xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 1f1517fafda598839a02e39968c5063ddcfa51fc)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6 
7 /*
8  * This file contains all of the code that is specific to the HFI chip
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 
16 #include "hfi.h"
17 #include "trace.h"
18 #include "mad.h"
19 #include "pio.h"
20 #include "sdma.h"
21 #include "eprom.h"
22 #include "efivar.h"
23 #include "platform.h"
24 #include "aspm.h"
25 #include "affinity.h"
26 #include "debugfs.h"
27 #include "fault.h"
28 #include "netdev.h"
29 
30 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
31 module_param(num_vls, uint, S_IRUGO);
32 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
33 
34 /*
35  * Default time to aggregate two 10K packets from the idle state
36  * (timer not running). The timer starts at the end of the first packet,
37  * so only the time for one 10K packet and header plus a bit extra is needed.
38  * 10 * 1024 + 64 header byte = 10304 byte
39  * 10304 byte / 12.5 GB/s = 824.32ns
40  */
41 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
42 module_param(rcv_intr_timeout, uint, S_IRUGO);
43 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
44 
45 uint rcv_intr_count = 16; /* same as qib */
46 module_param(rcv_intr_count, uint, S_IRUGO);
47 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
48 
49 ushort link_crc_mask = SUPPORTED_CRCS;
50 module_param(link_crc_mask, ushort, S_IRUGO);
51 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
52 
53 uint loopback;
54 module_param_named(loopback, loopback, uint, S_IRUGO);
55 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
56 
57 /* Other driver tunables */
58 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
59 static ushort crc_14b_sideband = 1;
60 static uint use_flr = 1;
61 uint quick_linkup; /* skip LNI */
62 
63 struct flag_table {
64 	u64 flag;	/* the flag */
65 	char *str;	/* description string */
66 	u16 extra;	/* extra information */
67 	u16 unused0;
68 	u32 unused1;
69 };
70 
71 /* str must be a string constant */
72 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
73 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
74 
75 /* Send Error Consequences */
76 #define SEC_WRITE_DROPPED	0x1
77 #define SEC_PACKET_DROPPED	0x2
78 #define SEC_SC_HALTED		0x4	/* per-context only */
79 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
80 
81 #define DEFAULT_KRCVQS		  2
82 #define MIN_KERNEL_KCTXTS         2
83 #define FIRST_KERNEL_KCTXT        1
84 
85 /*
86  * RSM instance allocation
87  *   0 - User Fecn Handling
88  *   1 - Vnic
89  *   2 - AIP
90  *   3 - Verbs
91  */
92 #define RSM_INS_FECN              0
93 #define RSM_INS_VNIC              1
94 #define RSM_INS_AIP               2
95 #define RSM_INS_VERBS             3
96 
97 /* Bit offset into the GUID which carries HFI id information */
98 #define GUID_HFI_INDEX_SHIFT     39
99 
100 /* extract the emulation revision */
101 #define emulator_rev(dd) ((dd)->irev >> 8)
102 /* parallel and serial emulation versions are 3 and 4 respectively */
103 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
104 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
105 
106 /* RSM fields for Verbs */
107 /* packet type */
108 #define IB_PACKET_TYPE         2ull
109 #define QW_SHIFT               6ull
110 /* QPN[7..1] */
111 #define QPN_WIDTH              7ull
112 
113 /* LRH.BTH: QW 0, OFFSET 48 - for match */
114 #define LRH_BTH_QW             0ull
115 #define LRH_BTH_BIT_OFFSET     48ull
116 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
117 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
118 #define LRH_BTH_SELECT
119 #define LRH_BTH_MASK           3ull
120 #define LRH_BTH_VALUE          2ull
121 
122 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
123 #define LRH_SC_QW              0ull
124 #define LRH_SC_BIT_OFFSET      56ull
125 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
126 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
127 #define LRH_SC_MASK            128ull
128 #define LRH_SC_VALUE           0ull
129 
130 /* SC[n..0] QW 0, OFFSET 60 - for select */
131 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
132 
133 /* QPN[m+n:1] QW 1, OFFSET 1 */
134 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
135 
136 /* RSM fields for AIP */
137 /* LRH.BTH above is reused for this rule */
138 
139 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
140 #define BTH_DESTQP_QW           1ull
141 #define BTH_DESTQP_BIT_OFFSET   16ull
142 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
143 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
144 #define BTH_DESTQP_MASK         0xFFull
145 #define BTH_DESTQP_VALUE        0x81ull
146 
147 /* DETH.SQPN: QW 1 Offset 56 for select */
148 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
149 #define DETH_AIP_SQPN_QW 3ull
150 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
151 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
152 #define DETH_AIP_SQPN_SELECT_OFFSET \
153 	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
154 
155 /* RSM fields for Vnic */
156 /* L2_TYPE: QW 0, OFFSET 61 - for match */
157 #define L2_TYPE_QW             0ull
158 #define L2_TYPE_BIT_OFFSET     61ull
159 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
160 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
161 #define L2_TYPE_MASK           3ull
162 #define L2_16B_VALUE           2ull
163 
164 /* L4_TYPE QW 1, OFFSET 0 - for match */
165 #define L4_TYPE_QW              1ull
166 #define L4_TYPE_BIT_OFFSET      0ull
167 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
168 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
169 #define L4_16B_TYPE_MASK        0xFFull
170 #define L4_16B_ETH_VALUE        0x78ull
171 
172 /* 16B VESWID - for select */
173 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
174 /* 16B ENTROPY - for select */
175 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
176 
177 /* defines to build power on SC2VL table */
178 #define SC2VL_VAL( \
179 	num, \
180 	sc0, sc0val, \
181 	sc1, sc1val, \
182 	sc2, sc2val, \
183 	sc3, sc3val, \
184 	sc4, sc4val, \
185 	sc5, sc5val, \
186 	sc6, sc6val, \
187 	sc7, sc7val) \
188 ( \
189 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
190 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
191 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
192 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
193 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
194 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
195 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
196 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
197 )
198 
199 #define DC_SC_VL_VAL( \
200 	range, \
201 	e0, e0val, \
202 	e1, e1val, \
203 	e2, e2val, \
204 	e3, e3val, \
205 	e4, e4val, \
206 	e5, e5val, \
207 	e6, e6val, \
208 	e7, e7val, \
209 	e8, e8val, \
210 	e9, e9val, \
211 	e10, e10val, \
212 	e11, e11val, \
213 	e12, e12val, \
214 	e13, e13val, \
215 	e14, e14val, \
216 	e15, e15val) \
217 ( \
218 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
219 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
220 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
221 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
222 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
223 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
224 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
225 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
226 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
227 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
228 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
229 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
230 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
231 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
232 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
233 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
234 )
235 
236 /* all CceStatus sub-block freeze bits */
237 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
238 			| CCE_STATUS_RXE_FROZE_SMASK \
239 			| CCE_STATUS_TXE_FROZE_SMASK \
240 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
241 /* all CceStatus sub-block TXE pause bits */
242 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
243 			| CCE_STATUS_TXE_PAUSED_SMASK \
244 			| CCE_STATUS_SDMA_PAUSED_SMASK)
245 /* all CceStatus sub-block RXE pause bits */
246 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
247 
248 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
249 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
250 
251 /*
252  * CCE Error flags.
253  */
254 static struct flag_table cce_err_status_flags[] = {
255 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
256 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
257 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
258 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
259 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
260 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
261 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
262 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
263 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
264 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
265 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
266 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
267 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
268 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
269 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
270 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
271 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
272 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
273 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
274 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
275 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
276 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
277 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
278 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
279 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
280 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
281 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
282 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
283 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
284 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
285 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
286 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
287 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
288 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
289 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
290 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
291 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
292 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
293 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
294 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
295 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
296 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
297 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
298 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
299 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
300 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
301 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
302 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
303 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
304 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
305 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
306 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
307 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
308 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
309 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
310 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
311 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
312 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
313 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
314 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
315 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
316 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
317 /*31*/	FLAG_ENTRY0("LATriggered",
318 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
319 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
320 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
321 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
322 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
323 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
324 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
325 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
326 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
327 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
328 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
329 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
330 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
331 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
332 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
333 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
334 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
335 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
336 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
337 /*41-63 reserved*/
338 };
339 
340 /*
341  * Misc Error flags
342  */
343 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
344 static struct flag_table misc_err_status_flags[] = {
345 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
346 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
347 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
348 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
349 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
350 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
351 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
352 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
353 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
354 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
355 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
356 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
357 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
358 };
359 
360 /*
361  * TXE PIO Error flags and consequences
362  */
363 static struct flag_table pio_err_status_flags[] = {
364 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
365 	SEC_WRITE_DROPPED,
366 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
367 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
368 	SEC_SPC_FREEZE,
369 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
370 /* 2*/	FLAG_ENTRY("PioCsrParity",
371 	SEC_SPC_FREEZE,
372 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
373 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
374 	SEC_SPC_FREEZE,
375 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
376 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
377 	SEC_SPC_FREEZE,
378 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
379 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
380 	SEC_SPC_FREEZE,
381 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
382 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
383 	SEC_SPC_FREEZE,
384 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
385 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
386 	SEC_SPC_FREEZE,
387 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
388 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
389 	SEC_SPC_FREEZE,
390 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
391 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
394 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
397 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
400 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
403 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
404 	0,
405 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
406 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
407 	0,
408 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
409 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
412 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
415 /*17*/	FLAG_ENTRY("PioInitSmIn",
416 	0,
417 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
418 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
421 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
424 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
425 	0,
426 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
427 /*21*/	FLAG_ENTRY("PioWriteDataParity",
428 	SEC_SPC_FREEZE,
429 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
430 /*22*/	FLAG_ENTRY("PioStateMachine",
431 	SEC_SPC_FREEZE,
432 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
433 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
434 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
436 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
437 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
439 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
440 	SEC_SPC_FREEZE,
441 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
442 /*26*/	FLAG_ENTRY("PioVlfSopParity",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
445 /*27*/	FLAG_ENTRY("PioVlFifoParity",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
448 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
449 	SEC_SPC_FREEZE,
450 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
451 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
454 /*30-31 reserved*/
455 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
456 	SEC_SPC_FREEZE,
457 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
458 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
459 	SEC_SPC_FREEZE,
460 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
461 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
462 	SEC_SPC_FREEZE,
463 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
464 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
465 	SEC_SPC_FREEZE,
466 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
467 /*36-63 reserved*/
468 };
469 
470 /* TXE PIO errors that cause an SPC freeze */
471 #define ALL_PIO_FREEZE_ERR \
472 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
501 
502 /*
503  * TXE SDMA Error flags
504  */
505 static struct flag_table sdma_err_status_flags[] = {
506 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
507 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
508 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
509 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
510 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
511 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
512 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
513 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
514 /*04-63 reserved*/
515 };
516 
517 /* TXE SDMA errors that cause an SPC freeze */
518 #define ALL_SDMA_FREEZE_ERR  \
519 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
520 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
521 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
522 
523 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
524 #define PORT_DISCARD_EGRESS_ERRS \
525 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
526 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
527 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
528 
529 /*
530  * TXE Egress Error flags
531  */
532 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
533 static struct flag_table egress_err_status_flags[] = {
534 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
535 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
536 /* 2 reserved */
537 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
538 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
539 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
540 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
541 /* 6 reserved */
542 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
543 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
544 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
545 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
546 /* 9-10 reserved */
547 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
548 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
549 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
550 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
551 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
552 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
553 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
554 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
555 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
556 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
557 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
558 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
559 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
560 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
561 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
562 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
563 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
564 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
565 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
566 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
567 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
568 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
569 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
570 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
571 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
572 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
573 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
574 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
575 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
576 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
577 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
578 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
579 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
580 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
581 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
582 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
583 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
584 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
585 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
586 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
587 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
588 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
589 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
590 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
591 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
592 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
593 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
594 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
595 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
596 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
597 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
598 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
599 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
600 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
601 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
602 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
603 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
604 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
605 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
606 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
607 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
608 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
609 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
610 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
611 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
612 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
613 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
614 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
615 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
616 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
617 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
618 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
619 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
620 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
621 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
622 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
623 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
624 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
625 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
626 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
627 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
628 };
629 
630 /*
631  * TXE Egress Error Info flags
632  */
633 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
634 static struct flag_table egress_err_info_flags[] = {
635 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
636 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
637 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
638 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
639 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
640 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
641 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
642 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
643 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
644 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
645 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
646 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
647 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
648 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
649 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
650 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
651 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
652 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
653 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
