xref: /openbmc/linux/drivers/infiniband/hw/mlx5/mr.c (revision 831df88381f73bca0f5624b69ab985cac3d036bc)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47 
48 /*
49  * We can't use an array for xlt_emergency_page because dma_map_single doesn't
50  * work on kernel modules memory
51  */
52 void *xlt_emergency_page;
53 static DEFINE_MUTEX(xlt_emergency_page_mutex);
54 
55 enum {
56 	MAX_PENDING_REG_MR = 8,
57 };
58 
59 #define MLX5_UMR_ALIGN 2048
60 
61 static void
62 create_mkey_callback(int status, struct mlx5_async_work *context);
63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
64 				     u64 iova, int access_flags,
65 				     unsigned int page_size, bool populate);
66 
67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
68 					  struct ib_pd *pd)
69 {
70 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
71 
72 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
73 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
74 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
75 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
76 	MLX5_SET(mkc, mkc, lr, 1);
77 
78 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
79 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
80 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
81 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
82 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
83 			 !!(acc & IB_ACCESS_RELAXED_ORDERING));
84 
85 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
86 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
87 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
88 }
89 
90 static void
91 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
92 		    u32 *in)
93 {
94 	u8 key = atomic_inc_return(&dev->mkey_var);
95 	void *mkc;
96 
97 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
98 	MLX5_SET(mkc, mkc, mkey_7_0, key);
99 	mkey->key = key;
100 }
101 
102 static int
103 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
104 		    u32 *in, int inlen)
105 {
106 	assign_mkey_variant(dev, mkey, in);
107 	return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
108 }
109 
110 static int
111 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
112 		       struct mlx5_core_mkey *mkey,
113 		       struct mlx5_async_ctx *async_ctx,
114 		       u32 *in, int inlen, u32 *out, int outlen,
115 		       struct mlx5_async_work *context)
116 {
117 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
118 	assign_mkey_variant(dev, mkey, in);
119 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
120 				create_mkey_callback, context);
121 }
122 
123 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
124 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
125 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
126 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
127 
128 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
129 {
130 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
131 }
132 
133 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
134 {
135 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
136 
137 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
138 }
139 
140 static void create_mkey_callback(int status, struct mlx5_async_work *context)
141 {
142 	struct mlx5_ib_mr *mr =
143 		container_of(context, struct mlx5_ib_mr, cb_work);
144 	struct mlx5_cache_ent *ent = mr->cache_ent;
145 	struct mlx5_ib_dev *dev = ent->dev;
146 	unsigned long flags;
147 
148 	if (status) {
149 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
150 		kfree(mr);
151 		spin_lock_irqsave(&ent->lock, flags);
152 		ent->pending--;
153 		WRITE_ONCE(dev->fill_delay, 1);
154 		spin_unlock_irqrestore(&ent->lock, flags);
155 		mod_timer(&dev->delay_timer, jiffies + HZ);
156 		return;
157 	}
158 
159 	mr->mmkey.type = MLX5_MKEY_MR;
160 	mr->mmkey.key |= mlx5_idx_to_mkey(
161 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
162 	init_waitqueue_head(&mr->mmkey.wait);
163 
164 	WRITE_ONCE(dev->cache.last_add, jiffies);
165 
166 	spin_lock_irqsave(&ent->lock, flags);
167 	list_add_tail(&mr->list, &ent->head);
168 	ent->available_mrs++;
169 	ent->total_mrs++;
170 	/* If we are doing fill_to_high_water then keep going. */
171 	queue_adjust_cache_locked(ent);
172 	ent->pending--;
173 	spin_unlock_irqrestore(&ent->lock, flags);
174 }
175 
176 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
177 {
178 	struct mlx5_ib_mr *mr;
179 
180 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
181 	if (!mr)
182 		return NULL;
183 	mr->cache_ent = ent;
184 
185 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
186 	MLX5_SET(mkc, mkc, free, 1);
187 	MLX5_SET(mkc, mkc, umr_en, 1);
188 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
189 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
190 
191 	MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
192 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
193 	return mr;
194 }
195 
196 /* Asynchronously schedule new MRs to be populated in the cache. */
197 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
198 {
199 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
200 	struct mlx5_ib_mr *mr;
201 	void *mkc;
202 	u32 *in;
203 	int err = 0;
204 	int i;
205 
206 	in = kzalloc(inlen, GFP_KERNEL);
207 	if (!in)
208 		return -ENOMEM;
209 
210 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
211 	for (i = 0; i < num; i++) {
212 		mr = alloc_cache_mr(ent, mkc);
213 		if (!mr) {
214 			err = -ENOMEM;
215 			break;
216 		}
217 		spin_lock_irq(&ent->lock);
218 		if (ent->pending >= MAX_PENDING_REG_MR) {
219 			err = -EAGAIN;
220 			spin_unlock_irq(&ent->lock);
221 			kfree(mr);
222 			break;
223 		}
224 		ent->pending++;
225 		spin_unlock_irq(&ent->lock);
226 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
227 					     &ent->dev->async_ctx, in, inlen,
228 					     mr->out, sizeof(mr->out),
229 					     &mr->cb_work);
230 		if (err) {
231 			spin_lock_irq(&ent->lock);
232 			ent->pending--;
233 			spin_unlock_irq(&ent->lock);
234 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
235 			kfree(mr);
236 			break;
237 		}
238 	}
239 
240 	kfree(in);
241 	return err;
242 }
243 
244 /* Synchronously create a MR in the cache */
245 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
246 {
247 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
248 	struct mlx5_ib_mr *mr;
249 	void *mkc;
250 	u32 *in;
251 	int err;
252 
253 	in = kzalloc(inlen, GFP_KERNEL);
254 	if (!in)
255 		return ERR_PTR(-ENOMEM);
256 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
257 
258 	mr = alloc_cache_mr(ent, mkc);
259 	if (!mr) {
260 		err = -ENOMEM;
261 		goto free_in;
262 	}
263 
264 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
265 	if (err)
266 		goto free_mr;
267 
268 	mr->mmkey.type = MLX5_MKEY_MR;
269 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
270 	spin_lock_irq(&ent->lock);
271 	ent->total_mrs++;
272 	spin_unlock_irq(&ent->lock);
273 	kfree(in);
274 	return mr;
275 free_mr:
276 	kfree(mr);
277 free_in:
278 	kfree(in);
279 	return ERR_PTR(err);
280 }
281 
282 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
283 {
284 	struct mlx5_ib_mr *mr;
285 
286 	lockdep_assert_held(&ent->lock);
287 	if (list_empty(&ent->head))
288 		return;
289 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
290 	list_del(&mr->list);
291 	ent->available_mrs--;
292 	ent->total_mrs--;
293 	spin_unlock_irq(&ent->lock);
294 	mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
295 	kfree(mr);
296 	spin_lock_irq(&ent->lock);
297 }
298 
299 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
300 				bool limit_fill)
301 {
302 	int err;
303 
304 	lockdep_assert_held(&ent->lock);
305 
306 	while (true) {
307 		if (limit_fill)
308 			target = ent->limit * 2;
309 		if (target == ent->available_mrs + ent->pending)
310 			return 0;
311 		if (target > ent->available_mrs + ent->pending) {
312 			u32 todo = target - (ent->available_mrs + ent->pending);
313 
314 			spin_unlock_irq(&ent->lock);
315 			err = add_keys(ent, todo);
316 			if (err == -EAGAIN)
317 				usleep_range(3000, 5000);
318 			spin_lock_irq(&ent->lock);
319 			if (err) {
320 				if (err != -EAGAIN)
321 					return err;
322 			} else
323 				return 0;
324 		} else {
325 			remove_cache_mr_locked(ent);
326 		}
327 	}
328 }
329 
330 static ssize_t size_write(struct file *filp, const char __user *buf,
331 			  size_t count, loff_t *pos)
332 {
333 	struct mlx5_cache_ent *ent = filp->private_data;
334 	u32 target;
335 	int err;
336 
337 	err = kstrtou32_from_user(buf, count, 0, &target);
338 	if (err)
339 		return err;
340 
341 	/*
342 	 * Target is the new value of total_mrs the user requests, however we
343 	 * cannot free MRs that are in use. Compute the target value for
344 	 * available_mrs.
345 	 */
346 	spin_lock_irq(&ent->lock);
347 	if (target < ent->total_mrs - ent->available_mrs) {
348 		err = -EINVAL;
349 		goto err_unlock;
350 	}
351 	target = target - (ent->total_mrs - ent->available_mrs);
352 	if (target < ent->limit || target > ent->limit*2) {
353 		err = -EINVAL;
354 		goto err_unlock;
355 	}
356 	err = resize_available_mrs(ent, target, false);
357 	if (err)
358 		goto err_unlock;
359 	spin_unlock_irq(&ent->lock);
360 
361 	return count;
362 
363 err_unlock:
364 	spin_unlock_irq(&ent->lock);
365 	return err;
366 }
367 
368 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
369 			 loff_t *pos)
370 {
371 	struct mlx5_cache_ent *ent = filp->private_data;
372 	char lbuf[20];
373 	int err;
374 
375 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
376 	if (err < 0)
377 		return err;
378 
379 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
380 }
381 
382 static const struct file_operations size_fops = {
383 	.owner	= THIS_MODULE,
384 	.open	= simple_open,
385 	.write	= size_write,
386 	.read	= size_read,
387 };
388 
389 static ssize_t limit_write(struct file *filp, const char __user *buf,
390 			   size_t count, loff_t *pos)
391 {
392 	struct mlx5_cache_ent *ent = filp->private_data;
393 	u32 var;
394 	int err;
395 
396 	err = kstrtou32_from_user(buf, count, 0, &var);
397 	if (err)
398 		return err;
399 
400 	/*
401 	 * Upon set we immediately fill the cache to high water mark implied by
402 	 * the limit.
