1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 34 #include <linux/kref.h> 35 #include <linux/random.h> 36 #include <linux/debugfs.h> 37 #include <linux/export.h> 38 #include <linux/delay.h> 39 #include <rdma/ib_umem.h> 40 #include <rdma/ib_umem_odp.h> 41 #include <rdma/ib_verbs.h> 42 #include "mlx5_ib.h" 43 44 /* 45 * We can't use an array for xlt_emergency_page because dma_map_single doesn't 46 * work on kernel modules memory 47 */ 48 void *xlt_emergency_page; 49 static DEFINE_MUTEX(xlt_emergency_page_mutex); 50 51 enum { 52 MAX_PENDING_REG_MR = 8, 53 }; 54 55 #define MLX5_UMR_ALIGN 2048 56 57 static void 58 create_mkey_callback(int status, struct mlx5_async_work *context); 59 60 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 61 struct ib_pd *pd) 62 { 63 struct mlx5_ib_dev *dev = to_mdev(pd->device); 64 65 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 66 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 67 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 68 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 69 MLX5_SET(mkc, mkc, lr, 1); 70 71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 73 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 75 MLX5_SET(mkc, mkc, relaxed_ordering_read, 76 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 77 78 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 79 MLX5_SET(mkc, mkc, qpn, 0xffffff); 80 MLX5_SET64(mkc, mkc, start_addr, start_addr); 81 } 82 83 static void 84 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 85 u32 *in) 86 { 87 u8 key = atomic_inc_return(&dev->mkey_var); 88 void *mkc; 89 90 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 91 MLX5_SET(mkc, mkc, mkey_7_0, key); 92 mkey->key = key; 93 } 94 95 static int 96 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 97 u32 *in, int inlen) 98 { 99 assign_mkey_variant(dev, mkey, in); 100 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); 101 } 102 103 static int 104 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 105 struct mlx5_core_mkey *mkey, 106 struct mlx5_async_ctx *async_ctx, 107 u32 *in, int inlen, u32 *out, int outlen, 108 struct mlx5_async_work *context) 109 { 110 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 111 assign_mkey_variant(dev, mkey, in); 112 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 113 create_mkey_callback, context); 114 } 115 116 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 117 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 118 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 119 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 120 121 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 122 { 123 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 124 } 125 126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 127 { 128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 129 130 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 131 } 132 133 static inline bool mlx5_ib_pas_fits_in_mr(struct mlx5_ib_mr *mr, u64 start, 134 u64 length) 135 { 136 if (!mr->cache_ent) 137 return false; 138 return ((u64)1 << mr->cache_ent->order) * MLX5_ADAPTER_PAGE_SIZE >= 139 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); 140 } 141 142 static void create_mkey_callback(int status, struct mlx5_async_work *context) 143 { 144 struct mlx5_ib_mr *mr = 145 container_of(context, struct mlx5_ib_mr, cb_work); 146 struct mlx5_ib_dev *dev = mr->dev; 147 struct mlx5_cache_ent *ent = mr->cache_ent; 148 unsigned long flags; 149 150 if (status) { 151 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 152 kfree(mr); 153 spin_lock_irqsave(&ent->lock, flags); 154 ent->pending--; 155 WRITE_ONCE(dev->fill_delay, 1); 156 spin_unlock_irqrestore(&ent->lock, flags); 157 mod_timer(&dev->delay_timer, jiffies + HZ); 158 return; 159 } 160 161 mr->mmkey.type = MLX5_MKEY_MR; 162 mr->mmkey.key |= mlx5_idx_to_mkey( 163 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 164 165 WRITE_ONCE(dev->cache.last_add, jiffies); 166 167 spin_lock_irqsave(&ent->lock, flags); 168 list_add_tail(&mr->list, &ent->head); 169 ent->available_mrs++; 170 ent->total_mrs++; 171 /* If we are doing fill_to_high_water then keep going. */ 172 queue_adjust_cache_locked(ent); 173 ent->pending--; 174 spin_unlock_irqrestore(&ent->lock, flags); 175 } 176 177 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 178 { 179 struct mlx5_ib_mr *mr; 180 181 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 182 if (!mr) 183 return NULL; 184 mr->cache_ent = ent; 185 mr->dev = ent->dev; 186 187 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd); 188 MLX5_SET(mkc, mkc, free, 1); 189 MLX5_SET(mkc, mkc, umr_en, 1); 190 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 191 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 192 193 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 194 MLX5_SET(mkc, mkc, log_page_size, ent->page); 195 return mr; 196 } 197 198 /* Asynchronously schedule new MRs to be populated in the cache. */ 199 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 200 { 201 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 202 struct mlx5_ib_mr *mr; 203 void *mkc; 204 u32 *in; 205 int err = 0; 206 int i; 207 208 in = kzalloc(inlen, GFP_KERNEL); 209 if (!in) 210 return -ENOMEM; 211 212 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 213 for (i = 0; i < num; i++) { 214 mr = alloc_cache_mr(ent, mkc); 215 if (!mr) { 216 err = -ENOMEM; 217 break; 218 } 219 spin_lock_irq(&ent->lock); 220 if (ent->pending >= MAX_PENDING_REG_MR) { 221 err = -EAGAIN; 222 spin_unlock_irq(&ent->lock); 223 kfree(mr); 224 break; 225 } 226 ent->pending++; 227 spin_unlock_irq(&ent->lock); 228 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 229 &ent->dev->async_ctx, in, inlen, 230 mr->out, sizeof(mr->out), 231 &mr->cb_work); 232 if (err) { 233 spin_lock_irq(&ent->lock); 234 ent->pending--; 235 spin_unlock_irq(&ent->lock); 236 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 237 kfree(mr); 238 break; 239 } 240 } 241 242 kfree(in); 243 return err; 244 } 245 246 /* Synchronously create a MR in the cache */ 247 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 248 { 249 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 250 struct mlx5_ib_mr *mr; 251 void *mkc; 252 u32 *in; 253 int err; 254 255 in = kzalloc(inlen, GFP_KERNEL); 256 if (!in) 257 return ERR_PTR(-ENOMEM); 258 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 259 260 mr = alloc_cache_mr(ent, mkc); 261 if (!mr) { 262 err = -ENOMEM; 263 goto free_in; 264 } 265 266 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); 267 if (err) 268 goto free_mr; 269 270 mr->mmkey.type = MLX5_MKEY_MR; 271 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 272 spin_lock_irq(&ent->lock); 273 ent->total_mrs++; 274 spin_unlock_irq(&ent->lock); 275 kfree(in); 276 return mr; 277 free_mr: 278 kfree(mr); 279 free_in: 280 kfree(in); 281 return ERR_PTR(err); 282 } 283 284 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 285 { 286 struct mlx5_ib_mr *mr; 287 288 lockdep_assert_held(&ent->lock); 289 if (list_empty(&ent->head)) 290 return; 291 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 292 list_del(&mr->list); 293 ent->available_mrs--; 294 ent->total_mrs--; 295 spin_unlock_irq(&ent->lock); 296 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); 297 kfree(mr); 298 spin_lock_irq(&ent->lock); 299 } 300 301 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 302 bool limit_fill) 303 { 304 int err; 305 306 lockdep_assert_held(&ent->lock); 307 308 while (true) { 309 if (limit_fill) 310 target = ent->limit * 2; 311 if (target == ent->available_mrs + ent->pending) 312 return 0; 313 if (target > ent->available_mrs + ent->pending) { 314 u32 todo = target - (ent->available_mrs + ent->pending); 315 316 spin_unlock_irq(&ent->lock); 317 err = add_keys(ent, todo); 318 if (err == -EAGAIN) 319 usleep_range(3000, 5000); 320 spin_lock_irq(&ent->lock); 321 if (err) { 322 if (err != -EAGAIN) 323 return err; 324 } else 325 return 0; 326 } else { 327 remove_cache_mr_locked(ent); 328 } 329 } 330 } 331 332 static ssize_t size_write(struct file *filp, const char __user *buf, 333 size_t count, loff_t *pos) 334 { 335 struct mlx5_cache_ent *ent = filp->private_data; 336 u32 target; 337 int err; 338 339 err = kstrtou32_from_user(buf, count, 0, &target); 340 if (err) 341 return err; 342 343 /* 344 * Target is the new value of total_mrs the user requests, however we 345 * cannot free MRs that are in use. Compute the target value for 346 * available_mrs. 347 */ 348 spin_lock_irq(&ent->lock); 349 if (target < ent->total_mrs - ent->available_mrs) { 350 err = -EINVAL; 351 goto err_unlock; 352 } 353 target = target - (ent->total_mrs - ent->available_mrs); 354 if (target < ent->limit || target > ent->limit*2) { 355 err = -EINVAL; 356 goto err_unlock; 357 } 358 err = resize_available_mrs(ent, target, false); 359 if (err) 360 goto err_unlock; 361 spin_unlock_irq(&ent->lock); 362 363 return count; 364 365 err_unlock: 366 spin_unlock_irq(&ent->lock); 367 return err; 368 } 369 370 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 371 loff_t *pos) 372 { 373 struct mlx5_cache_ent *ent = filp->private_data; 374 char lbuf[20]; 375 int err; 376 377 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 378 if (err < 0) 379 return err; 380 381 return simple_read_from_buffer(buf, count, pos, lbuf, err); 382 } 383 384 static const struct file_operations size_fops = { 385 .owner = THIS_MODULE, 386 .open = simple_open, 387 .write = size_write, 388 .read = size_read, 389 }; 390 391 static ssize_t limit_write(struct file *filp, const char __user *buf, 392 size_t count, loff_t *pos) 393 { 394 struct mlx5_cache_ent *ent = filp->private_data; 395 u32 var; 396 int err; 397 398 err = kstrtou32_from_user(buf, count, 0, &var); 399 if (err) 400 return err; 401 402 /* 403 * Upon set we immediately fill the cache to high water mark implied by 404 * the limit. 405 */ 406 spin_lock_irq(&ent->lock); 407 ent->limit = var; 408 err = resize_available_mrs(ent, 0, true); 409 spin_unlock_irq(&ent->lock); 410 if (err) 411 return err; 412 return count; 413 } 414 415 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 416 loff_t *pos) 417 { 418 struct mlx5_cache_ent *ent = filp->private_data; 419 char lbuf[20]; 420 int err; 421 422 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 423 if (err < 0) 424 return err; 425 426 return simple_read_from_buffer(buf, count, pos, lbuf, err); 427 } 428 429 static const struct file_operations limit_fops = { 430 .owner = THIS_MODULE, 431 .open = simple_open, 432 .write = limit_write, 433 .read = limit_read, 434 }; 435 436 static bool someone_adding(struct mlx5_mr_cache *cache) 437 { 438 unsigned int i; 439 440 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 441 struct mlx5_cache_ent *ent = &cache->ent[i]; 442 bool ret; 443 444 spin_lock_irq(&ent->lock); 445 ret = ent->available_mrs < ent->limit; 446 spin_unlock_irq(&ent->lock); 447 if (ret) 448 return true; 449 } 450 return false; 451 } 452 453 /* 454 * Check if the bucket is outside the high/low water mark and schedule an async 455 * update. The cache refill has hysteresis, once the low water mark is hit it is 456 * refilled up to the high mark. 457 */ 458 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 459 { 460 lockdep_assert_held(&ent->lock); 461 462 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 463 return; 464 if (ent->available_mrs < ent->limit) { 465 ent->fill_to_high_water = true; 466 queue_work(ent->dev->cache.wq, &ent->work); 467 } else if (ent->fill_to_high_water && 468 ent->available_mrs + ent->pending < 2 * ent->limit) { 469 /* 470 * Once we start populating due to hitting a low water mark 471 * continue until we pass the high water mark. 472 */ 473 queue_work(ent->dev->cache.wq, &ent->work); 474 } else if (ent->available_mrs == 2 * ent->limit) { 475 ent->fill_to_high_water = false; 476 } else if (ent->available_mrs > 2 * ent->limit) { 477 /* Queue deletion of excess entries */ 478 ent->fill_to_high_water = false; 479 if (ent->pending) 480 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 481 msecs_to_jiffies(1000)); 482 else 483 queue_work(ent->dev->cache.wq, &ent->work); 484 } 485 } 486 487 static void __cache_work_func(struct mlx5_cache_ent *ent) 488 { 489 struct mlx5_ib_dev *dev = ent->dev; 490 struct mlx5_mr_cache *cache = &dev->cache; 491 int err; 492 493 spin_lock_irq(&ent->lock); 494 if (ent->disabled) 495 goto out; 496 497 if (ent->fill_to_high_water && 498 ent->available_mrs + ent->pending < 2 * ent->limit && 499 !READ_ONCE(dev->fill_delay)) { 500 spin_unlock_irq(&ent->lock); 501 err = add_keys(ent, 1); 502 spin_lock_irq(&ent->lock); 503 if (ent->disabled) 504 goto out; 505 if (err) { 506 /* 507 * EAGAIN only happens if pending is positive, so we 508 * will be rescheduled from reg_mr_callback(). The only 509 * failure path here is ENOMEM. 510 */ 511 if (err != -EAGAIN) { 512 mlx5_ib_warn( 513 dev, 514 "command failed order %d, err %d\n", 515 ent->order, err); 516 queue_delayed_work(cache->wq, &ent->dwork, 517 msecs_to_jiffies(1000)); 518 } 519 } 520 } else if (ent->available_mrs > 2 * ent->limit) { 521 bool need_delay; 522 523 /* 524 * The remove_cache_mr() logic is performed as garbage 525 * collection task. Such task is intended to be run when no 526 * other active processes are running. 527 * 528 * The need_resched() will return TRUE if there are user tasks 529 * to be activated in near future. 530 * 531 * In such case, we don't execute remove_cache_mr() and postpone 532 * the garbage collection work to try to run in next cycle, in 533 * order to free CPU resources to other tasks. 534 */ 535 spin_unlock_irq(&ent->lock); 536 need_delay = need_resched() || someone_adding(cache) || 537 time_after(jiffies, 538 READ_ONCE(cache->last_add) + 300 * HZ); 539 spin_lock_irq(&ent->lock); 540 if (ent->disabled) 541 goto out; 542 if (need_delay) 543 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 544 remove_cache_mr_locked(ent); 545 queue_adjust_cache_locked(ent); 546 } 547 out: 548 spin_unlock_irq(&ent->lock); 549 } 550 551 static void delayed_cache_work_func(struct work_struct *work) 552 { 553 struct mlx5_cache_ent *ent; 554 555 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 556 __cache_work_func(ent); 557 } 558 559 static void cache_work_func(struct work_struct *work) 560 { 561 struct mlx5_cache_ent *ent; 562 563 ent = container_of(work, struct mlx5_cache_ent, work); 564 __cache_work_func(ent); 565 } 566 567 /* Allocate a special entry from the cache */ 568 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 569 unsigned int entry, int access_flags) 570 { 571 struct mlx5_mr_cache *cache = &dev->cache; 572 struct mlx5_cache_ent *ent; 573 struct mlx5_ib_mr *mr; 574 575 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 576 entry >= ARRAY_SIZE(cache->ent))) 577 return ERR_PTR(-EINVAL); 578 579 /* Matches access in alloc_cache_mr() */ 580 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 581 return ERR_PTR(-EOPNOTSUPP); 582 583 ent = &cache->ent[entry]; 584 spin_lock_irq(&ent->lock); 585 if (list_empty(&ent->head)) { 586 spin_unlock_irq(&ent->lock); 587 mr = create_cache_mr(ent); 588 if (IS_ERR(mr)) 589 return mr; 590 } else { 591 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 592 list_del(&mr->list); 593 ent->available_mrs--; 594 queue_adjust_cache_locked(ent); 595 spin_unlock_irq(&ent->lock); 596 } 597 mr->access_flags = access_flags; 598 return mr; 599 } 600 601 /* Return a MR already available in the cache */ 602 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 603 { 604 struct mlx5_ib_dev *dev = req_ent->dev; 605 struct mlx5_ib_mr *mr = NULL; 606 struct mlx5_cache_ent *ent = req_ent; 607 608 /* Try larger MR pools from the cache to satisfy the allocation */ 609 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { 610 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, 611 ent - dev->cache.ent); 612 613 spin_lock_irq(&ent->lock); 614 if (!list_empty(&ent->head)) { 615 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 616 list); 617 list_del(&mr->list); 618 ent->available_mrs--; 619 queue_adjust_cache_locked(ent); 620 spin_unlock_irq(&ent->lock); 621 break; 622 } 623 queue_adjust_cache_locked(ent); 624 spin_unlock_irq(&ent->lock); 625 } 626 627 if (!mr) 628 req_ent->miss++; 629 630 return mr; 631 } 632 633 static void detach_mr_from_cache(struct mlx5_ib_mr *mr) 634 { 635 struct mlx5_cache_ent *ent = mr->cache_ent; 636 637 mr->cache_ent = NULL; 638 spin_lock_irq(&ent->lock); 639 ent->total_mrs--; 640 spin_unlock_irq(&ent->lock); 641 } 642 643 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 644 { 645 struct mlx5_cache_ent *ent = mr->cache_ent; 646 647 if (!ent) 648 return; 649 650 if (mlx5_mr_cache_invalidate(mr)) { 651 detach_mr_from_cache(mr); 652 destroy_mkey(dev, mr); 653 return; 654 } 655 656 spin_lock_irq(&ent->lock); 657 list_add_tail(&mr->list, &ent->head); 658 ent->available_mrs++; 659 queue_adjust_cache_locked(ent); 660 spin_unlock_irq(&ent->lock); 661 } 662 663 static void clean_keys(struct mlx5_ib_dev *dev, int c) 664 { 665 struct mlx5_mr_cache *cache = &dev->cache; 666 struct