xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 85f9e38a5ac7d397f9bb5e57901b2d6af4dcc3b9)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_UMR_ALIGN 2048
52 
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 				     u64 iova, int access_flags,
57 				     unsigned int page_size, bool populate);
58 
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 					  struct ib_pd *pd)
61 {
62 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
63 
64 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 	MLX5_SET(mkc, mkc, lr, 1);
69 
70 	if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
71 	    pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
72 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
73 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
75 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
76 	}
77 
78 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
79 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
80 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
81 }
82 
83 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
84 {
85 	u8 key = atomic_inc_return(&dev->mkey_var);
86 	void *mkc;
87 
88 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
89 	MLX5_SET(mkc, mkc, mkey_7_0, key);
90 	*mkey = key;
91 }
92 
93 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
94 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
95 {
96 	int ret;
97 
98 	assign_mkey_variant(dev, &mkey->key, in);
99 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
100 	if (!ret)
101 		init_waitqueue_head(&mkey->wait);
102 
103 	return ret;
104 }
105 
106 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
107 {
108 	struct mlx5_ib_dev *dev = async_create->ent->dev;
109 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
110 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
111 
112 	MLX5_SET(create_mkey_in, async_create->in, opcode,
113 		 MLX5_CMD_OP_CREATE_MKEY);
114 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
115 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
116 				async_create->out, outlen, create_mkey_callback,
117 				&async_create->cb_work);
118 }
119 
120 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
121 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
122 
123 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
124 {
125 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
126 
127 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
128 }
129 
130 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
131 {
132 	if (status == -ENXIO) /* core driver is not available */
133 		return;
134 
135 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
136 	if (status != -EREMOTEIO) /* driver specific failure */
137 		return;
138 
139 	/* Failed in FW, print cmd out failure details */
140 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
141 }
142 
143 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings,
144 			    void *to_store)
145 {
146 	XA_STATE(xas, &ent->mkeys, 0);
147 	void *curr;
148 
149 	if (limit_pendings &&
150 	    (ent->reserved - ent->stored) > MAX_PENDING_REG_MR)
151 		return -EAGAIN;
152 
153 	while (1) {
154 		/*
155 		 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
156 		 * doesn't transparently unlock. Instead we set the xas index to
157 		 * the current value of reserved every iteration.
158 		 */
159 		xas_set(&xas, ent->reserved);
160 		curr = xas_load(&xas);
161 		if (!curr) {
162 			if (to_store && ent->stored == ent->reserved)
163 				xas_store(&xas, to_store);
164 			else
165 				xas_store(&xas, XA_ZERO_ENTRY);
166 			if (xas_valid(&xas)) {
167 				ent->reserved++;
168 				if (to_store) {
169 					if (ent->stored != ent->reserved)
170 						__xa_store(&ent->mkeys,
171 							   ent->stored,
172 							   to_store,
173 							   GFP_KERNEL);
174 					ent->stored++;
175 					queue_adjust_cache_locked(ent);
176 					WRITE_ONCE(ent->dev->cache.last_add,
177 						   jiffies);
178 				}
179 			}
180 		}
181 		xa_unlock_irq(&ent->mkeys);
182 
183 		/*
184 		 * Notice xas_nomem() must always be called as it cleans
185 		 * up any cached allocation.
186 		 */
187 		if (!xas_nomem(&xas, GFP_KERNEL))
188 			break;
189 		xa_lock_irq(&ent->mkeys);
190 	}
191 	xa_lock_irq(&ent->mkeys);
192 	if (xas_error(&xas))
193 		return xas_error(&xas);
194 	if (WARN_ON(curr))
195 		return -EINVAL;
196 	return 0;
197 }
198 
199 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
200 		     void *to_store)
201 {
202 	int ret;
203 
204 	xa_lock_irq(&ent->mkeys);
205 	ret = push_mkey_locked(ent, limit_pendings, to_store);
206 	xa_unlock_irq(&ent->mkeys);
207 	return ret;
208 }
209 
210 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
211 {
212 	void *old;
213 
214 	ent->reserved--;
215 	old = __xa_erase(&ent->mkeys, ent->reserved);
216 	WARN_ON(old);
217 }
218 
219 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
220 {
221 	void *old;
222 
223 	old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
224 	WARN_ON(old);
225 	ent->stored++;
226 }
227 
228 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
229 {
230 	void *old, *xa_mkey;
231 
232 	ent->stored--;
233 	ent->reserved--;
234 
235 	if (ent->stored == ent->reserved) {
236 		xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
237 		WARN_ON(!xa_mkey);
238 		return (u32)xa_to_value(xa_mkey);
239 	}
240 
241 	xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
242 			     GFP_KERNEL);
243 	WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
244 	old = __xa_erase(&ent->mkeys, ent->reserved);
245 	WARN_ON(old);
246 	return (u32)xa_to_value(xa_mkey);
247 }
248 
249 static void create_mkey_callback(int status, struct mlx5_async_work *context)
250 {
251 	struct mlx5r_async_create_mkey *mkey_out =
252 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
253 	struct mlx5_cache_ent *ent = mkey_out->ent;
254 	struct mlx5_ib_dev *dev = ent->dev;
255 	unsigned long flags;
256 
257 	if (status) {
258 		create_mkey_warn(dev, status, mkey_out->out);
259 		kfree(mkey_out);
260 		xa_lock_irqsave(&ent->mkeys, flags);
261 		undo_push_reserve_mkey(ent);
262 		WRITE_ONCE(dev->fill_delay, 1);
263 		xa_unlock_irqrestore(&ent->mkeys, flags);
264 		mod_timer(&dev->delay_timer, jiffies + HZ);
265 		return;
266 	}
267 
268 	mkey_out->mkey |= mlx5_idx_to_mkey(
269 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
270 	WRITE_ONCE(dev->cache.last_add, jiffies);
271 
272 	xa_lock_irqsave(&ent->mkeys, flags);
273 	push_to_reserved(ent, mkey_out->mkey);
274 	/* If we are doing fill_to_high_water then keep going. */
275 	queue_adjust_cache_locked(ent);
276 	xa_unlock_irqrestore(&ent->mkeys, flags);
277 	kfree(mkey_out);
278 }
279 
280 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
281 {
282 	int ret = 0;
283 
284 	switch (access_mode) {
285 	case MLX5_MKC_ACCESS_MODE_MTT:
286 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
287 						   sizeof(struct mlx5_mtt));
288 		break;
289 	case MLX5_MKC_ACCESS_MODE_KSM:
290 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
291 						   sizeof(struct mlx5_klm));
292 		break;
293 	default:
294 		WARN_ON(1);
295 	}
296 	return ret;
297 }
298 
299 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
300 {
301 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
302 	MLX5_SET(mkc, mkc, free, 1);
303 	MLX5_SET(mkc, mkc, umr_en, 1);
304 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
305 	MLX5_SET(mkc, mkc, access_mode_4_2,
306 		(ent->rb_key.access_mode >> 2) & 0x7);
307 
308 	MLX5_SET(mkc, mkc, translations_octword_size,
309 		 get_mkc_octo_size(ent->rb_key.access_mode,
310 				   ent->rb_key.ndescs));
311 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
312 }
313 
314 /* Asynchronously schedule new MRs to be populated in the cache. */
315 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
316 {
317 	struct mlx5r_async_create_mkey *async_create;
318 	void *mkc;
319 	int err = 0;
320 	int i;
321 
322 	for (i = 0; i < num; i++) {
323 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
324 				       GFP_KERNEL);
325 		if (!async_create)
326 			return -ENOMEM;
327 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
328 				   memory_key_mkey_entry);
329 		set_cache_mkc(ent, mkc);
330 		async_create->ent = ent;
331 
332 		err = push_mkey(ent, true, NULL);
333 		if (err)
334 			goto free_async_create;
335 
336 		err = mlx5_ib_create_mkey_cb(async_create);
337 		if (err) {
338 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
339 			goto err_undo_reserve;
340 		}
341 	}
342 
343 	return 0;
344 
345 err_undo_reserve:
346 	xa_lock_irq(&ent->mkeys);
347 	undo_push_reserve_mkey(ent);
348 	xa_unlock_irq(&ent->mkeys);
349 free_async_create:
350 	kfree(async_create);
351 	return err;
352 }
353 
354 /* Synchronously create a MR in the cache */
355 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
356 {
357 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
358 	void *mkc;
359 	u32 *in;
360 	int err;
361 
362 	in = kzalloc(inlen, GFP_KERNEL);
363 	if (!in)
364 		return -ENOMEM;
365 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
366 	set_cache_mkc(ent, mkc);
367 
368 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
369 	if (err)
370 		goto free_in;
371 
372 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
373 free_in:
374 	kfree(in);
375 	return err;
376 }
377 
378 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
379 {
380 	u32 mkey;
381 
382 	lockdep_assert_held(&ent->mkeys.xa_lock);
383 	if (!ent->stored)
384 		return;
385 	mkey = pop_stored_mkey(ent);
386 	xa_unlock_irq(&ent->mkeys);
387 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
388 	xa_lock_irq(&ent->mkeys);
389 }
390 
391 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
392 				bool limit_fill)
393 	 __acquires(&ent->mkeys) __releases(&ent->mkeys)
394 {
395 	int err;
396 
397 	lockdep_assert_held(&ent->mkeys.xa_lock);
398 
399 	while (true) {
400 		if (limit_fill)
401 			target = ent->limit * 2;
402 		if (target == ent->reserved)
403 			return 0;
404 		if (target > ent->reserved) {
405 			u32 todo = target - ent->reserved;
406 
407 			xa_unlock_irq(&ent->mkeys);
408 			err = add_keys(ent, todo);
409 			if (err == -EAGAIN)
410 				usleep_range(3000, 5000);
411 			xa_lock_irq(&ent->mkeys);
412 			if (err) {
413 				if (err != -EAGAIN)
414 					return err;
415 			} else
416 				return 0;
417 		} else {
418 			remove_cache_mr_locked(ent);
419 		}
420 	}
421 }
422 
423 static ssize_t size_write(struct file *filp, const char __user *buf,
424 			  size_t count, loff_t *pos)
425 {
426 	struct mlx5_cache_ent *ent = filp->private_data;
427 	u32 target;
428 	int err;
429 
430 	err = kstrtou32_from_user(buf, count, 0, &target);
431 	if (err)
432 		return err;
433 
434 	/*
435 	 * Target is the new value of total_mrs the user requests, however we
436 	 * cannot free MRs that are in use. Compute the target value for stored
437 	 * mkeys.