654 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
655 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
656 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
657 };
658 
659 /* TXE Egress errors that cause an SPC freeze */
660 #define ALL_TXE_EGRESS_FREEZE_ERR \
661 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
662 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
663 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
664 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
665 	| SEES(TX_LAUNCH_CSR_PARITY) \
666 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
667 	| SEES(TX_CONFIG_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
672 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
673 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
674 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
675 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
676 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
677 	| SEES(TX_CREDIT_RETURN_PARITY))
678 
679 /*
680  * TXE Send error flags
681  */
682 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
683 static struct flag_table send_err_status_flags[] = {
684 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
685 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
686 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
687 };
688 
689 /*
690  * TXE Send Context Error flags and consequences
691  */
692 static struct flag_table sc_err_status_flags[] = {
693 /* 0*/	FLAG_ENTRY("InconsistentSop",
694 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
695 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
696 /* 1*/	FLAG_ENTRY("DisallowedPacket",
697 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
698 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
699 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
700 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
701 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
702 /* 3*/	FLAG_ENTRY("WriteOverflow",
703 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
704 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
705 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
706 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
707 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
708 /* 5-63 reserved*/
709 };
710 
711 /*
712  * RXE Receive Error flags
713  */
714 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
715 static struct flag_table rxe_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
717 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
718 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
719 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
720 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
721 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
722 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
723 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
724 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
725 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
726 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
727 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
728 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
729 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
730 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
731 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
732 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
733 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
734 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
735 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
736 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
737 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
738 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
739 		RXES(RBUF_BLOCK_LIST_READ_COR)),
740 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
741 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
742 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
743 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
744 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
745 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
746 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
747 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
748 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
749 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
750 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
751 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
752 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
753 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
754 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
755 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
756 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
757 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
758 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
759 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
760 		RXES(RBUF_FL_INITDONE_PARITY)),
761 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
762 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
763 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
764 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
765 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
766 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
767 		RXES(LOOKUP_DES_PART1_UNC_COR)),
768 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
769 		RXES(LOOKUP_DES_PART2_PARITY)),
770 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
771 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
772 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
773 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
774 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
775 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
776 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
777 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
778 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
779 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
780 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
781 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
782 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
783 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
784 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
785 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
786 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
787 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
788 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
789 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
790 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
791 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
792 };
793 
794 /* RXE errors that will trigger an SPC freeze */
795 #define ALL_RXE_FREEZE_ERR  \
796 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
840 
841 #define RXE_FREEZE_ABORT_MASK \
842 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
843 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
844 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
845 
846 /*
847  * DCC Error Flags
848  */
849 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
850 static struct flag_table dcc_err_flags[] = {
851 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
852 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
853 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
854 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
855 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
856 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
857 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
858 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
859 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
860 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
861 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
862 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
863 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
864 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
865 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
866 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
867 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
868 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
869 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
870 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
871 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
872 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
873 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
874 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
875 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
876 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
877 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
878 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
879 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
880 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
881 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
882 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
883 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
884 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
885 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
886 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
887 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
888 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
889 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
890 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
891 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
892 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
893 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
894 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
895 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
896 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
897 };
898 
899 /*
900  * LCB error flags
901  */
902 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
903 static struct flag_table lcb_err_flags[] = {
904 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
905 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
906 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
907 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
908 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
909 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
910 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
911 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
912 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
913 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
914 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
915 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
916 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
917 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
918 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
919 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
920 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
921 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
922 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
923 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
924 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
925 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
926 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
927 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
928 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
929 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
930 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
931 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
932 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
933 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
934 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
935 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
936 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
937 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
938 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
939 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
940 };
941 
942 /*
943  * DC8051 Error Flags
944  */
945 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
946 static struct flag_table dc8051_err_flags[] = {
947 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
948 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
949 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
950 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
951 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
952 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
953 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
954 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
955 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
956 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
957 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
958 };
959 
960 /*
961  * DC8051 Information Error flags
962  *
963  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
964  */
965 static struct flag_table dc8051_info_err_flags[] = {
966 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
967 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
968 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
969 	FLAG_ENTRY0("Serdes internal loopback failure",
970 		    FAILED_SERDES_INTERNAL_LOOPBACK),
971 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
972 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
973 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
974 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
975 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
976 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
977 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
978 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
979 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
980 	FLAG_ENTRY0("External Device Request Timeout",
981 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
982 };
983 
984 /*
985  * DC8051 Information Host Information flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
988  */
989 static struct flag_table dc8051_info_host_msg_flags[] = {
990 	FLAG_ENTRY0("Host request done", 0x0001),
991 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
992 	FLAG_ENTRY0("BC SMA message", 0x0004),
993 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
994 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
995 	FLAG_ENTRY0("External device config request", 0x0020),
996 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
997 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
998 	FLAG_ENTRY0("Link going down", 0x0100),
999 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1000 };
1001 
1002 static u32 encoded_size(u32 size);
1003 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1004 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1005 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1006 			       u8 *continuous);
1007 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1008 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1009 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1010 				      u8 *remote_tx_rate, u16 *link_widths);
1011 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1012 				    u8 *flag_bits, u16 *link_widths);
1013 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1014 				  u8 *device_rev);
1015 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1016 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1017 			    u8 *tx_polarity_inversion,
1018 			    u8 *rx_polarity_inversion, u8 *max_rate);
1019 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1020 				unsigned int context, u64 err_status);
1021 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1022 static void handle_dcc_err(struct hfi1_devdata *dd,
1023 			   unsigned int context, u64 err_status);
1024 static void handle_lcb_err(struct hfi1_devdata *dd,
1025 			   unsigned int context, u64 err_status);
1026 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1030 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1031 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1032 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1033 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1034 static void set_partition_keys(struct hfi1_pportdata *ppd);
1035 static const char *link_state_name(u32 state);
1036 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1037 					  u32 state);
1038 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1039 			   u64 *out_data);
1040 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1041 static int thermal_init(struct hfi1_devdata *dd);
1042 
1043 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1044 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1045 					    int msecs);
1046 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1047 				  int msecs);
1048 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1049 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1050 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1051 				   int msecs);
1052 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1053 					 int msecs);
1054 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1055 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1056 static void handle_temp_err(struct hfi1_devdata *dd);
1057 static void dc_shutdown(struct hfi1_devdata *dd);
1058 static void dc_start(struct hfi1_devdata *dd);
1059 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1060 			   unsigned int *np);
1061 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1062 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1063 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1064 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1065 
1066 /*
1067  * Error interrupt table entry.  This is used as input to the interrupt
1068  * "clear down" routine used for all second tier error interrupt register.
1069  * Second tier interrupt registers have a single bit representing them
1070  * in the top-level CceIntStatus.
1071  */
1072 struct err_reg_info {
1073 	u32 status;		/* status CSR offset */
1074 	u32 clear;		/* clear CSR offset */
1075 	u32 mask;		/* mask CSR offset */
1076 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1077 	const char *desc;
1078 };
1079 
1080 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1081 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1082 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1083 
1084 /*
1085  * Helpers for building HFI and DC error interrupt table entries.  Different
1086  * helpers are needed because of inconsistent register names.
1087  */
1088 #define EE(reg, handler, desc) \
1089 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1090 		handler, desc }
1091 #define DC_EE1(reg, handler, desc) \
1092 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1093 #define DC_EE2(reg, handler, desc) \
1094 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1095 
1096 /*
1097  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1098  * another register containing more information.
1099  */
1100 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1101 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1102 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1103 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1104 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1105 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1106 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1107 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1108 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1109 	/* the rest are reserved */
1110 };
1111 
1112 /*
1113  * Index into the Various section of the interrupt sources
1114  * corresponding to the Critical Temperature interrupt.
1115  */
1116 #define TCRIT_INT_SOURCE 4
1117 
1118 /*
1119  * SDMA error interrupt entry - refers to another register containing more
1120  * information.
1121  */
1122 static const struct err_reg_info sdma_eng_err =
1123 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1124 
1125 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1126 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1127 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1128 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1129 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1130 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1131 	/* rest are reserved */
1132 };
1133 
1134 /*
1135  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1136  * register can not be derived from the MTU value because 10K is not
1137  * a power of 2. Therefore, we need a constant. Everything else can
1138  * be calculated.
1139  */
1140 #define DCC_CFG_PORT_MTU_CAP_10240 7
1141 
1142 /*
1143  * Table of the DC grouping of error interrupts.  Each entry refers to
1144  * another register containing more information.
1145  */
1146 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1147 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1148 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1149 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1150 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1151 	/* the rest are reserved */
1152 };
1153 
1154 struct cntr_entry {
1155 	/*
1156 	 * counter name
1157 	 */
1158 	char *name;
1159 
1160 	/*
1161 	 * csr to read for name (if applicable)
1162 	 */
1163 	u64 csr;
1164 
1165 	/*
1166 	 * offset into dd or ppd to store the counter's value
1167 	 */
1168 	int offset;
1169 
1170 	/*
1171 	 * flags
1172 	 */
1173 	u8 flags;
1174 
1175 	/*
1176 	 * accessor for stat element, context either dd or ppd
1177 	 */
1178 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1179 		       int mode, u64 data);
1180 };
1181 
1182 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1183 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1184 
1185 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1186 { \
1187 	name, \
1188 	csr, \
1189 	offset, \
1190 	flags, \
1191 	accessor \
1192 }
1193 
1194 /* 32bit RXE */
1195 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1196 CNTR_ELEM(#name, \
1197 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1198 	  0, flags | CNTR_32BIT, \
1199 	  port_access_u32_csr)
1200 
1201 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1202 CNTR_ELEM(#name, \
1203 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1204 	  0, flags | CNTR_32BIT, \
1205 	  dev_access_u32_csr)
1206 
1207 /* 64bit RXE */
1208 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1209 CNTR_ELEM(#name, \
1210 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1211 	  0, flags, \
1212 	  port_access_u64_csr)
1213 
1214 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1215 CNTR_ELEM(#name, \
1216 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1217 	  0, flags, \
1218 	  dev_access_u64_csr)
1219 
1220 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1221 #define OVR_ELM(ctx) \
1222 CNTR_ELEM("RcvHdrOvr" #ctx, \
1223 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1224 	  0, CNTR_NORMAL, port_access_u64_csr)
1225 
1226 /* 32bit TXE */
1227 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1228 CNTR_ELEM(#name, \
1229 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1230 	  0, flags | CNTR_32BIT, \
1231 	  port_access_u32_csr)
1232 
1233 /* 64bit TXE */
1234 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1235 CNTR_ELEM(#name, \
1236 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1237 	  0, flags, \
1238 	  port_access_u64_csr)
1239 
1240 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1241 CNTR_ELEM(#name,\
1242 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1243 	  0, \
1244 	  flags, \
1245 	  dev_access_u64_csr)
1246 
1247 /* CCE */
1248 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1251 	  0, flags | CNTR_32BIT, \
1252 	  dev_access_u32_csr)
1253 
1254 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name, \
1256 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1257 	  0, flags | CNTR_32BIT, \
1258 	  dev_access_u32_csr)
1259 
1260 /* DC */
1261 #define DC_PERF_CNTR(name, counter, flags) \
1262 CNTR_ELEM(#name, \
1263 	  counter, \
1264 	  0, \
1265 	  flags, \
1266 	  dev_access_u64_csr)
1267 
1268 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  counter, \
1271 	  0, \
1272 	  flags, \
1273 	  dc_access_lcb_cntr)
1274 
1275 /* ibp counters */
1276 #define SW_IBP_CNTR(name, cntr) \
1277 CNTR_ELEM(#name, \
1278 	  0, \
1279 	  0, \
1280 	  CNTR_SYNTH, \
1281 	  access_ibp_##cntr)
1282 
1283 /**
1284  * hfi1_addr_from_offset - return addr for readq/writeq
1285  * @dd: the dd device
1286  * @offset: the offset of the CSR within bar0
1287  *
1288  * This routine selects the appropriate base address
1289  * based on the indicated offset.
1290  */
1291 static inline void __iomem *hfi1_addr_from_offset(
1292 	const struct hfi1_devdata *dd,
1293 	u32 offset)
1294 {
1295 	if (offset >= dd->base2_start)
1296 		return dd->kregbase2 + (offset - dd->base2_start);
1297 	return dd->kregbase1 + offset;
1298 }
1299 
1300 /**
1301  * read_csr - read CSR at the indicated offset
1302  * @dd: the dd device
1303  * @offset: the offset of the CSR within bar0
1304  *
1305  * Return: the value read or all FF's if there
1306  * is no mapping
1307  */
1308 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1309 {
1310 	if (dd->flags & HFI1_PRESENT)
1311 		return readq(hfi1_addr_from_offset(dd, offset));
1312 	return -1;
1313 }
1314 
1315 /**
1316  * write_csr - write CSR at the indicated offset
1317  * @dd: the dd device
1318  * @offset: the offset of the CSR within bar0
1319  * @value: value to write
1320  */
1321 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1322 {
1323 	if (dd->flags & HFI1_PRESENT) {
1324 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1325 
1326 		/* avoid write to RcvArray */
1327 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1328 			return;
1329 		writeq(value, base);
1330 	}
1331 }
1332 
1333 /**
1334  * get_csr_addr - return te iomem address for offset
1335  * @dd: the dd device
1336  * @offset: the offset of the CSR within bar0
1337  *
1338  * Return: The iomem address to use in subsequent
1339  * writeq/readq operations.