mlx5_cache_ent *ent = &cache->ent[c]; 667 struct mlx5_ib_mr *tmp_mr; 668 struct mlx5_ib_mr *mr; 669 LIST_HEAD(del_list); 670 671 cancel_delayed_work(&ent->dwork); 672 while (1) { 673 spin_lock_irq(&ent->lock); 674 if (list_empty(&ent->head)) { 675 spin_unlock_irq(&ent->lock); 676 break; 677 } 678 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 679 list_move(&mr->list, &del_list); 680 ent->available_mrs--; 681 ent->total_mrs--; 682 spin_unlock_irq(&ent->lock); 683 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 684 } 685 686 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 687 list_del(&mr->list); 688 kfree(mr); 689 } 690 } 691 692 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 693 { 694 if (!mlx5_debugfs_root || dev->is_rep) 695 return; 696 697 debugfs_remove_recursive(dev->cache.root); 698 dev->cache.root = NULL; 699 } 700 701 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 702 { 703 struct mlx5_mr_cache *cache = &dev->cache; 704 struct mlx5_cache_ent *ent; 705 struct dentry *dir; 706 int i; 707 708 if (!mlx5_debugfs_root || dev->is_rep) 709 return; 710 711 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 712 713 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 714 ent = &cache->ent[i]; 715 sprintf(ent->name, "%d", ent->order); 716 dir = debugfs_create_dir(ent->name, cache->root); 717 debugfs_create_file("size", 0600, dir, ent, &size_fops); 718 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 719 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 720 debugfs_create_u32("miss", 0600, dir, &ent->miss); 721 } 722 } 723 724 static void delay_time_func(struct timer_list *t) 725 { 726 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 727 728 WRITE_ONCE(dev->fill_delay, 0); 729 } 730 731 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 732 { 733 struct mlx5_mr_cache *cache = &dev->cache; 734 struct mlx5_cache_ent *ent; 735 int i; 736 737 mutex_init(&dev->slow_path_mutex); 738 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 739 if (!cache->wq) { 740 mlx5_ib_warn(dev, "failed to create work queue\n"); 741 return -ENOMEM; 742 } 743 744 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 745 timer_setup(&dev->delay_timer, delay_time_func, 0); 746 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 747 ent = &cache->ent[i]; 748 INIT_LIST_HEAD(&ent->head); 749 spin_lock_init(&ent->lock); 750 ent->order = i + 2; 751 ent->dev = dev; 752 ent->limit = 0; 753 754 INIT_WORK(&ent->work, cache_work_func); 755 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 756 757 if (i > MR_CACHE_LAST_STD_ENTRY) { 758 mlx5_odp_init_mr_cache_entry(ent); 759 continue; 760 } 761 762 if (ent->order > mr_cache_max_order(dev)) 763 continue; 764 765 ent->page = PAGE_SHIFT; 766 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 767 MLX5_IB_UMR_OCTOWORD; 768 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 769 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && 770 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 771 mlx5_ib_can_load_pas_with_umr(dev, 0)) 772 ent->limit = dev->mdev->profile->mr_cache[i].limit; 773 else 774 ent->limit = 0; 775 spin_lock_irq(&ent->lock); 776 queue_adjust_cache_locked(ent); 777 spin_unlock_irq(&ent->lock); 778 } 779 780 mlx5_mr_cache_debugfs_init(dev); 781 782 return 0; 783 } 784 785 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 786 { 787 unsigned int i; 788 789 if (!dev->cache.wq) 790 return 0; 791 792 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 793 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 794 795 spin_lock_irq(&ent->lock); 796 ent->disabled = true; 797 spin_unlock_irq(&ent->lock); 798 cancel_work_sync(&ent->work); 799 cancel_delayed_work_sync(&ent->dwork); 800 } 801 802 mlx5_mr_cache_debugfs_cleanup(dev); 803 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 804 805 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 806 clean_keys(dev, i); 807 808 destroy_workqueue(dev->cache.wq); 809 del_timer_sync(&dev->delay_timer); 810 811 return 0; 812 } 813 814 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 815 { 816 struct mlx5_ib_dev *dev = to_mdev(pd->device); 817 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 818 struct mlx5_ib_mr *mr; 819 void *mkc; 820 u32 *in; 821 int err; 822 823 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 824 if (!mr) 825 return ERR_PTR(-ENOMEM); 826 827 in = kzalloc(inlen, GFP_KERNEL); 828 if (!in) { 829 err = -ENOMEM; 830 goto err_free; 831 } 832 833 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 834 835 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 836 MLX5_SET(mkc, mkc, length64, 1); 837 set_mkc_access_pd_addr_fields(mkc, acc, 0, pd); 838 839 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 840 if (err) 841 goto err_in; 842 843 kfree(in); 844 mr->mmkey.type = MLX5_MKEY_MR; 845 mr->ibmr.lkey = mr->mmkey.key; 846 mr->ibmr.rkey = mr->mmkey.key; 847 mr->umem = NULL; 848 849 return &mr->ibmr; 850 851 err_in: 852 kfree(in); 853 854 err_free: 855 kfree(mr); 856 857 return ERR_PTR(err); 858 } 859 860 static int get_octo_len(u64 addr, u64 len, int page_shift) 861 { 862 u64 page_size = 1ULL << page_shift; 863 u64 offset; 864 int npages; 865 866 offset = addr & (page_size - 1); 867 npages = ALIGN(len + offset, page_size) >> page_shift; 868 return (npages + 1) / 2; 869 } 870 871 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 872 { 873 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 874 return MR_CACHE_LAST_STD_ENTRY + 2; 875 return MLX5_MAX_UMR_SHIFT; 876 } 877 878 static struct ib_umem *mr_umem_get(struct mlx5_ib_dev *dev, u64 start, 879 u64 length, int access_flags) 880 { 881 struct ib_umem *u; 882 883 if (access_flags & IB_ACCESS_ON_DEMAND) { 884 struct ib_umem_odp *odp; 885 886 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 887 &mlx5_mn_ops); 888 if (IS_ERR(odp)) { 889 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", 890 PTR_ERR(odp)); 891 return ERR_CAST(odp); 892 } 893 return &odp->umem; 894 } 895 896 u = ib_umem_get(&dev->ib_dev, start, length, access_flags); 897 if (IS_ERR(u)) { 898 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u)); 899 return u; 900 } 901 return u; 902 } 903 904 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 905 { 906 struct mlx5_ib_umr_context *context = 907 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 908 909 context->status = wc->status; 910 complete(&context->done); 911 } 912 913 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 914 { 915 context->cqe.done = mlx5_ib_umr_done; 916 context->status = -1; 917 init_completion(&context->done); 918 } 919 920 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 921 struct mlx5_umr_wr *umrwr) 922 { 923 struct umr_common *umrc = &dev->umrc; 924 const struct ib_send_wr *bad; 925 int err; 926 struct mlx5_ib_umr_context umr_context; 927 928 mlx5_ib_init_umr_context(&umr_context); 929 umrwr->wr.wr_cqe = &umr_context.cqe; 930 931 down(&umrc->sem); 932 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 933 if (err) { 934 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 935 } else { 936 wait_for_completion(&umr_context.done); 937 if (umr_context.status != IB_WC_SUCCESS) { 938 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 939 umr_context.status); 940 err = -EFAULT; 941 } 942 } 943 up(&umrc->sem); 944 return err; 945 } 946 947 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 948 unsigned int order) 949 { 950 struct mlx5_mr_cache *cache = &dev->cache; 951 952 if (order < cache->ent[0].order) 953 return &cache->ent[0]; 954 order = order - cache->ent[0].order; 955 if (order > MR_CACHE_LAST_STD_ENTRY) 956 return NULL; 957 return &cache->ent[order]; 958 } 959 960 static struct mlx5_ib_mr *alloc_mr_from_cache(struct ib_pd *pd, 961 struct ib_umem *umem, u64 iova, 962 int access_flags) 963 { 964 struct mlx5_ib_dev *dev = to_mdev(pd->device); 965 struct mlx5_cache_ent *ent; 966 struct mlx5_ib_mr *mr; 967 int page_shift; 968 969 mlx5_ib_cont_pages(umem, iova, MLX5_MKEY_PAGE_SHIFT_MASK, &page_shift); 970 ent = mr_cache_ent_from_order(dev, order_base_2(ib_umem_num_dma_blocks( 971 umem, 1UL << page_shift))); 972 if (!ent) 973 return ERR_PTR(-E2BIG); 974 975 /* Matches access in alloc_cache_mr() */ 976 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 977 return ERR_PTR(-EOPNOTSUPP); 978 979 mr = get_cache_mr(ent); 980 if (!mr) { 981 mr = create_cache_mr(ent); 982 if (IS_ERR(mr)) 983 return mr; 984 } 985 986 mr->ibmr.pd = pd; 987 mr->umem = umem; 988 mr->access_flags = access_flags; 989 mr->desc_size = sizeof(struct mlx5_mtt); 990 mr->mmkey.iova = iova; 991 mr->mmkey.size = umem->length; 992 mr->mmkey.pd = to_mpd(pd)->pdn; 993 mr->page_shift = page_shift; 994 995 return mr; 996 } 997 998 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 999 MLX5_UMR_MTT_ALIGNMENT) 1000 #define MLX5_SPARE_UMR_CHUNK 0x10000 1001 1002 /* 1003 * Allocate a temporary buffer to hold the per-page information to transfer to 1004 * HW. For efficiency this should be as large as it can be, but buffer 1005 * allocation failure is not allowed, so try smaller sizes. 