403 	 */
404 	spin_lock_irq(&ent->lock);
405 	ent->limit = var;
406 	err = resize_available_mrs(ent, 0, true);
407 	spin_unlock_irq(&ent->lock);
408 	if (err)
409 		return err;
410 	return count;
411 }
412 
413 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
414 			  loff_t *pos)
415 {
416 	struct mlx5_cache_ent *ent = filp->private_data;
417 	char lbuf[20];
418 	int err;
419 
420 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
421 	if (err < 0)
422 		return err;
423 
424 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
425 }
426 
427 static const struct file_operations limit_fops = {
428 	.owner	= THIS_MODULE,
429 	.open	= simple_open,
430 	.write	= limit_write,
431 	.read	= limit_read,
432 };
433 
434 static bool someone_adding(struct mlx5_mr_cache *cache)
435 {
436 	unsigned int i;
437 
438 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
439 		struct mlx5_cache_ent *ent = &cache->ent[i];
440 		bool ret;
441 
442 		spin_lock_irq(&ent->lock);
443 		ret = ent->available_mrs < ent->limit;
444 		spin_unlock_irq(&ent->lock);
445 		if (ret)
446 			return true;
447 	}
448 	return false;
449 }
450 
451 /*
452  * Check if the bucket is outside the high/low water mark and schedule an async
453  * update. The cache refill has hysteresis, once the low water mark is hit it is
454  * refilled up to the high mark.
455  */
456 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
457 {
458 	lockdep_assert_held(&ent->lock);
459 
460 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
461 		return;
462 	if (ent->available_mrs < ent->limit) {
463 		ent->fill_to_high_water = true;
464 		queue_work(ent->dev->cache.wq, &ent->work);
465 	} else if (ent->fill_to_high_water &&
466 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
467 		/*
468 		 * Once we start populating due to hitting a low water mark
469 		 * continue until we pass the high water mark.
470 		 */
471 		queue_work(ent->dev->cache.wq, &ent->work);
472 	} else if (ent->available_mrs == 2 * ent->limit) {
473 		ent->fill_to_high_water = false;
474 	} else if (ent->available_mrs > 2 * ent->limit) {
475 		/* Queue deletion of excess entries */
476 		ent->fill_to_high_water = false;
477 		if (ent->pending)
478 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
479 					   msecs_to_jiffies(1000));
480 		else
481 			queue_work(ent->dev->cache.wq, &ent->work);
482 	}
483 }
484 
485 static void __cache_work_func(struct mlx5_cache_ent *ent)
486 {
487 	struct mlx5_ib_dev *dev = ent->dev;
488 	struct mlx5_mr_cache *cache = &dev->cache;
489 	int err;
490 
491 	spin_lock_irq(&ent->lock);
492 	if (ent->disabled)
493 		goto out;
494 
495 	if (ent->fill_to_high_water &&
496 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
497 	    !READ_ONCE(dev->fill_delay)) {
498 		spin_unlock_irq(&ent->lock);
499 		err = add_keys(ent, 1);
500 		spin_lock_irq(&ent->lock);
501 		if (ent->disabled)
502 			goto out;
503 		if (err) {
504 			/*
505 			 * EAGAIN only happens if pending is positive, so we
506 			 * will be rescheduled from reg_mr_callback(). The only
507 			 * failure path here is ENOMEM.
508 			 */
509 			if (err != -EAGAIN) {
510 				mlx5_ib_warn(
511 					dev,
512 					"command failed order %d, err %d\n",
513 					ent->order, err);
514 				queue_delayed_work(cache->wq, &ent->dwork,
515 						   msecs_to_jiffies(1000));
516 			}
517 		}
518 	} else if (ent->available_mrs > 2 * ent->limit) {
519 		bool need_delay;
520 
521 		/*
522 		 * The remove_cache_mr() logic is performed as garbage
523 		 * collection task. Such task is intended to be run when no
524 		 * other active processes are running.
525 		 *
526 		 * The need_resched() will return TRUE if there are user tasks
527 		 * to be activated in near future.
528 		 *
529 		 * In such case, we don't execute remove_cache_mr() and postpone
530 		 * the garbage collection work to try to run in next cycle, in
531 		 * order to free CPU resources to other tasks.
532 		 */
533 		spin_unlock_irq(&ent->lock);
534 		need_delay = need_resched() || someone_adding(cache) ||
535 			     time_after(jiffies,
536 					READ_ONCE(cache->last_add) + 300 * HZ);
537 		spin_lock_irq(&ent->lock);
538 		if (ent->disabled)
539 			goto out;
540 		if (need_delay)
541 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
542 		remove_cache_mr_locked(ent);
543 		queue_adjust_cache_locked(ent);
544 	}
545 out:
546 	spin_unlock_irq(&ent->lock);
547 }
548 
549 static void delayed_cache_work_func(struct work_struct *work)
550 {
551 	struct mlx5_cache_ent *ent;
552 
553 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
554 	__cache_work_func(ent);
555 }
556 
557 static void cache_work_func(struct work_struct *work)
558 {
559 	struct mlx5_cache_ent *ent;
560 
561 	ent = container_of(work, struct mlx5_cache_ent, work);
562 	__cache_work_func(ent);
563 }
564 
565 /* Allocate a special entry from the cache */
566 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
567 				       unsigned int entry, int access_flags)
568 {
569 	struct mlx5_mr_cache *cache = &dev->cache;
570 	struct mlx5_cache_ent *ent;
571 	struct mlx5_ib_mr *mr;
572 
573 	if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
574 		    entry >= ARRAY_SIZE(cache->ent)))
575 		return ERR_PTR(-EINVAL);
576 
577 	/* Matches access in alloc_cache_mr() */
578 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
579 		return ERR_PTR(-EOPNOTSUPP);
580 
581 	ent = &cache->ent[entry];
582 	spin_lock_irq(&ent->lock);
583 	if (list_empty(&ent->head)) {
584 		spin_unlock_irq(&ent->lock);
585 		mr = create_cache_mr(ent);
586 		if (IS_ERR(mr))
587 			return mr;
588 	} else {
589 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
590 		list_del(&mr->list);
591 		ent->available_mrs--;
592 		queue_adjust_cache_locked(ent);
593 		spin_unlock_irq(&ent->lock);
594 	}
595 	mr->access_flags = access_flags;
596 	return mr;
597 }
598 
599 /* Return a MR already available in the cache */
600 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
601 {
602 	struct mlx5_ib_dev *dev = req_ent->dev;
603 	struct mlx5_ib_mr *mr = NULL;
604 	struct mlx5_cache_ent *ent = req_ent;
605 
606 	/* Try larger MR pools from the cache to satisfy the allocation */
607 	for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
608 		mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
609 			    ent - dev->cache.ent);
610 
611 		spin_lock_irq(&ent->lock);
612 		if (!list_empty(&ent->head)) {
613 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
614 					      list);
615 			list_del(&mr->list);
616 			ent->available_mrs--;
617 			queue_adjust_cache_locked(ent);
618 			spin_unlock_irq(&ent->lock);
619 			break;
620 		}
621 		queue_adjust_cache_locked(ent);
622 		spin_unlock_irq(&ent->lock);
623 	}
624 
625 	if (!mr)
626 		req_ent->miss++;
627 
628 	return mr;
629 }
630 
631 static void detach_mr_from_cache(struct mlx5_ib_mr *mr)
632 {
633 	struct mlx5_cache_ent *ent = mr->cache_ent;
634 
635 	mr->cache_ent = NULL;
636 	spin_lock_irq(&ent->lock);
637 	ent->total_mrs--;
638 	spin_unlock_irq(&ent->lock);
639 }
640 
641 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
642 {
643 	struct mlx5_cache_ent *ent = mr->cache_ent;
644 
645 	if (!ent)
646 		return;
647 
648 	if (mlx5_mr_cache_invalidate(mr)) {
649 		detach_mr_from_cache(mr);
650 		destroy_mkey(dev, mr);
651 		kfree(mr);
652 		return;
653 	}
654 
655 	spin_lock_irq(&ent->lock);
656 	list_add_tail(&mr->list, &ent->head);
657 	ent->available_mrs++;
658 	queue_adjust_cache_locked(ent);
659 	spin_unlock_irq(&ent->lock);
660 }
661 
662 static void clean_keys(struct mlx5_ib_dev *dev, int c)
663 {
664 	struct mlx5_mr_cache *cache = &dev->cache;
665 	struct mlx5_cache_ent *ent = &cache->ent[c];
666 	struct mlx5_ib_mr *tmp_mr;
667 	struct mlx5_ib_mr *mr;
668 	LIST_HEAD(del_list);
669 
670 	cancel_delayed_work(&ent->dwork);
671 	while (1) {
672 		spin_lock_irq(&ent->lock);
673 		if (list_empty(&ent->head)) {
674 			spin_unlock_irq(&ent->lock);
675 			break;
676 		}
677 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
678 		list_move(&mr->list, &del_list);
679 		ent->available_mrs--;
680 		ent->total_mrs--;
681 		spin_unlock_irq(&ent->lock);
682 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
683 	}
684 
685 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
686 		list_del(&mr->list);
687 		kfree(mr);
688 	}
689 }
690 
691 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
692 {
693 	if (!mlx5_debugfs_root || dev->is_rep)
694 		return;
695 
696 	debugfs_remove_recursive(dev->cache.root);
697 	dev->cache.root = NULL;
698 }
699 
700 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
701 {
702 	struct mlx5_mr_cache *cache = &dev->cache;
703 	struct mlx5_cache_ent *ent;
704 	struct dentry *dir;
705 	int i;
706 
707 	if (!mlx5_debugfs_root || dev->is_rep)
708 		return;
709 
710 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
711 
712 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
713 		ent = &cache->ent[i];
714 		sprintf(ent->name, "%d", ent->order);
715 		dir = debugfs_create_dir(ent->name, cache->root);
716 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