438 	 */
439 	xa_lock_irq(&ent->mkeys);
440 	if (target < ent->in_use) {
441 		err = -EINVAL;
442 		goto err_unlock;
443 	}
444 	target = target - ent->in_use;
445 	if (target < ent->limit || target > ent->limit*2) {
446 		err = -EINVAL;
447 		goto err_unlock;
448 	}
449 	err = resize_available_mrs(ent, target, false);
450 	if (err)
451 		goto err_unlock;
452 	xa_unlock_irq(&ent->mkeys);
453 
454 	return count;
455 
456 err_unlock:
457 	xa_unlock_irq(&ent->mkeys);
458 	return err;
459 }
460 
461 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
462 			 loff_t *pos)
463 {
464 	struct mlx5_cache_ent *ent = filp->private_data;
465 	char lbuf[20];
466 	int err;
467 
468 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
469 	if (err < 0)
470 		return err;
471 
472 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
473 }
474 
475 static const struct file_operations size_fops = {
476 	.owner	= THIS_MODULE,
477 	.open	= simple_open,
478 	.write	= size_write,
479 	.read	= size_read,
480 };
481 
482 static ssize_t limit_write(struct file *filp, const char __user *buf,
483 			   size_t count, loff_t *pos)
484 {
485 	struct mlx5_cache_ent *ent = filp->private_data;
486 	u32 var;
487 	int err;
488 
489 	err = kstrtou32_from_user(buf, count, 0, &var);
490 	if (err)
491 		return err;
492 
493 	/*
494 	 * Upon set we immediately fill the cache to high water mark implied by
495 	 * the limit.
496 	 */
497 	xa_lock_irq(&ent->mkeys);
498 	ent->limit = var;
499 	err = resize_available_mrs(ent, 0, true);
500 	xa_unlock_irq(&ent->mkeys);
501 	if (err)
502 		return err;
503 	return count;
504 }
505 
506 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
507 			  loff_t *pos)
508 {
509 	struct mlx5_cache_ent *ent = filp->private_data;
510 	char lbuf[20];
511 	int err;
512 
513 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
514 	if (err < 0)
515 		return err;
516 
517 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
518 }
519 
520 static const struct file_operations limit_fops = {
521 	.owner	= THIS_MODULE,
522 	.open	= simple_open,
523 	.write	= limit_write,
524 	.read	= limit_read,
525 };
526 
527 static bool someone_adding(struct mlx5_mkey_cache *cache)
528 {
529 	struct mlx5_cache_ent *ent;
530 	struct rb_node *node;
531 	bool ret;
532 
533 	mutex_lock(&cache->rb_lock);
534 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
535 		ent = rb_entry(node, struct mlx5_cache_ent, node);
536 		xa_lock_irq(&ent->mkeys);
537 		ret = ent->stored < ent->limit;
538 		xa_unlock_irq(&ent->mkeys);
539 		if (ret) {
540 			mutex_unlock(&cache->rb_lock);
541 			return true;
542 		}
543 	}
544 	mutex_unlock(&cache->rb_lock);
545 	return false;
546 }
547 
548 /*
549  * Check if the bucket is outside the high/low water mark and schedule an async
550  * update. The cache refill has hysteresis, once the low water mark is hit it is
551  * refilled up to the high mark.
552  */
553 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
554 {
555 	lockdep_assert_held(&ent->mkeys.xa_lock);
556 
557 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
558 		return;
559 	if (ent->stored < ent->limit) {
560 		ent->fill_to_high_water = true;
561 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
562 	} else if (ent->fill_to_high_water &&
563 		   ent->reserved < 2 * ent->limit) {
564 		/*
565 		 * Once we start populating due to hitting a low water mark
566 		 * continue until we pass the high water mark.
567 		 */
568 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
569 	} else if (ent->stored == 2 * ent->limit) {
570 		ent->fill_to_high_water = false;
571 	} else if (ent->stored > 2 * ent->limit) {
572 		/* Queue deletion of excess entries */
573 		ent->fill_to_high_water = false;
574 		if (ent->stored != ent->reserved)
575 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
576 					   msecs_to_jiffies(1000));
577 		else
578 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
579 	}
580 }
581 
582 static void __cache_work_func(struct mlx5_cache_ent *ent)
583 {
584 	struct mlx5_ib_dev *dev = ent->dev;
585 	struct mlx5_mkey_cache *cache = &dev->cache;
586 	int err;
587 
588 	xa_lock_irq(&ent->mkeys);
589 	if (ent->disabled)
590 		goto out;
591 
592 	if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
593 	    !READ_ONCE(dev->fill_delay)) {
594 		xa_unlock_irq(&ent->mkeys);
595 		err = add_keys(ent, 1);
596 		xa_lock_irq(&ent->mkeys);
597 		if (ent->disabled)
598 			goto out;
599 		if (err) {
600 			/*
601 			 * EAGAIN only happens if there are pending MRs, so we
602 			 * will be rescheduled when storing them. The only
603 			 * failure path here is ENOMEM.
604 			 */
605 			if (err != -EAGAIN) {
606 				mlx5_ib_warn(
607 					dev,
608 					"add keys command failed, err %d\n",
609 					err);
610 				queue_delayed_work(cache->wq, &ent->dwork,
611 						   msecs_to_jiffies(1000));
612 			}
613 		}
614 	} else if (ent->stored > 2 * ent->limit) {
615 		bool need_delay;
616 
617 		/*
618 		 * The remove_cache_mr() logic is performed as garbage
619 		 * collection task. Such task is intended to be run when no
620 		 * other active processes are running.
621 		 *
622 		 * The need_resched() will return TRUE if there are user tasks
623 		 * to be activated in near future.
624 		 *
625 		 * In such case, we don't execute remove_cache_mr() and postpone
626 		 * the garbage collection work to try to run in next cycle, in
627 		 * order to free CPU resources to other tasks.
628 		 */
629 		xa_unlock_irq(&ent->mkeys);
630 		need_delay = need_resched() || someone_adding(cache) ||
631 			     !time_after(jiffies,
632 					 READ_ONCE(cache->last_add) + 300 * HZ);
633 		xa_lock_irq(&ent->mkeys);
634 		if (ent->disabled)
635 			goto out;
636 		if (need_delay) {
637 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
638 			goto out;
639 		}
640 		remove_cache_mr_locked(ent);
641 		queue_adjust_cache_locked(ent);
642 	}
643 out:
644 	xa_unlock_irq(&ent->mkeys);
645 }
646 
647 static void delayed_cache_work_func(struct work_struct *work)
648 {
649 	struct mlx5_cache_ent *ent;
650 
651 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
652 	__cache_work_func(ent);
653 }
654 
655 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
656 			     struct mlx5r_cache_rb_key key2)
657 {
658 	int res;
659 
660 	res = key1.ats - key2.ats;
661 	if (res)
662 		return res;
663 
664 	res = key1.access_mode - key2.access_mode;
665 	if (res)
666 		return res;
667 
668 	res = key1.access_flags - key2.access_flags;
669 	if (res)
670 		return res;
671 
672 	/*
673 	 * keep ndescs the last in the compare table since the find function
674 	 * searches for an exact match on all properties and only closest
675 	 * match in size.
