	}
1357 	mr->mem->stag_valid = 1;
1358 
1359 	return &mr->base_mr;
1360 
1361 err_out:
1362 	atomic_dec(&sdev->num_mr);
1363 	if (mr) {
1364 		if (mr->mem)
1365 			siw_mr_drop_mem(mr);
1366 		kfree_rcu(mr, rcu);
1367 	} else {
1368 		if (umem)
1369 			siw_umem_release(umem, false);
1370 	}
1371 	return ERR_PTR(rv);
1372 }
1373 
1374 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1375 			   u32 max_sge)
1376 {
1377 	struct siw_device *sdev = to_siw_dev(pd->device);
1378 	struct siw_mr *mr = NULL;
1379 	struct siw_pbl *pbl = NULL;
1380 	int rv;
1381 
1382 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1383 		siw_dbg_pd(pd, "too many mr's\n");
1384 		rv = -ENOMEM;
1385 		goto err_out;
1386 	}
1387 	if (mr_type != IB_MR_TYPE_MEM_REG) {
1388 		siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1389 		rv = -EOPNOTSUPP;
1390 		goto err_out;
1391 	}
1392 	if (max_sge > SIW_MAX_SGE_PBL) {
1393 		siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1394 		rv = -ENOMEM;
1395 		goto err_out;
1396 	}
1397 	pbl = siw_pbl_alloc(max_sge);
1398 	if (IS_ERR(pbl)) {
1399 		rv = PTR_ERR(pbl);
1400 		siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1401 		pbl = NULL;
1402 		goto err_out;
1403 	}
1404 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1405 	if (!mr) {
1406 		rv = -ENOMEM;
1407 		goto err_out;
1408 	}
1409 	rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1410 	if (rv)
1411 		goto err_out;
1412 
1413 	mr->mem->is_pbl = 1;
1414 
1415 	siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1416 
1417 	return &mr->base_mr;
1418 
1419 err_out:
1420 	atomic_dec(&sdev->num_mr);
1421 
1422 	if (!mr) {
1423 		kfree(pbl);
1424 	} else {
1425 		if (mr->mem)
1426 			siw_mr_drop_mem(mr);
1427 		kfree_rcu(mr, rcu);
1428 	}
1429 	siw_dbg_pd(pd, "failed: %d\n", rv);
1430 
1431 	return ERR_PTR(rv);
1432 }
1433 
1434 /* Just used to count number of pages being mapped */
1435 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1436 {
1437 	return 0;
1438 }
1439 
1440 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1441 		  unsigned int *sg_off)
1442 {
1443 	struct scatterlist *slp;
1444 	struct siw_mr *mr = to_siw_mr(base_mr);
1445 	struct siw_mem *mem = mr->mem;
1446 	struct siw_pbl *pbl = mem->pbl;
1447 	struct siw_pble *pble;
1448 	unsigned long pbl_size;
1449 	int i, rv;
1450 
1451 	if (!pbl) {
1452 		siw_dbg_mem(mem, "no PBL allocated\n");
1453 		return -EINVAL;
1454 	}
1455 	pble = pbl->pbe;
1456 
1457 	if (pbl->max_buf < num_sle) {
1458 		siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1459 			    mem->pbl->max_buf, num_sle);
1460 		return -ENOMEM;
1461 	}
1462 	for_each_sg(sl, slp, num_sle, i) {
1463 		if (sg_dma_len(slp) == 0) {
1464 			siw_dbg_mem(mem, "empty SGE\n");
1465 			return -EINVAL;
1466 		}
1467 		if (i == 0) {
1468 			pble->addr = sg_dma_address(slp);
1469 			pble->size = sg_dma_len(slp);
1470 			pble->pbl_off = 0;
1471 			pbl_size = pble->size;
1472 			pbl->num_buf = 1;
1473 		} else {
1474 			/* Merge PBL entries if adjacent */
1475 			if (pble->addr + pble->size == sg_dma_address(slp)) {
1476 				pble->size += sg_dma_len(slp);
1477 			} else {
1478 				pble++;
1479 				pbl->num_buf++;
1480 				pble->addr = sg_dma_address(slp);
1481 				pble->size = sg_dma_len(slp);
1482 				pble->pbl_off = pbl_size;
1483 			}
1484 			pbl_size += sg_dma_len(slp);
1485 		}
1486 		siw_dbg_mem(mem,
1487 			"sge[%d], size %u, addr 0x%p, total %lu\n",
1488 			i, pble->size, (void *)(uintptr_t)pble->addr,
1489 			pbl_size);
1490 	}
1491 	rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1492 	if (rv > 0) {
1493 		mem->len = base_mr->length;
1494 		mem->va = base_mr->iova;
1495 		siw_dbg_mem(mem,
1496 			"%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1497 			mem->len, (void *)(uintptr_t)mem->va, num_sle,
1498 			pbl->num_buf);
1499 	}
1500 	return rv;
1501 }
1502 
1503 /*
1504  * siw_get_dma_mr()
1505  *
1506  * Create a (empty) DMA memory region, where no umem is attached.