717 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
718 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
719 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
720 	}
721 }
722 
723 static void delay_time_func(struct timer_list *t)
724 {
725 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
726 
727 	WRITE_ONCE(dev->fill_delay, 0);
728 }
729 
730 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
731 {
732 	struct mlx5_mr_cache *cache = &dev->cache;
733 	struct mlx5_cache_ent *ent;
734 	int i;
735 
736 	mutex_init(&dev->slow_path_mutex);
737 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
738 	if (!cache->wq) {
739 		mlx5_ib_warn(dev, "failed to create work queue\n");
740 		return -ENOMEM;
741 	}
742 
743 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
744 	timer_setup(&dev->delay_timer, delay_time_func, 0);
745 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
746 		ent = &cache->ent[i];
747 		INIT_LIST_HEAD(&ent->head);
748 		spin_lock_init(&ent->lock);
749 		ent->order = i + 2;
750 		ent->dev = dev;
751 		ent->limit = 0;
752 
753 		INIT_WORK(&ent->work, cache_work_func);
754 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
755 
756 		if (i > MR_CACHE_LAST_STD_ENTRY) {
757 			mlx5_odp_init_mr_cache_entry(ent);
758 			continue;
759 		}
760 
761 		if (ent->order > mr_cache_max_order(dev))
762 			continue;
763 
764 		ent->page = PAGE_SHIFT;
765 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
766 			   MLX5_IB_UMR_OCTOWORD;
767 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
768 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
769 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
770 		    mlx5_ib_can_load_pas_with_umr(dev, 0))
771 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
772 		else
773 			ent->limit = 0;
774 		spin_lock_irq(&ent->lock);
775 		queue_adjust_cache_locked(ent);
776 		spin_unlock_irq(&ent->lock);
777 	}
778 
779 	mlx5_mr_cache_debugfs_init(dev);
780 
781 	return 0;
782 }
783 
784 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
785 {
786 	unsigned int i;
787 
788 	if (!dev->cache.wq)
789 		return 0;
790 
791 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
792 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
793 
794 		spin_lock_irq(&ent->lock);
795 		ent->disabled = true;
796 		spin_unlock_irq(&ent->lock);
797 		cancel_work_sync(&ent->work);
798 		cancel_delayed_work_sync(&ent->dwork);
799 	}
800 
801 	mlx5_mr_cache_debugfs_cleanup(dev);
802 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
803 
804 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
805 		clean_keys(dev, i);
806 
807 	destroy_workqueue(dev->cache.wq);
808 	del_timer_sync(&dev->delay_timer);
809 
810 	return 0;
811 }
812 
813 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
814 {
815 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
816 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
817 	struct mlx5_ib_mr *mr;
818 	void *mkc;
819 	u32 *in;
820 	int err;
821 
822 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
823 	if (!mr)
824 		return ERR_PTR(-ENOMEM);
825 
826 	in = kzalloc(inlen, GFP_KERNEL);
827 	if (!in) {
828 		err = -ENOMEM;
829 		goto err_free;
830 	}
831 
832 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
833 
834 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
835 	MLX5_SET(mkc, mkc, length64, 1);
836 	set_mkc_access_pd_addr_fields(mkc, acc, 0, pd);
837 
838 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
839 	if (err)
840 		goto err_in;
841 
842 	kfree(in);
843 	mr->mmkey.type = MLX5_MKEY_MR;
844 	mr->ibmr.lkey = mr->mmkey.key;
845 	mr->ibmr.rkey = mr->mmkey.key;
846 	mr->umem = NULL;
847 
848 	return &mr->ibmr;
849 
850 err_in:
851 	kfree(in);
852 
853 err_free:
854 	kfree(mr);
855 
856 	return ERR_PTR(err);
857 }
858 
859 static int get_octo_len(u64 addr, u64 len, int page_shift)
860 {
861 	u64 page_size = 1ULL << page_shift;
862 	u64 offset;
863 	int npages;
864 
865 	offset = addr & (page_size - 1);
866 	npages = ALIGN(len + offset, page_size) >> page_shift;
867 	return (npages + 1) / 2;
868 }
869 
870 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
871 {
872 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
873 		return MR_CACHE_LAST_STD_ENTRY + 2;
874 	return MLX5_MAX_UMR_SHIFT;
875 }
876 
877 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
878 {
879 	struct mlx5_ib_umr_context *context =
880 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
881 
882 	context->status = wc->status;
883 	complete(&context->done);
884 }
885 
886 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
887 {
888 	context->cqe.done = mlx5_ib_umr_done;
889 	context->status = -1;
890 	init_completion(&context->done);
891 }
892 
893 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
894 				  struct mlx5_umr_wr *umrwr)
895 {
896 	struct umr_common *umrc = &dev->umrc;
897 	const struct ib_send_wr *bad;
898 	int err;
899 	struct mlx5_ib_umr_context umr_context;
900 
901 	mlx5_ib_init_umr_context(&umr_context);
902 	umrwr->wr.wr_cqe = &umr_context.cqe;
903 
904 	down(&umrc->sem);
905 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
906 	if (err) {
907 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
908 	} else {
909 		wait_for_completion(&umr_context.done);
910 		if (umr_context.status != IB_WC_SUCCESS) {
911 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
912 				     umr_context.status);
913 			err = -EFAULT;
914 		}
915 	}
916 	up(&umrc->sem);
917 	return err;
918 }
919 
920 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
921 						      unsigned int order)
922 {
923 	struct mlx5_mr_cache *cache = &dev->cache;
924 
925 	if (order < cache->ent[0].order)
926 		return &cache->ent[0];
927 	order = order - cache->ent[0].order;
928 	if (order > MR_CACHE_LAST_STD_ENTRY)
929 		return NULL;
930 	return &cache->ent[order];
931 }
932 
933 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
934 			  u64 length, int access_flags)
935 {
936 	mr->ibmr.lkey = mr->mmkey.key;
937 	mr->ibmr.rkey = mr->mmkey.key;
938 	mr->ibmr.length = length;
939 	mr->ibmr.device = &dev->ib_dev;
940 	mr->access_flags = access_flags;
941 }
942 
943 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
944 						  u64 iova)
945 {
946 	/*
947 	 * The alignment of iova has already been checked upon entering
948 	 * UVERBS_METHOD_REG_DMABUF_MR
949 	 */
950 	umem->iova = iova;
951 	return PAGE_SIZE;
952 }
953 
954 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
955 					     struct ib_umem *umem, u64 iova,
956 					     int access_flags)
957 {
958 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
959 	struct mlx5_cache_ent *ent;
960 	struct mlx5_ib_mr *mr;
961 	unsigned int page_size;
962 
963 	if (umem->is_dmabuf)
964 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
965 	else
966 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
967 						     0, iova);
968 	if (WARN_ON(!page_size))
969 		return ERR_PTR(-EINVAL);
970 	ent = mr_cache_ent_from_order(
971 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
972 	/*
973 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
974 	 * cache then synchronously create an uncached one.
975 	 */
976 	if (!ent || ent->limit == 0 ||
977 	    !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) {
978 		mutex_lock(&dev->slow_path_mutex);
979 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
980 		mutex_unlock(&dev->slow_path_mutex);
981 		return mr;
982 	}
983 
984 	mr = get_cache_mr(ent);
985 	if (!mr) {
986 		mr = create_cache_mr(ent);
987 		/*
988 		 * The above already tried to do the same stuff as reg_create(),
989 		 * no reason to try it again.
990 		 */
991 		if (IS_ERR(mr))
992 			return mr;
993 	}
994 
995 	mr->ibmr.pd = pd;
996 	mr->umem = umem;
997 	mr->access_flags = access_flags;
998 	mr->desc_size = sizeof(struct mlx5_mtt);
999 	mr->mmkey.iova = iova;
1000 	mr->mmkey.size = umem->length;
1001 	mr->mmkey.pd = to_mpd(pd)->pdn;
1002 	mr->page_shift = order_base_2(page_size);
1003 	set_mr_fields(dev, mr, umem->length, access_flags);
1004 
1005 	return mr;
1006 }
1007 
1008 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
1009 			    MLX5_UMR_MTT_ALIGNMENT)
1010 #define MLX5_SPARE_UMR_CHUNK 0x10000
1011 
1012 /*
1013  * Allocate a temporary buffer to hold the per-page information to transfer to
1014  * HW. For efficiency this should be as large as it can be, but buffer
1015  * allocation failure is not allowed, so try smaller sizes.
1016  */
1017 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask)
1018 {
1019 	const size_t xlt_chunk_align =
1020 		MLX5_UMR_MTT_ALIGNMENT / sizeof(ent_size);
1021 	size_t size;
1022 	void *res = NULL;
1023 
1024 	static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0);
1025 
1026 	/*
1027 	 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the
1028 	 * allocation can't trigger any kind of reclaim.
1029 	 */
1030 	might_sleep();
1031 
1032 	gfp_mask |= __GFP_ZERO;
1033 
1034 	/*
1035 	 * If the system already has a suitable high order page then just use
1036 	 * that, but don't try hard to create one. This max is about 1M, so a
1037 	 * free x86 huge page will satisfy it.