1006 */ 1007 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask) 1008 { 1009 const size_t xlt_chunk_align = 1010 MLX5_UMR_MTT_ALIGNMENT / sizeof(ent_size); 1011 size_t size; 1012 void *res = NULL; 1013 1014 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0); 1015 1016 /* 1017 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the 1018 * allocation can't trigger any kind of reclaim. 1019 */ 1020 might_sleep(); 1021 1022 gfp_mask |= __GFP_ZERO; 1023 1024 /* 1025 * If the system already has a suitable high order page then just use 1026 * that, but don't try hard to create one. This max is about 1M, so a 1027 * free x86 huge page will satisfy it. 1028 */ 1029 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align), 1030 MLX5_MAX_UMR_CHUNK); 1031 *nents = size / ent_size; 1032 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1033 get_order(size)); 1034 if (res) 1035 return res; 1036 1037 if (size > MLX5_SPARE_UMR_CHUNK) { 1038 size = MLX5_SPARE_UMR_CHUNK; 1039 *nents = get_order(size) / ent_size; 1040 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1041 get_order(size)); 1042 if (res) 1043 return res; 1044 } 1045 1046 *nents = PAGE_SIZE / ent_size; 1047 res = (void *)__get_free_page(gfp_mask); 1048 if (res) 1049 return res; 1050 1051 mutex_lock(&xlt_emergency_page_mutex); 1052 memset(xlt_emergency_page, 0, PAGE_SIZE); 1053 return xlt_emergency_page; 1054 } 1055 1056 static void mlx5_ib_free_xlt(void *xlt, size_t length) 1057 { 1058 if (xlt == xlt_emergency_page) { 1059 mutex_unlock(&xlt_emergency_page_mutex); 1060 return; 1061 } 1062 1063 free_pages((unsigned long)xlt, get_order(length)); 1064 } 1065 1066 /* 1067 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for 1068 * submission. 1069 */ 1070 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr, 1071 struct mlx5_umr_wr *wr, struct ib_sge *sg, 1072 size_t nents, size_t ent_size, 1073 unsigned int flags) 1074 { 1075 struct mlx5_ib_dev *dev = mr->dev; 1076 struct device *ddev = dev->ib_dev.dev.parent; 1077 dma_addr_t dma; 1078 void *xlt; 1079 1080 xlt = mlx5_ib_alloc_xlt(&nents, ent_size, 1081 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : 1082 GFP_KERNEL); 1083 sg->length = nents * ent_size; 1084 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE); 1085 if (dma_mapping_error(ddev, dma)) { 1086 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1087 mlx5_ib_free_xlt(xlt, sg->length); 1088 return NULL; 1089 } 1090 sg->addr = dma; 1091 sg->lkey = dev->umrc.pd->local_dma_lkey; 1092 1093 memset(wr, 0, sizeof(*wr)); 1094 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1095 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1096 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1097 wr->wr.sg_list = sg; 1098 wr->wr.num_sge = 1; 1099 wr->wr.opcode = MLX5_IB_WR_UMR; 1100 wr->pd = mr->ibmr.pd; 1101 wr->mkey = mr->mmkey.key; 1102 wr->length = mr->mmkey.size; 1103 wr->virt_addr = mr->mmkey.iova; 1104 wr->access_flags = mr->access_flags; 1105 wr->page_shift = mr->page_shift; 1106 wr->xlt_size = sg->length; 1107 return xlt; 1108 } 1109 1110 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt, 1111 struct ib_sge *sg) 1112 { 1113 struct device *ddev = dev->ib_dev.dev.parent; 1114 1115 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE); 1116 mlx5_ib_free_xlt(xlt, sg->length); 1117 } 1118 1119 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1120 int page_shift, int flags) 1121 { 1122 struct mlx5_ib_dev *dev = mr->dev; 1123 struct device *ddev = dev->ib_dev.dev.parent; 1124 void *xlt; 1125 struct mlx5_umr_wr wr; 1126 struct ib_sge sg; 1127 int err = 0; 1128 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1129 ? sizeof(struct mlx5_klm) 1130 : sizeof(struct mlx5_mtt); 1131 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1132 const int page_mask = page_align - 1; 1133 size_t pages_mapped = 0; 1134 size_t pages_to_map = 0; 1135 size_t pages_iter; 1136 size_t size_to_map = 0; 1137 size_t orig_sg_length; 1138 1139 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1140 !umr_can_use_indirect_mkey(dev)) 1141 return -EPERM; 1142 1143 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1144 * so we need to align the offset and length accordingly 1145 */ 1146 if (idx & page_mask) { 1147 npages += idx & page_mask; 1148 idx &= ~page_mask; 1149 } 1150 pages_to_map = ALIGN(npages, page_align); 1151 1152 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags); 1153 if (!xlt) 1154 return -ENOMEM; 1155 pages_iter = sg.length / desc_size; 1156 orig_sg_length = sg.length; 1157 1158 if (mr->umem->is_odp) { 1159 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1160 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1161 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1162 1163 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1164 } 1165 } 1166 1167 wr.page_shift = page_shift; 1168 1169 for (pages_mapped = 0; 1170 pages_mapped < pages_to_map && !err; 1171 pages_mapped += pages_iter, idx += pages_iter) { 1172 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1173 size_to_map = npages * desc_size; 1174 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1175 DMA_TO_DEVICE); 1176 if (mr->umem->is_odp) { 1177 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1178 } else { 1179 __mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx, 1180 npages, xlt, 1181 MLX5_IB_MTT_PRESENT); 1182 /* Clear padding after the pages 1183 * brought from the umem. 1184 */ 1185 memset(xlt + size_to_map, 0, sg.length - size_to_map); 1186 } 1187 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1188 DMA_TO_DEVICE); 1189 1190 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1191 1192 if (pages_mapped + pages_iter >= pages_to_map) { 1193 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1194 wr.wr.send_flags |= 1195 MLX5_IB_SEND_UMR_ENABLE_MR | 1196 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1197 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1198 if (flags & MLX5_IB_UPD_XLT_PD || 1199 flags & MLX5_IB_UPD_XLT_ACCESS) 1200 wr.wr.send_flags |= 1201 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1202 if (flags & MLX5_IB_UPD_XLT_ADDR) 1203 wr.wr.send_flags |= 1204 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1205 } 1206 1207 wr.offset = idx * desc_size; 1208 wr.xlt_size = sg.length; 1209 1210 err = mlx5_ib_post_send_wait(dev, &wr); 1211 } 1212 sg.length = orig_sg_length; 1213 mlx5_ib_unmap_free_xlt(dev, xlt, &sg); 1214 return err; 1215 } 1216 1217 /* 1218 * If ibmr is NULL it will be allocated by reg_create. 1219 * Else, the given ibmr will be used. 1220 */ 1221 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, 1222 struct ib_umem *umem, u64 iova, 1223 int access_flags, bool populate) 1224 { 1225 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1226 struct mlx5_ib_mr *mr; 1227 int page_shift; 1228 __be64 *pas; 1229 void *mkc; 1230 int inlen; 1231 u32 *in; 1232 int err; 1233 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1234 1235 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); 1236 if (!mr) 1237 return ERR_PTR(-ENOMEM); 1238 1239 mlx5_ib_cont_pages(umem, iova, MLX5_MKEY_PAGE_SHIFT_MASK, &page_shift); 1240 1241 mr->page_shift = page_shift; 1242 mr->ibmr.pd = pd; 1243 mr->access_flags = access_flags; 1244 1245 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1246 if (populate) 1247 inlen += 1248 sizeof(*pas) * 1249 roundup(ib_umem_num_dma_blocks(umem, 1UL << page_shift), 1250 2); 1251 in = kvzalloc(inlen, GFP_KERNEL); 1252 if (!in) { 1253 err = -ENOMEM; 1254 goto err_1; 1255 } 1256 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1257 if (populate) { 1258 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1259 err = -EINVAL; 1260 goto err_2; 1261 } 1262 mlx5_ib_populate_pas(umem, 1ULL << page_shift, pas, 1263 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1264 } 1265 1266 /* The pg_access bit allows setting the access flags 1267 * in the page list submitted with the command. */ 1268 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1269 1270 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1271 