1507  */
1508 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1509 {
1510 	struct siw_device *sdev = to_siw_dev(pd->device);
1511 	struct siw_mr *mr = NULL;
1512 	int rv;
1513 
1514 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1515 		siw_dbg_pd(pd, "too many mr's\n");
1516 		rv = -ENOMEM;
1517 		goto err_out;
1518 	}
1519 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1520 	if (!mr) {
1521 		rv = -ENOMEM;
1522 		goto err_out;
1523 	}
1524 	rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1525 	if (rv)
1526 		goto err_out;
1527 
1528 	mr->mem->stag_valid = 1;
1529 
1530 	siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1531 
1532 	return &mr->base_mr;
1533 
1534 err_out:
1535 	if (rv)
1536 		kfree(mr);
1537 
1538 	atomic_dec(&sdev->num_mr);
1539 
1540 	return ERR_PTR(rv);
1541 }
1542 
1543 /*
1544  * siw_create_srq()
1545  *
1546  * Create Shared Receive Queue of attributes @init_attrs
1547  * within protection domain given by @pd.
1548  *
1549  * @base_srq:	Base SRQ contained in siw SRQ.
1550  * @init_attrs:	SRQ init attributes.
1551  * @udata:	points to user context
1552  */
1553 int siw_create_srq(struct ib_srq *base_srq,
1554 		   struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1555 {
1556 	struct siw_srq *srq = to_siw_srq(base_srq);
1557 	struct ib_srq_attr *attrs = &init_attrs->attr;
1558 	struct siw_device *sdev = to_siw_dev(base_srq->device);
1559 	struct siw_ucontext *ctx =
1560 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1561 					  base_ucontext);
1562 	int rv;
1563 
1564 	if (init_attrs->srq_type != IB_SRQT_BASIC)
1565 		return -EOPNOTSUPP;
1566 
1567 	if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1568 		siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1569 		rv = -ENOMEM;
1570 		goto err_out;
1571 	}
1572 	if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1573 	    attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1574 		rv = -EINVAL;
1575 		goto err_out;
1576 	}
1577 	srq->max_sge = attrs->max_sge;
1578 	srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1579 	srq->limit = attrs->srq_limit;
1580 	if (srq->limit)
1581 		srq->armed = true;
1582 
1583 	srq->is_kernel_res = !udata;
1584 
1585 	if (udata)
1586 		srq->recvq =
1587 			vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1588 	else
1589 		srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1590 
1591 	if (srq->recvq == NULL) {
1592 		rv = -ENOMEM;
1593 		goto err_out;
1594 	}
1595 	if (udata) {
1596 		struct siw_uresp_create_srq uresp = {};
1597 		size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1598 
1599 		srq->srq_entry =
1600 			siw_mmap_entry_insert(ctx, srq->recvq,
1601 					      length, &uresp.srq_key);
1602 		if (!srq->srq_entry) {
1603 			rv = -ENOMEM;
1604 			goto err_out;
1605 		}
1606 
1607 		uresp.num_rqe = srq->num_rqe;
1608 
1609 		if (udata->outlen < sizeof(uresp)) {
1610 			rv = -EINVAL;
1611 			goto err_out;
1612 		}
1613 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1614 		if (rv)
1615 			goto err_out;