1038 	 */
1039 	size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align),
1040 		     MLX5_MAX_UMR_CHUNK);
1041 	*nents = size / ent_size;
1042 	res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1043 				       get_order(size));
1044 	if (res)
1045 		return res;
1046 
1047 	if (size > MLX5_SPARE_UMR_CHUNK) {
1048 		size = MLX5_SPARE_UMR_CHUNK;
1049 		*nents = get_order(size) / ent_size;
1050 		res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1051 					       get_order(size));
1052 		if (res)
1053 			return res;
1054 	}
1055 
1056 	*nents = PAGE_SIZE / ent_size;
1057 	res = (void *)__get_free_page(gfp_mask);
1058 	if (res)
1059 		return res;
1060 
1061 	mutex_lock(&xlt_emergency_page_mutex);
1062 	memset(xlt_emergency_page, 0, PAGE_SIZE);
1063 	return xlt_emergency_page;
1064 }
1065 
1066 static void mlx5_ib_free_xlt(void *xlt, size_t length)
1067 {
1068 	if (xlt == xlt_emergency_page) {
1069 		mutex_unlock(&xlt_emergency_page_mutex);
1070 		return;
1071 	}
1072 
1073 	free_pages((unsigned long)xlt, get_order(length));
1074 }
1075 
1076 /*
1077  * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for
1078  * submission.
1079  */
1080 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr,
1081 				   struct mlx5_umr_wr *wr, struct ib_sge *sg,
1082 				   size_t nents, size_t ent_size,
1083 				   unsigned int flags)
1084 {
1085 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1086 	struct device *ddev = &dev->mdev->pdev->dev;
1087 	dma_addr_t dma;
1088 	void *xlt;
1089 
1090 	xlt = mlx5_ib_alloc_xlt(&nents, ent_size,
1091 				flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC :
1092 								 GFP_KERNEL);
1093 	sg->length = nents * ent_size;
1094 	dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE);
1095 	if (dma_mapping_error(ddev, dma)) {
1096 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1097 		mlx5_ib_free_xlt(xlt, sg->length);
1098 		return NULL;
1099 	}
1100 	sg->addr = dma;
1101 	sg->lkey = dev->umrc.pd->local_dma_lkey;
1102 
1103 	memset(wr, 0, sizeof(*wr));
1104 	wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1105 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1106 		wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1107 	wr->wr.sg_list = sg;
1108 	wr->wr.num_sge = 1;
1109 	wr->wr.opcode = MLX5_IB_WR_UMR;
1110 	wr->pd = mr->ibmr.pd;
1111 	wr->mkey = mr->mmkey.key;
1112 	wr->length = mr->mmkey.size;
1113 	wr->virt_addr = mr->mmkey.iova;
1114 	wr->access_flags = mr->access_flags;
1115 	wr->page_shift = mr->page_shift;
1116 	wr->xlt_size = sg->length;
1117 	return xlt;
1118 }
1119 
1120 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt,
1121 				   struct ib_sge *sg)
1122 {
1123 	struct device *ddev = &dev->mdev->pdev->dev;
1124 
1125 	dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE);
1126 	mlx5_ib_free_xlt(xlt, sg->length);
1127 }
1128 
1129 static unsigned int xlt_wr_final_send_flags(unsigned int flags)
1130 {
1131 	unsigned int res = 0;
1132 
1133 	if (flags & MLX5_IB_UPD_XLT_ENABLE)
1134 		res |= MLX5_IB_SEND_UMR_ENABLE_MR |
1135 		       MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1136 		       MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1137 	if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS)
1138 		res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1139 	if (flags & MLX5_IB_UPD_XLT_ADDR)
1140 		res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1141 	return res;
1142 }
1143 
1144 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1145 		       int page_shift, int flags)
1146 {
1147 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1148 	struct device *ddev = &dev->mdev->pdev->dev;
1149 	void *xlt;
1150 	struct mlx5_umr_wr wr;
1151 	struct ib_sge sg;
1152 	int err = 0;
1153 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1154 			       ? sizeof(struct mlx5_klm)
1155 			       : sizeof(struct mlx5_mtt);
1156 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1157 	const int page_mask = page_align - 1;
1158 	size_t pages_mapped = 0;
1159 	size_t pages_to_map = 0;
1160 	size_t pages_iter;
1161 	size_t size_to_map = 0;
1162 	size_t orig_sg_length;
1163 
1164 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1165 	    !umr_can_use_indirect_mkey(dev))
1166 		return -EPERM;
1167 
1168 	if (WARN_ON(!mr->umem->is_odp))
1169 		return -EINVAL;
1170 
1171 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1172 	 * so we need to align the offset and length accordingly
1173 	 */
1174 	if (idx & page_mask) {
1175 		npages += idx & page_mask;
1176 		idx &= ~page_mask;
1177 	}
1178 	pages_to_map = ALIGN(npages, page_align);
1179 
1180 	xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags);
1181 	if (!xlt)
1182 		return -ENOMEM;
1183 	pages_iter = sg.length / desc_size;
1184 	orig_sg_length = sg.length;
1185 
1186 	if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1187 		struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1188 		size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1189 
1190 		pages_to_map = min_t(size_t, pages_to_map, max_pages);
1191 	}
1192 
1193 	wr.page_shift = page_shift;
1194 
1195 	for (pages_mapped = 0;
1196 	     pages_mapped < pages_to_map && !err;
1197 	     pages_mapped += pages_iter, idx += pages_iter) {
1198 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1199 		size_to_map = npages * desc_size;
1200 		dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1201 					DMA_TO_DEVICE);
1202 		mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1203 		dma_sync_single_for_device(ddev, sg.addr, sg.length,
1204 					   DMA_TO_DEVICE);
1205 
1206 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1207 
1208 		if (pages_mapped + pages_iter >= pages_to_map)
1209 			wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1210 
1211 		wr.offset = idx * desc_size;
1212 		wr.xlt_size = sg.length;
1213 
1214 		err = mlx5_ib_post_send_wait(dev, &wr);
1215 	}
1216 	sg.length = orig_sg_length;
1217 	mlx5_ib_unmap_free_xlt(dev, xlt, &sg);
1218 	return err;
1219 }
1220 
1221 /*
1222  * Send the DMA list to the HW for a normal MR using UMR.
1223  * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP
1224  * flag may be used.
1225  */
1226 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags)
1227 {
1228 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1229 	struct device *ddev = &dev->mdev->pdev->dev;
1230 	struct ib_block_iter biter;
1231 	struct mlx5_mtt *cur_mtt;
1232 	struct mlx5_umr_wr wr;
1233 	size_t orig_sg_length;
1234 	struct mlx5_mtt *mtt;
1235 	size_t final_size;
1236 	struct ib_sge sg;
1237 	int err = 0;
1238 
1239 	if (WARN_ON(mr->umem->is_odp))
1240 		return -EINVAL;
1241 
1242 	mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg,
1243 				    ib_umem_num_dma_blocks(mr->umem,
1244 							   1 << mr->page_shift),
1245 				    sizeof(*mtt), flags);
1246 	if (!mtt)
1247 		return -ENOMEM;
1248 	orig_sg_length = sg.length;
1249 
1250 	cur_mtt = mtt;
1251 	rdma_for_each_block (mr->umem->sg_head.sgl, &biter, mr->umem->nmap,
1252 			     BIT(mr->page_shift)) {
1253 		if (cur_mtt == (void *)mtt + sg.length) {
1254 			dma_sync_single_for_device(ddev, sg.addr, sg.length,
1255 						   DMA_TO_DEVICE);
1256 			err = mlx5_ib_post_send_wait(dev, &wr);
1257 			if (err)
1258 				goto err;
1259 			dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1260 						DMA_TO_DEVICE);
1261 			wr.offset += sg.length;
1262 			cur_mtt = mtt;
1263 		}
1264 
1265 		cur_mtt->ptag =
1266 			cpu_to_be64(rdma_block_iter_dma_address(&biter) |
1267 				    MLX5_IB_MTT_PRESENT);
1268 
1269 		if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP))
1270 			cur_mtt->ptag = 0;
1271 
1272 		cur_mtt++;
1273 	}
1274 
1275 	final_size = (void *)cur_mtt - (void *)mtt;
1276 	sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT);
1277 	memset(cur_mtt, 0, sg.length - final_size);
1278 	wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1279 	wr.xlt_size = sg.length;
1280 
1281 	dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE);
1282 	err = mlx5_ib_post_send_wait(dev, &wr);
1283 
1284 err:
1285 	sg.length = orig_sg_length;
1286 	mlx5_ib_unmap_free_xlt(dev, mtt, &sg);
1287 	return err;
1288 }
1289 
1290 /*
1291  * If ibmr is NULL it will be allocated by reg_create.
1292  * Else, the given ibmr will be used.