676 	 */
677 	return key1.ndescs - key2.ndescs;
678 }
679 
680 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
681 				 struct mlx5_cache_ent *ent)
682 {
683 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
684 	struct mlx5_cache_ent *cur;
685 	int cmp;
686 
687 	/* Figure out where to put new node */
688 	while (*new) {
689 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
690 		parent = *new;
691 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
692 		if (cmp > 0)
693 			new = &((*new)->rb_left);
694 		if (cmp < 0)
695 			new = &((*new)->rb_right);
696 		if (cmp == 0) {
697 			mutex_unlock(&cache->rb_lock);
698 			return -EEXIST;
699 		}
700 	}
701 
702 	/* Add new node and rebalance tree. */
703 	rb_link_node(&ent->node, parent, new);
704 	rb_insert_color(&ent->node, &cache->rb_root);
705 
706 	return 0;
707 }
708 
709 static struct mlx5_cache_ent *
710 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
711 			   struct mlx5r_cache_rb_key rb_key)
712 {
713 	struct rb_node *node = dev->cache.rb_root.rb_node;
714 	struct mlx5_cache_ent *cur, *smallest = NULL;
715 	int cmp;
716 
717 	/*
718 	 * Find the smallest ent with order >= requested_order.
719 	 */
720 	while (node) {
721 		cur = rb_entry(node, struct mlx5_cache_ent, node);
722 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
723 		if (cmp > 0) {
724 			smallest = cur;
725 			node = node->rb_left;
726 		}
727 		if (cmp < 0)
728 			node = node->rb_right;
729 		if (cmp == 0)
730 			return cur;
731 	}
732 
733 	return (smallest &&
734 		smallest->rb_key.access_mode == rb_key.access_mode &&
735 		smallest->rb_key.access_flags == rb_key.access_flags &&
736 		smallest->rb_key.ats == rb_key.ats) ?
737 		       smallest :
738 		       NULL;
739 }
740 
741 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
742 					struct mlx5_cache_ent *ent,
743 					int access_flags)
744 {
745 	struct mlx5_ib_mr *mr;
746 	int err;
747 
748 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
749 	if (!mr)
750 		return ERR_PTR(-ENOMEM);
751 
752 	xa_lock_irq(&ent->mkeys);
753 	ent->in_use++;
754 
755 	if (!ent->stored) {
756 		queue_adjust_cache_locked(ent);
757 		ent->miss++;
758 		xa_unlock_irq(&ent->mkeys);
759 		err = create_cache_mkey(ent, &mr->mmkey.key);
760 		if (err) {
761 			xa_lock_irq(&ent->mkeys);
762 			ent->in_use--;
763 			xa_unlock_irq(&ent->mkeys);
764 			kfree(mr);
765 			return ERR_PTR(err);
766 		}
767 	} else {
768 		mr->mmkey.key = pop_stored_mkey(ent);
769 		queue_adjust_cache_locked(ent);
770 		xa_unlock_irq(&ent->mkeys);
771 	}
772 	mr->mmkey.cache_ent = ent;
773 	mr->mmkey.type = MLX5_MKEY_MR;
774 	init_waitqueue_head(&mr->mmkey.wait);
775 	return mr;
776 }
777 
778 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
779 					 int access_flags)
780 {
781 	int ret = 0;
782 
783 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
784 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
785 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
786 		ret |= IB_ACCESS_REMOTE_ATOMIC;
787 
788 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
789 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
790 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
791 		ret |= IB_ACCESS_RELAXED_ORDERING;
792 
793 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
794 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) &&
795 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
796 		ret |= IB_ACCESS_RELAXED_ORDERING;
797 
798 	return ret;
799 }
800 
801 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
802 				       int access_flags, int access_mode,
803 				       int ndescs)
804 {
805 	struct mlx5r_cache_rb_key rb_key = {
806 		.ndescs = ndescs,
807 		.access_mode = access_mode,
808 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
809 	};
810 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
811 
812 	if (!ent)
813 		return ERR_PTR(-EOPNOTSUPP);
814 
815 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
816 }
817 
818 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
819 {
820 	u32 mkey;
821 
822 	cancel_delayed_work(&ent->dwork);
823 	xa_lock_irq(&ent->mkeys);
824 	while (ent->stored) {
825 		mkey = pop_stored_mkey(ent);
826 		xa_unlock_irq(&ent->mkeys);
827 		mlx5_core_destroy_mkey(dev->mdev, mkey);
828 		xa_lock_irq(&ent->mkeys);
829 	}
830 	xa_unlock_irq(&ent->mkeys);
831 }
832 
833 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
834 {
835 	if (!mlx5_debugfs_root || dev->is_rep)
836 		return;
837 
838 	debugfs_remove_recursive(dev->cache.fs_root);
839 	dev->cache.fs_root = NULL;
840 }
841 
842 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
843 					    struct mlx5_cache_ent *ent)
844 {
845 	int order = order_base_2(ent->rb_key.ndescs);
846 	struct dentry *dir;
847 
848 	if (!mlx5_debugfs_root || dev->is_rep)
849 		return;
850 
851 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
852 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
853 
854 	sprintf(ent->name, "%d", order);
855 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
856 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
857 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
858 	debugfs_create_ulong("cur", 0400, dir, &ent->stored);
859 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
860 }
861 
862 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
863 {
864 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
865 	struct mlx5_mkey_cache *cache = &dev->cache;
866 
867 	if (!mlx5_debugfs_root || dev->is_rep)
868 		return;
869 
870 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
871 }
872 
873 static void delay_time_func(struct timer_list *t)
874 {
875 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
876 
877 	WRITE_ONCE(dev->fill_delay, 0);
878 }
879 
880 struct mlx5_cache_ent *
881 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
882 			      struct mlx5r_cache_rb_key rb_key,
883 			      bool persistent_entry)
884 {
885 	struct mlx5_cache_ent *ent;
886 	int order;
887 	int ret;
888 
889 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
890 	if (!ent)
891 		return ERR_PTR(-ENOMEM);
892 
893 	xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
894 	ent->rb_key = rb_key;
895 	ent->dev = dev;
896 	ent->is_tmp = !persistent_entry;
897 
898 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
899 
900 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
901 	if (ret) {
902 		kfree(ent);
903 		return ERR_PTR(ret);
904 	}
905 
906 	if (persistent_entry) {
907 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
908 			order = MLX5_IMR_KSM_CACHE_ENTRY;
909 		else
910 			order = order_base_2(rb_key.ndescs) - 2;
911 
912 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
913 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
914 		    mlx5r_umr_can_load_pas(dev, 0))
915 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
916 		else
917 			ent->limit = 0;
918 
919 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
920 	} else {
921 		mod_delayed_work(ent->dev->cache.wq,
922 				 &ent->dev->cache.remove_ent_dwork,
923 				 msecs_to_jiffies(30 * 1000));
924 	}
925 
926 	return ent;
927 }
928 
929 static void remove_ent_work_func(struct work_struct *work)
930 {
931 	struct mlx5_mkey_cache *cache;
932 	struct mlx5_cache_ent *ent;
933 	struct rb_node *cur;
934 
935 	cache = container_of(work, struct mlx5_mkey_cache,
936 			     remove_ent_dwork.work);
937 	mutex_lock(&cache->rb_lock);
938 	cur = rb_last(&cache->rb_root);
939 	while (cur) {
940 		ent = rb_entry(cur, struct mlx5_cache_ent, node);
941 		cur = rb_prev(cur);
942 		mutex_unlock(&cache->rb_lock);
943 
944 		xa_lock_irq(&ent->mkeys);
945 		if (!ent->is_tmp) {
946 			xa_unlock_irq(&ent->mkeys);
947 			mutex_lock(&cache->rb_lock);
948 			continue;
949 		}
950 		xa_unlock_irq(&ent->mkeys);
951 
952 		clean_keys(ent->dev, ent);
953 		mutex_lock(&cache->rb_lock);
954 	}
955 	mutex_unlock(&cache->rb_lock);
956 }
957 
958 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
959 {
960 	struct mlx5_mkey_cache *cache = &dev->cache;
961 	struct rb_root *root = &dev->cache.rb_root;
962 	struct mlx5r_cache_rb_key rb_key = {
963 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
964 	};
965 	struct mlx5_cache_ent *ent;
966 	struct rb_node *node;
967 	int ret;
968 	int i;
969 
970 	mutex_init(&dev->slow_path_mutex);
971 	mutex_init(&dev->cache.rb_lock);
972 	dev->cache.rb_root = RB_ROOT;
973 	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
974 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
975 	if (!cache->wq) {
976 		mlx5_ib_warn(dev, "failed to create work queue\n");
977 		return -ENOMEM;
978 	}
979 
980 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
981 	timer_setup(&dev->delay_timer, delay_time_func, 0);
982 	mlx5_mkey_cache_debugfs_init(dev);
983 	mutex_lock(&cache->rb_lock);
984 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
985 		rb_key.ndescs = 1 << (i + 2);
986 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
987 		if (IS_ERR(ent)) {
988 			ret = PTR_ERR(ent);
989 			goto err;
990 		}
991 	}
992 
993 	ret = mlx5_odp_init_mkey_cache(dev);
994 	if (ret)
995 		goto err;
996 
997 	mutex_unlock(&cache->rb_lock);
998 	for (node = rb_first(root); node; node = rb_next(node)) {
999 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1000 		xa_lock_irq(&ent->mkeys);
1001 		queue_adjust_cache_locked(ent);
1002 		xa_unlock_irq(&ent->mkeys);
1003 	}
1004 
1005 	return 0;
1006 
1007 err:
1008 	mutex_unlock(&cache->rb_lock);
1009 	mlx5_mkey_cache_debugfs_cleanup(dev);
1010 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
1011 	return ret;
1012 }
1013 
1014 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
1015 {
1016 	struct rb_root *root = &dev->cache.rb_root;
1017 	struct mlx5_cache_ent *ent;
1018 	struct rb_node *node;
1019 
1020 	if (!dev->cache.wq)
1021 		return;
1022 
1023 	cancel_delayed_work_sync(&dev->cache.remove_ent_dwork);
1024 	mutex_lock(&dev->cache.rb_lock);
1025 	for (node = rb_first(root); node; node = rb_next(node)) {
1026 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 		xa_lock_irq(&ent->mkeys);
1028 		ent->disabled = true;
1029 		xa_unlock_irq(&ent->mkeys);
1030 		cancel_delayed_work_sync(&ent->dwork);
1031 	}
1032 
1033 	mlx5_mkey_cache_debugfs_cleanup(dev);
1034 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1035 
1036 	node = rb_first(root);
1037 	while (node) {
1038 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1039 		node = rb_next(node);
1040 		clean_keys(dev, ent);
1041 		rb_erase(&ent->node, root);
1042 		kfree(ent);
1043 	}
1044 	mutex_unlock(&dev->cache.rb_lock);
1045 
1046 	destroy_workqueue(dev->cache.wq);
1047 	del_timer_sync(&dev->delay_timer);