1616 	}
1617 	spin_lock_init(&srq->lock);
1618 
1619 	siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1620 
1621 	return 0;
1622 
1623 err_out:
1624 	if (srq->recvq) {
1625 		if (ctx)
1626 			rdma_user_mmap_entry_remove(srq->srq_entry);
1627 		vfree(srq->recvq);
1628 	}
1629 	atomic_dec(&sdev->num_srq);
1630 
1631 	return rv;
1632 }
1633 
1634 /*
1635  * siw_modify_srq()
1636  *
1637  * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1638  * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1639  *
1640  * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1641  * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1642  */
1643 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1644 		   enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1645 {
1646 	struct siw_srq *srq = to_siw_srq(base_srq);
1647 	unsigned long flags;
1648 	int rv = 0;
1649 
1650 	spin_lock_irqsave(&srq->lock, flags);
1651 
1652 	if (attr_mask & IB_SRQ_MAX_WR) {
1653 		/* resize request not yet supported */
1654 		rv = -EOPNOTSUPP;
1655 		goto out;
1656 	}
1657 	if (attr_mask & IB_SRQ_LIMIT) {
1658 		if (attrs->srq_limit) {
1659 			if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1660 				rv = -EINVAL;
1661 				goto out;
1662 			}
1663 			srq->armed = true;
1664 		} else {
1665 			srq->armed = false;
1666 		}
1667 		srq->limit = attrs->srq_limit;
1668 	}
1669 out:
1670 	spin_unlock_irqrestore(&srq->lock, flags);
1671 
1672 	return rv;
1673 }
1674 
1675 /*
1676  * siw_query_srq()
1677  *
1678  * Query SRQ attributes.
1679  */
1680 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1681 {
1682 	struct siw_srq *srq = to_siw_srq(base_srq);
1683 	unsigned long flags;
1684 
1685 	spin_lock_irqsave(&srq->lock, flags);
1686 
1687 	attrs->max_wr = srq->num_rqe;
1688 	attrs->max_sge = srq->max_sge;
1689 	attrs->srq_limit = srq->limit;
1690 
1691 	spin_unlock_irqrestore(&srq->lock, flags);
1692 
1693 	return 0;
1694 }
1695 
1696 /*
1697  * siw_destroy_srq()
1698  *
1699  * Destroy SRQ.
1700  * It is assumed that the SRQ is not referenced by any
1701  * QP anymore - the code trusts the RDMA core environment to keep track
1702  * of QP references.
1703  */
1704 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1705 {
1706 	struct siw_srq *srq = to_siw_srq(base_srq);
1707 	struct siw_device *sdev = to_siw_dev(base_srq->device);
1708 	struct siw_ucontext *ctx =
1709 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1710 					  base_ucontext);
1711 
1712 	if (ctx)
1713 		rdma_user_mmap_entry_remove(srq->srq_entry);
1714 	vfree(srq->recvq);
1715 	atomic_dec(&sdev->num_srq);
1716 	return 0;
1717 }
1718 
1719 /*
1720  * siw_post_srq_recv()
1721  *
1722  * Post a list of receive queue elements to SRQ.
1723  * NOTE: The function does not check or lock a certain SRQ state
1724  *       during the post operation. The code simply trusts the
1725  *       RDMA core environment.
1726  *
1727  * @base_srq:	Base SRQ contained in siw SRQ
1728  * @wr:		List of R-WR's
1729  * @bad_wr:	Updated to failing WR if posting fails.