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1272 populate ? pd : dev->umrc.pd); 1273 MLX5_SET(mkc, mkc, free, !populate); 1274 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1275 MLX5_SET(mkc, mkc, umr_en, 1); 1276 1277 MLX5_SET64(mkc, mkc, len, umem->length); 1278 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1279 MLX5_SET(mkc, mkc, translations_octword_size, 1280 get_octo_len(iova, umem->length, page_shift)); 1281 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1282 if (populate) { 1283 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1284 get_octo_len(iova, umem->length, page_shift)); 1285 } 1286 1287 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1288 if (err) { 1289 mlx5_ib_warn(dev, "create mkey failed\n"); 1290 goto err_2; 1291 } 1292 mr->mmkey.type = MLX5_MKEY_MR; 1293 mr->desc_size = sizeof(struct mlx5_mtt); 1294 mr->dev = dev; 1295 kvfree(in); 1296 1297 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1298 1299 return mr; 1300 1301 err_2: 1302 kvfree(in); 1303 1304 err_1: 1305 if (!ibmr) 1306 kfree(mr); 1307 1308 return ERR_PTR(err); 1309 } 1310 1311 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 1312 u64 length, int access_flags) 1313 { 1314 mr->ibmr.lkey = mr->mmkey.key; 1315 mr->ibmr.rkey = mr->mmkey.key; 1316 mr->ibmr.length = length; 1317 mr->access_flags = access_flags; 1318 } 1319 1320 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1321 u64 length, int acc, int mode) 1322 { 1323 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1324 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1325 struct mlx5_ib_mr *mr; 1326 void *mkc; 1327 u32 *in; 1328 int err; 1329 1330 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1331 if (!mr) 1332 return ERR_PTR(-ENOMEM); 1333 1334 in = kzalloc(inlen, GFP_KERNEL); 1335 if (!in) { 1336 err = -ENOMEM; 1337 goto err_free; 1338 } 1339 1340 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1341 1342 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1343 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1344 MLX5_SET64(mkc, mkc, len, length); 1345 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1346 1347 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1348 if (err) 1349 goto err_in; 1350 1351 kfree(in); 1352 1353 set_mr_fields(dev, mr, length, acc); 1354 1355 return &mr->ibmr; 1356 1357 err_in: 1358 kfree(in); 1359 1360 err_free: 1361 kfree(mr); 1362 1363 return ERR_PTR(err); 1364 } 1365 1366 int mlx5_ib_advise_mr(struct ib_pd *pd, 1367 enum ib_uverbs_advise_mr_advice advice, 1368 u32 flags, 1369 struct ib_sge *sg_list, 1370 u32 num_sge, 1371 struct uverbs_attr_bundle *attrs) 1372 { 1373 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1374 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1375 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1376 return -EOPNOTSUPP; 1377 1378 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1379 sg_list, num_sge); 1380 } 1381 1382 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1383 struct ib_dm_mr_attr *attr, 1384 struct uverbs_attr_bundle *attrs) 1385 { 1386 struct mlx5_ib_dm *mdm = to_mdm(dm); 1387 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1388 u64 start_addr = mdm->dev_addr + attr->offset; 1389 int mode; 1390 1391 switch (mdm->type) { 1392 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1393 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1394 return ERR_PTR(-EINVAL); 1395 1396 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1397 start_addr -= pci_resource_start(dev->pdev, 0); 1398 break; 1399 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1400 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1401 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1402 return ERR_PTR(-EINVAL); 1403 1404 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1405 break; 1406 default: 1407 return ERR_PTR(-EINVAL); 1408 } 1409 1410 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1411 attr->access_flags, mode); 1412 } 1413 1414 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1415 u64 virt_addr, int access_flags, 1416 struct ib_udata *udata) 1417 { 1418 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1419 struct mlx5_ib_mr *mr = NULL; 1420 bool xlt_with_umr; 1421 struct ib_umem *umem; 1422 int err; 1423 1424 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1425 return ERR_PTR(-EOPNOTSUPP); 1426 1427 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1428 start, virt_addr, length, access_flags); 1429 1430 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, length); 1431 /* ODP requires xlt update via umr to work. */ 1432 if (!xlt_with_umr && (access_flags & IB_ACCESS_ON_DEMAND)) 1433 return ERR_PTR(-EINVAL); 1434 1435 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start && 1436 length == U64_MAX) { 1437 if (virt_addr != start) 1438 return ERR_PTR(-EINVAL); 1439 if (!(access_flags & IB_ACCESS_ON_DEMAND) || 1440 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1441 return ERR_PTR(-EINVAL); 1442 1443 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); 1444 if (IS_ERR(mr)) 1445 return ERR_CAST(mr); 1446 return &mr->ibmr; 1447 } 1448 1449 umem = mr_umem_get(dev, start, length, access_flags); 1450 if (IS_ERR(umem)) 1451 return ERR_CAST(umem); 1452 1453 if (xlt_with_umr) { 1454 mr = alloc_mr_from_cache(pd, umem, virt_addr, access_flags); 1455 if (IS_ERR(mr)) 1456 mr = NULL; 1457 } 1458 1459 if (!mr) { 1460 mutex_lock(&dev->slow_path_mutex); 1461 mr = reg_create(NULL, pd, umem, virt_addr, access_flags, 1462 !xlt_with_umr); 1463 mutex_unlock(&dev->slow_path_mutex); 1464 } 1465 1466 if (IS_ERR(mr)) { 1467 err = PTR_ERR(mr); 1468 goto error; 1469 } 1470 1471 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1472 1473 mr->umem = umem; 1474 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1475 set_mr_fields(dev, mr, length, access_flags); 1476 1477 if (xlt_with_umr && !(access_flags & IB_ACCESS_ON_DEMAND)) { 1478 /* 1479 * If the MR was created with reg_create then it will be 1480 * configured properly but left disabled. It is safe to go ahead 1481 * and configure it again via UMR while enabling it. 1482 */ 1483 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE; 1484 1485 err = mlx5_ib_update_xlt( 1486 mr, 0, 1487 ib_umem_num_dma_blocks(umem, 1UL << mr->page_shift), 1488 mr->page_shift, update_xlt_flags); 1489 if (err) { 1490 dereg_mr(dev, mr); 1491 return ERR_PTR(err); 1492 } 1493 } 1494 1495 if (is_odp_mr(mr)) { 1496 to_ib_umem_odp(mr->umem)->private = mr; 1497 init_waitqueue_head(&mr->q_deferred_work); 1498 atomic_set(&mr->num_deferred_work, 0); 1499 err = xa_err(xa_store(&dev->odp_mkeys, 1500 mlx5_base_mkey(mr->mmkey.key), &mr->mmkey, 1501 GFP_KERNEL)); 1502 if (err) { 1503 dereg_mr(dev, mr); 1504 return ERR_PTR(err); 1505 } 1506 1507 err = mlx5_ib_init_odp_mr(mr, xlt_with_umr); 1508 if (err) { 1509 dereg_mr(dev, mr); 1510 return ERR_PTR(err); 1511 } 1512 } 1513 1514 return &mr->ibmr; 1515 error: 1516 ib_umem_release(umem); 1517 return ERR_PTR(err); 1518 } 1519 1520 /** 1521 * mlx5_mr_cache_invalidate - Fence all DMA on the MR 1522 * @mr: The MR to fence 1523 * 1524 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1525 * and any DMA inprogress will be completed. Failure of this function 1526 * indicates the HW has failed catastrophically. 1527 */ 1528 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr) 1529 { 1530 struct mlx5_umr_wr umrwr = {}; 1531 1532 if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1533 return 0; 1534 1535 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1536 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1537 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1538 umrwr.pd = mr->dev->umrc.pd; 1539 umrwr.mkey = mr->mmkey.key; 1540 umrwr.ignore_free_state = 1; 1541 1542 return mlx5_ib_post_send_wait(mr->dev, &umrwr); 1543 } 1544 1545 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1546 int access_flags, int flags) 1547 { 1548 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1549 struct mlx5_umr_wr umrwr = {}; 1550 int err; 1551 1552 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1553 1554 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1555 umrwr.mkey = mr->mmkey.key; 1556 1557 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) { 1558 umrwr.pd = pd; 1559 umrwr.access_flags = access_flags; 1560 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1561 } 1562 1563 err = mlx5_ib_post_send_wait(dev, &umrwr); 1564 1565 return err; 1566 } 1567 1568 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1569 u64 length, u64 virt_addr, int new_access_flags, 1570 struct ib_pd *new_pd, struct ib_udata *udata) 1571 { 1572 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1573 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1574 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; 1575 int access_flags = flags & IB_MR_REREG_ACCESS ? 