1048 }
1049 
1050 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1051 {
1052 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1053 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1054 	struct mlx5_ib_mr *mr;
1055 	void *mkc;
1056 	u32 *in;
1057 	int err;
1058 
1059 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1060 	if (!mr)
1061 		return ERR_PTR(-ENOMEM);
1062 
1063 	in = kzalloc(inlen, GFP_KERNEL);
1064 	if (!in) {
1065 		err = -ENOMEM;
1066 		goto err_free;
1067 	}
1068 
1069 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1070 
1071 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1072 	MLX5_SET(mkc, mkc, length64, 1);
1073 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1074 				      pd);
1075 
1076 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1077 	if (err)
1078 		goto err_in;
1079 
1080 	kfree(in);
1081 	mr->mmkey.type = MLX5_MKEY_MR;
1082 	mr->ibmr.lkey = mr->mmkey.key;
1083 	mr->ibmr.rkey = mr->mmkey.key;
1084 	mr->umem = NULL;
1085 
1086 	return &mr->ibmr;
1087 
1088 err_in:
1089 	kfree(in);
1090 
1091 err_free:
1092 	kfree(mr);
1093 
1094 	return ERR_PTR(err);
1095 }
1096 
1097 static int get_octo_len(u64 addr, u64 len, int page_shift)
1098 {
1099 	u64 page_size = 1ULL << page_shift;
1100 	u64 offset;
1101 	int npages;
1102 
1103 	offset = addr & (page_size - 1);
1104 	npages = ALIGN(len + offset, page_size) >> page_shift;
1105 	return (npages + 1) / 2;
1106 }
1107 
1108 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1109 {
1110 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1111 		return MKEY_CACHE_LAST_STD_ENTRY;
1112 	return MLX5_MAX_UMR_SHIFT;
1113 }
1114 
1115 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1116 			  u64 length, int access_flags, u64 iova)
1117 {
1118 	mr->ibmr.lkey = mr->mmkey.key;
1119 	mr->ibmr.rkey = mr->mmkey.key;
1120 	mr->ibmr.length = length;
1121 	mr->ibmr.device = &dev->ib_dev;
1122 	mr->ibmr.iova = iova;
1123 	mr->access_flags = access_flags;
1124 }
1125 
1126 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1127 						  u64 iova)
1128 {
1129 	/*
1130 	 * The alignment of iova has already been checked upon entering
1131 	 * UVERBS_METHOD_REG_DMABUF_MR
1132 	 */
1133 	umem->iova = iova;
1134 	return PAGE_SIZE;
1135 }
1136 
1137 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1138 					     struct ib_umem *umem, u64 iova,
1139 					     int access_flags)
1140 {
1141 	struct mlx5r_cache_rb_key rb_key = {
1142 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1143 	};
1144 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1145 	struct mlx5_cache_ent *ent;
1146 	struct mlx5_ib_mr *mr;
1147 	unsigned int page_size;
1148 
1149 	if (umem->is_dmabuf)
1150 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1151 	else
1152 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1153 						     0, iova);
1154 	if (WARN_ON(!page_size))
1155 		return ERR_PTR(-EINVAL);
1156 
1157 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1158 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1159 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1160 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1161 	/*
1162 	 * If the MR can't come from the cache then synchronously create an uncached
1163 	 * one.
1164 	 */
1165 	if (!ent) {
1166 		mutex_lock(&dev->slow_path_mutex);
1167 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1168 		mutex_unlock(&dev->slow_path_mutex);
1169 		mr->mmkey.rb_key = rb_key;
1170 		return mr;
1171 	}
1172 
1173 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1174 	if (IS_ERR(mr))
1175 		return mr;
1176 
1177 	mr->ibmr.pd = pd;
1178 	mr->umem = umem;
1179 	mr->page_shift = order_base_2(page_size);
1180 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1181 
1182 	return mr;
1183 }
1184 
1185 /*
1186  * If ibmr is NULL it will be allocated by reg_create.
1187  * Else, the given ibmr will be used.
1188  */
1189 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1190 				     u64 iova, int access_flags,
1191 				     unsigned int page_size, bool populate)
1192 {
1193 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1194 	struct mlx5_ib_mr *mr;
1195 	__be64 *pas;
1196 	void *mkc;
1197 	int inlen;
1198 	u32 *in;
1199 	int err;
1200 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1201 
1202 	if (!page_size)
1203 		return ERR_PTR(-EINVAL);
1204 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1205 	if (!mr)
1206 		return ERR_PTR(-ENOMEM);
1207 
1208 	mr->ibmr.pd = pd;
1209 	mr->access_flags = access_flags;
1210 	mr->page_shift = order_base_2(page_size);
1211 
1212 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1213 	if (populate)
1214 		inlen += sizeof(*pas) *
1215 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1216 	in = kvzalloc(inlen, GFP_KERNEL);
1217 	if (!in) {
1218 		err = -ENOMEM;
1219 		goto err_1;
1220 	}
1221 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1222 	if (populate) {
1223 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1224 			err = -EINVAL;
1225 			goto err_2;
1226 		}
1227 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1228 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1229 	}
1230 
1231 	/* The pg_access bit allows setting the access flags
1232 	 * in the page list submitted with the command. */
1233 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1234 
1235 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1236 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1237 				      populate ? pd : dev->umrc.pd);
1238 	MLX5_SET(mkc, mkc, free, !populate);
1239 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1240 	MLX5_SET(mkc, mkc, umr_en, 1);
1241 
1242 	MLX5_SET64(mkc, mkc, len, umem->length);
1243 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1244 	MLX5_SET(mkc, mkc, translations_octword_size,
1245 		 get_octo_len(iova, umem->length, mr->page_shift));
1246 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1247 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1248 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1249 	if (populate) {
1250 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1251 			 get_octo_len(iova, umem->length, mr->page_shift));
1252 	}
1253 
1254 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1255 	if (err) {
1256 		mlx5_ib_warn(dev, "create mkey failed\n");
1257 		goto err_2;
1258 	}
1259 	mr->mmkey.type = MLX5_MKEY_MR;
1260 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1261 	mr->umem = umem;
1262 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1263 	kvfree(in);
1264 
1265 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1266 
1267 	return mr;
1268 
1269 err_2:
1270 	kvfree(in);
1271 err_1:
1272 	kfree(mr);
1273 	return ERR_PTR(err);
1274 }
1275 
1276 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1277 				       u64 length, int acc, int mode)
1278 {
1279 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1280 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1281 	struct mlx5_ib_mr *mr;
1282 	void *mkc;
1283 	u32 *in;
1284 	int err;
1285 
1286 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1287 	if (!mr)
1288 		return ERR_PTR(-ENOMEM);
1289 
1290 	in = kzalloc(inlen, GFP_KERNEL);
1291 	if (!in) {
1292 		err = -ENOMEM;
1293 		goto err_free;
1294 	}
1295 
1296 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1297 
1298 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1299 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1300 	MLX5_SET64(mkc, mkc, len, length);
1301 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1302 
1303 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1304 	if (err)
1305 		goto err_in;
1306 
1307 	kfree(in);
1308 
1309 	set_mr_fields(dev, mr, length, acc, start_addr);
1310 
1311 	return &mr->ibmr;
1312 
1313 err_in:
1314 	kfree(in);
1315 
1316 err_free:
1317 	kfree(mr);
1318 
1319 	return ERR_PTR(err);
1320 }
1321 
1322 int mlx5_ib_advise_mr(struct ib_pd *pd,
1323 		      enum ib_uverbs_advise_mr_advice advice,
1324 		      u32 flags,
1325 		      struct ib_sge *sg_list,
1326 		      u32 num_sge,
1327 		      struct uverbs_attr_bundle *attrs)
1328 {
1329 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1330 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1331 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1332 		return -EOPNOTSUPP;
1333 
1334 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1335 					 sg_list, num_sge);
1336 }
1337 
1338 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1339 				struct ib_dm_mr_attr *attr,
1340 				struct uverbs_attr_bundle *attrs)
1341 {
1342 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1343 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1344 	u64 start_addr = mdm->dev_addr + attr->offset;
1345 	int mode;
1346 
1347 	switch (mdm->type) {
1348 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1349 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1350 			return ERR_PTR(-EINVAL);
1351 
1352 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1353 		start_addr -= pci_resource_start(dev->pdev, 0);
1354 		break;
1355 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1356 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1357 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1358 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1359 			return ERR_PTR(-EINVAL);
1360 
1361 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1362 		break;
1363 	default:
1364 		return ERR_PTR(-EINVAL);
1365 	}
1366 
1367 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1368 				 attr->access_flags, mode);
1369 }
1370 
1371 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1372 				    u64 iova, int access_flags)
1373 {
1374 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1375 	struct mlx5_ib_mr *mr = NULL;
1376 	bool xlt_with_umr;
1377 	int err;
1378 
1379 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1380 	if (xlt_with_umr) {
1381 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1382 	} else {
1383 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1384 			umem, mkc, log_page_size, 0, iova);
1385 
1386 		mutex_lock(&dev->slow_path_mutex);
1387 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1388 		mutex_unlock(&dev->slow_path_mutex);
1389 	}
1390 	if (IS_ERR(mr)) {
1391 		ib_umem_release(umem);
1392 		return ERR_CAST(mr);
1393 	}
1394 
1395 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1396 
1397 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1398 
1399 	if (xlt_with_umr) {
1400 		/*
1401 		 * If the MR was created with reg_create then it will be
1402 		 * configured properly but left disabled. It is safe to go ahead
1403 		 * and configure it again via UMR while enabling it.