1293  */
1294 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1295 				     u64 iova, int access_flags,
1296 				     unsigned int page_size, bool populate)
1297 {
1298 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1299 	struct mlx5_ib_mr *mr;
1300 	__be64 *pas;
1301 	void *mkc;
1302 	int inlen;
1303 	u32 *in;
1304 	int err;
1305 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1306 
1307 	if (!page_size)
1308 		return ERR_PTR(-EINVAL);
1309 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1310 	if (!mr)
1311 		return ERR_PTR(-ENOMEM);
1312 
1313 	mr->ibmr.pd = pd;
1314 	mr->access_flags = access_flags;
1315 	mr->page_shift = order_base_2(page_size);
1316 
1317 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1318 	if (populate)
1319 		inlen += sizeof(*pas) *
1320 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1321 	in = kvzalloc(inlen, GFP_KERNEL);
1322 	if (!in) {
1323 		err = -ENOMEM;
1324 		goto err_1;
1325 	}
1326 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1327 	if (populate) {
1328 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1329 			err = -EINVAL;
1330 			goto err_2;
1331 		}
1332 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1333 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1334 	}
1335 
1336 	/* The pg_access bit allows setting the access flags
1337 	 * in the page list submitted with the command. */
1338 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1339 
1340 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1341 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1342 				      populate ? pd : dev->umrc.pd);
1343 	MLX5_SET(mkc, mkc, free, !populate);
1344 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1345 	MLX5_SET(mkc, mkc, umr_en, 1);
1346 
1347 	MLX5_SET64(mkc, mkc, len, umem->length);
1348 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1349 	MLX5_SET(mkc, mkc, translations_octword_size,
1350 		 get_octo_len(iova, umem->length, mr->page_shift));
1351 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1352 	if (populate) {
1353 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1354 			 get_octo_len(iova, umem->length, mr->page_shift));
1355 	}
1356 
1357 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1358 	if (err) {
1359 		mlx5_ib_warn(dev, "create mkey failed\n");
1360 		goto err_2;
1361 	}
1362 	mr->mmkey.type = MLX5_MKEY_MR;
1363 	mr->desc_size = sizeof(struct mlx5_mtt);
1364 	mr->umem = umem;
1365 	set_mr_fields(dev, mr, umem->length, access_flags);
1366 	kvfree(in);
1367 
1368 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1369 
1370 	return mr;
1371 
1372 err_2:
1373 	kvfree(in);
1374 err_1:
1375 	kfree(mr);
1376 	return ERR_PTR(err);
1377 }
1378 
1379 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1380 				       u64 length, int acc, int mode)
1381 {
1382 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1383 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1384 	struct mlx5_ib_mr *mr;
1385 	void *mkc;
1386 	u32 *in;
1387 	int err;
1388 
1389 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1390 	if (!mr)
1391 		return ERR_PTR(-ENOMEM);
1392 
1393 	in = kzalloc(inlen, GFP_KERNEL);
1394 	if (!in) {
1395 		err = -ENOMEM;
1396 		goto err_free;
1397 	}
1398 
1399 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1400 
1401 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1402 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1403 	MLX5_SET64(mkc, mkc, len, length);
1404 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1405 
1406 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1407 	if (err)
1408 		goto err_in;
1409 
1410 	kfree(in);
1411 
1412 	set_mr_fields(dev, mr, length, acc);
1413 
1414 	return &mr->ibmr;
1415 
1416 err_in:
1417 	kfree(in);
1418 
1419 err_free:
1420 	kfree(mr);
1421 
1422 	return ERR_PTR(err);
1423 }
1424 
1425 int mlx5_ib_advise_mr(struct ib_pd *pd,
1426 		      enum ib_uverbs_advise_mr_advice advice,
1427 		      u32 flags,
1428 		      struct ib_sge *sg_list,
1429 		      u32 num_sge,
1430 		      struct uverbs_attr_bundle *attrs)
1431 {
1432 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1433 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1434 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1435 		return -EOPNOTSUPP;
1436 
1437 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1438 					 sg_list, num_sge);
1439 }
1440 
1441 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1442 				struct ib_dm_mr_attr *attr,
1443 				struct uverbs_attr_bundle *attrs)
1444 {
1445 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1446 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1447 	u64 start_addr = mdm->dev_addr + attr->offset;
1448 	int mode;
1449 
1450 	switch (mdm->type) {
1451 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1452 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1453 			return ERR_PTR(-EINVAL);
1454 
1455 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1456 		start_addr -= pci_resource_start(dev->pdev, 0);
1457 		break;
1458 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1459 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1460 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1461 			return ERR_PTR(-EINVAL);
1462 
1463 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1464 		break;
1465 	default:
1466 		return ERR_PTR(-EINVAL);
1467 	}
1468 
1469 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1470 				 attr->access_flags, mode);
1471 }
1472 
1473 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1474 				    u64 iova, int access_flags)
1475 {
1476 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1477 	struct mlx5_ib_mr *mr = NULL;
1478 	bool xlt_with_umr;
1479 	int err;
1480 
1481 	xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length);
1482 	if (xlt_with_umr) {
1483 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1484 	} else {
1485 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1486 			umem, mkc, log_page_size, 0, iova);
1487 
1488 		mutex_lock(&dev->slow_path_mutex);
1489 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1490 		mutex_unlock(&dev->slow_path_mutex);
1491 	}
1492 	if (IS_ERR(mr)) {
1493 		ib_umem_release(umem);
1494 		return ERR_CAST(mr);
1495 	}
1496 
1497 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1498 
1499 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1500 
1501 	if (xlt_with_umr) {
1502 		/*
1503 		 * If the MR was created with reg_create then it will be
1504 		 * configured properly but left disabled. It is safe to go ahead
1505 		 * and configure it again via UMR while enabling it.
1506 		 */
1507 		err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1508 		if (err) {
1509 			dereg_mr(dev, mr);
1510 			return ERR_PTR(err);
1511 		}
1512 	}
1513 	return &mr->ibmr;
1514 }
1515 
1516 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1517 					u64 iova, int access_flags,
1518 					struct ib_udata *udata)
1519 {
1520 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1521 	struct ib_umem_odp *odp;
1522 	struct mlx5_ib_mr *mr;
1523 	int err;
1524 
1525 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1526 		return ERR_PTR(-EOPNOTSUPP);
1527 
1528 	if (!start && length == U64_MAX) {
1529 		if (iova != 0)
1530 			return ERR_PTR(-EINVAL);
1531 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1532 			return ERR_PTR(-EINVAL);
1533 
1534 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1535 		if (IS_ERR(mr))
1536 			return ERR_CAST(mr);
1537 		return &mr->ibmr;
1538 	}
1539 
1540 	/* ODP requires xlt update via umr to work. */
1541 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1542 		return ERR_PTR(-EINVAL);
1543 
1544 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1545 			      &mlx5_mn_ops);
1546 	if (IS_ERR(odp))
1547 		return ERR_CAST(odp);
1548 
1549 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1550 	if (IS_ERR(mr)) {
1551 		ib_umem_release(&odp->umem);
1552 		return ERR_CAST(mr);
1553 	}
1554 
1555 	odp->private = mr;
1556 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1557 	if (err)
1558 		goto err_dereg_mr;
1559 
1560 	err = mlx5_ib_init_odp_mr(mr);
1561 	if (err)
1562 		goto err_dereg_mr;
1563 	return &mr->ibmr;
1564 
1565 err_dereg_mr:
1566 	dereg_mr(dev, mr);
1567 	return ERR_PTR(err);
1568 }
1569 
1570 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1571 				  u64 iova, int access_flags,
1572 				  struct ib_udata *udata)
1573 {
1574 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1575 	struct ib_umem *umem;
1576 
1577 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1578 		return ERR_PTR(-EOPNOTSUPP);
1579 
1580 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1581 		    start, iova, length, access_flags);
1582 
1583 	if (access_flags & IB_ACCESS_ON_DEMAND)
1584 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1585 					  udata);
1586 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1587 	if (IS_ERR(umem))
1588 		return ERR_CAST(umem);
1589 	return create_real_mr(pd, umem, iova, access_flags);
1590 }
1591 
1592 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1593 {
1594 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1595 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1596 
1597 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1598 
1599 	if (!umem_dmabuf->sgt)
1600 		return;
1601 
1602 	mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1603 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1604 }
1605 
1606 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1607 	.allow_peer2peer = 1,
1608 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1609 };
1610 
1611 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1612 					 u64 length, u64 virt_addr,
1613 					 int fd, int access_flags,
1614 					 struct ib_udata *udata)
1615 {
1616 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1617 	struct mlx5_ib_mr *mr = NULL;
1618 	struct ib_umem_dmabuf *umem_dmabuf;
1619 	int err;
1620 
1621 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1622 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1623 		return ERR_PTR(-EOPNOTSUPP);
1624 
1625 	mlx5_ib_dbg(dev,
1626 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1627 		    offset, virt_addr, length, fd, access_flags);
1628 
1629 	/* dmabuf requires xlt update via umr to work. */
1630 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1631 		return ERR_PTR(-EINVAL);
1632 
1633 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1634 					 access_flags,
1635 					 &mlx5_ib_dmabuf_attach_ops);
1636 	if (IS_ERR(umem_dmabuf)) {
1637 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1638 			    PTR_ERR(umem_dmabuf));
1639 		return ERR_CAST(umem_dmabuf);
1640 	}
1641 
1642 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1643 				access_flags);
1644 	if (IS_ERR(mr)) {
1645 		ib_umem_release(&umem_dmabuf->umem);
1646 		return ERR_CAST(mr);
1647 	}
1648 
1649 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1650 
1651 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1652 	umem_dmabuf->private = mr;
1653 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1654 	if (err)
1655 		goto err_dereg_mr;
1656 
1657 	err = mlx5_ib_init_dmabuf_mr(mr);
1658 	if (err)
1659 		goto err_dereg_mr;
1660 	return &mr->ibmr;
1661 
1662 err_dereg_mr:
1663 	dereg_mr(dev, mr);
1664 	return ERR_PTR(err);
1665 }
1666 
1667 /**
1668  * mlx5_mr_cache_invalidate - Fence all DMA on the MR
1669  * @mr: The MR to fence
1670  *
1671  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1672  * and any DMA inprogress will be completed. Failure of this function
1673  * indicates the HW has failed catastrophically.
1674  */
1675 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr)
1676 {
1677 	struct mlx5_umr_wr umrwr = {};
1678 
1679 	if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1680 		return 0;
1681 
1682 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1683 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1684 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1685 	umrwr.pd = mr_to_mdev(mr)->umrc.pd;
1686 	umrwr.mkey = mr->mmkey.key;
1687 	umrwr.ignore_free_state = 1;
1688 
1689 	return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr);
1690 }
1691 
1692 /*
1693  * True if the change in access flags can be done via UMR, only some access
1694  * flags can be updated.