1576 new_access_flags : 1577 mr->access_flags; 1578 int upd_flags = 0; 1579 u64 addr, len; 1580 int err; 1581 1582 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1583 start, virt_addr, length, access_flags); 1584 1585 if (!mr->umem) 1586 return -EINVAL; 1587 1588 if (is_odp_mr(mr)) 1589 return -EOPNOTSUPP; 1590 1591 if (flags & IB_MR_REREG_TRANS) { 1592 addr = virt_addr; 1593 len = length; 1594 } else { 1595 addr = mr->umem->address; 1596 len = mr->umem->length; 1597 } 1598 1599 if (flags != IB_MR_REREG_PD) { 1600 /* 1601 * Replace umem. This needs to be done whether or not UMR is 1602 * used. 1603 */ 1604 flags |= IB_MR_REREG_TRANS; 1605 atomic_sub(ib_umem_num_pages(mr->umem), 1606 &dev->mdev->priv.reg_pages); 1607 ib_umem_release(mr->umem); 1608 mr->umem = mr_umem_get(dev, addr, len, access_flags); 1609 if (IS_ERR(mr->umem)) { 1610 err = PTR_ERR(mr->umem); 1611 mr->umem = NULL; 1612 goto err; 1613 } 1614 atomic_add(ib_umem_num_pages(mr->umem), 1615 &dev->mdev->priv.reg_pages); 1616 } 1617 1618 if (!mlx5_ib_can_reconfig_with_umr(dev, mr->access_flags, 1619 access_flags) || 1620 !mlx5_ib_can_load_pas_with_umr(dev, len) || 1621 (flags & IB_MR_REREG_TRANS && 1622 !mlx5_ib_pas_fits_in_mr(mr, addr, len))) { 1623 /* 1624 * UMR can't be used - MKey needs to be replaced. 1625 */ 1626 if (mr->cache_ent) 1627 detach_mr_from_cache(mr); 1628 err = destroy_mkey(dev, mr); 1629 if (err) 1630 goto err; 1631 1632 mr = reg_create(ib_mr, pd, mr->umem, addr, access_flags, true); 1633 if (IS_ERR(mr)) { 1634 err = PTR_ERR(mr); 1635 mr = to_mmr(ib_mr); 1636 goto err; 1637 } 1638 } else { 1639 /* 1640 * Send a UMR WQE 1641 */ 1642 mr->ibmr.pd = pd; 1643 mr->access_flags = access_flags; 1644 mr->mmkey.iova = addr; 1645 mr->mmkey.size = len; 1646 mr->mmkey.pd = to_mpd(pd)->pdn; 1647 1648 if (flags & IB_MR_REREG_TRANS) { 1649 upd_flags = MLX5_IB_UPD_XLT_ADDR; 1650 if (flags & IB_MR_REREG_PD) 1651 upd_flags |= MLX5_IB_UPD_XLT_PD; 1652 if (flags & IB_MR_REREG_ACCESS) 1653 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1654 err = mlx5_ib_update_xlt( 1655 mr, 0, 1656 ib_umem_num_dma_blocks(mr->umem, 1657 1UL << mr->page_shift), 1658 mr->page_shift, upd_flags); 1659 } else { 1660 err = rereg_umr(pd, mr, access_flags, flags); 1661 } 1662 1663 if (err) 1664 goto err; 1665 } 1666 1667 set_mr_fields(dev, mr, len, access_flags); 1668 1669 return 0; 1670 1671 err: 1672 ib_umem_release(mr->umem); 1673 mr->umem = NULL; 1674 1675 clean_mr(dev, mr); 1676 return err; 1677 } 1678 1679 static int 1680 mlx5_alloc_priv_descs(struct ib_device *device, 1681 struct mlx5_ib_mr *mr, 1682 int ndescs, 1683 int desc_size) 1684 { 1685 int size = ndescs * desc_size; 1686 int add_size; 1687 int ret; 1688 1689 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1690 1691 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1692 if (!mr->descs_alloc) 1693 return -ENOMEM; 1694 1695 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1696 1697 mr->desc_map = dma_map_single(device->dev.parent, mr->descs, 1698 size, DMA_TO_DEVICE); 1699 if (dma_mapping_error(device->dev.parent, mr->desc_map)) { 1700 ret = -ENOMEM; 1701 goto err; 1702 } 1703 1704 return 0; 1705 err: 1706 kfree(mr->descs_alloc); 1707 1708 return ret; 1709 } 1710 1711 static void 1712 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1713 { 1714 if (mr->descs) { 1715 struct ib_device *device = mr->ibmr.device; 1716 int size = mr->max_descs * mr->desc_size; 1717 1718 dma_unmap_single(device->dev.parent, mr->desc_map, 1719 size, DMA_TO_DEVICE); 1720 kfree(mr->descs_alloc); 1721 mr->descs = NULL; 1722 } 1723 } 1724 1725 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1726 { 1727 if (mr->sig) { 1728 if (mlx5_core_destroy_psv(dev->mdev, 1729 mr->sig->psv_memory.psv_idx)) 1730 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1731 mr->sig->psv_memory.psv_idx); 1732 if (mlx5_core_destroy_psv(dev->mdev, 1733 mr->sig->psv_wire.psv_idx)) 1734 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1735 mr->sig->psv_wire.psv_idx); 1736 xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key)); 1737 kfree(mr->sig); 1738 mr->sig = NULL; 1739 } 1740 1741 if (!mr->cache_ent) { 1742 destroy_mkey(dev, mr); 1743 mlx5_free_priv_descs(mr); 1744 } 1745 } 1746 1747 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1748 { 1749 struct ib_umem *umem = mr->umem; 1750 1751 /* Stop all DMA */ 1752 if (is_odp_mr(mr)) 1753 mlx5_ib_fence_odp_mr(mr); 1754 else 1755 clean_mr(dev, mr); 1756 1757 if (umem) { 1758 if (!is_odp_mr(mr)) 1759 atomic_sub(ib_umem_num_pages(umem), 1760 &dev->mdev->priv.reg_pages); 1761 ib_umem_release(umem); 1762 } 1763 1764 if (mr->cache_ent) 1765 mlx5_mr_cache_free(dev, mr); 1766 else 1767 kfree(mr); 1768 } 1769 1770 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1771 { 1772 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 1773 1774 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1775 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr); 1776 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr); 1777 } 1778 1779 if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) { 1780 mlx5_ib_free_implicit_mr(mmr); 1781 return 0; 1782 } 1783 1784 dereg_mr(to_mdev(ibmr->device), mmr); 1785 1786 return 0; 1787 } 1788 1789 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 1790 int access_mode, int page_shift) 1791 { 1792 void *mkc; 1793 1794 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1795 1796 /* This is only used from the kernel, so setting the PD is OK. */ 1797 set_mkc_access_pd_addr_fields(mkc, 0, 0, pd); 1798 MLX5_SET(mkc, mkc, free, 1); 1799 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1800 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 1801 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 1802 MLX5_SET(mkc, mkc, umr_en, 1); 1803 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1804 } 1805 1806 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1807 int ndescs, int desc_size, int page_shift, 1808 int access_mode, u32 *in, int inlen) 1809 { 1810 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1811 int err; 1812 1813 mr->access_mode = access_mode; 1814 mr->desc_size = desc_size; 1815 mr->max_descs = ndescs; 1816 1817 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 1818 if (err) 1819 return err; 1820 1821 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 1822 1823 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1824 if (err) 1825 goto err_free_descs; 1826 1827 mr->mmkey.type = MLX5_MKEY_MR; 1828 mr->ibmr.lkey = mr->mmkey.key; 1829 mr->ibmr.rkey = mr->mmkey.key; 1830 1831 return 0; 1832 1833 err_free_descs: 1834 mlx5_free_priv_descs(mr); 1835 return err; 1836 } 1837 1838 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 1839 u32 max_num_sg, u32 max_num_meta_sg, 1840 int desc_size, int access_mode) 1841 { 1842 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1843 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 1844 int page_shift = 0; 1845 struct mlx5_ib_mr *mr; 1846 u32 *in; 1847 int err; 1848 1849 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1850 if (!mr) 1851 return ERR_PTR(-ENOMEM); 1852 1853 mr->ibmr.pd = pd; 1854 mr->ibmr.device = pd->device; 1855 1856 in = kzalloc(inlen, GFP_KERNEL); 1857 if (!in) { 1858 err = -ENOMEM; 1859 goto err_free; 1860 } 1861 1862 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 1863 page_shift = PAGE_SHIFT; 1864 1865 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 1866 access_mode, in, inlen); 1867 if (err) 1868 goto err_free_in; 1869 1870 mr->umem = NULL; 1871 kfree(in); 1872 1873 return mr; 1874 1875 err_free_in: 1876 kfree(in); 1877 err_free: 1878 kfree(mr); 1879 return ERR_PTR(err); 1880 } 1881 1882 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1883 int ndescs, u32 *in, int inlen) 1884 { 1885 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 1886 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 1887 inlen); 1888 } 1889 1890 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1891 int ndescs, u32 *in, int inlen) 1892 { 1893 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 1894 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1895 } 1896 1897 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1898 int max_num_sg, int