1340  */
1341 void __iomem *get_csr_addr(
1342 	const struct hfi1_devdata *dd,
1343 	u32 offset)
1344 {
1345 	if (dd->flags & HFI1_PRESENT)
1346 		return hfi1_addr_from_offset(dd, offset);
1347 	return NULL;
1348 }
1349 
1350 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1351 				 int mode, u64 value)
1352 {
1353 	u64 ret;
1354 
1355 	if (mode == CNTR_MODE_R) {
1356 		ret = read_csr(dd, csr);
1357 	} else if (mode == CNTR_MODE_W) {
1358 		write_csr(dd, csr, value);
1359 		ret = value;
1360 	} else {
1361 		dd_dev_err(dd, "Invalid cntr register access mode");
1362 		return 0;
1363 	}
1364 
1365 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1366 	return ret;
1367 }
1368 
1369 /* Dev Access */
1370 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1371 			      void *context, int vl, int mode, u64 data)
1372 {
1373 	struct hfi1_devdata *dd = context;
1374 	u64 csr = entry->csr;
1375 
1376 	if (entry->flags & CNTR_SDMA) {
1377 		if (vl == CNTR_INVALID_VL)
1378 			return 0;
1379 		csr += 0x100 * vl;
1380 	} else {
1381 		if (vl != CNTR_INVALID_VL)
1382 			return 0;
1383 	}
1384 	return read_write_csr(dd, csr, mode, data);
1385 }
1386 
1387 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1388 			      void *context, int idx, int mode, u64 data)
1389 {
1390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1391 
1392 	if (dd->per_sdma && idx < dd->num_sdma)
1393 		return dd->per_sdma[idx].err_cnt;
1394 	return 0;
1395 }
1396 
1397 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1398 			      void *context, int idx, int mode, u64 data)
1399 {
1400 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1401 
1402 	if (dd->per_sdma && idx < dd->num_sdma)
1403 		return dd->per_sdma[idx].sdma_int_cnt;
1404 	return 0;
1405 }
1406 
1407 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1408 				   void *context, int idx, int mode, u64 data)
1409 {
1410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1411 
1412 	if (dd->per_sdma && idx < dd->num_sdma)
1413 		return dd->per_sdma[idx].idle_int_cnt;
1414 	return 0;
1415 }
1416 
1417 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1418 				       void *context, int idx, int mode,
1419 				       u64 data)
1420 {
1421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422 
1423 	if (dd->per_sdma && idx < dd->num_sdma)
1424 		return dd->per_sdma[idx].progress_int_cnt;
1425 	return 0;
1426 }
1427 
1428 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1429 			      int vl, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = context;
1432 
1433 	u64 val = 0;
1434 	u64 csr = entry->csr;
1435 
1436 	if (entry->flags & CNTR_VL) {
1437 		if (vl == CNTR_INVALID_VL)
1438 			return 0;
1439 		csr += 8 * vl;
1440 	} else {
1441 		if (vl != CNTR_INVALID_VL)
1442 			return 0;
1443 	}
1444 
1445 	val = read_write_csr(dd, csr, mode, data);
1446 	return val;
1447 }
1448 
1449 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1450 			      int vl, int mode, u64 data)
1451 {
1452 	struct hfi1_devdata *dd = context;
1453 	u32 csr = entry->csr;
1454 	int ret = 0;
1455 
1456 	if (vl != CNTR_INVALID_VL)
1457 		return 0;
1458 	if (mode == CNTR_MODE_R)
1459 		ret = read_lcb_csr(dd, csr, &data);
1460 	else if (mode == CNTR_MODE_W)
1461 		ret = write_lcb_csr(dd, csr, data);
1462 
1463 	if (ret) {
1464 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1465 		return 0;
1466 	}
1467 
1468 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1469 	return data;
1470 }
1471 
1472 /* Port Access */
1473 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1474 			       int vl, int mode, u64 data)
1475 {
1476 	struct hfi1_pportdata *ppd = context;
1477 
1478 	if (vl != CNTR_INVALID_VL)
1479 		return 0;
1480 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1481 }
1482 
1483 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1484 			       void *context, int vl, int mode, u64 data)
1485 {
1486 	struct hfi1_pportdata *ppd = context;
1487 	u64 val;
1488 	u64 csr = entry->csr;
1489 
1490 	if (entry->flags & CNTR_VL) {
1491 		if (vl == CNTR_INVALID_VL)
1492 			return 0;
1493 		csr += 8 * vl;
1494 	} else {
1495 		if (vl != CNTR_INVALID_VL)
1496 			return 0;
1497 	}
1498 	val = read_write_csr(ppd->dd, csr, mode, data);
1499 	return val;
1500 }
1501 
1502 /* Software defined */
1503 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1504 				u64 data)
1505 {
1506 	u64 ret;
1507 
1508 	if (mode == CNTR_MODE_R) {
1509 		ret = *cntr;
1510 	} else if (mode == CNTR_MODE_W) {
1511 		*cntr = data;
1512 		ret = data;
1513 	} else {
1514 		dd_dev_err(dd, "Invalid cntr sw access mode");
1515 		return 0;
1516 	}
1517 
1518 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1519 
1520 	return ret;
1521 }
1522 
1523 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1524 				 int vl, int mode, u64 data)
1525 {
1526 	struct hfi1_pportdata *ppd = context;
1527 
1528 	if (vl != CNTR_INVALID_VL)
1529 		return 0;
1530 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1531 }
1532 
1533 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1534 				 int vl, int mode, u64 data)
1535 {
1536 	struct hfi1_pportdata *ppd = context;
1537 
1538 	if (vl != CNTR_INVALID_VL)
1539 		return 0;
1540 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1541 }
1542 
1543 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1544 				       void *context, int vl, int mode,
1545 				       u64 data)
1546 {
1547 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1548 
1549 	if (vl != CNTR_INVALID_VL)
1550 		return 0;
1551 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1552 }
1553 
1554 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1555 				   void *context, int vl, int mode, u64 data)
1556 {
1557 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1558 	u64 zero = 0;
1559 	u64 *counter;
1560 
1561 	if (vl == CNTR_INVALID_VL)
1562 		counter = &ppd->port_xmit_discards;
1563 	else if (vl >= 0 && vl < C_VL_COUNT)
1564 		counter = &ppd->port_xmit_discards_vl[vl];
1565 	else
1566 		counter = &zero;
1567 
1568 	return read_write_sw(ppd->dd, counter, mode, data);
1569 }
1570 
1571 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1572 				       void *context, int vl, int mode,
1573 				       u64 data)
1574 {
1575 	struct hfi1_pportdata *ppd = context;
1576 
1577 	if (vl != CNTR_INVALID_VL)
1578 		return 0;
1579 
1580 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1581 			     mode, data);
1582 }
1583 
1584 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1585 				      void *context, int vl, int mode, u64 data)
1586 {
1587 	struct hfi1_pportdata *ppd = context;
1588 
1589 	if (vl != CNTR_INVALID_VL)
1590 		return 0;
1591 
1592 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1593 			     mode, data);
1594 }
1595 
1596 u64 get_all_cpu_total(u64 __percpu *cntr)
1597 {
1598 	int cpu;
1599 	u64 counter = 0;
1600 
1601 	for_each_possible_cpu(cpu)
1602 		counter += *per_cpu_ptr(cntr, cpu);
1603 	return counter;
1604 }
1605 
1606 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1607 			  u64 __percpu *cntr,
1608 			  int vl, int mode, u64 data)
1609 {
1610 	u64 ret = 0;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	if (mode == CNTR_MODE_R) {
1616 		ret = get_all_cpu_total(cntr) - *z_val;
1617 	} else if (mode == CNTR_MODE_W) {
1618 		/* A write can only zero the counter */
1619 		if (data == 0)
1620 			*z_val = get_all_cpu_total(cntr);
1621 		else
1622 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1623 	} else {
1624 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1625 		return 0;
1626 	}
1627 
1628 	return ret;
1629 }
1630 
1631 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1632 			      void *context, int vl, int mode, u64 data)
1633 {
1634 	struct hfi1_devdata *dd = context;
1635 
1636 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1637 			      mode, data);
1638 }
1639 
1640 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1641 				   void *context, int vl, int mode, u64 data)
1642 {
1643 	struct hfi1_devdata *dd = context;
1644 
1645 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1646 			      mode, data);
1647 }
1648 
1649 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1650 			      void *context, int vl, int mode, u64 data)
1651 {
1652 	struct hfi1_devdata *dd = context;
1653 
1654 	return dd->verbs_dev.n_piowait;
1655 }
1656 
1657 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1658 			       void *context, int vl, int mode, u64 data)
1659 {
1660 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1661 
1662 	return dd->verbs_dev.n_piodrain;
1663 }
1664 
1665 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1666 				   void *context, int vl, int mode, u64 data)
1667 {
1668 	struct hfi1_devdata *dd = context;
1669 
1670 	return dd->ctx0_seq_drop;
1671 }
1672 
1673 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1674 			      void *context, int vl, int mode, u64 data)
1675 {
1676 	struct hfi1_devdata *dd = context;
1677 
1678 	return dd->verbs_dev.n_txwait;
1679 }
1680 
1681 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1682 			       void *context, int vl, int mode, u64 data)
1683 {
1684 	struct hfi1_devdata *dd = context;
1685 
1686 	return dd->verbs_dev.n_kmem_wait;
1687 }
1688 
1689 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1690 				   void *context, int vl, int mode, u64 data)
1691 {
1692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1693 
1694 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1695 			      mode, data);
1696 }
1697 
1698 /* Software counters for the error status bits within MISC_ERR_STATUS */
1699 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1700 					     void *context, int vl, int mode,
1701 					     u64 data)
1702 {
1703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1704 
1705 	return dd->misc_err_status_cnt[12];
1706 }
1707 
1708 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1709 					  void *context, int vl, int mode,
1710 					  u64 data)
1711 {
1712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1713 
1714 	return dd->misc_err_status_cnt[11];
1715 }
1716 
1717 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1718 					       void *context, int vl, int mode,
1719 					       u64 data)
1720 {
1721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1722 
1723 	return dd->misc_err_status_cnt[10];
1724 }
1725 
1726 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1727 						 void *context, int vl,
1728 						 int mode, u64 data)
1729 {
1730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1731 
1732 	return dd->misc_err_status_cnt[9];
1733 }
1734 
1735 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1736 					   void *context, int vl, int mode,
1737 					   u64 data)
1738 {
1739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1740 
1741 	return dd->misc_err_status_cnt[8];
1742 }
1743 
1744 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1745 				const struct cntr_entry *entry,
1746 				void *context, int vl, int mode, u64 data)
1747 {
1748 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1749 
1750 	return dd->misc_err_status_cnt[7];
1751 }
1752 
1753 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1754 						void *context, int vl,
1755 						int mode, u64 data)
1756 {
1757 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1758 
1759 	return dd->misc_err_status_cnt[6];
1760 }
1761 
1762 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1763 					      void *context, int vl, int mode,
1764 					      u64 data)
1765 {
1766 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1767 
1768 	return dd->misc_err_status_cnt[5];
1769 }
1770 
1771 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1772 					    void *context, int vl, int mode,
1773 					    u64 data)
1774 {
1775 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1776 
1777 	return dd->misc_err_status_cnt[4];
1778 }
1779 
1780 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1781 						 void *context, int vl,
1782 						 int mode, u64 data)
1783 {
1784 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785 
1786 	return dd->misc_err_status_cnt[3];
1787 }
1788 
1789 static u64 access_misc_csr_write_bad_addr_err_cnt(
1790 				const struct cntr_entry *entry,
1791 				void *context, int vl, int mode, u64 data)
1792 {
1793 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1794 
1795 	return dd->misc_err_status_cnt[2];
1796 }
1797 
1798 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1799 						 void *context, int vl,
1800 						 int mode, u64 data)
1801 {
1802 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1803 
1804 	return dd->misc_err_status_cnt[1];
1805 }
1806 
1807 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1808 					  void *context, int vl, int mode,
1809 					  u64 data)
1810 {
1811 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1812 
1813 	return dd->misc_err_status_cnt[0];
1814 }
1815 
1816 /*
1817  * Software counter for the aggregate of
1818  * individual CceErrStatus counters
1819  */
1820 static u64 access_sw_cce_err_status_aggregated_cnt(
1821 				const struct cntr_entry *entry,
1822 				void *context, int vl, int mode, u64 data)
1823 {
1824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825 
1826 	return dd->sw_cce_err_status_aggregate;
1827 }
1828 
1829 /*
1830  * Software counters corresponding to each of the
1831  * error status bits within CceErrStatus
1832  */
1833 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1834 					      void *context, int vl, int mode,
1835 					      u64 data)
1836 {
1837 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1838 
1839 	return dd->cce_err_status_cnt[40];
1840 }
1841 
1842 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1843 					  void *context, int vl, int mode,
1844 					  u64 data)
1845 {
1846 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1847 
1848 	return dd->cce_err_status_cnt[39];
1849 }
1850 
1851 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1852 					  void *context, int vl, int mode,
1853 					  u64 data)
1854 {
1855 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1856 
1857 	return dd->cce_err_status_cnt[38];
1858 }
1859 
1860 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1861 					     void *context, int vl, int mode,
1862 					     u64 data)
1863 {
1864 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1865 
1866 	return dd->cce_err_status_cnt[37];
1867 }
1868 
1869 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1870 					     void *context, int vl, int mode,
1871 					     u64 data)
1872 {
1873 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1874 
1875 	return dd->cce_err_status_cnt[36];
1876 }
1877 
1878 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1879 				const struct cntr_entry *entry,
1880 				void *context, int vl, int mode, u64 data)
1881 {
1882 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1883 
1884 	return dd->cce_err_status_cnt[35];
1885 }
1886 
1887 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1888 				const struct cntr_entry *entry,
1889 				void *context, int vl, int mode, u64 data)
1890 {
1891 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1892 
1893 	return dd->cce_err_status_cnt[34];
1894 }
1895 
1896 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1897 						 void *context, int vl,
1898 						 int mode, u64 data)
1899 {
1900 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1901 
1902 	return dd->cce_err_status_cnt[33];
1903 }
1904 
1905 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1906 						void *context, int vl, int mode,
1907 						u64 data)
1908 {
1909 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1910 
1911 	return dd->cce_err_status_cnt[32];
1912 }
1913 
1914 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1915 				   void *context, int vl, int mode, u64 data)
1916 {
1917 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1918 
1919 	return dd->cce_err_status_cnt[31];
1920 }
1921 
1922 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1923 					       void *context, int vl, int mode,
1924 					       u64 data)
1925 {
1926 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1927 
1928 	return dd->cce_err_status_cnt[30];
1929 }
1930 
1931 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1932 					      void *context, int vl, int mode,
1933 					      u64 data)
1934 {
1935 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1936 
1937 	return dd->cce_err_status_cnt[29];
1938 }
1939 
1940 static u64 access_pcic_transmit_back_parity_err_cnt(
1941 				const struct cntr_entry *entry,
1942 				void *context, int vl, int mode, u64 data)
1943 {