1730  */
1731 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1732 		      const struct ib_recv_wr **bad_wr)
1733 {
1734 	struct siw_srq *srq = to_siw_srq(base_srq);
1735 	unsigned long flags;
1736 	int rv = 0;
1737 
1738 	if (unlikely(!srq->is_kernel_res)) {
1739 		siw_dbg_pd(base_srq->pd,
1740 			   "[SRQ]: no kernel post_recv for mapped srq\n");
1741 		rv = -EINVAL;
1742 		goto out;
1743 	}
1744 	/*
1745 	 * Serialize potentially multiple producers.
1746 	 * Also needed to serialize potentially multiple
1747 	 * consumers.
1748 	 */
1749 	spin_lock_irqsave(&srq->lock, flags);
1750 
1751 	while (wr) {
1752 		u32 idx = srq->rq_put % srq->num_rqe;
1753 		struct siw_rqe *rqe = &srq->recvq[idx];
1754 
1755 		if (rqe->flags) {
1756 			siw_dbg_pd(base_srq->pd, "SRQ full\n");
1757 			rv = -ENOMEM;
1758 			break;
1759 		}
1760 		if (unlikely(wr->num_sge > srq->max_sge)) {
1761 			siw_dbg_pd(base_srq->pd,
1762 				   "[SRQ]: too many sge's: %d\n", wr->num_sge);
1763 			rv = -EINVAL;
1764 			break;
1765 		}
1766 		rqe->id = wr->wr_id;
1767 		rqe->num_sge = wr->num_sge;
1768 		siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1769 
1770 		/* Make sure S-RQE is completely written before valid */
1771 		smp_wmb();
1772 
1773 		rqe->flags = SIW_WQE_VALID;
1774 
1775 		srq->rq_put++;
1776 		wr = wr->next;
1777 	}
1778 	spin_unlock_irqrestore(&srq->lock, flags);
1779 out:
1780 	if (unlikely(rv < 0)) {
1781 		siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1782 		*bad_wr = wr;
1783 	}
1784 	return rv;
1785 }
1786 
1787 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1788 {
1789 	struct ib_event event;
1790 	struct ib_qp *base_qp = &qp->base_qp;
1791 
1792 	/*
1793 	 * Do not report asynchronous errors on QP which gets
1794 	 * destroyed via verbs interface (siw_destroy_qp())
1795 	 */
1796 	if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1797 		return;
1798 
1799 	event.event = etype;
1800 	event.device = base_qp->device;
1801 	event.element.qp = base_qp;
1802 
1803 	if (base_qp->event_handler) {
1804 		siw_dbg_qp(qp, "reporting event %d\n", etype);
1805 		base_qp->event_handler(&event, base_qp->qp_context);
1806 	}
1807 }
1808 
1809 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1810 {
1811 	struct ib_event event;
1812 	struct ib_cq *base_cq = &cq->base_cq;
1813 
1814 	event.event = etype;
1815 	event.device = base_cq->device;
1816 	event.element.cq = base_cq;
1817 
1818 	if (base_cq->event_handler) {
1819 		siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1820 		base_cq->event_handler(&event, base_cq->cq_context);
1821 	}
1822 }
1823 
1824 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1825 {
1826 	struct ib_event event;
1827 	struct ib_srq *base_srq = &srq->base_srq;
1828 
1829 	event.event = etype;
1830 	event.device = base_srq->device;
1831 	event.element.srq = base_srq;
1832 
1833 	if (base_srq->event_handler) {
1834 		siw_dbg_pd(srq->base_srq.pd,
1835 			   "reporting SRQ event %d\n", etype);
1836 		base_srq->event_handler(&event, base_srq->srq_context);
1837 	}
1838 }
1839 
1840 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1841 {
1842 	struct ib_event event;
1843 
1844 	event.event = etype;
1845 	event.device = &sdev->base_dev;
1846 	event.element.port_num = port;
1847 
1848 	siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1849 
1850 	ib_dispatch_event(&event);
1851 }
1852