1404 		 */
1405 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1406 		if (err) {
1407 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1408 			return ERR_PTR(err);
1409 		}
1410 	}
1411 	return &mr->ibmr;
1412 }
1413 
1414 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1415 					u64 iova, int access_flags,
1416 					struct ib_udata *udata)
1417 {
1418 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1419 	struct ib_umem_odp *odp;
1420 	struct mlx5_ib_mr *mr;
1421 	int err;
1422 
1423 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1424 		return ERR_PTR(-EOPNOTSUPP);
1425 
1426 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1427 	if (err)
1428 		return ERR_PTR(err);
1429 	if (!start && length == U64_MAX) {
1430 		if (iova != 0)
1431 			return ERR_PTR(-EINVAL);
1432 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1433 			return ERR_PTR(-EINVAL);
1434 
1435 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1436 		if (IS_ERR(mr))
1437 			return ERR_CAST(mr);
1438 		return &mr->ibmr;
1439 	}
1440 
1441 	/* ODP requires xlt update via umr to work. */
1442 	if (!mlx5r_umr_can_load_pas(dev, length))
1443 		return ERR_PTR(-EINVAL);
1444 
1445 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1446 			      &mlx5_mn_ops);
1447 	if (IS_ERR(odp))
1448 		return ERR_CAST(odp);
1449 
1450 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1451 	if (IS_ERR(mr)) {
1452 		ib_umem_release(&odp->umem);
1453 		return ERR_CAST(mr);
1454 	}
1455 	xa_init(&mr->implicit_children);
1456 
1457 	odp->private = mr;
1458 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1459 	if (err)
1460 		goto err_dereg_mr;
1461 
1462 	err = mlx5_ib_init_odp_mr(mr);
1463 	if (err)
1464 		goto err_dereg_mr;
1465 	return &mr->ibmr;
1466 
1467 err_dereg_mr:
1468 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1469 	return ERR_PTR(err);
1470 }
1471 
1472 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1473 				  u64 iova, int access_flags,
1474 				  struct ib_udata *udata)
1475 {
1476 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1477 	struct ib_umem *umem;
1478 
1479 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1480 		return ERR_PTR(-EOPNOTSUPP);
1481 
1482 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1483 		    start, iova, length, access_flags);
1484 
1485 	if (access_flags & IB_ACCESS_ON_DEMAND)
1486 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1487 					  udata);
1488 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1489 	if (IS_ERR(umem))
1490 		return ERR_CAST(umem);
1491 	return create_real_mr(pd, umem, iova, access_flags);
1492 }
1493 
1494 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1495 {
1496 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1497 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1498 
1499 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1500 
1501 	if (!umem_dmabuf->sgt)
1502 		return;
1503 
1504 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1505 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1506 }
1507 
1508 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1509 	.allow_peer2peer = 1,
1510 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1511 };
1512 
1513 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1514 					 u64 length, u64 virt_addr,
1515 					 int fd, int access_flags,
1516 					 struct ib_udata *udata)
1517 {
1518 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1519 	struct mlx5_ib_mr *mr = NULL;
1520 	struct ib_umem_dmabuf *umem_dmabuf;
1521 	int err;
1522 
1523 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1524 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1525 		return ERR_PTR(-EOPNOTSUPP);
1526 
1527 	mlx5_ib_dbg(dev,
1528 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1529 		    offset, virt_addr, length, fd, access_flags);
1530 
1531 	/* dmabuf requires xlt update via umr to work. */
1532 	if (!mlx5r_umr_can_load_pas(dev, length))
1533 		return ERR_PTR(-EINVAL);
1534 
1535 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1536 					 access_flags,
1537 					 &mlx5_ib_dmabuf_attach_ops);
1538 	if (IS_ERR(umem_dmabuf)) {
1539 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1540 			    PTR_ERR(umem_dmabuf));
1541 		return ERR_CAST(umem_dmabuf);
1542 	}
1543 
1544 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1545 				access_flags);
1546 	if (IS_ERR(mr)) {
1547 		ib_umem_release(&umem_dmabuf->umem);
1548 		return ERR_CAST(mr);
1549 	}
1550 
1551 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1552 
1553 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1554 	umem_dmabuf->private = mr;
1555 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1556 	if (err)
1557 		goto err_dereg_mr;
1558 
1559 	err = mlx5_ib_init_dmabuf_mr(mr);
1560 	if (err)
1561 		goto err_dereg_mr;
1562 	return &mr->ibmr;
1563 
1564 err_dereg_mr:
1565 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1566 	return ERR_PTR(err);
1567 }
1568 
1569 /*
1570  * True if the change in access flags can be done via UMR, only some access
1571  * flags can be updated.
1572  */
1573 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1574 				     unsigned int current_access_flags,
1575 				     unsigned int target_access_flags)
1576 {
1577 	unsigned int diffs = current_access_flags ^ target_access_flags;
1578 
1579 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1580 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1581 		return false;
1582 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1583 				      target_access_flags);
1584 }
1585 
1586 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1587 				  struct ib_umem *new_umem,
1588 				  int new_access_flags, u64 iova,
1589 				  unsigned long *page_size)
1590 {
1591 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1592 
1593 	/* We only track the allocated sizes of MRs from the cache */
1594 	if (!mr->mmkey.cache_ent)
1595 		return false;
1596 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1597 		return false;
1598 
1599 	*page_size =
1600 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1601 	if (WARN_ON(!*page_size))
1602 		return false;
1603 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1604 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1605 }
1606 
1607 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1608 			 int access_flags, int flags, struct ib_umem *new_umem,
1609 			 u64 iova, unsigned long page_size)
1610 {
1611 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1612 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1613 	struct ib_umem *old_umem = mr->umem;
1614 	int err;
1615 
1616 	/*
1617 	 * To keep everything simple the MR is revoked before we start to mess
1618 	 * with it. This ensure the change is atomic relative to any use of the
1619 	 * MR.
1620 	 */
1621 	err = mlx5r_umr_revoke_mr(mr);
1622 	if (err)
1623 		return err;
1624 
1625 	if (flags & IB_MR_REREG_PD) {
1626 		mr->ibmr.pd = pd;
1627 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1628 	}
1629 	if (flags & IB_MR_REREG_ACCESS) {
1630 		mr->access_flags = access_flags;
1631 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1632 	}
1633 
1634 	mr->ibmr.iova = iova;
1635 	mr->ibmr.length = new_umem->length;
1636 	mr->page_shift = order_base_2(page_size);
1637 	mr->umem = new_umem;
1638 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1639 	if (err) {
1640 		/*
1641 		 * The MR is revoked at this point so there is no issue to free
1642 		 * new_umem.