max_num_meta_sg, 1899 u32 *in, int inlen) 1900 { 1901 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1902 u32 psv_index[2]; 1903 void *mkc; 1904 int err; 1905 1906 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 1907 if (!mr->sig) 1908 return -ENOMEM; 1909 1910 /* create mem & wire PSVs */ 1911 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 1912 if (err) 1913 goto err_free_sig; 1914 1915 mr->sig->psv_memory.psv_idx = psv_index[0]; 1916 mr->sig->psv_wire.psv_idx = psv_index[1]; 1917 1918 mr->sig->sig_status_checked = true; 1919 mr->sig->sig_err_exists = false; 1920 /* Next UMR, Arm SIGERR */ 1921 ++mr->sig->sigerr_count; 1922 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1923 sizeof(struct mlx5_klm), 1924 MLX5_MKC_ACCESS_MODE_KLMS); 1925 if (IS_ERR(mr->klm_mr)) { 1926 err = PTR_ERR(mr->klm_mr); 1927 goto err_destroy_psv; 1928 } 1929 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1930 sizeof(struct mlx5_mtt), 1931 MLX5_MKC_ACCESS_MODE_MTT); 1932 if (IS_ERR(mr->mtt_mr)) { 1933 err = PTR_ERR(mr->mtt_mr); 1934 goto err_free_klm_mr; 1935 } 1936 1937 /* Set bsf descriptors for mkey */ 1938 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1939 MLX5_SET(mkc, mkc, bsf_en, 1); 1940 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 1941 1942 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 1943 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1944 if (err) 1945 goto err_free_mtt_mr; 1946 1947 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 1948 mr->sig, GFP_KERNEL)); 1949 if (err) 1950 goto err_free_descs; 1951 return 0; 1952 1953 err_free_descs: 1954 destroy_mkey(dev, mr); 1955 mlx5_free_priv_descs(mr); 1956 err_free_mtt_mr: 1957 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr); 1958 mr->mtt_mr = NULL; 1959 err_free_klm_mr: 1960 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr); 1961 mr->klm_mr = NULL; 1962 err_destroy_psv: 1963 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 1964 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1965 mr->sig->psv_memory.psv_idx); 1966 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1967 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1968 mr->sig->psv_wire.psv_idx); 1969 err_free_sig: 1970 kfree(mr->sig); 1971 1972 return err; 1973 } 1974 1975 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 1976 enum ib_mr_type mr_type, u32 max_num_sg, 1977 u32 max_num_meta_sg) 1978 { 1979 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1980 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1981 int ndescs = ALIGN(max_num_sg, 4); 1982 struct mlx5_ib_mr *mr; 1983 u32 *in; 1984 int err; 1985 1986 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1987 if (!mr) 1988 return ERR_PTR(-ENOMEM); 1989 1990 in = kzalloc(inlen, GFP_KERNEL); 1991 if (!in) { 1992 err = -ENOMEM; 1993 goto err_free; 1994 } 1995 1996 mr->ibmr.device = pd->device; 1997 mr->umem = NULL; 1998 1999 switch (mr_type) { 2000 case IB_MR_TYPE_MEM_REG: 2001 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2002 break; 2003 case IB_MR_TYPE_SG_GAPS: 2004 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2005 break; 2006 case IB_MR_TYPE_INTEGRITY: 2007 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2008 max_num_meta_sg, in, inlen); 2009 break; 2010 default: 2011 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2012 err = -EINVAL; 2013 } 2014 2015 if (err) 2016 goto err_free_in; 2017 2018 kfree(in); 2019 2020 return &mr->ibmr; 2021 2022 err_free_in: 2023 kfree(in); 2024 err_free: 2025 kfree(mr); 2026 return ERR_PTR(err); 2027 } 2028 2029 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2030 u32 max_num_sg) 2031 { 2032 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2033 } 2034 2035 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2036 u32 max_num_sg, u32 max_num_meta_sg) 2037 { 2038 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2039 max_num_meta_sg); 2040 } 2041 2042 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2043 { 2044 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2045 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2046 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2047 u32 *in = NULL; 2048 void *mkc; 2049 int ndescs; 2050 int err; 2051 struct mlx5_ib_alloc_mw req = {}; 2052 struct { 2053 __u32 comp_mask; 2054 __u32 response_length; 2055 } resp = {}; 2056 2057 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2058 if (err) 2059 return err; 2060 2061 if (req.comp_mask || req.reserved1 || req.reserved2) 2062 return -EOPNOTSUPP; 2063 2064 if (udata->inlen > sizeof(req) && 2065 !ib_is_udata_cleared(udata, sizeof(req), 2066 udata->inlen - sizeof(req))) 2067 return -EOPNOTSUPP; 2068 2069 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2070 2071 in = kzalloc(inlen, GFP_KERNEL); 2072 if (!in) { 2073 err = -ENOMEM; 2074 goto free; 2075 } 2076 2077 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2078 2079 MLX5_SET(mkc, mkc, free, 1); 2080 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2081 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2082 MLX5_SET(mkc, mkc, umr_en, 1); 2083 MLX5_SET(mkc, mkc, lr, 1); 2084 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2085 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2086 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2087 2088 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2089 if (err) 2090 goto free; 2091 2092 mw->mmkey.type = MLX5_MKEY_MW; 2093 ibmw->rkey = mw->mmkey.key; 2094 mw->ndescs = ndescs; 2095 2096 resp.response_length = 2097 min(offsetofend(typeof(resp), response_length), udata->outlen); 2098 if (resp.response_length) { 2099 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2100 if (err) 2101 goto free_mkey; 2102 } 2103 2104 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2105 err = xa_err(xa_store(&dev->odp_mkeys, 2106 mlx5_base_mkey(mw->mmkey.key), &mw->mmkey, 2107 GFP_KERNEL)); 2108 if (err) 2109 goto free_mkey; 2110 } 2111 2112 kfree(in); 2113 return 0; 2114 2115 free_mkey: 2116 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2117 free: 2118 kfree(in); 2119 return err; 2120 } 2121 2122 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2123 { 2124 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2125 struct mlx5_ib_mw *mmw = to_mmw(mw); 2126 2127 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2128 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)); 2129 /* 2130 * pagefault_single_data_segment() may be accessing mmw under 2131 * SRCU if the user bound an ODP MR to this MW. 2132 */ 2133 synchronize_srcu(&dev->odp_srcu); 2134 } 2135 2136 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); 2137 } 2138 2139 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2140 struct ib_mr_status *mr_status) 2141 { 2142 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2143 int ret = 0; 2144 2145 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2146 pr_err("Invalid status check mask\n"); 2147 ret = -EINVAL; 2148 goto done; 2149 } 2150 2151 mr_status->fail_status = 0; 2152 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2153 if (!mmr->sig) { 2154 ret = -EINVAL; 2155 pr_err("signature status check requested on a non-signature enabled MR\n"); 2156 goto done; 2157 } 2158 2159 mmr->sig->sig_status_checked = true; 2160 if (!mmr->sig->sig_err_exists) 2161 goto done; 2162 2163 if (ibmr->lkey == mmr->sig->err_item.key) 2164 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2165 sizeof(mr_status->sig_err)); 2166 else { 2167 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2168 mr_status->sig_err.sig_err_offset = 0; 2169 mr_status->sig_err.key = mmr->sig->err_item.key; 2170 } 2171 2172 mmr->sig->sig_err_exists = false; 2173 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2174 } 2175 2176 done: 2177 return ret; 2178 } 2179 2180 static int 2181 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2182 int data_sg_nents, unsigned int *data_sg_offset, 2183 struct scatterlist *meta_sg, int meta_sg_nents, 2184 unsigned int *meta_sg_offset) 2185 { 2186 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2187 unsigned int sg_offset = 0; 2188 int n = 0; 2189 2190 mr->meta_length = 0; 2191 if (data_sg_nents == 1) { 2192 n++; 2193 mr->ndescs = 1; 2194 if (data_sg_offset) 2195 sg_offset = *data_sg_offset; 2196 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2197 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2198 if (meta_sg_nents == 1) { 2199 n++; 2200 mr->meta_ndescs = 1; 2201 if (meta_sg_offset) 2202 sg_offset = *meta_sg_offset; 2203 else 2204 sg_offset = 0; 2205 