1944 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1945 
1946 	return dd->cce_err_status_cnt[28];
1947 }
1948 
1949 static u64 access_pcic_transmit_front_parity_err_cnt(
1950 				const struct cntr_entry *entry,
1951 				void *context, int vl, int mode, u64 data)
1952 {
1953 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1954 
1955 	return dd->cce_err_status_cnt[27];
1956 }
1957 
1958 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1959 					     void *context, int vl, int mode,
1960 					     u64 data)
1961 {
1962 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1963 
1964 	return dd->cce_err_status_cnt[26];
1965 }
1966 
1967 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1968 					    void *context, int vl, int mode,
1969 					    u64 data)
1970 {
1971 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1972 
1973 	return dd->cce_err_status_cnt[25];
1974 }
1975 
1976 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1977 					      void *context, int vl, int mode,
1978 					      u64 data)
1979 {
1980 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1981 
1982 	return dd->cce_err_status_cnt[24];
1983 }
1984 
1985 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1986 					     void *context, int vl, int mode,
1987 					     u64 data)
1988 {
1989 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1990 
1991 	return dd->cce_err_status_cnt[23];
1992 }
1993 
1994 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1995 						 void *context, int vl,
1996 						 int mode, u64 data)
1997 {
1998 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1999 
2000 	return dd->cce_err_status_cnt[22];
2001 }
2002 
2003 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2004 					 void *context, int vl, int mode,
2005 					 u64 data)
2006 {
2007 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2008 
2009 	return dd->cce_err_status_cnt[21];
2010 }
2011 
2012 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2013 				const struct cntr_entry *entry,
2014 				void *context, int vl, int mode, u64 data)
2015 {
2016 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2017 
2018 	return dd->cce_err_status_cnt[20];
2019 }
2020 
2021 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2022 						 void *context, int vl,
2023 						 int mode, u64 data)
2024 {
2025 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2026 
2027 	return dd->cce_err_status_cnt[19];
2028 }
2029 
2030 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2031 					     void *context, int vl, int mode,
2032 					     u64 data)
2033 {
2034 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2035 
2036 	return dd->cce_err_status_cnt[18];
2037 }
2038 
2039 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2040 					    void *context, int vl, int mode,
2041 					    u64 data)
2042 {
2043 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2044 
2045 	return dd->cce_err_status_cnt[17];
2046 }
2047 
2048 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2049 					      void *context, int vl, int mode,
2050 					      u64 data)
2051 {
2052 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2053 
2054 	return dd->cce_err_status_cnt[16];
2055 }
2056 
2057 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2058 					     void *context, int vl, int mode,
2059 					     u64 data)
2060 {
2061 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2062 
2063 	return dd->cce_err_status_cnt[15];
2064 }
2065 
2066 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2067 						 void *context, int vl,
2068 						 int mode, u64 data)
2069 {
2070 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2071 
2072 	return dd->cce_err_status_cnt[14];
2073 }
2074 
2075 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2076 					     void *context, int vl, int mode,
2077 					     u64 data)
2078 {
2079 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2080 
2081 	return dd->cce_err_status_cnt[13];
2082 }
2083 
2084 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2085 				const struct cntr_entry *entry,
2086 				void *context, int vl, int mode, u64 data)
2087 {
2088 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2089 
2090 	return dd->cce_err_status_cnt[12];
2091 }
2092 
2093 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2094 				const struct cntr_entry *entry,
2095 				void *context, int vl, int mode, u64 data)
2096 {
2097 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2098 
2099 	return dd->cce_err_status_cnt[11];
2100 }
2101 
2102 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2103 				const struct cntr_entry *entry,
2104 				void *context, int vl, int mode, u64 data)
2105 {
2106 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2107 
2108 	return dd->cce_err_status_cnt[10];
2109 }
2110 
2111 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2112 				const struct cntr_entry *entry,
2113 				void *context, int vl, int mode, u64 data)
2114 {
2115 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2116 
2117 	return dd->cce_err_status_cnt[9];
2118 }
2119 
2120 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2121 				const struct cntr_entry *entry,
2122 				void *context, int vl, int mode, u64 data)
2123 {
2124 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2125 
2126 	return dd->cce_err_status_cnt[8];
2127 }
2128 
2129 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2130 						 void *context, int vl,
2131 						 int mode, u64 data)
2132 {
2133 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2134 
2135 	return dd->cce_err_status_cnt[7];
2136 }
2137 
2138 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2139 				const struct cntr_entry *entry,
2140 				void *context, int vl, int mode, u64 data)
2141 {
2142 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2143 
2144 	return dd->cce_err_status_cnt[6];
2145 }
2146 
2147 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2148 					       void *context, int vl, int mode,
2149 					       u64 data)
2150 {
2151 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2152 
2153 	return dd->cce_err_status_cnt[5];
2154 }
2155 
2156 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2157 					  void *context, int vl, int mode,
2158 					  u64 data)
2159 {
2160 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2161 
2162 	return dd->cce_err_status_cnt[4];
2163 }
2164 
2165 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2166 				const struct cntr_entry *entry,
2167 				void *context, int vl, int mode, u64 data)
2168 {
2169 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2170 
2171 	return dd->cce_err_status_cnt[3];
2172 }
2173 
2174 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2175 						 void *context, int vl,
2176 						 int mode, u64 data)
2177 {
2178 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2179 
2180 	return dd->cce_err_status_cnt[2];
2181 }
2182 
2183 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2184 						void *context, int vl,
2185 						int mode, u64 data)
2186 {
2187 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2188 
2189 	return dd->cce_err_status_cnt[1];
2190 }
2191 
2192 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2193 					 void *context, int vl, int mode,
2194 					 u64 data)
2195 {
2196 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2197 
2198 	return dd->cce_err_status_cnt[0];
2199 }
2200 
2201 /*
2202  * Software counters corresponding to each of the
2203  * error status bits within RcvErrStatus
2204  */
2205 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2206 					void *context, int vl, int mode,
2207 					u64 data)
2208 {
2209 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2210 
2211 	return dd->rcv_err_status_cnt[63];
2212 }
2213 
2214 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2215 						void *context, int vl,
2216 						int mode, u64 data)
2217 {
2218 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2219 
2220 	return dd->rcv_err_status_cnt[62];
2221 }
2222 
2223 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2224 					       void *context, int vl, int mode,
2225 					       u64 data)
2226 {
2227 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2228 
2229 	return dd->rcv_err_status_cnt[61];
2230 }
2231 
2232 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2233 					 void *context, int vl, int mode,
2234 					 u64 data)
2235 {
2236 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2237 
2238 	return dd->rcv_err_status_cnt[60];
2239 }
2240 
2241 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2242 						 void *context, int vl,
2243 						 int mode, u64 data)
2244 {
2245 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2246 
2247 	return dd->rcv_err_status_cnt[59];
2248 }
2249 
2250 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2251 						 void *context, int vl,
2252 						 int mode, u64 data)
2253 {
2254 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2255 
2256 	return dd->rcv_err_status_cnt[58];
2257 }
2258 
2259 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2260 					    void *context, int vl, int mode,
2261 					    u64 data)
2262 {
2263 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2264 
2265 	return dd->rcv_err_status_cnt[57];
2266 }
2267 
2268 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2269 					   void *context, int vl, int mode,
2270 					   u64 data)
2271 {
2272 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2273 
2274 	return dd->rcv_err_status_cnt[56];
2275 }
2276 
2277 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2278 					   void *context, int vl, int mode,
2279 					   u64 data)
2280 {
2281 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2282 
2283 	return dd->rcv_err_status_cnt[55];
2284 }
2285 
2286 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2287 				const struct cntr_entry *entry,
2288 				void *context, int vl, int mode, u64 data)
2289 {
2290 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2291 
2292 	return dd->rcv_err_status_cnt[54];
2293 }
2294 
2295 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2296 				const struct cntr_entry *entry,
2297 				void *context, int vl, int mode, u64 data)
2298 {
2299 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2300 
2301 	return dd->rcv_err_status_cnt[53];
2302 }
2303 
2304 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2305 						 void *context, int vl,
2306 						 int mode, u64 data)
2307 {
2308 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2309 
2310 	return dd->rcv_err_status_cnt[52];
2311 }
2312 
2313 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2314 						 void *context, int vl,
2315 						 int mode, u64 data)
2316 {
2317 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2318 
2319 	return dd->rcv_err_status_cnt[51];
2320 }
2321 
2322 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2323 						 void *context, int vl,
2324 						 int mode, u64 data)
2325 {
2326 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2327 
2328 	return dd->rcv_err_status_cnt[50];
2329 }
2330 
2331 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2332 						 void *context, int vl,
2333 						 int mode, u64 data)
2334 {
2335 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2336 
2337 	return dd->rcv_err_status_cnt[49];
2338 }
2339 
2340 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2341 						 void *context, int vl,
2342 						 int mode, u64 data)
2343 {
2344 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2345 
2346 	return dd->rcv_err_status_cnt[48];
2347 }
2348 
2349 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2350 						 void *context, int vl,
2351 						 int mode, u64 data)
2352 {
2353 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2354 
2355 	return dd->rcv_err_status_cnt[47];
2356 }
2357 
2358 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2359 					 void *context, int vl, int mode,
2360 					 u64 data)
2361 {
2362 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2363 
2364 	return dd->rcv_err_status_cnt[46];
2365 }
2366 
2367 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2368 				const struct cntr_entry *entry,
2369 				void *context, int vl, int mode, u64 data)
2370 {
2371 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2372 
2373 	return dd->rcv_err_status_cnt[45];
2374 }
2375 
2376 static u64 access_rx_lookup_csr_parity_err_cnt(
2377 				const struct cntr_entry *entry,
2378 				void *context, int vl, int mode, u64 data)
2379 {
2380 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2381 
2382 	return dd->rcv_err_status_cnt[44];
2383 }
2384 
2385 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2386 				const struct cntr_entry *entry,
2387 				void *context, int vl, int mode, u64 data)
2388 {
2389 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2390 
2391 	return dd->rcv_err_status_cnt[43];
2392 }
2393 
2394 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2395 				const struct cntr_entry *entry,
2396 				void *context, int vl, int mode, u64 data)
2397 {
2398 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2399 
2400 	return dd->rcv_err_status_cnt[42];
2401 }
2402 
2403 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2404 				const struct cntr_entry *entry,
2405 				void *context, int vl, int mode, u64 data)
2406 {
2407 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2408 
2409 	return dd->rcv_err_status_cnt[41];
2410 }
2411 
2412 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2413 				const struct cntr_entry *entry,
2414 				void *context, int vl, int mode, u64 data)
2415 {
2416 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2417 
2418 	return dd->rcv_err_status_cnt[40];
2419 }
2420 
2421 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2422 				const struct cntr_entry *entry,
2423 				void *context, int vl, int mode, u64 data)
2424 {
2425 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2426 
2427 	return dd->rcv_err_status_cnt[39];
2428 }
2429 
2430 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2431 				const struct cntr_entry *entry,
2432 				void *context, int vl, int mode, u64 data)
2433 {
2434 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2435 
2436 	return dd->rcv_err_status_cnt[38];
2437 }
2438 
2439 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2440 				const struct cntr_entry *entry,
2441 				void *context, int vl, int mode, u64 data)
2442 {
2443 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2444 
2445 	return dd->rcv_err_status_cnt[37];
2446 }
2447 
2448 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2449 				const struct cntr_entry *entry,
2450 				void *context, int vl, int mode, u64 data)
2451 {
2452 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2453 
2454 	return dd->rcv_err_status_cnt[36];
2455 }
2456 
2457 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2458 				const struct cntr_entry *entry,
2459 				void *context, int vl, int mode, u64 data)
2460 {
2461 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2462 
2463 	return dd->rcv_err_status_cnt[35];
2464 }
2465 
2466 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2467 				const struct cntr_entry *entry,
2468 				void *context, int vl, int mode, u64 data)
2469 {
2470 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2471 
2472 	return dd->rcv_err_status_cnt[34];
2473 }
2474 
2475 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2476 				const struct cntr_entry *entry,
2477 				void *context, int vl, int mode, u64 data)
2478 {
2479 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2480 
2481 	return dd->rcv_err_status_cnt[33];
2482 }
2483 
2484 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2485 					void *context, int vl, int mode,
2486 					u64 data)
2487 {
2488 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2489 
2490 	return dd->rcv_err_status_cnt[32];
2491 }
2492 
2493 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2494 				       void *context, int vl, int mode,
2495 				       u64 data)
2496 {
2497 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2498 
2499 	return dd->rcv_err_status_cnt[31];
2500 }
2501 
2502 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2503 					  void *context, int vl, int mode,
2504 					  u64 data)
2505 {
2506 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2507 
2508 	return dd->rcv_err_status_cnt[30];
2509 }
2510 
2511 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2512 					     void *context, int vl, int mode,
2513 					     u64 data)
2514 {
2515 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2516 
2517 	return dd->rcv_err_status_cnt[29];
2518 }
2519 