1643 		 */
1644 		mr->umem = old_umem;
1645 		return err;
1646 	}
1647 
1648 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1649 	ib_umem_release(old_umem);
1650 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1651 	return 0;
1652 }
1653 
1654 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1655 				    u64 length, u64 iova, int new_access_flags,
1656 				    struct ib_pd *new_pd,
1657 				    struct ib_udata *udata)
1658 {
1659 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1660 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1661 	int err;
1662 
1663 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1664 		return ERR_PTR(-EOPNOTSUPP);
1665 
1666 	mlx5_ib_dbg(
1667 		dev,
1668 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1669 		start, iova, length, new_access_flags);
1670 
1671 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1672 		return ERR_PTR(-EOPNOTSUPP);
1673 
1674 	if (!(flags & IB_MR_REREG_ACCESS))
1675 		new_access_flags = mr->access_flags;
1676 	if (!(flags & IB_MR_REREG_PD))
1677 		new_pd = ib_mr->pd;
1678 
1679 	if (!(flags & IB_MR_REREG_TRANS)) {
1680 		struct ib_umem *umem;
1681 
1682 		/* Fast path for PD/access change */
1683 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1684 					     new_access_flags)) {
1685 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1686 							new_access_flags);
1687 			if (err)
1688 				return ERR_PTR(err);
1689 			return NULL;
1690 		}
1691 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1692 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1693 			goto recreate;
1694 
1695 		/*
1696 		 * Only one active MR can refer to a umem at one time, revoke
1697 		 * the old MR before assigning the umem to the new one.
1698 		 */
1699 		err = mlx5r_umr_revoke_mr(mr);
1700 		if (err)
1701 			return ERR_PTR(err);
1702 		umem = mr->umem;
1703 		mr->umem = NULL;
1704 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1705 
1706 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1707 				      new_access_flags);
1708 	}
1709 
1710 	/*
1711 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1712 	 * but the logic around releasing the umem is different
1713 	 */
1714 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1715 		goto recreate;
1716 
1717 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1718 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1719 		struct ib_umem *new_umem;
1720 		unsigned long page_size;
1721 
1722 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1723 				       new_access_flags);
1724 		if (IS_ERR(new_umem))
1725 			return ERR_CAST(new_umem);
1726 
1727 		/* Fast path for PAS change */
1728 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1729 					  &page_size)) {
1730 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1731 					    new_umem, iova, page_size);
1732 			if (err) {
1733 				ib_umem_release(new_umem);
1734 				return ERR_PTR(err);
1735 			}
1736 			return NULL;
1737 		}
1738 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1739 	}
1740 
1741 	/*
1742 	 * Everything else has no state we can preserve, just create a new MR
1743 	 * from scratch
1744 	 */
1745 recreate:
1746 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1747 				   new_access_flags, udata);
1748 }
1749 
1750 static int
1751 mlx5_alloc_priv_descs(struct ib_device *device,
1752 		      struct mlx5_ib_mr *mr,
1753 		      int ndescs,
1754 		      int desc_size)
1755 {
1756 	struct mlx5_ib_dev *dev = to_mdev(device);
1757 	struct device *ddev = &dev->mdev->pdev->dev;
1758 	int size = ndescs * desc_size;
1759 	int add_size;
1760 	int ret;
1761 
1762 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1763 
1764 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1765 	if (!mr->descs_alloc)
1766 		return -ENOMEM;
1767 
1768 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1769 
1770 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1771 	if (dma_mapping_error(ddev, mr->desc_map)) {
1772 		ret = -ENOMEM;
1773 		goto err;
1774 	}
1775 
1776 	return 0;
1777 err:
1778 	kfree(mr->descs_alloc);
1779 
1780 	return ret;
1781 }
1782 
1783 static void
1784 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1785 {
1786 	if (!mr->umem && mr->descs) {
1787 		struct ib_device *device = mr->ibmr.device;
1788 		int size = mr->max_descs * mr->desc_size;
1789 		struct mlx5_ib_dev *dev = to_mdev(device);
1790 
1791 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1792 				 DMA_TO_DEVICE);
1793 		kfree(mr->descs_alloc);
1794 		mr->descs = NULL;
1795 	}
1796 }
1797 
1798 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1799 				    struct mlx5_ib_mr *mr)
1800 {
1801 	struct mlx5_mkey_cache *cache = &dev->cache;
1802 	struct mlx5_cache_ent *ent;
1803 	int ret;
1804 
1805 	if (mr->mmkey.cache_ent) {
1806 		xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1807 		mr->mmkey.cache_ent->in_use--;
1808 		goto end;
1809 	}
1810 
1811 	mutex_lock(&cache->rb_lock);
1812 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1813 	if (ent) {
1814 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1815 			if (ent->disabled) {
1816 				mutex_unlock(&cache->rb_lock);
1817 				return -EOPNOTSUPP;
1818 			}
1819 			mr->mmkey.cache_ent = ent;
1820 			xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1821 			mutex_unlock(&cache->rb_lock);
1822 			goto end;
1823 		}
1824 	}
1825 
1826 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1827 	mutex_unlock(&cache->rb_lock);
1828 	if (IS_ERR(ent))
1829 		return PTR_ERR(ent);
1830 
1831 	mr->mmkey.cache_ent = ent;
1832 	xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1833 
1834 end:
1835 	ret = push_mkey_locked(mr->mmkey.cache_ent, false,
1836 			       xa_mk_value(mr->mmkey.key));
1837 	xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1838 	return ret;
1839 }
1840 
1841 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1842 {
1843 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1844 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1845 	int rc;
1846 
1847 	/*
1848 	 * Any async use of the mr must hold the refcount, once the refcount
1849 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1850 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1851 	 */
1852 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1853 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1854 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1855 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1856 
1857 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1858 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1859 			   mr->sig, NULL, GFP_KERNEL);
1860 
1861 		if (mr->mtt_mr) {
1862 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1863 			if (rc)
1864 				return rc;
1865 			mr->mtt_mr = NULL;
1866 		}
1867 		if (mr->klm_mr) {
1868 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1869 			if (rc)
1870 				return rc;
1871 			mr->klm_mr = NULL;
1872 		}
1873 
1874 		if (mlx5_core_destroy_psv(dev->mdev,
1875 					  mr->sig->psv_memory.psv_idx))
1876 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1877 				     mr->sig->psv_memory.psv_idx);
1878 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1879 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1880 				     mr->sig->psv_wire.psv_idx);
1881 		kfree(mr->sig);
1882 		mr->sig = NULL;
1883 	}
1884 
1885 	/* Stop DMA */
1886 	if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1887 		if (mlx5r_umr_revoke_mr(mr) ||
1888 		    cache_ent_find_and_store(dev, mr))
1889 			mr->mmkey.cache_ent = NULL;
1890 
1891 	if (!mr->mmkey.cache_ent) {
1892 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1893 		if (rc)
1894 			return rc;
1895 	}
1896 
1897 	if (mr->umem) {
1898 		bool is_odp = is_odp_mr(mr);
1899 
1900 		if (!is_odp)
1901 			atomic_sub(ib_umem_num_pages(mr->umem),
1902 				   &dev->mdev->priv.reg_pages);
1903 		ib_umem_release(mr->umem);
1904 		if (is_odp)
1905 			mlx5_ib_free_odp_mr(mr);
1906 	}
1907 
1908 	if (!mr->mmkey.cache_ent)
1909 		mlx5_free_priv_descs(mr);
1910 
1911 	kfree(mr);
1912 	return 0;
1913 }
1914 
1915 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1916 				   int access_mode, int page_shift)
1917 {
1918 	void *mkc;
1919 
1920 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1921 
1922 	/* This is only used from the kernel, so setting the PD is OK. */
1923 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1924 	MLX5_SET(mkc, mkc, free, 1);
1925 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1926 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1927 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1928 	MLX5_SET(mkc, mkc, umr_en, 1);
1929 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1930 }
1931 
1932 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1933 				  int ndescs, int desc_size, int page_shift,
1934 				  int access_mode, u32 *in, int inlen)
1935 {
1936 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1937 	int err;
1938 