1695  */
1696 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1697 				     unsigned int current_access_flags,
1698 				     unsigned int target_access_flags)
1699 {
1700 	unsigned int diffs = current_access_flags ^ target_access_flags;
1701 
1702 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1703 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1704 		return false;
1705 	return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags,
1706 					     target_access_flags);
1707 }
1708 
1709 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1710 			       int access_flags)
1711 {
1712 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1713 	struct mlx5_umr_wr umrwr = {
1714 		.wr = {
1715 			.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1716 				      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS,
1717 			.opcode = MLX5_IB_WR_UMR,
1718 		},
1719 		.mkey = mr->mmkey.key,
1720 		.pd = pd,
1721 		.access_flags = access_flags,
1722 	};
1723 	int err;
1724 
1725 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1726 	if (err)
1727 		return err;
1728 
1729 	mr->access_flags = access_flags;
1730 	mr->mmkey.pd = to_mpd(pd)->pdn;
1731 	return 0;
1732 }
1733 
1734 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1735 				  struct ib_umem *new_umem,
1736 				  int new_access_flags, u64 iova,
1737 				  unsigned long *page_size)
1738 {
1739 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1740 
1741 	/* We only track the allocated sizes of MRs from the cache */
1742 	if (!mr->cache_ent)
1743 		return false;
1744 	if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length))
1745 		return false;
1746 
1747 	*page_size =
1748 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1749 	if (WARN_ON(!*page_size))
1750 		return false;
1751 	return (1ULL << mr->cache_ent->order) >=
1752 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1753 }
1754 
1755 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1756 			 int access_flags, int flags, struct ib_umem *new_umem,
1757 			 u64 iova, unsigned long page_size)
1758 {
1759 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1760 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1761 	struct ib_umem *old_umem = mr->umem;
1762 	int err;
1763 
1764 	/*
1765 	 * To keep everything simple the MR is revoked before we start to mess
1766 	 * with it. This ensure the change is atomic relative to any use of the
1767 	 * MR.
1768 	 */
1769 	err = mlx5_mr_cache_invalidate(mr);
1770 	if (err)
1771 		return err;
1772 
1773 	if (flags & IB_MR_REREG_PD) {
1774 		mr->ibmr.pd = pd;
1775 		mr->mmkey.pd = to_mpd(pd)->pdn;
1776 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1777 	}
1778 	if (flags & IB_MR_REREG_ACCESS) {
1779 		mr->access_flags = access_flags;
1780 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1781 	}
1782 
1783 	mr->ibmr.length = new_umem->length;
1784 	mr->mmkey.iova = iova;
1785 	mr->mmkey.size = new_umem->length;
1786 	mr->page_shift = order_base_2(page_size);
1787 	mr->umem = new_umem;
1788 	err = mlx5_ib_update_mr_pas(mr, upd_flags);
1789 	if (err) {
1790 		/*
1791 		 * The MR is revoked at this point so there is no issue to free
1792 		 * new_umem.
1793 		 */
1794 		mr->umem = old_umem;
1795 		return err;
1796 	}
1797 
1798 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1799 	ib_umem_release(old_umem);
1800 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1801 	return 0;
1802 }
1803 
1804 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1805 				    u64 length, u64 iova, int new_access_flags,
1806 				    struct ib_pd *new_pd,
1807 				    struct ib_udata *udata)
1808 {
1809 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1810 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1811 	int err;
1812 
1813 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1814 		return ERR_PTR(-EOPNOTSUPP);
1815 
1816 	mlx5_ib_dbg(
1817 		dev,
1818 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1819 		start, iova, length, new_access_flags);
1820 
1821 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1822 		return ERR_PTR(-EOPNOTSUPP);
1823 
1824 	if (!(flags & IB_MR_REREG_ACCESS))
1825 		new_access_flags = mr->access_flags;
1826 	if (!(flags & IB_MR_REREG_PD))
1827 		new_pd = ib_mr->pd;
1828 
1829 	if (!(flags & IB_MR_REREG_TRANS)) {
1830 		struct ib_umem *umem;
1831 
1832 		/* Fast path for PD/access change */
1833 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1834 					     new_access_flags)) {
1835 			err = umr_rereg_pd_access(mr, new_pd, new_access_flags);
1836 			if (err)
1837 				return ERR_PTR(err);
1838 			return NULL;
1839 		}
1840 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1841 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1842 			goto recreate;
1843 
1844 		/*
1845 		 * Only one active MR can refer to a umem at one time, revoke
1846 		 * the old MR before assigning the umem to the new one.
1847 		 */
1848 		err = mlx5_mr_cache_invalidate(mr);
1849 		if (err)
1850 			return ERR_PTR(err);
1851 		umem = mr->umem;
1852 		mr->umem = NULL;
1853 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1854 
1855 		return create_real_mr(new_pd, umem, mr->mmkey.iova,
1856 				      new_access_flags);
1857 	}
1858 
1859 	/*
1860 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1861 	 * but the logic around releasing the umem is different
1862 	 */
1863 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1864 		goto recreate;
1865 
1866 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1867 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1868 		struct ib_umem *new_umem;
1869 		unsigned long page_size;
1870 
1871 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1872 				       new_access_flags);
1873 		if (IS_ERR(new_umem))
1874 			return ERR_CAST(new_umem);
1875 
1876 		/* Fast path for PAS change */
1877 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1878 					  &page_size)) {
1879 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1880 					    new_umem, iova, page_size);
1881 			if (err) {
1882 				ib_umem_release(new_umem);
1883 				return ERR_PTR(err);
1884 			}
1885 			return NULL;
1886 		}
1887 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1888 	}
1889 
1890 	/*
1891 	 * Everything else has no state we can preserve, just create a new MR
1892 	 * from scratch
1893 	 */
1894 recreate:
1895 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1896 				   new_access_flags, udata);
1897 }
1898 
1899 static int
1900 mlx5_alloc_priv_descs(struct ib_device *device,
1901 		      struct mlx5_ib_mr *mr,
1902 		      int ndescs,
1903 		      int desc_size)
1904 {
1905 	struct mlx5_ib_dev *dev = to_mdev(device);
1906 	struct device *ddev = &dev->mdev->pdev->dev;
1907 	int size = ndescs * desc_size;
1908 	int add_size;
1909 	int ret;
1910 
1911 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1912 
1913 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1914 	if (!mr->descs_alloc)
1915 		return -ENOMEM;
1916 
1917 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1918 
1919 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1920 	if (dma_mapping_error(ddev, mr->desc_map)) {
1921 		ret = -ENOMEM;
1922 		goto err;
1923 	}
1924 
1925 	return 0;
1926 err:
1927 	kfree(mr->descs_alloc);
1928 
1929 	return ret;
1930 }
1931 
1932 static void
1933 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1934 {
1935 	if (mr->descs) {
1936 		struct ib_device *device = mr->ibmr.device;
1937 		int size = mr->max_descs * mr->desc_size;
1938 		struct mlx5_ib_dev *dev = to_mdev(device);
1939 
1940 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1941 				 DMA_TO_DEVICE);
1942 		kfree(mr->descs_alloc);
1943 		mr->descs = NULL;
1944 	}
1945 }
1946 
1947 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1948 {
1949 	if (mr->sig) {
1950 		if (mlx5_core_destroy_psv(dev->mdev,
1951 					  mr->sig->psv_memory.psv_idx))
1952 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1953 				     mr->sig->psv_memory.psv_idx);
1954 		if (mlx5_core_destroy_psv(dev->mdev,
1955 					  mr->sig->psv_wire.psv_idx))
1956 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1957 				     mr->sig->psv_wire.psv_idx);
1958 		xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key));
1959 		kfree(mr->sig);
1960 		mr->sig = NULL;
1961 	}
1962 
1963 	if (!mr->cache_ent) {
1964 		destroy_mkey(dev, mr);
1965 		mlx5_free_priv_descs(mr);
1966 	}
1967 }
1968 
1969 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1970 {
1971 	struct ib_umem *umem = mr->umem;
1972 
1973 	/* Stop all DMA */
1974 	if (is_odp_mr(mr))
1975 		mlx5_ib_fence_odp_mr(mr);
1976 	else if (is_dmabuf_mr(mr))
1977 		mlx5_ib_fence_dmabuf_mr(mr);
1978 	else
1979 		clean_mr(dev, mr);
1980 
1981 	if (umem) {
1982 		if (!is_odp_mr(mr))
1983 			atomic_sub(ib_umem_num_pages(umem),
1984 				   &dev->mdev->priv.reg_pages);
1985 		ib_umem_release(umem);
1986 	}
1987 
1988 	if (mr->cache_ent)
1989 		mlx5_mr_cache_free(dev, mr);
1990 	else
1991 		kfree(mr);
1992 }
1993 
1994 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1995 {
1996 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1997 
1998 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1999 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
2000 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
2001 	}
2002 
2003 	if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) {
2004 		mlx5_ib_free_implicit_mr(mmr);
2005 		return 0;
2006 	}
2007 
2008 	dereg_mr(to_mdev(ibmr->device), mmr);
2009 
2010 	return 0;
2011 }
2012 
2013 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2014 				   int access_mode, int page_shift)
2015 {
2016 	void *mkc;
2017 
2018 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2019 