2520 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2521 						 void *context, int vl,
2522 						 int mode, u64 data)
2523 {
2524 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2525 
2526 	return dd->rcv_err_status_cnt[28];
2527 }
2528 
2529 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2530 				const struct cntr_entry *entry,
2531 				void *context, int vl, int mode, u64 data)
2532 {
2533 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2534 
2535 	return dd->rcv_err_status_cnt[27];
2536 }
2537 
2538 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2539 				const struct cntr_entry *entry,
2540 				void *context, int vl, int mode, u64 data)
2541 {
2542 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2543 
2544 	return dd->rcv_err_status_cnt[26];
2545 }
2546 
2547 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2548 				const struct cntr_entry *entry,
2549 				void *context, int vl, int mode, u64 data)
2550 {
2551 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2552 
2553 	return dd->rcv_err_status_cnt[25];
2554 }
2555 
2556 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2557 				const struct cntr_entry *entry,
2558 				void *context, int vl, int mode, u64 data)
2559 {
2560 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2561 
2562 	return dd->rcv_err_status_cnt[24];
2563 }
2564 
2565 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2566 				const struct cntr_entry *entry,
2567 				void *context, int vl, int mode, u64 data)
2568 {
2569 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2570 
2571 	return dd->rcv_err_status_cnt[23];
2572 }
2573 
2574 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2575 				const struct cntr_entry *entry,
2576 				void *context, int vl, int mode, u64 data)
2577 {
2578 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2579 
2580 	return dd->rcv_err_status_cnt[22];
2581 }
2582 
2583 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2584 				const struct cntr_entry *entry,
2585 				void *context, int vl, int mode, u64 data)
2586 {
2587 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2588 
2589 	return dd->rcv_err_status_cnt[21];
2590 }
2591 
2592 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2593 				const struct cntr_entry *entry,
2594 				void *context, int vl, int mode, u64 data)
2595 {
2596 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2597 
2598 	return dd->rcv_err_status_cnt[20];
2599 }
2600 
2601 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2602 				const struct cntr_entry *entry,
2603 				void *context, int vl, int mode, u64 data)
2604 {
2605 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2606 
2607 	return dd->rcv_err_status_cnt[19];
2608 }
2609 
2610 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2611 						 void *context, int vl,
2612 						 int mode, u64 data)
2613 {
2614 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2615 
2616 	return dd->rcv_err_status_cnt[18];
2617 }
2618 
2619 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2620 						 void *context, int vl,
2621 						 int mode, u64 data)
2622 {
2623 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2624 
2625 	return dd->rcv_err_status_cnt[17];
2626 }
2627 
2628 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2629 				const struct cntr_entry *entry,
2630 				void *context, int vl, int mode, u64 data)
2631 {
2632 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2633 
2634 	return dd->rcv_err_status_cnt[16];
2635 }
2636 
2637 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2638 				const struct cntr_entry *entry,
2639 				void *context, int vl, int mode, u64 data)
2640 {
2641 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2642 
2643 	return dd->rcv_err_status_cnt[15];
2644 }
2645 
2646 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2647 						void *context, int vl,
2648 						int mode, u64 data)
2649 {
2650 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2651 
2652 	return dd->rcv_err_status_cnt[14];
2653 }
2654 
2655 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2656 						void *context, int vl,
2657 						int mode, u64 data)
2658 {
2659 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2660 
2661 	return dd->rcv_err_status_cnt[13];
2662 }
2663 
2664 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2665 					      void *context, int vl, int mode,
2666 					      u64 data)
2667 {
2668 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2669 
2670 	return dd->rcv_err_status_cnt[12];
2671 }
2672 
2673 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2674 					  void *context, int vl, int mode,
2675 					  u64 data)
2676 {
2677 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2678 
2679 	return dd->rcv_err_status_cnt[11];
2680 }
2681 
2682 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2683 					  void *context, int vl, int mode,
2684 					  u64 data)
2685 {
2686 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2687 
2688 	return dd->rcv_err_status_cnt[10];
2689 }
2690 
2691 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2692 					       void *context, int vl, int mode,
2693 					       u64 data)
2694 {
2695 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2696 
2697 	return dd->rcv_err_status_cnt[9];
2698 }
2699 
2700 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2701 					    void *context, int vl, int mode,
2702 					    u64 data)
2703 {
2704 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2705 
2706 	return dd->rcv_err_status_cnt[8];
2707 }
2708 
2709 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2710 				const struct cntr_entry *entry,
2711 				void *context, int vl, int mode, u64 data)
2712 {
2713 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2714 
2715 	return dd->rcv_err_status_cnt[7];
2716 }
2717 
2718 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2719 				const struct cntr_entry *entry,
2720 				void *context, int vl, int mode, u64 data)
2721 {
2722 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2723 
2724 	return dd->rcv_err_status_cnt[6];
2725 }
2726 
2727 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2728 					  void *context, int vl, int mode,
2729 					  u64 data)
2730 {
2731 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2732 
2733 	return dd->rcv_err_status_cnt[5];
2734 }
2735 
2736 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2737 					  void *context, int vl, int mode,
2738 					  u64 data)
2739 {
2740 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2741 
2742 	return dd->rcv_err_status_cnt[4];
2743 }
2744 
2745 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2746 					 void *context, int vl, int mode,
2747 					 u64 data)
2748 {
2749 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2750 
2751 	return dd->rcv_err_status_cnt[3];
2752 }
2753 
2754 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2755 					 void *context, int vl, int mode,
2756 					 u64 data)
2757 {
2758 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2759 
2760 	return dd->rcv_err_status_cnt[2];
2761 }
2762 
2763 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2764 					    void *context, int vl, int mode,
2765 					    u64 data)
2766 {
2767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2768 
2769 	return dd->rcv_err_status_cnt[1];
2770 }
2771 
2772 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2773 					 void *context, int vl, int mode,
2774 					 u64 data)
2775 {
2776 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2777 
2778 	return dd->rcv_err_status_cnt[0];
2779 }
2780 
2781 /*
2782  * Software counters corresponding to each of the
2783  * error status bits within SendPioErrStatus
2784  */
2785 static u64 access_pio_pec_sop_head_parity_err_cnt(
2786 				const struct cntr_entry *entry,
2787 				void *context, int vl, int mode, u64 data)
2788 {
2789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2790 
2791 	return dd->send_pio_err_status_cnt[35];
2792 }
2793 
2794 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2795 				const struct cntr_entry *entry,
2796 				void *context, int vl, int mode, u64 data)
2797 {
2798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2799 
2800 	return dd->send_pio_err_status_cnt[34];
2801 }
2802 
2803 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2804 				const struct cntr_entry *entry,
2805 				void *context, int vl, int mode, u64 data)
2806 {
2807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2808 
2809 	return dd->send_pio_err_status_cnt[33];
2810 }
2811 
2812 static u64 access_pio_current_free_cnt_parity_err_cnt(
2813 				const struct cntr_entry *entry,
2814 				void *context, int vl, int mode, u64 data)
2815 {
2816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2817 
2818 	return dd->send_pio_err_status_cnt[32];
2819 }
2820 
2821 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2822 					  void *context, int vl, int mode,
2823 					  u64 data)
2824 {
2825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2826 
2827 	return dd->send_pio_err_status_cnt[31];
2828 }
2829 
2830 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2831 					  void *context, int vl, int mode,
2832 					  u64 data)
2833 {
2834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2835 
2836 	return dd->send_pio_err_status_cnt[30];
2837 }
2838 
2839 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2840 					   void *context, int vl, int mode,
2841 					   u64 data)
2842 {
2843 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2844 
2845 	return dd->send_pio_err_status_cnt[29];
2846 }
2847 
2848 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2849 				const struct cntr_entry *entry,
2850 				void *context, int vl, int mode, u64 data)
2851 {
2852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2853 
2854 	return dd->send_pio_err_status_cnt[28];
2855 }
2856 
2857 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2858 					     void *context, int vl, int mode,
2859 					     u64 data)
2860 {
2861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2862 
2863 	return dd->send_pio_err_status_cnt[27];
2864 }
2865 
2866 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2867 					     void *context, int vl, int mode,
2868 					     u64 data)
2869 {
2870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2871 
2872 	return dd->send_pio_err_status_cnt[26];
2873 }
2874 
2875 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2876 						void *context, int vl,
2877 						int mode, u64 data)
2878 {
2879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2880 
2881 	return dd->send_pio_err_status_cnt[25];
2882 }
2883 
2884 static u64 access_pio_block_qw_count_parity_err_cnt(
2885 				const struct cntr_entry *entry,
2886 				void *context, int vl, int mode, u64 data)
2887 {
2888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2889 
2890 	return dd->send_pio_err_status_cnt[24];
2891 }
2892 
2893 static u64 access_pio_write_qw_valid_parity_err_cnt(
2894 				const struct cntr_entry *entry,
2895 				void *context, int vl, int mode, u64 data)
2896 {
2897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2898 
2899 	return dd->send_pio_err_status_cnt[23];
2900 }
2901 
2902 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2903 					    void *context, int vl, int mode,
2904 					    u64 data)
2905 {
2906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2907 
2908 	return dd->send_pio_err_status_cnt[22];
2909 }
2910 
2911 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2912 						void *context, int vl,
2913 						int mode, u64 data)
2914 {
2915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2916 
2917 	return dd->send_pio_err_status_cnt[21];
2918 }
2919 
2920 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2921 						void *context, int vl,
2922 						int mode, u64 data)
2923 {
2924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2925 
2926 	return dd->send_pio_err_status_cnt[20];
2927 }
2928 
2929 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2930 						void *context, int vl,
2931 						int mode, u64 data)
2932 {
2933 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2934 
2935 	return dd->send_pio_err_status_cnt[19];
2936 }
2937 
2938 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2939 				const struct cntr_entry *entry,
2940 				void *context, int vl, int mode, u64 data)
2941 {
2942 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2943 
2944 	return dd->send_pio_err_status_cnt[18];
2945 }
2946 
2947 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2948 					 void *context, int vl, int mode,
2949 					 u64 data)
2950 {
2951 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2952 
2953 	return dd->send_pio_err_status_cnt[17];
2954 }
2955 
2956 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2957 					    void *context, int vl, int mode,
2958 					    u64 data)
2959 {
2960 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2961 
2962 	return dd->send_pio_err_status_cnt[16];
2963 }
2964 
2965 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2966 				const struct cntr_entry *entry,
2967 				void *context, int vl, int mode, u64 data)
2968 {
2969 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2970 
2971 	return dd->send_pio_err_status_cnt[15];
2972 }
2973 
2974 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2975 				const struct cntr_entry *entry,
2976 				void *context, int vl, int mode, u64 data)
2977 {
2978 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2979 
2980 	return dd->send_pio_err_status_cnt[14];
2981 }
2982 
2983 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2984 				const struct cntr_entry *entry,
2985 				void *context, int vl, int mode, u64 data)
2986 {
2987 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2988 
2989 	return dd->send_pio_err_status_cnt[13];
2990 }
2991 
2992 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2993 				const struct cntr_entry *entry,
2994 				void *context, int vl, int mode, u64 data)
2995 {
2996 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2997 
2998 	return dd->send_pio_err_status_cnt[12];
2999 }
3000 
3001 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3002 				const struct cntr_entry *entry,
3003 				void *context, int vl, int mode, u64 data)
3004 {
3005 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3006 
3007 	return dd->send_pio_err_status_cnt[11];
3008 }
3009 
3010 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3011 				const struct cntr_entry *entry,
3012 				void *context, int vl, int mode, u64 data)
3013 {
3014 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3015 
3016 	return dd->send_pio_err_status_cnt[10];
3017 }
3018 
3019 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3020 				const struct cntr_entry *entry,
3021 				void *context, int vl, int mode, u64 data)
3022 {
3023 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3024 
3025 	return dd->send_pio_err_status_cnt[9];
3026 }
3027 
3028 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3029 				const struct cntr_entry *entry,
3030 				void *context, int vl, int mode, u64 data)
3031 {
3032 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3033 
3034 	return dd->send_pio_err_status_cnt[8];
3035 }
3036 
3037 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3038 				const struct cntr_entry *entry,
3039 				void *context, int vl, int mode, u64 data)
3040 {
3041 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3042 
3043 	return dd->send_pio_err_status_cnt[7];
3044 }
3045 
3046 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3047 					      void *context, int vl, int mode,
3048 					      u64 data)
3049 {
3050 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3051 
3052 	return dd->send_pio_err_status_cnt[6];
3053 }
3054 
3055 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3056 					      void *context, int vl, int mode,
3057 					      u64 data)
3058 {
3059 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3060 
3061 	return dd->send_pio_err_status_cnt[5];
3062 }
3063 
3064 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3065 					   void *context, int vl, int mode,
3066 					   u64 data)
3067 {
3068 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3069 
3070 	return dd->send_pio_err_status_cnt[4];
3071 }
3072 
3073 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3074 					   void *context, int vl, int mode,
3075 					   u64 data)
3076 {
3077 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3078 
3079 	return dd->send_pio_err_status_cnt[3];
3080 }
3081 
3082 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3083 					 void *context, int vl, int mode,
3084 					 u64 data)
3085 {
3086 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087 