1939 	mr->access_mode = access_mode;
1940 	mr->desc_size = desc_size;
1941 	mr->max_descs = ndescs;
1942 
1943 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1944 	if (err)
1945 		return err;
1946 
1947 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1948 
1949 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1950 	if (err)
1951 		goto err_free_descs;
1952 
1953 	mr->mmkey.type = MLX5_MKEY_MR;
1954 	mr->ibmr.lkey = mr->mmkey.key;
1955 	mr->ibmr.rkey = mr->mmkey.key;
1956 
1957 	return 0;
1958 
1959 err_free_descs:
1960 	mlx5_free_priv_descs(mr);
1961 	return err;
1962 }
1963 
1964 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1965 				u32 max_num_sg, u32 max_num_meta_sg,
1966 				int desc_size, int access_mode)
1967 {
1968 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1969 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1970 	int page_shift = 0;
1971 	struct mlx5_ib_mr *mr;
1972 	u32 *in;
1973 	int err;
1974 
1975 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1976 	if (!mr)
1977 		return ERR_PTR(-ENOMEM);
1978 
1979 	mr->ibmr.pd = pd;
1980 	mr->ibmr.device = pd->device;
1981 
1982 	in = kzalloc(inlen, GFP_KERNEL);
1983 	if (!in) {
1984 		err = -ENOMEM;
1985 		goto err_free;
1986 	}
1987 
1988 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1989 		page_shift = PAGE_SHIFT;
1990 
1991 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1992 				     access_mode, in, inlen);
1993 	if (err)
1994 		goto err_free_in;
1995 
1996 	mr->umem = NULL;
1997 	kfree(in);
1998 
1999 	return mr;
2000 
2001 err_free_in:
2002 	kfree(in);
2003 err_free:
2004 	kfree(mr);
2005 	return ERR_PTR(err);
2006 }
2007 
2008 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2009 				    int ndescs, u32 *in, int inlen)
2010 {
2011 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2012 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2013 				      inlen);
2014 }
2015 
2016 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2017 				    int ndescs, u32 *in, int inlen)
2018 {
2019 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2020 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2021 }
2022 
2023 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2024 				      int max_num_sg, int max_num_meta_sg,
2025 				      u32 *in, int inlen)
2026 {
2027 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2028 	u32 psv_index[2];
2029 	void *mkc;
2030 	int err;
2031 
2032 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2033 	if (!mr->sig)
2034 		return -ENOMEM;
2035 
2036 	/* create mem & wire PSVs */
2037 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2038 	if (err)
2039 		goto err_free_sig;
2040 
2041 	mr->sig->psv_memory.psv_idx = psv_index[0];
2042 	mr->sig->psv_wire.psv_idx = psv_index[1];
2043 
2044 	mr->sig->sig_status_checked = true;
2045 	mr->sig->sig_err_exists = false;
2046 	/* Next UMR, Arm SIGERR */
2047 	++mr->sig->sigerr_count;
2048 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2049 					 sizeof(struct mlx5_klm),
2050 					 MLX5_MKC_ACCESS_MODE_KLMS);
2051 	if (IS_ERR(mr->klm_mr)) {
2052 		err = PTR_ERR(mr->klm_mr);
2053 		goto err_destroy_psv;
2054 	}
2055 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2056 					 sizeof(struct mlx5_mtt),
2057 					 MLX5_MKC_ACCESS_MODE_MTT);
2058 	if (IS_ERR(mr->mtt_mr)) {
2059 		err = PTR_ERR(mr->mtt_mr);
2060 		goto err_free_klm_mr;
2061 	}
2062 
2063 	/* Set bsf descriptors for mkey */
2064 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2065 	MLX5_SET(mkc, mkc, bsf_en, 1);
2066 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2067 
2068 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2069 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2070 	if (err)
2071 		goto err_free_mtt_mr;
2072 
2073 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2074 			      mr->sig, GFP_KERNEL));
2075 	if (err)
2076 		goto err_free_descs;
2077 	return 0;
2078 
2079 err_free_descs:
2080 	destroy_mkey(dev, mr);
2081 	mlx5_free_priv_descs(mr);
2082 err_free_mtt_mr:
2083 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2084 	mr->mtt_mr = NULL;
2085 err_free_klm_mr:
2086 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2087 	mr->klm_mr = NULL;
2088 err_destroy_psv:
2089 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2090 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2091 			     mr->sig->psv_memory.psv_idx);
2092 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2093 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2094 			     mr->sig->psv_wire.psv_idx);
2095 err_free_sig:
2096 	kfree(mr->sig);
2097 
2098 	return err;
2099 }
2100 
2101 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2102 					enum ib_mr_type mr_type, u32 max_num_sg,
2103 					u32 max_num_meta_sg)
2104 {
2105 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2106 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2107 	int ndescs = ALIGN(max_num_sg, 4);
2108 	struct mlx5_ib_mr *mr;
2109 	u32 *in;
2110 	int err;
2111 
2112 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2113 	if (!mr)
2114 		return ERR_PTR(-ENOMEM);
2115 
2116 	in = kzalloc(inlen, GFP_KERNEL);
2117 	if (!in) {
2118 		err = -ENOMEM;
2119 		goto err_free;
2120 	}
2121 
2122 	mr->ibmr.device = pd->device;
2123 	mr->umem = NULL;
2124 
2125 	switch (mr_type) {
2126 	case IB_MR_TYPE_MEM_REG:
2127 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2128 		break;
2129 	case IB_MR_TYPE_SG_GAPS:
2130 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2131 		break;
2132 	case IB_MR_TYPE_INTEGRITY:
2133 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2134 						 max_num_meta_sg, in, inlen);
2135 		break;
2136 	default:
2137 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2138 		err = -EINVAL;
2139 	}
2140 
2141 	if (err)
2142 		goto err_free_in;
2143 
2144 	kfree(in);
2145 
2146 	return &mr->ibmr;
2147 
2148 err_free_in:
2149 	kfree(in);
2150 err_free:
2151 	kfree(mr);
2152 	return ERR_PTR(err);
2153 }
2154 
2155 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2156 			       u32 max_num_sg)
2157 {
2158 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2159 }
2160 
2161 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2162 					 u32 max_num_sg, u32 max_num_meta_sg)
2163 {
2164 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2165 				  max_num_meta_sg);
2166 }
2167 
2168 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2169 {
2170 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2171 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2172 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2173 	unsigned int ndescs;
2174 	u32 *in = NULL;
2175 	void *mkc;
2176 	int err;
2177 	struct mlx5_ib_alloc_mw req = {};
2178 	struct {
2179 		__u32	comp_mask;
2180 		__u32	response_length;
2181 	} resp = {};
2182 
2183 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2184 	if (err)
2185 		return err;
2186 
2187 	if (req.comp_mask || req.reserved1 || req.reserved2)
2188 		return -EOPNOTSUPP;
2189 
2190 	if (udata->inlen > sizeof(req) &&
2191 	    !ib_is_udata_cleared(udata, sizeof(req),
2192 				 udata->inlen - sizeof(req)))
2193 		return -EOPNOTSUPP;
2194 
2195 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2196 
2197 	in = kzalloc(inlen, GFP_KERNEL);
2198 	if (!in)
2199 		return -ENOMEM;
2200 
2201 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2202 
2203 	MLX5_SET(mkc, mkc, free, 1);
2204 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2205 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2206 	MLX5_SET(mkc, mkc, umr_en, 1);
2207 	MLX5_SET(mkc, mkc, lr, 1);
2208 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2209 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2210 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2211 
2212 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2213 	if (err)
2214 		goto free;
2215 
2216 	mw->mmkey.type = MLX5_MKEY_MW;
2217 	ibmw->rkey = mw->mmkey.key;
2218 	mw->mmkey.ndescs = ndescs;
2219 
2220 	resp.response_length =
2221 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2222 	if (resp.response_length) {
2223 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2224 		if (err)
2225 			goto free_mkey;
2226 	}
2227 
2228 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2229 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2230 		if (err)
2231 			goto free_mkey;
2232 	}
2233 
2234 	kfree(in);
2235 	return 0;
2236 
2237 free_mkey:
2238 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2239 free:
2240 	kfree(in);
2241 	return err;
2242 }
2243 
2244 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2245 {
2246 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2247 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2248 
2249 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2250 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2251 		/*
2252 		 * pagefault_single_data_segment() may be accessing mmw
2253 		 * if the user bound an ODP MR to this MW.