2020 	/* This is only used from the kernel, so setting the PD is OK. */
2021 	set_mkc_access_pd_addr_fields(mkc, 0, 0, pd);
2022 	MLX5_SET(mkc, mkc, free, 1);
2023 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2024 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2025 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2026 	MLX5_SET(mkc, mkc, umr_en, 1);
2027 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2028 }
2029 
2030 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2031 				  int ndescs, int desc_size, int page_shift,
2032 				  int access_mode, u32 *in, int inlen)
2033 {
2034 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2035 	int err;
2036 
2037 	mr->access_mode = access_mode;
2038 	mr->desc_size = desc_size;
2039 	mr->max_descs = ndescs;
2040 
2041 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2042 	if (err)
2043 		return err;
2044 
2045 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2046 
2047 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2048 	if (err)
2049 		goto err_free_descs;
2050 
2051 	mr->mmkey.type = MLX5_MKEY_MR;
2052 	mr->ibmr.lkey = mr->mmkey.key;
2053 	mr->ibmr.rkey = mr->mmkey.key;
2054 
2055 	return 0;
2056 
2057 err_free_descs:
2058 	mlx5_free_priv_descs(mr);
2059 	return err;
2060 }
2061 
2062 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2063 				u32 max_num_sg, u32 max_num_meta_sg,
2064 				int desc_size, int access_mode)
2065 {
2066 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2067 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2068 	int page_shift = 0;
2069 	struct mlx5_ib_mr *mr;
2070 	u32 *in;
2071 	int err;
2072 
2073 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2074 	if (!mr)
2075 		return ERR_PTR(-ENOMEM);
2076 
2077 	mr->ibmr.pd = pd;
2078 	mr->ibmr.device = pd->device;
2079 
2080 	in = kzalloc(inlen, GFP_KERNEL);
2081 	if (!in) {
2082 		err = -ENOMEM;
2083 		goto err_free;
2084 	}
2085 
2086 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2087 		page_shift = PAGE_SHIFT;
2088 
2089 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2090 				     access_mode, in, inlen);
2091 	if (err)
2092 		goto err_free_in;
2093 
2094 	mr->umem = NULL;
2095 	kfree(in);
2096 
2097 	return mr;
2098 
2099 err_free_in:
2100 	kfree(in);
2101 err_free:
2102 	kfree(mr);
2103 	return ERR_PTR(err);
2104 }
2105 
2106 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2107 				    int ndescs, u32 *in, int inlen)
2108 {
2109 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2110 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2111 				      inlen);
2112 }
2113 
2114 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2115 				    int ndescs, u32 *in, int inlen)
2116 {
2117 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2118 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2119 }
2120 
2121 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2122 				      int max_num_sg, int max_num_meta_sg,
2123 				      u32 *in, int inlen)
2124 {
2125 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2126 	u32 psv_index[2];
2127 	void *mkc;
2128 	int err;
2129 
2130 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2131 	if (!mr->sig)
2132 		return -ENOMEM;
2133 
2134 	/* create mem & wire PSVs */
2135 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2136 	if (err)
2137 		goto err_free_sig;
2138 
2139 	mr->sig->psv_memory.psv_idx = psv_index[0];
2140 	mr->sig->psv_wire.psv_idx = psv_index[1];
2141 
2142 	mr->sig->sig_status_checked = true;
2143 	mr->sig->sig_err_exists = false;
2144 	/* Next UMR, Arm SIGERR */
2145 	++mr->sig->sigerr_count;
2146 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2147 					 sizeof(struct mlx5_klm),
2148 					 MLX5_MKC_ACCESS_MODE_KLMS);
2149 	if (IS_ERR(mr->klm_mr)) {
2150 		err = PTR_ERR(mr->klm_mr);
2151 		goto err_destroy_psv;
2152 	}
2153 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2154 					 sizeof(struct mlx5_mtt),
2155 					 MLX5_MKC_ACCESS_MODE_MTT);
2156 	if (IS_ERR(mr->mtt_mr)) {
2157 		err = PTR_ERR(mr->mtt_mr);
2158 		goto err_free_klm_mr;
2159 	}
2160 
2161 	/* Set bsf descriptors for mkey */
2162 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2163 	MLX5_SET(mkc, mkc, bsf_en, 1);
2164 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2165 
2166 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2167 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2168 	if (err)
2169 		goto err_free_mtt_mr;
2170 
2171 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2172 			      mr->sig, GFP_KERNEL));
2173 	if (err)
2174 		goto err_free_descs;
2175 	return 0;
2176 
2177 err_free_descs:
2178 	destroy_mkey(dev, mr);
2179 	mlx5_free_priv_descs(mr);
2180 err_free_mtt_mr:
2181 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
2182 	mr->mtt_mr = NULL;
2183 err_free_klm_mr:
2184 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
2185 	mr->klm_mr = NULL;
2186 err_destroy_psv:
2187 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2188 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2189 			     mr->sig->psv_memory.psv_idx);
2190 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2191 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2192 			     mr->sig->psv_wire.psv_idx);
2193 err_free_sig:
2194 	kfree(mr->sig);
2195 
2196 	return err;
2197 }
2198 
2199 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2200 					enum ib_mr_type mr_type, u32 max_num_sg,
2201 					u32 max_num_meta_sg)
2202 {
2203 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2204 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2205 	int ndescs = ALIGN(max_num_sg, 4);
2206 	struct mlx5_ib_mr *mr;
2207 	u32 *in;
2208 	int err;
2209 
2210 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2211 	if (!mr)
2212 		return ERR_PTR(-ENOMEM);
2213 
2214 	in = kzalloc(inlen, GFP_KERNEL);
2215 	if (!in) {
2216 		err = -ENOMEM;
2217 		goto err_free;
2218 	}
2219 
2220 	mr->ibmr.device = pd->device;
2221 	mr->umem = NULL;
2222 
2223 	switch (mr_type) {
2224 	case IB_MR_TYPE_MEM_REG:
2225 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2226 		break;
2227 	case IB_MR_TYPE_SG_GAPS:
2228 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2229 		break;
2230 	case IB_MR_TYPE_INTEGRITY:
2231 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2232 						 max_num_meta_sg, in, inlen);
2233 		break;
2234 	default:
2235 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2236 		err = -EINVAL;
2237 	}
2238 
2239 	if (err)
2240 		goto err_free_in;
2241 
2242 	kfree(in);
2243 
2244 	return &mr->ibmr;
2245 
2246 err_free_in:
2247 	kfree(in);
2248 err_free:
2249 	kfree(mr);
2250 	return ERR_PTR(err);
2251 }
2252 
2253 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2254 			       u32 max_num_sg)
2255 {
2256 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2257 }
2258 
2259 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2260 					 u32 max_num_sg, u32 max_num_meta_sg)
2261 {
2262 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2263 				  max_num_meta_sg);
2264 }
2265 
2266 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2267 {
2268 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2269 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2270 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2271 	u32 *in = NULL;
2272 	void *mkc;
2273 	int ndescs;
2274 	int err;
2275 	struct mlx5_ib_alloc_mw req = {};
2276 	struct {
2277 		__u32	comp_mask;
2278 		__u32	response_length;
2279 	} resp = {};
2280 
2281 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2282 	if (err)
2283 		return err;
2284 
2285 	if (req.comp_mask || req.reserved1 || req.reserved2)
2286 		return -EOPNOTSUPP;
2287 
2288 	if (udata->inlen > sizeof(req) &&
2289 	    !ib_is_udata_cleared(udata, sizeof(req),
2290 				 udata->inlen - sizeof(req)))
2291 		return -EOPNOTSUPP;
2292 
2293 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2294 
2295 	in = kzalloc(inlen, GFP_KERNEL);
2296 	if (!in) {
2297 		err = -ENOMEM;
2298 		goto free;
2299 	}
2300 
2301 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2302 
2303 	MLX5_SET(mkc, mkc, free, 1);
2304 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2305 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2306 	MLX5_SET(mkc, mkc, umr_en, 1);
2307 	MLX5_SET(mkc, mkc, lr, 1);
2308 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2309 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2310 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2311 
2312 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2313 	if (err)
2314 		goto free;
2315 
2316 	mw->mmkey.type = MLX5_MKEY_MW;
2317 	ibmw->rkey = mw->mmkey.key;
2318 	mw->ndescs = ndescs;
2319 
2320 	resp.response_length =
2321 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2322 	if (resp.response_length) {
2323 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2324 		if (err)
2325 			goto free_mkey;
2326 	}
2327 
2328 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2329 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2330 		if (err)
2331 			goto free_mkey;
2332 	}
2333 
2334 	kfree(in);
2335 	return 0;
2336 
2337 free_mkey:
2338 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2339 free:
2340 	kfree(in);
2341 	return err;
2342 }
2343 
2344 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2345 {
2346 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2347 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2348 
2349 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2350 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2351 		/*
2352 		 * pagefault_single_data_segment() may be accessing mmw
2353 		 * if the user bound an ODP MR to this MW.