3088 	return dd->send_pio_err_status_cnt[2];
3089 }
3090 
3091 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3092 						void *context, int vl,
3093 						int mode, u64 data)
3094 {
3095 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096 
3097 	return dd->send_pio_err_status_cnt[1];
3098 }
3099 
3100 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3101 					     void *context, int vl, int mode,
3102 					     u64 data)
3103 {
3104 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105 
3106 	return dd->send_pio_err_status_cnt[0];
3107 }
3108 
3109 /*
3110  * Software counters corresponding to each of the
3111  * error status bits within SendDmaErrStatus
3112  */
3113 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3114 				const struct cntr_entry *entry,
3115 				void *context, int vl, int mode, u64 data)
3116 {
3117 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118 
3119 	return dd->send_dma_err_status_cnt[3];
3120 }
3121 
3122 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3123 				const struct cntr_entry *entry,
3124 				void *context, int vl, int mode, u64 data)
3125 {
3126 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3127 
3128 	return dd->send_dma_err_status_cnt[2];
3129 }
3130 
3131 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3132 					  void *context, int vl, int mode,
3133 					  u64 data)
3134 {
3135 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3136 
3137 	return dd->send_dma_err_status_cnt[1];
3138 }
3139 
3140 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3141 				       void *context, int vl, int mode,
3142 				       u64 data)
3143 {
3144 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3145 
3146 	return dd->send_dma_err_status_cnt[0];
3147 }
3148 
3149 /*
3150  * Software counters corresponding to each of the
3151  * error status bits within SendEgressErrStatus
3152  */
3153 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3154 				const struct cntr_entry *entry,
3155 				void *context, int vl, int mode, u64 data)
3156 {
3157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3158 
3159 	return dd->send_egress_err_status_cnt[63];
3160 }
3161 
3162 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3163 				const struct cntr_entry *entry,
3164 				void *context, int vl, int mode, u64 data)
3165 {
3166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3167 
3168 	return dd->send_egress_err_status_cnt[62];
3169 }
3170 
3171 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3172 					     void *context, int vl, int mode,
3173 					     u64 data)
3174 {
3175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3176 
3177 	return dd->send_egress_err_status_cnt[61];
3178 }
3179 
3180 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3181 						 void *context, int vl,
3182 						 int mode, u64 data)
3183 {
3184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3185 
3186 	return dd->send_egress_err_status_cnt[60];
3187 }
3188 
3189 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3190 				const struct cntr_entry *entry,
3191 				void *context, int vl, int mode, u64 data)
3192 {
3193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3194 
3195 	return dd->send_egress_err_status_cnt[59];
3196 }
3197 
3198 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3199 					void *context, int vl, int mode,
3200 					u64 data)
3201 {
3202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3203 
3204 	return dd->send_egress_err_status_cnt[58];
3205 }
3206 
3207 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3208 					    void *context, int vl, int mode,
3209 					    u64 data)
3210 {
3211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3212 
3213 	return dd->send_egress_err_status_cnt[57];
3214 }
3215 
3216 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3217 					      void *context, int vl, int mode,
3218 					      u64 data)
3219 {
3220 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3221 
3222 	return dd->send_egress_err_status_cnt[56];
3223 }
3224 
3225 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3226 					      void *context, int vl, int mode,
3227 					      u64 data)
3228 {
3229 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3230 
3231 	return dd->send_egress_err_status_cnt[55];
3232 }
3233 
3234 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3235 					      void *context, int vl, int mode,
3236 					      u64 data)
3237 {
3238 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3239 
3240 	return dd->send_egress_err_status_cnt[54];
3241 }
3242 
3243 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3244 					      void *context, int vl, int mode,
3245 					      u64 data)
3246 {
3247 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3248 
3249 	return dd->send_egress_err_status_cnt[53];
3250 }
3251 
3252 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3253 					      void *context, int vl, int mode,
3254 					      u64 data)
3255 {
3256 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3257 
3258 	return dd->send_egress_err_status_cnt[52];
3259 }
3260 
3261 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3262 					      void *context, int vl, int mode,
3263 					      u64 data)
3264 {
3265 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3266 
3267 	return dd->send_egress_err_status_cnt[51];
3268 }
3269 
3270 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3271 					      void *context, int vl, int mode,
3272 					      u64 data)
3273 {
3274 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3275 
3276 	return dd->send_egress_err_status_cnt[50];
3277 }
3278 
3279 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3280 					      void *context, int vl, int mode,
3281 					      u64 data)
3282 {
3283 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3284 
3285 	return dd->send_egress_err_status_cnt[49];
3286 }
3287 
3288 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3289 					      void *context, int vl, int mode,
3290 					      u64 data)
3291 {
3292 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3293 
3294 	return dd->send_egress_err_status_cnt[48];
3295 }
3296 
3297 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3298 					      void *context, int vl, int mode,
3299 					      u64 data)
3300 {
3301 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3302 
3303 	return dd->send_egress_err_status_cnt[47];
3304 }
3305 
3306 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3307 					    void *context, int vl, int mode,
3308 					    u64 data)
3309 {
3310 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3311 
3312 	return dd->send_egress_err_status_cnt[46];
3313 }
3314 
3315 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3316 					     void *context, int vl, int mode,
3317 					     u64 data)
3318 {
3319 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3320 
3321 	return dd->send_egress_err_status_cnt[45];
3322 }
3323 
3324 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3325 						 void *context, int vl,
3326 						 int mode, u64 data)
3327 {
3328 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3329 
3330 	return dd->send_egress_err_status_cnt[44];
3331 }
3332 
3333 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3334 				const struct cntr_entry *entry,
3335 				void *context, int vl, int mode, u64 data)
3336 {
3337 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3338 
3339 	return dd->send_egress_err_status_cnt[43];
3340 }
3341 
3342 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3343 					void *context, int vl, int mode,
3344 					u64 data)
3345 {
3346 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3347 
3348 	return dd->send_egress_err_status_cnt[42];
3349 }
3350 
3351 static u64 access_tx_credit_return_partiy_err_cnt(
3352 				const struct cntr_entry *entry,
3353 				void *context, int vl, int mode, u64 data)
3354 {
3355 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3356 
3357 	return dd->send_egress_err_status_cnt[41];
3358 }
3359 
3360 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3361 				const struct cntr_entry *entry,
3362 				void *context, int vl, int mode, u64 data)
3363 {
3364 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3365 
3366 	return dd->send_egress_err_status_cnt[40];
3367 }
3368 
3369 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3370 				const struct cntr_entry *entry,
3371 				void *context, int vl, int mode, u64 data)
3372 {
3373 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3374 
3375 	return dd->send_egress_err_status_cnt[39];
3376 }
3377 
3378 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3379 				const struct cntr_entry *entry,
3380 				void *context, int vl, int mode, u64 data)
3381 {
3382 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3383 
3384 	return dd->send_egress_err_status_cnt[38];
3385 }
3386 
3387 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3388 				const struct cntr_entry *entry,
3389 				void *context, int vl, int mode, u64 data)
3390 {
3391 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3392 
3393 	return dd->send_egress_err_status_cnt[37];
3394 }
3395 
3396 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3397 				const struct cntr_entry *entry,
3398 				void *context, int vl, int mode, u64 data)
3399 {
3400 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3401 
3402 	return dd->send_egress_err_status_cnt[36];
3403 }
3404 
3405 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3406 				const struct cntr_entry *entry,
3407 				void *context, int vl, int mode, u64 data)
3408 {
3409 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3410 
3411 	return dd->send_egress_err_status_cnt[35];
3412 }
3413 
3414 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3415 				const struct cntr_entry *entry,
3416 				void *context, int vl, int mode, u64 data)
3417 {
3418 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3419 
3420 	return dd->send_egress_err_status_cnt[34];
3421 }
3422 
3423 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3424 				const struct cntr_entry *entry,
3425 				void *context, int vl, int mode, u64 data)
3426 {
3427 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3428 
3429 	return dd->send_egress_err_status_cnt[33];
3430 }
3431 
3432 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3433 				const struct cntr_entry *entry,
3434 				void *context, int vl, int mode, u64 data)
3435 {
3436 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3437 
3438 	return dd->send_egress_err_status_cnt[32];
3439 }
3440 
3441 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3442 				const struct cntr_entry *entry,
3443 				void *context, int vl, int mode, u64 data)
3444 {
3445 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3446 
3447 	return dd->send_egress_err_status_cnt[31];
3448 }
3449 
3450 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3451 				const struct cntr_entry *entry,
3452 				void *context, int vl, int mode, u64 data)
3453 {
3454 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3455 
3456 	return dd->send_egress_err_status_cnt[30];
3457 }
3458 
3459 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3460 				const struct cntr_entry *entry,
3461 				void *context, int vl, int mode, u64 data)
3462 {
3463 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3464 
3465 	return dd->send_egress_err_status_cnt[29];
3466 }
3467 
3468 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3469 				const struct cntr_entry *entry,
3470 				void *context, int vl, int mode, u64 data)
3471 {
3472 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3473 
3474 	return dd->send_egress_err_status_cnt[28];
3475 }
3476 
3477 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3478 				const struct cntr_entry *entry,
3479 				void *context, int vl, int mode, u64 data)
3480 {
3481 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3482 
3483 	return dd->send_egress_err_status_cnt[27];
3484 }
3485 
3486 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3487 				const struct cntr_entry *entry,
3488 				void *context, int vl, int mode, u64 data)
3489 {
3490 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3491 
3492 	return dd->send_egress_err_status_cnt[26];
3493 }
3494 
3495 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3496 				const struct cntr_entry *entry,
3497 				void *context, int vl, int mode, u64 data)
3498 {
3499 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3500 
3501 	return dd->send_egress_err_status_cnt[25];
3502 }
3503 
3504 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3505 				const struct cntr_entry *entry,
3506 				void *context, int vl, int mode, u64 data)
3507 {
3508 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3509 
3510 	return dd->send_egress_err_status_cnt[24];
3511 }
3512 
3513 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3514 				const struct cntr_entry *entry,
3515 				void *context, int vl, int mode, u64 data)
3516 {
3517 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3518 
3519 	return dd->send_egress_err_status_cnt[23];
3520 }
3521 
3522 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3523 				const struct cntr_entry *entry,
3524 				void *context, int vl, int mode, u64 data)
3525 {
3526 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3527 
3528 	return dd->send_egress_err_status_cnt[22];
3529 }
3530 
3531 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3532 				const struct cntr_entry *entry,
3533 				void *context, int vl, int mode, u64 data)
3534 {
3535 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3536 
3537 	return dd->send_egress_err_status_cnt[21];
3538 }
3539 
3540 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3541 				const struct cntr_entry *entry,
3542 				void *context, int vl, int mode, u64 data)
3543 {
3544 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3545 
3546 	return dd->send_egress_err_status_cnt[20];
3547 }
3548 
3549 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3550 				const struct cntr_entry *entry,
3551 				void *context, int vl, int mode, u64 data)
3552 {
3553 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3554 
3555 	return dd->send_egress_err_status_cnt[19];
3556 }
3557 
3558 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3559 				const struct cntr_entry *entry,
3560 				void *context, int vl, int mode, u64 data)
3561 {
3562 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3563 
3564 	return dd->send_egress_err_status_cnt[18];
3565 }
3566 
3567 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3568 				const struct cntr_entry *entry,
3569 				void *context, int vl, int mode, u64 data)
3570 {
3571 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3572 
3573 	return dd->send_egress_err_status_cnt[17];
3574 }
3575 
3576 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3577 				const struct cntr_entry *entry,
3578 				void *context, int vl, int mode, u64 data)
3579 {
3580 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3581 
3582 	return dd->send_egress_err_status_cnt[16];
3583 }
3584 
3585 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3586 					   void *context, int vl, int mode,
3587 					   u64 data)
3588 {
3589 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3590 
3591 	return dd->send_egress_err_status_cnt[15];
3592 }
3593 
3594 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3595 						 void *context, int vl,
3596 						 int mode, u64 data)
3597 {
3598 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3599 
3600 	return dd->send_egress_err_status_cnt[14];
3601 }
3602 
3603 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3604 					       void *context, int vl, int mode,
3605 					       u64 data)
3606 {
3607 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3608 
3609 	return dd->send_egress_err_status_cnt[13];
3610 }
3611 
3612 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3613 					void *context, int vl, int mode,
3614 					u64 data)
3615 {
3616 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3617 
3618 	return dd->send_egress_err_status_cnt[12];
3619 }
3620 
3621 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3622 				const struct cntr_entry *entry,
3623 				void *context, int vl, int mode, u64 data)
3624 {
3625 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3626 
3627 	return dd->send_egress_err_status_cnt[11];
3628 }
3629 
3630 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3631 					     void *context, int vl, int mode,
3632 					     u64 data)
3633 {
3634 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3635 