2254 		 */
2255 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2256 
2257 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2258 }
2259 
2260 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2261 			    struct ib_mr_status *mr_status)
2262 {
2263 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2264 	int ret = 0;
2265 
2266 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2267 		pr_err("Invalid status check mask\n");
2268 		ret = -EINVAL;
2269 		goto done;
2270 	}
2271 
2272 	mr_status->fail_status = 0;
2273 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2274 		if (!mmr->sig) {
2275 			ret = -EINVAL;
2276 			pr_err("signature status check requested on a non-signature enabled MR\n");
2277 			goto done;
2278 		}
2279 
2280 		mmr->sig->sig_status_checked = true;
2281 		if (!mmr->sig->sig_err_exists)
2282 			goto done;
2283 
2284 		if (ibmr->lkey == mmr->sig->err_item.key)
2285 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2286 			       sizeof(mr_status->sig_err));
2287 		else {
2288 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2289 			mr_status->sig_err.sig_err_offset = 0;
2290 			mr_status->sig_err.key = mmr->sig->err_item.key;
2291 		}
2292 
2293 		mmr->sig->sig_err_exists = false;
2294 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2295 	}
2296 
2297 done:
2298 	return ret;
2299 }
2300 
2301 static int
2302 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2303 			int data_sg_nents, unsigned int *data_sg_offset,
2304 			struct scatterlist *meta_sg, int meta_sg_nents,
2305 			unsigned int *meta_sg_offset)
2306 {
2307 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2308 	unsigned int sg_offset = 0;
2309 	int n = 0;
2310 
2311 	mr->meta_length = 0;
2312 	if (data_sg_nents == 1) {
2313 		n++;
2314 		mr->mmkey.ndescs = 1;
2315 		if (data_sg_offset)
2316 			sg_offset = *data_sg_offset;
2317 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2318 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2319 		if (meta_sg_nents == 1) {
2320 			n++;
2321 			mr->meta_ndescs = 1;
2322 			if (meta_sg_offset)
2323 				sg_offset = *meta_sg_offset;
2324 			else
2325 				sg_offset = 0;
2326 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2327 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2328 		}
2329 		ibmr->length = mr->data_length + mr->meta_length;
2330 	}
2331 
2332 	return n;
2333 }
2334 
2335 static int
2336 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2337 		   struct scatterlist *sgl,
2338 		   unsigned short sg_nents,
2339 		   unsigned int *sg_offset_p,
2340 		   struct scatterlist *meta_sgl,
2341 		   unsigned short meta_sg_nents,
2342 		   unsigned int *meta_sg_offset_p)
2343 {
2344 	struct scatterlist *sg = sgl;
2345 	struct mlx5_klm *klms = mr->descs;
2346 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2347 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2348 	int i, j = 0;
2349 
2350 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2351 	mr->ibmr.length = 0;
2352 
2353 	for_each_sg(sgl, sg, sg_nents, i) {
2354 		if (unlikely(i >= mr->max_descs))
2355 			break;
2356 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2357 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2358 		klms[i].key = cpu_to_be32(lkey);
2359 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2360 
2361 		sg_offset = 0;
2362 	}
2363 
2364 	if (sg_offset_p)
2365 		*sg_offset_p = sg_offset;
2366 
2367 	mr->mmkey.ndescs = i;
2368 	mr->data_length = mr->ibmr.length;
2369 
2370 	if (meta_sg_nents) {
2371 		sg = meta_sgl;
2372 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2373 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2374 			if (unlikely(i + j >= mr->max_descs))
2375 				break;
2376 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2377 						     sg_offset);
2378 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2379 							 sg_offset);
2380 			klms[i + j].key = cpu_to_be32(lkey);
2381 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2382 
2383 			sg_offset = 0;
2384 		}
2385 		if (meta_sg_offset_p)
2386 			*meta_sg_offset_p = sg_offset;
2387 
2388 		mr->meta_ndescs = j;
2389 		mr->meta_length = mr->ibmr.length - mr->data_length;
2390 	}
2391 
2392 	return i + j;
2393 }
2394 
2395 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2396 {
2397 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2398 	__be64 *descs;
2399 
2400 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2401 		return -ENOMEM;
2402 
2403 	descs = mr->descs;
2404 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2405 
2406 	return 0;
2407 }
2408 
2409 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2410 {
2411 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2412 	__be64 *descs;
2413 
2414 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2415 		return -ENOMEM;
2416 
2417 	descs = mr->descs;
2418 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2419 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2420 
2421 	return 0;
2422 }
2423 
2424 static int
2425 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2426 			 int data_sg_nents, unsigned int *data_sg_offset,
2427 			 struct scatterlist *meta_sg, int meta_sg_nents,
2428 			 unsigned int *meta_sg_offset)
2429 {
2430 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2431 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2432 	int n;
2433 
2434 	pi_mr->mmkey.ndescs = 0;
2435 	pi_mr->meta_ndescs = 0;
2436 	pi_mr->meta_length = 0;
2437 
2438 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2439 				   pi_mr->desc_size * pi_mr->max_descs,
2440 				   DMA_TO_DEVICE);
2441 
2442 	pi_mr->ibmr.page_size = ibmr->page_size;
2443 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2444 			   mlx5_set_page);
2445 	if (n != data_sg_nents)
2446 		return n;
2447 
2448 	pi_mr->data_iova = pi_mr->ibmr.iova;
2449 	pi_mr->data_length = pi_mr->ibmr.length;
2450 	pi_mr->ibmr.length = pi_mr->data_length;
2451 	ibmr->length = pi_mr->data_length;
2452 
2453 	if (meta_sg_nents) {
2454 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2455 		u64 iova = pi_mr->data_iova;
2456 
2457 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2458 				    meta_sg_offset, mlx5_set_page_pi);
2459 
2460 		pi_mr->meta_length = pi_mr->ibmr.length;
2461 		/*
2462 		 * PI address for the HW is the offset of the metadata address
2463 		 * relative to the first data page address.
2464 		 * It equals to first data page address + size of data pages +
2465 		 * metadata offset at the first metadata page
2466 		 */
2467 		pi_mr->pi_iova = (iova & page_mask) +
2468 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2469 				 (pi_mr->ibmr.iova & ~page_mask);
2470 		/*
2471 		 * In order to use one MTT MR for data and metadata, we register
2472 		 * also the gaps between the end of the data and the start of
2473 		 * the metadata (the sig MR will verify that the HW will access
2474 		 * to right addresses). This mapping is safe because we use
2475 		 * internal mkey for the registration.
2476 		 */
2477 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2478 		pi_mr->ibmr.iova = iova;
2479 		ibmr->length += pi_mr->meta_length;
2480 	}
2481 
2482 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2483 				      pi_mr->desc_size * pi_mr->max_descs,
2484 				      DMA_TO_DEVICE);
2485 
2486 	return n;
2487 }
2488 
2489 static int
2490 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2491 			 int data_sg_nents, unsigned int *data_sg_offset,
2492 			 struct scatterlist *meta_sg, int meta_sg_nents,
2493 			 unsigned int *meta_sg_offset)
2494 {
2495 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2496 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2497 	int n;
2498 
2499 	pi_mr->mmkey.ndescs = 0;
2500 	pi_mr->meta_ndescs = 0;
2501 	pi_mr->meta_length = 0;
2502 
2503 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2504 				   pi_mr->desc_size * pi_mr->max_descs,
2505 				   DMA_TO_DEVICE);
2506 
2507 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2508 			       meta_sg, meta_sg_nents, meta_sg_offset);
2509 
2510 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2511 				      pi_mr->desc_size * pi_mr->max_descs,
2512 				      DMA_TO_DEVICE);
2513 
2514 	/* This is zero-based memory region */
2515 	pi_mr->data_iova = 0;
2516 	pi_mr->ibmr.iova = 0;
2517 	pi_mr->pi_iova = pi_mr->data_length;
2518 	ibmr->length = pi_mr->ibmr.length;
2519 
2520 	return n;
2521 }
2522 
2523 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2524 			 int data_sg_nents, unsigned int *data_sg_offset,
2525 			 struct scatterlist *meta_sg, int meta_sg_nents,
2526 			 unsigned int *meta_sg_offset)
2527 {
2528 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2529 	struct mlx5_ib_mr *pi_mr = NULL;
2530 	int n;
2531 
2532 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2533 
2534 	mr->mmkey.ndescs = 0;
2535 	mr->data_length = 0;
2536 	mr->data_iova = 0;
2537 	mr->meta_ndescs = 0;
2538 	mr->pi_iova = 0;
2539 	/*
2540 	 * As a performance optimization, if possible, there is no need to
2541 	 * perform UMR operation to register the data/metadata buffers.
2542 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2543 	 * Fallback to UMR only in case of a failure.
2544 	 */
2545 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2546 				    data_sg_offset, meta_sg, meta_sg_nents,
2547 				    meta_sg_offset);
2548 	if (n == data_sg_nents + meta_sg_nents)
2549 		goto out;
2550 	/*
2551 	 * As a performance optimization, if possible, there is no need to map
2552 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2553 	 * descriptors and fallback to KLM only in case of a failure.
2554 	 * It's more efficient for the HW to work with MTT descriptors
2555 	 * (especially in high load).
2556 	 * Use KLM (indirect access) only if it's mandatory.
2557 	 */
2558 	pi_mr = mr->mtt_mr;
2559 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2560 				     data_sg_offset, meta_sg, meta_sg_nents,
2561 				     meta_sg_offset);
2562 	if (n == data_sg_nents + meta_sg_nents)
2563 		goto out;
2564 
2565 	pi_mr = mr->klm_mr;
2566 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2567 				     data_sg_offset, meta_sg, meta_sg_nents,
2568 				     meta_sg_offset);
2569 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2570 		return -ENOMEM;
2571 
2572 out:
2573 	/* This is zero-based memory region */
2574 	ibmr->iova = 0;
2575 	mr->pi_mr = pi_mr;
2576 	if (pi_mr)
2577 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2578 	else
2579 		ibmr->sig_attrs->meta_length = mr->meta_length;
2580 
2581 	return 0;
2582 }
2583 
2584 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2585 		      unsigned int *sg_offset)
2586 {
2587 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2588 	int n;
2589 
2590 	mr->mmkey.ndescs = 0;
2591 
2592 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2593 				   mr->desc_size * mr->max_descs,
2594 				   DMA_TO_DEVICE);
2595 
2596 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2597 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2598 				       NULL);
2599 	else
2600 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2601 				mlx5_set_page);
2602 
2603 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2604 				      mr->desc_size * mr->max_descs,
2605 				      DMA_TO_DEVICE);
2606 
2607 	return n;
2608 }
2609