2354 		 */
2355 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2356 
2357 	return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2358 }
2359 
2360 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2361 			    struct ib_mr_status *mr_status)
2362 {
2363 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2364 	int ret = 0;
2365 
2366 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2367 		pr_err("Invalid status check mask\n");
2368 		ret = -EINVAL;
2369 		goto done;
2370 	}
2371 
2372 	mr_status->fail_status = 0;
2373 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2374 		if (!mmr->sig) {
2375 			ret = -EINVAL;
2376 			pr_err("signature status check requested on a non-signature enabled MR\n");
2377 			goto done;
2378 		}
2379 
2380 		mmr->sig->sig_status_checked = true;
2381 		if (!mmr->sig->sig_err_exists)
2382 			goto done;
2383 
2384 		if (ibmr->lkey == mmr->sig->err_item.key)
2385 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2386 			       sizeof(mr_status->sig_err));
2387 		else {
2388 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2389 			mr_status->sig_err.sig_err_offset = 0;
2390 			mr_status->sig_err.key = mmr->sig->err_item.key;
2391 		}
2392 
2393 		mmr->sig->sig_err_exists = false;
2394 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2395 	}
2396 
2397 done:
2398 	return ret;
2399 }
2400 
2401 static int
2402 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2403 			int data_sg_nents, unsigned int *data_sg_offset,
2404 			struct scatterlist *meta_sg, int meta_sg_nents,
2405 			unsigned int *meta_sg_offset)
2406 {
2407 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2408 	unsigned int sg_offset = 0;
2409 	int n = 0;
2410 
2411 	mr->meta_length = 0;
2412 	if (data_sg_nents == 1) {
2413 		n++;
2414 		mr->ndescs = 1;
2415 		if (data_sg_offset)
2416 			sg_offset = *data_sg_offset;
2417 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2418 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2419 		if (meta_sg_nents == 1) {
2420 			n++;
2421 			mr->meta_ndescs = 1;
2422 			if (meta_sg_offset)
2423 				sg_offset = *meta_sg_offset;
2424 			else
2425 				sg_offset = 0;
2426 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2427 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2428 		}
2429 		ibmr->length = mr->data_length + mr->meta_length;
2430 	}
2431 
2432 	return n;
2433 }
2434 
2435 static int
2436 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2437 		   struct scatterlist *sgl,
2438 		   unsigned short sg_nents,
2439 		   unsigned int *sg_offset_p,
2440 		   struct scatterlist *meta_sgl,
2441 		   unsigned short meta_sg_nents,
2442 		   unsigned int *meta_sg_offset_p)
2443 {
2444 	struct scatterlist *sg = sgl;
2445 	struct mlx5_klm *klms = mr->descs;
2446 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2447 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2448 	int i, j = 0;
2449 
2450 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2451 	mr->ibmr.length = 0;
2452 
2453 	for_each_sg(sgl, sg, sg_nents, i) {
2454 		if (unlikely(i >= mr->max_descs))
2455 			break;
2456 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2457 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2458 		klms[i].key = cpu_to_be32(lkey);
2459 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2460 
2461 		sg_offset = 0;
2462 	}
2463 
2464 	if (sg_offset_p)
2465 		*sg_offset_p = sg_offset;
2466 
2467 	mr->ndescs = i;
2468 	mr->data_length = mr->ibmr.length;
2469 
2470 	if (meta_sg_nents) {
2471 		sg = meta_sgl;
2472 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2473 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2474 			if (unlikely(i + j >= mr->max_descs))
2475 				break;
2476 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2477 						     sg_offset);
2478 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2479 							 sg_offset);
2480 			klms[i + j].key = cpu_to_be32(lkey);
2481 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2482 
2483 			sg_offset = 0;
2484 		}
2485 		if (meta_sg_offset_p)
2486 			*meta_sg_offset_p = sg_offset;
2487 
2488 		mr->meta_ndescs = j;
2489 		mr->meta_length = mr->ibmr.length - mr->data_length;
2490 	}
2491 
2492 	return i + j;
2493 }
2494 
2495 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2496 {
2497 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2498 	__be64 *descs;
2499 
2500 	if (unlikely(mr->ndescs == mr->max_descs))
2501 		return -ENOMEM;
2502 
2503 	descs = mr->descs;
2504 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2505 
2506 	return 0;
2507 }
2508 
2509 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2510 {
2511 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2512 	__be64 *descs;
2513 
2514 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2515 		return -ENOMEM;
2516 
2517 	descs = mr->descs;
2518 	descs[mr->ndescs + mr->meta_ndescs++] =
2519 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2520 
2521 	return 0;
2522 }
2523 
2524 static int
2525 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2526 			 int data_sg_nents, unsigned int *data_sg_offset,
2527 			 struct scatterlist *meta_sg, int meta_sg_nents,
2528 			 unsigned int *meta_sg_offset)
2529 {
2530 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2531 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2532 	int n;
2533 
2534 	pi_mr->ndescs = 0;
2535 	pi_mr->meta_ndescs = 0;
2536 	pi_mr->meta_length = 0;
2537 
2538 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2539 				   pi_mr->desc_size * pi_mr->max_descs,
2540 				   DMA_TO_DEVICE);
2541 
2542 	pi_mr->ibmr.page_size = ibmr->page_size;
2543 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2544 			   mlx5_set_page);
2545 	if (n != data_sg_nents)
2546 		return n;
2547 
2548 	pi_mr->data_iova = pi_mr->ibmr.iova;
2549 	pi_mr->data_length = pi_mr->ibmr.length;
2550 	pi_mr->ibmr.length = pi_mr->data_length;
2551 	ibmr->length = pi_mr->data_length;
2552 
2553 	if (meta_sg_nents) {
2554 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2555 		u64 iova = pi_mr->data_iova;
2556 
2557 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2558 				    meta_sg_offset, mlx5_set_page_pi);
2559 
2560 		pi_mr->meta_length = pi_mr->ibmr.length;
2561 		/*
2562 		 * PI address for the HW is the offset of the metadata address
2563 		 * relative to the first data page address.
2564 		 * It equals to first data page address + size of data pages +
2565 		 * metadata offset at the first metadata page
2566 		 */
2567 		pi_mr->pi_iova = (iova & page_mask) +
2568 				 pi_mr->ndescs * ibmr->page_size +
2569 				 (pi_mr->ibmr.iova & ~page_mask);
2570 		/*
2571 		 * In order to use one MTT MR for data and metadata, we register
2572 		 * also the gaps between the end of the data and the start of
2573 		 * the metadata (the sig MR will verify that the HW will access
2574 		 * to right addresses). This mapping is safe because we use
2575 		 * internal mkey for the registration.
2576 		 */
2577 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2578 		pi_mr->ibmr.iova = iova;
2579 		ibmr->length += pi_mr->meta_length;
2580 	}
2581 
2582 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2583 				      pi_mr->desc_size * pi_mr->max_descs,
2584 				      DMA_TO_DEVICE);
2585 
2586 	return n;
2587 }
2588 
2589 static int
2590 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2591 			 int data_sg_nents, unsigned int *data_sg_offset,
2592 			 struct scatterlist *meta_sg, int meta_sg_nents,
2593 			 unsigned int *meta_sg_offset)
2594 {
2595 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2596 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2597 	int n;
2598 
2599 	pi_mr->ndescs = 0;
2600 	pi_mr->meta_ndescs = 0;
2601 	pi_mr->meta_length = 0;
2602 
2603 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2604 				   pi_mr->desc_size * pi_mr->max_descs,
2605 				   DMA_TO_DEVICE);
2606 
2607 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2608 			       meta_sg, meta_sg_nents, meta_sg_offset);
2609 
2610 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2611 				      pi_mr->desc_size * pi_mr->max_descs,
2612 				      DMA_TO_DEVICE);
2613 
2614 	/* This is zero-based memory region */
2615 	pi_mr->data_iova = 0;
2616 	pi_mr->ibmr.iova = 0;
2617 	pi_mr->pi_iova = pi_mr->data_length;
2618 	ibmr->length = pi_mr->ibmr.length;
2619 
2620 	return n;
2621 }
2622 
2623 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2624 			 int data_sg_nents, unsigned int *data_sg_offset,
2625 			 struct scatterlist *meta_sg, int meta_sg_nents,
2626 			 unsigned int *meta_sg_offset)
2627 {
2628 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2629 	struct mlx5_ib_mr *pi_mr = NULL;
2630 	int n;
2631 
2632 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2633 
2634 	mr->ndescs = 0;
2635 	mr->data_length = 0;
2636 	mr->data_iova = 0;
2637 	mr->meta_ndescs = 0;
2638 	mr->pi_iova = 0;
2639 	/*
2640 	 * As a performance optimization, if possible, there is no need to
2641 	 * perform UMR operation to register the data/metadata buffers.
2642 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2643 	 * Fallback to UMR only in case of a failure.
2644 	 */
2645 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2646 				    data_sg_offset, meta_sg, meta_sg_nents,
2647 				    meta_sg_offset);
2648 	if (n == data_sg_nents + meta_sg_nents)
2649 		goto out;
2650 	/*
2651 	 * As a performance optimization, if possible, there is no need to map
2652 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2653 	 * descriptors and fallback to KLM only in case of a failure.
2654 	 * It's more efficient for the HW to work with MTT descriptors
2655 	 * (especially in high load).
2656 	 * Use KLM (indirect access) only if it's mandatory.
2657 	 */
2658 	pi_mr = mr->mtt_mr;
2659 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2660 				     data_sg_offset, meta_sg, meta_sg_nents,
2661 				     meta_sg_offset);
2662 	if (n == data_sg_nents + meta_sg_nents)
2663 		goto out;
2664 
2665 	pi_mr = mr->klm_mr;
2666 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2667 				     data_sg_offset, meta_sg, meta_sg_nents,
2668 				     meta_sg_offset);
2669 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2670 		return -ENOMEM;
2671 
2672 out:
2673 	/* This is zero-based memory region */
2674 	ibmr->iova = 0;
2675 	mr->pi_mr = pi_mr;
2676 	if (pi_mr)
2677 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2678 	else
2679 		ibmr->sig_attrs->meta_length = mr->meta_length;
2680 
2681 	return 0;
2682 }
2683 
2684 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2685 		      unsigned int *sg_offset)
2686 {
2687 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2688 	int n;
2689 
2690 	mr->ndescs = 0;
2691 
2692 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2693 				   mr->desc_size * mr->max_descs,
2694 				   DMA_TO_DEVICE);
2695 
2696 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2697 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2698 				       NULL);
2699 	else
2700 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2701 				mlx5_set_page);
2702 
2703 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2704 				      mr->desc_size * mr->max_descs,
2705 				      DMA_TO_DEVICE);
2706 
2707 	return n;
2708 }
2709