3636 	return dd->send_egress_err_status_cnt[10];
3637 }
3638 
3639 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3640 					    void *context, int vl, int mode,
3641 					    u64 data)
3642 {
3643 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3644 
3645 	return dd->send_egress_err_status_cnt[9];
3646 }
3647 
3648 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3649 				const struct cntr_entry *entry,
3650 				void *context, int vl, int mode, u64 data)
3651 {
3652 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3653 
3654 	return dd->send_egress_err_status_cnt[8];
3655 }
3656 
3657 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3658 				const struct cntr_entry *entry,
3659 				void *context, int vl, int mode, u64 data)
3660 {
3661 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3662 
3663 	return dd->send_egress_err_status_cnt[7];
3664 }
3665 
3666 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3667 					    void *context, int vl, int mode,
3668 					    u64 data)
3669 {
3670 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3671 
3672 	return dd->send_egress_err_status_cnt[6];
3673 }
3674 
3675 static u64 access_tx_incorrect_link_state_err_cnt(
3676 				const struct cntr_entry *entry,
3677 				void *context, int vl, int mode, u64 data)
3678 {
3679 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3680 
3681 	return dd->send_egress_err_status_cnt[5];
3682 }
3683 
3684 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3685 				      void *context, int vl, int mode,
3686 				      u64 data)
3687 {
3688 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3689 
3690 	return dd->send_egress_err_status_cnt[4];
3691 }
3692 
3693 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3694 				const struct cntr_entry *entry,
3695 				void *context, int vl, int mode, u64 data)
3696 {
3697 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698 
3699 	return dd->send_egress_err_status_cnt[3];
3700 }
3701 
3702 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3703 					    void *context, int vl, int mode,
3704 					    u64 data)
3705 {
3706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707 
3708 	return dd->send_egress_err_status_cnt[2];
3709 }
3710 
3711 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3712 				const struct cntr_entry *entry,
3713 				void *context, int vl, int mode, u64 data)
3714 {
3715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716 
3717 	return dd->send_egress_err_status_cnt[1];
3718 }
3719 
3720 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3721 				const struct cntr_entry *entry,
3722 				void *context, int vl, int mode, u64 data)
3723 {
3724 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3725 
3726 	return dd->send_egress_err_status_cnt[0];
3727 }
3728 
3729 /*
3730  * Software counters corresponding to each of the
3731  * error status bits within SendErrStatus
3732  */
3733 static u64 access_send_csr_write_bad_addr_err_cnt(
3734 				const struct cntr_entry *entry,
3735 				void *context, int vl, int mode, u64 data)
3736 {
3737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738 
3739 	return dd->send_err_status_cnt[2];
3740 }
3741 
3742 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3743 						 void *context, int vl,
3744 						 int mode, u64 data)
3745 {
3746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747 
3748 	return dd->send_err_status_cnt[1];
3749 }
3750 
3751 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3752 				      void *context, int vl, int mode,
3753 				      u64 data)
3754 {
3755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756 
3757 	return dd->send_err_status_cnt[0];
3758 }
3759 
3760 /*
3761  * Software counters corresponding to each of the
3762  * error status bits within SendCtxtErrStatus
3763  */
3764 static u64 access_pio_write_out_of_bounds_err_cnt(
3765 				const struct cntr_entry *entry,
3766 				void *context, int vl, int mode, u64 data)
3767 {
3768 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3769 
3770 	return dd->sw_ctxt_err_status_cnt[4];
3771 }
3772 
3773 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3774 					     void *context, int vl, int mode,
3775 					     u64 data)
3776 {
3777 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3778 
3779 	return dd->sw_ctxt_err_status_cnt[3];
3780 }
3781 
3782 static u64 access_pio_write_crosses_boundary_err_cnt(
3783 				const struct cntr_entry *entry,
3784 				void *context, int vl, int mode, u64 data)
3785 {
3786 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3787 
3788 	return dd->sw_ctxt_err_status_cnt[2];
3789 }
3790 
3791 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3792 						void *context, int vl,
3793 						int mode, u64 data)
3794 {
3795 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3796 
3797 	return dd->sw_ctxt_err_status_cnt[1];
3798 }
3799 
3800 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3801 					       void *context, int vl, int mode,
3802 					       u64 data)
3803 {
3804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3805 
3806 	return dd->sw_ctxt_err_status_cnt[0];
3807 }
3808 
3809 /*
3810  * Software counters corresponding to each of the
3811  * error status bits within SendDmaEngErrStatus
3812  */
3813 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3814 				const struct cntr_entry *entry,
3815 				void *context, int vl, int mode, u64 data)
3816 {
3817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3818 
3819 	return dd->sw_send_dma_eng_err_status_cnt[23];
3820 }
3821 
3822 static u64 access_sdma_header_storage_cor_err_cnt(
3823 				const struct cntr_entry *entry,
3824 				void *context, int vl, int mode, u64 data)
3825 {
3826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3827 
3828 	return dd->sw_send_dma_eng_err_status_cnt[22];
3829 }
3830 
3831 static u64 access_sdma_packet_tracking_cor_err_cnt(
3832 				const struct cntr_entry *entry,
3833 				void *context, int vl, int mode, u64 data)
3834 {
3835 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3836 
3837 	return dd->sw_send_dma_eng_err_status_cnt[21];
3838 }
3839 
3840 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3841 					    void *context, int vl, int mode,
3842 					    u64 data)
3843 {
3844 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3845 
3846 	return dd->sw_send_dma_eng_err_status_cnt[20];
3847 }
3848 
3849 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3850 					      void *context, int vl, int mode,
3851 					      u64 data)
3852 {
3853 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3854 
3855 	return dd->sw_send_dma_eng_err_status_cnt[19];
3856 }
3857 
3858 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3859 				const struct cntr_entry *entry,
3860 				void *context, int vl, int mode, u64 data)
3861 {
3862 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3863 
3864 	return dd->sw_send_dma_eng_err_status_cnt[18];
3865 }
3866 
3867 static u64 access_sdma_header_storage_unc_err_cnt(
3868 				const struct cntr_entry *entry,
3869 				void *context, int vl, int mode, u64 data)
3870 {
3871 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3872 
3873 	return dd->sw_send_dma_eng_err_status_cnt[17];
3874 }
3875 
3876 static u64 access_sdma_packet_tracking_unc_err_cnt(
3877 				const struct cntr_entry *entry,
3878 				void *context, int vl, int mode, u64 data)
3879 {
3880 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3881 
3882 	return dd->sw_send_dma_eng_err_status_cnt[16];
3883 }
3884 
3885 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3886 					    void *context, int vl, int mode,
3887 					    u64 data)
3888 {
3889 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3890 
3891 	return dd->sw_send_dma_eng_err_status_cnt[15];
3892 }
3893 
3894 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3895 					      void *context, int vl, int mode,
3896 					      u64 data)
3897 {
3898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3899 
3900 	return dd->sw_send_dma_eng_err_status_cnt[14];
3901 }
3902 
3903 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3904 				       void *context, int vl, int mode,
3905 				       u64 data)
3906 {
3907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3908 
3909 	return dd->sw_send_dma_eng_err_status_cnt[13];
3910 }
3911 
3912 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3913 					     void *context, int vl, int mode,
3914 					     u64 data)
3915 {
3916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3917 
3918 	return dd->sw_send_dma_eng_err_status_cnt[12];
3919 }
3920 
3921 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3922 					      void *context, int vl, int mode,
3923 					      u64 data)
3924 {
3925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3926 
3927 	return dd->sw_send_dma_eng_err_status_cnt[11];
3928 }
3929 
3930 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3931 					     void *context, int vl, int mode,
3932 					     u64 data)
3933 {
3934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3935 
3936 	return dd->sw_send_dma_eng_err_status_cnt[10];
3937 }
3938 
3939 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3940 					  void *context, int vl, int mode,
3941 					  u64 data)
3942 {
3943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3944 
3945 	return dd->sw_send_dma_eng_err_status_cnt[9];
3946 }
3947 
3948 static u64 access_sdma_packet_desc_overflow_err_cnt(
3949 				const struct cntr_entry *entry,
3950 				void *context, int vl, int mode, u64 data)
3951 {
3952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3953 
3954 	return dd->sw_send_dma_eng_err_status_cnt[8];
3955 }
3956 
3957 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3958 					       void *context, int vl,
3959 					       int mode, u64 data)
3960 {
3961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3962 
3963 	return dd->sw_send_dma_eng_err_status_cnt[7];
3964 }
3965 
3966 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3967 				    void *context, int vl, int mode, u64 data)
3968 {
3969 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3970 
3971 	return dd->sw_send_dma_eng_err_status_cnt[6];
3972 }
3973 
3974 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3975 					void *context, int vl, int mode,
3976 					u64 data)
3977 {
3978 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3979 
3980 	return dd->sw_send_dma_eng_err_status_cnt[5];
3981 }
3982 
3983 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3984 					  void *context, int vl, int mode,
3985 					  u64 data)
3986 {
3987 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3988 
3989 	return dd->sw_send_dma_eng_err_status_cnt[4];
3990 }
3991 
3992 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3993 				const struct cntr_entry *entry,
3994 				void *context, int vl, int mode, u64 data)
3995 {
3996 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3997 
3998 	return dd->sw_send_dma_eng_err_status_cnt[3];
3999 }
4000 
4001 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4002 					void *context, int vl, int mode,
4003 					u64 data)
4004 {
4005 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4006 
4007 	return dd->sw_send_dma_eng_err_status_cnt[2];
4008 }
4009 
4010 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4011 					    void *context, int vl, int mode,
4012 					    u64 data)
4013 {
4014 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4015 
4016 	return dd->sw_send_dma_eng_err_status_cnt[1];
4017 }
4018 
4019 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4020 					void *context, int vl, int mode,
4021 					u64 data)
4022 {
4023 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4024 
4025 	return dd->sw_send_dma_eng_err_status_cnt[0];
4026 }
4027 
4028 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4029 				 void *context, int vl, int mode,
4030 				 u64 data)
4031 {
4032 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4033 
4034 	u64 val = 0;
4035 	u64 csr = entry->csr;
4036 
4037 	val = read_write_csr(dd, csr, mode, data);
4038 	if (mode == CNTR_MODE_R) {
4039 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4040 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4041 	} else if (mode == CNTR_MODE_W) {
4042 		dd->sw_rcv_bypass_packet_errors = 0;
4043 	} else {
4044 		dd_dev_err(dd, "Invalid cntr register access mode");
4045 		return 0;
4046 	}
4047 	return val;
4048 }
4049 
4050 #define def_access_sw_cpu(cntr) \
4051 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4052 			      void *context, int vl, int mode, u64 data)      \
4053 {									      \
4054 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4055 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4056 			      ppd->ibport_data.rvp.cntr, vl,		      \
4057 			      mode, data);				      \
4058 }
4059 
4060 def_access_sw_cpu(rc_acks);
4061 def_access_sw_cpu(rc_qacks);
4062 def_access_sw_cpu(rc_delayed_comp);
4063 
4064 #define def_access_ibp_counter(cntr) \
4065 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4066 				void *context, int vl, int mode, u64 data)    \
4067 {									      \
4068 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4069 									      \
4070 	if (vl != CNTR_INVALID_VL)					      \
4071 		return 0;						      \
4072 									      \
4073 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4074 			     mode, data);				      \
4075 }
4076 
4077 def_access_ibp_counter(loop_pkts);
4078 def_access_ibp_counter(rc_resends);
4079 def_access_ibp_counter(rnr_naks);
4080 def_access_ibp_counter(other_naks);
4081 def_access_ibp_counter(rc_timeouts);
4082 def_access_ibp_counter(pkt_drops);
4083 def_access_ibp_counter(dmawait);
4084 def_access_ibp_counter(rc_seqnak);
4085 def_access_ibp_counter(rc_dupreq);
4086 def_access_ibp_counter(rdma_seq);
4087 def_access_ibp_counter(unaligned);
4088 def_access_ibp_counter(seq_naks);
4089 def_access_ibp_counter(rc_crwaits);
4090 
4091 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4092 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4093 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4094 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4095 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4096 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4097 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4098 			CNTR_NORMAL),
4099 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4100 			CNTR_NORMAL),
4101 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4102 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4103 			CNTR_NORMAL),
4104 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4105 			CNTR_NORMAL),
4106 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4107 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4108 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4109 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4110 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4111 			CNTR_NORMAL),
4112 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4113 			CNTR_NORMAL),
4114 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4115 			CNTR_NORMAL),
4116 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4117 			CNTR_NORMAL),
4118 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4119 			CNTR_NORMAL),
4120 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4123 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4124 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4125 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4126 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4127 			      CNTR_SYNTH),
4128 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4129 			    access_dc_rcv_err_cnt),
4130 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4131 				 CNTR_SYNTH),
4132 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4133 				  CNTR_SYNTH),
4134 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4135 				  CNTR_SYNTH),
4136 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4137 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4138 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4139 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4140 				  CNTR_SYNTH),
4141 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4142 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4143 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4144 			       CNTR_SYNTH),
4145 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4146 			      CNTR_SYNTH),
4147 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4148 			       CNTR_SYNTH),
4149 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4150 				 CNTR_SYNTH),
4151 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4152 				CNTR_SYNTH),