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2206 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2207 } 2208 ibmr->length = mr->data_length + mr->meta_length; 2209 } 2210 2211 return n; 2212 } 2213 2214 static int 2215 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2216 struct scatterlist *sgl, 2217 unsigned short sg_nents, 2218 unsigned int *sg_offset_p, 2219 struct scatterlist *meta_sgl, 2220 unsigned short meta_sg_nents, 2221 unsigned int *meta_sg_offset_p) 2222 { 2223 struct scatterlist *sg = sgl; 2224 struct mlx5_klm *klms = mr->descs; 2225 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2226 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2227 int i, j = 0; 2228 2229 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2230 mr->ibmr.length = 0; 2231 2232 for_each_sg(sgl, sg, sg_nents, i) { 2233 if (unlikely(i >= mr->max_descs)) 2234 break; 2235 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2236 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2237 klms[i].key = cpu_to_be32(lkey); 2238 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2239 2240 sg_offset = 0; 2241 } 2242 2243 if (sg_offset_p) 2244 *sg_offset_p = sg_offset; 2245 2246 mr->ndescs = i; 2247 mr->data_length = mr->ibmr.length; 2248 2249 if (meta_sg_nents) { 2250 sg = meta_sgl; 2251 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2252 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2253 if (unlikely(i + j >= mr->max_descs)) 2254 break; 2255 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2256 sg_offset); 2257 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2258 sg_offset); 2259 klms[i + j].key = cpu_to_be32(lkey); 2260 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2261 2262 sg_offset = 0; 2263 } 2264 if (meta_sg_offset_p) 2265 *meta_sg_offset_p = sg_offset; 2266 2267 mr->meta_ndescs = j; 2268 mr->meta_length = mr->ibmr.length - mr->data_length; 2269 } 2270 2271 return i + j; 2272 } 2273 2274 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2275 { 2276 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2277 __be64 *descs; 2278 2279 if (unlikely(mr->ndescs == mr->max_descs)) 2280 return -ENOMEM; 2281 2282 descs = mr->descs; 2283 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2284 2285 return 0; 2286 } 2287 2288 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2289 { 2290 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2291 __be64 *descs; 2292 2293 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2294 return -ENOMEM; 2295 2296 descs = mr->descs; 2297 descs[mr->ndescs + mr->meta_ndescs++] = 2298 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2299 2300 return 0; 2301 } 2302 2303 static int 2304 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2305 int data_sg_nents, unsigned int *data_sg_offset, 2306 struct scatterlist *meta_sg, int meta_sg_nents, 2307 unsigned int *meta_sg_offset) 2308 { 2309 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2310 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2311 int n; 2312 2313 pi_mr->ndescs = 0; 2314 pi_mr->meta_ndescs = 0; 2315 pi_mr->meta_length = 0; 2316 2317 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2318 pi_mr->desc_size * pi_mr->max_descs, 2319 DMA_TO_DEVICE); 2320 2321 pi_mr->ibmr.page_size = ibmr->page_size; 2322 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2323 mlx5_set_page); 2324 if (n != data_sg_nents) 2325 return n; 2326 2327 pi_mr->data_iova = pi_mr->ibmr.iova; 2328 pi_mr->data_length = pi_mr->ibmr.length; 2329 pi_mr->ibmr.length = pi_mr->data_length; 2330 ibmr->length = pi_mr->data_length; 2331 2332 if (meta_sg_nents) { 2333 u64 page_mask = ~((u64)ibmr->page_size - 1); 2334 u64 iova = pi_mr->data_iova; 2335 2336 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2337 meta_sg_offset, mlx5_set_page_pi); 2338 2339 pi_mr->meta_length = pi_mr->ibmr.length; 2340 /* 2341 * PI address for the HW is the offset of the metadata address 2342 * relative to the first data page address. 2343 * It equals to first data page address + size of data pages + 2344 * metadata offset at the first metadata page 2345 */ 2346 pi_mr->pi_iova = (iova & page_mask) + 2347 pi_mr->ndescs * ibmr->page_size + 2348 (pi_mr->ibmr.iova & ~page_mask); 2349 /* 2350 * In order to use one MTT MR for data and metadata, we register 2351 * also the gaps between the end of the data and the start of 2352 * the metadata (the sig MR will verify that the HW will access 2353 * to right addresses). This mapping is safe because we use 2354 * internal mkey for the registration. 2355 */ 2356 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2357 pi_mr->ibmr.iova = iova; 2358 ibmr->length += pi_mr->meta_length; 2359 } 2360 2361 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2362 pi_mr->desc_size * pi_mr->max_descs, 2363 DMA_TO_DEVICE); 2364 2365 return n; 2366 } 2367 2368 static int 2369 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2370 int data_sg_nents, unsigned int *data_sg_offset, 2371 struct scatterlist *meta_sg, int meta_sg_nents, 2372 unsigned int *meta_sg_offset) 2373 { 2374 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2375 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2376 int n; 2377 2378 pi_mr->ndescs = 0; 2379 pi_mr->meta_ndescs = 0; 2380 pi_mr->meta_length = 0; 2381 2382 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2383 pi_mr->desc_size * pi_mr->max_descs, 2384 DMA_TO_DEVICE); 2385 2386 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2387 meta_sg, meta_sg_nents, meta_sg_offset); 2388 2389 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2390 pi_mr->desc_size * pi_mr->max_descs, 2391 DMA_TO_DEVICE); 2392 2393 /* This is zero-based memory region */ 2394 pi_mr->data_iova = 0; 2395 pi_mr->ibmr.iova = 0; 2396 pi_mr->pi_iova = pi_mr->data_length; 2397 ibmr->length = pi_mr->ibmr.length; 2398 2399 return n; 2400 } 2401 2402 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2403 int data_sg_nents, unsigned int *data_sg_offset, 2404 struct scatterlist *meta_sg, int meta_sg_nents, 2405 unsigned int *meta_sg_offset) 2406 { 2407 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2408 struct mlx5_ib_mr *pi_mr = NULL; 2409 int n; 2410 2411 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2412 2413 mr->ndescs = 0; 2414 mr->data_length = 0; 2415 mr->data_iova = 0; 2416 mr->meta_ndescs = 0; 2417 mr->pi_iova = 0; 2418 /* 2419 * As a performance optimization, if possible, there is no need to 2420 * perform UMR operation to register the data/metadata buffers. 2421 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2422 * Fallback to UMR only in case of a failure. 2423 */ 2424 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2425 data_sg_offset, meta_sg, meta_sg_nents, 2426 meta_sg_offset); 2427 if (n == data_sg_nents + meta_sg_nents) 2428 goto out; 2429 /* 2430 * As a performance optimization, if possible, there is no need to map 2431 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2432 * descriptors and fallback to KLM only in case of a failure. 2433 * It's more efficient for the HW to work with MTT descriptors 2434 * (especially in high load). 2435 * Use KLM (indirect access) only if it's mandatory. 2436 */ 2437 pi_mr = mr->mtt_mr; 2438 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2439 data_sg_offset, meta_sg, meta_sg_nents, 2440 meta_sg_offset); 2441 if (n == data_sg_nents + meta_sg_nents) 2442 goto out; 2443 2444 pi_mr = mr->klm_mr; 2445 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2446 data_sg_offset, meta_sg, meta_sg_nents, 2447 meta_sg_offset); 2448 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2449 return -ENOMEM; 2450 2451 out: 2452 /* This is zero-based memory region */ 2453 ibmr->iova = 0; 2454 mr->pi_mr = pi_mr; 2455 if (pi_mr) 2456 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2457 else 2458 ibmr->sig_attrs->meta_length = mr->meta_length; 2459 2460 return 0; 2461 } 2462 2463 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2464 unsigned int *sg_offset) 2465 { 2466 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2467 int n; 2468 2469 mr->ndescs = 0; 2470 2471 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2472 mr->desc_size * mr->max_descs, 2473 DMA_TO_DEVICE); 2474 2475 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2476 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2477 NULL); 2478 else 2479 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2480 mlx5_set_page); 2481 2482 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2483 mr->desc_size * mr->max_descs, 2484 DMA_TO_DEVICE); 2485 2486 return n; 2487 } 2488