4153 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4154 				CNTR_SYNTH),
4155 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4156 			       CNTR_SYNTH),
4157 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4158 				 CNTR_SYNTH | CNTR_VL),
4159 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4160 				CNTR_SYNTH | CNTR_VL),
4161 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4162 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4163 				 CNTR_SYNTH | CNTR_VL),
4164 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4165 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4166 				 CNTR_SYNTH | CNTR_VL),
4167 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4168 			      CNTR_SYNTH),
4169 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4170 				 CNTR_SYNTH | CNTR_VL),
4171 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4172 				CNTR_SYNTH),
4173 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4174 				   CNTR_SYNTH | CNTR_VL),
4175 [C_DC_TOTAL_CRC] =
4176 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4177 			 CNTR_SYNTH),
4178 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4179 				  CNTR_SYNTH),
4180 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4181 				  CNTR_SYNTH),
4182 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4183 				  CNTR_SYNTH),
4184 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4185 				  CNTR_SYNTH),
4186 [C_DC_CRC_MULT_LN] =
4187 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4188 			 CNTR_SYNTH),
4189 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4190 				    CNTR_SYNTH),
4191 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4192 				    CNTR_SYNTH),
4193 [C_DC_SEQ_CRC_CNT] =
4194 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4195 			 CNTR_SYNTH),
4196 [C_DC_ESC0_ONLY_CNT] =
4197 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4198 			 CNTR_SYNTH),
4199 [C_DC_ESC0_PLUS1_CNT] =
4200 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4201 			 CNTR_SYNTH),
4202 [C_DC_ESC0_PLUS2_CNT] =
4203 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4204 			 CNTR_SYNTH),
4205 [C_DC_REINIT_FROM_PEER_CNT] =
4206 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4207 			 CNTR_SYNTH),
4208 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4209 				  CNTR_SYNTH),
4210 [C_DC_MISC_FLG_CNT] =
4211 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4212 			 CNTR_SYNTH),
4213 [C_DC_PRF_GOOD_LTP_CNT] =
4214 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4215 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4216 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_PRF_RX_FLIT_CNT] =
4219 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4220 [C_DC_PRF_TX_FLIT_CNT] =
4221 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4222 [C_DC_PRF_CLK_CNTR] =
4223 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4224 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4225 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4226 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4227 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4228 			 CNTR_SYNTH),
4229 [C_DC_PG_STS_TX_SBE_CNT] =
4230 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4231 [C_DC_PG_STS_TX_MBE_CNT] =
4232 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4233 			 CNTR_SYNTH),
4234 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4235 			    access_sw_cpu_intr),
4236 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4237 			    access_sw_cpu_rcv_limit),
4238 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4239 			    access_sw_ctx0_seq_drop),
4240 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4241 			    access_sw_vtx_wait),
4242 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4243 			    access_sw_pio_wait),
4244 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4245 			    access_sw_pio_drain),
4246 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4247 			    access_sw_kmem_wait),
4248 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4249 			    hfi1_access_sw_tid_wait),
4250 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4251 			    access_sw_send_schedule),
4252 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4253 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4254 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4255 				      dev_access_u32_csr),
4256 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4257 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4258 			     access_sde_int_cnt),
4259 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4260 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 			     access_sde_err_cnt),
4262 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4263 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 				  access_sde_idle_int_cnt),
4265 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4266 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 				      access_sde_progress_int_cnt),
4268 /* MISC_ERR_STATUS */
4269 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4270 				CNTR_NORMAL,
4271 				access_misc_pll_lock_fail_err_cnt),
4272 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4273 				CNTR_NORMAL,
4274 				access_misc_mbist_fail_err_cnt),
4275 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_misc_invalid_eep_cmd_err_cnt),
4278 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_misc_efuse_done_parity_err_cnt),
4281 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_efuse_write_err_cnt),
4284 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4285 				0, CNTR_NORMAL,
4286 				access_misc_efuse_read_bad_addr_err_cnt),
4287 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_misc_efuse_csr_parity_err_cnt),
4290 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4291 				CNTR_NORMAL,
4292 				access_misc_fw_auth_failed_err_cnt),
4293 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_key_mismatch_err_cnt),
4296 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_misc_sbus_write_failed_err_cnt),
4299 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_csr_write_bad_addr_err_cnt),
4302 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_csr_read_bad_addr_err_cnt),
4305 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_csr_parity_err_cnt),
4308 /* CceErrStatus */
4309 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4310 				CNTR_NORMAL,
4311 				access_sw_cce_err_status_aggregated_cnt),
4312 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4313 				CNTR_NORMAL,
4314 				access_cce_msix_csr_parity_err_cnt),
4315 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_cce_int_map_unc_err_cnt),
4318 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4319 				CNTR_NORMAL,
4320 				access_cce_int_map_cor_err_cnt),
4321 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_msix_table_unc_err_cnt),
4324 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_msix_table_cor_err_cnt),
4327 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4328 				0, CNTR_NORMAL,
4329 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4330 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4331 				0, CNTR_NORMAL,
4332 				access_cce_rcpl_async_fifo_parity_err_cnt),
4333 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4334 				CNTR_NORMAL,
4335 				access_cce_seg_write_bad_addr_err_cnt),
4336 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4337 				CNTR_NORMAL,
4338 				access_cce_seg_read_bad_addr_err_cnt),
4339 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4340 				CNTR_NORMAL,
4341 				access_la_triggered_cnt),
4342 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4343 				CNTR_NORMAL,
4344 				access_cce_trgt_cpl_timeout_err_cnt),
4345 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_pcic_receive_parity_err_cnt),
4348 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_pcic_transmit_back_parity_err_cnt),
4351 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4352 				0, CNTR_NORMAL,
4353 				access_pcic_transmit_front_parity_err_cnt),
4354 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4355 				CNTR_NORMAL,
4356 				access_pcic_cpl_dat_q_unc_err_cnt),
4357 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4358 				CNTR_NORMAL,
4359 				access_pcic_cpl_hd_q_unc_err_cnt),
4360 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_post_dat_q_unc_err_cnt),
4363 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4364 				CNTR_NORMAL,
4365 				access_pcic_post_hd_q_unc_err_cnt),
4366 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_retry_sot_mem_unc_err_cnt),
4369 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_retry_mem_unc_err),
4372 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_n_post_dat_q_parity_err_cnt),
4375 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_n_post_h_q_parity_err_cnt),
4378 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_cpl_dat_q_cor_err_cnt),
4381 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_cpl_hd_q_cor_err_cnt),
4384 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_post_dat_q_cor_err_cnt),
4387 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_post_hd_q_cor_err_cnt),
4390 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_retry_sot_mem_cor_err_cnt),
4393 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_retry_mem_cor_err_cnt),
4396 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4397 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4398 				CNTR_NORMAL,
4399 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4400 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4401 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4404 				),
4405 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4406 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4407 			CNTR_NORMAL,
4408 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4409 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4410 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4411 			CNTR_NORMAL,
4412 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4413 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4414 			0, CNTR_NORMAL,
4415 			access_cce_cli2_async_fifo_parity_err_cnt),
4416 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_cce_csr_cfg_bus_parity_err_cnt),
4419 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4420 			0, CNTR_NORMAL,
4421 			access_cce_cli0_async_fifo_parity_err_cnt),
4422 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_cce_rspd_data_parity_err_cnt),
4425 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4426 			CNTR_NORMAL,
4427 			access_cce_trgt_access_err_cnt),
4428 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4429 			0, CNTR_NORMAL,
4430 			access_cce_trgt_async_fifo_parity_err_cnt),
4431 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4432 			CNTR_NORMAL,
4433 			access_cce_csr_write_bad_addr_err_cnt),
4434 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4435 			CNTR_NORMAL,
4436 			access_cce_csr_read_bad_addr_err_cnt),
4437 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_ccs_csr_parity_err_cnt),
4440 
4441 /* RcvErrStatus */
4442 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_rx_csr_parity_err_cnt),
4445 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4446 			CNTR_NORMAL,
4447 			access_rx_csr_write_bad_addr_err_cnt),
4448 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_rx_csr_read_bad_addr_err_cnt),
4451 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_dma_csr_unc_err_cnt),
4454 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_dma_dq_fsm_encoding_err_cnt),
4457 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_dma_eq_fsm_encoding_err_cnt),
4460 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_dma_csr_parity_err_cnt),
4463 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_rbuf_data_cor_err_cnt),
4466 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_rbuf_data_unc_err_cnt),
4469 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4472 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4475 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4478 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4481 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_rbuf_desc_part2_cor_err_cnt),
4484 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_rbuf_desc_part2_unc_err_cnt),
4487 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_desc_part1_cor_err_cnt),
4490 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_desc_part1_unc_err_cnt),
4493 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_hq_intr_fsm_err_cnt),
4496 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_hq_intr_csr_parity_err_cnt),
4499 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_lookup_csr_parity_err_cnt),
4502 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_lookup_rcv_array_cor_err_cnt),
4505 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_lookup_rcv_array_unc_err_cnt),
4508 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4509 			0, CNTR_NORMAL,
4510 			access_rx_lookup_des_part2_parity_err_cnt),
4511 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4512 			0, CNTR_NORMAL,
4513 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4514 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4515 			CNTR_NORMAL,
4516 			access_rx_lookup_des_part1_unc_err_cnt),
4517 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4518 			CNTR_NORMAL,
4519 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4520 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4523 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4524 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4525 			CNTR_NORMAL,
4526 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4527 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4528 			0, CNTR_NORMAL,
4529 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4530 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4531 			0, CNTR_NORMAL,
4532 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4533 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4534 			CNTR_NORMAL,
4535 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4536 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4537 			CNTR_NORMAL,
4538 			access_rx_rbuf_empty_err_cnt),
4539 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_full_err_cnt),
4542 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rbuf_bad_lookup_err_cnt),
4545 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rbuf_ctx_id_parity_err_cnt),
4548 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rbuf_csr_qeopdw_parity_err_cnt),
4551 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4552 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4553 			CNTR_NORMAL,
4554 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4555 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4556 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4559 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4560 			0, CNTR_NORMAL,
4561 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4562 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4563 			0, CNTR_NORMAL,
4564 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4566 			0, 0, CNTR_NORMAL,
4567 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4572 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4573 			CNTR_NORMAL,
4574 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4575 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4576 			0, CNTR_NORMAL,
4577 			access_rx_rbuf_block_list_read_cor_err_cnt),
4578 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4579 			0, CNTR_NORMAL,
4580 			access_rx_rbuf_block_list_read_unc_err_cnt),
4581 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4582 			CNTR_NORMAL,
4583 			access_rx_rbuf_lookup_des_cor_err_cnt),
4584 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_rx_rbuf_lookup_des_unc_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4588 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4589 			CNTR_NORMAL,
4590 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4591 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4592 			CNTR_NORMAL,
4593 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4594 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_rx_rbuf_free_list_cor_err_cnt),
4597 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_free_list_unc_err_cnt),
4600 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rcv_fsm_encoding_err_cnt),
4603 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_dma_flag_cor_err_cnt),
4606 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_dma_flag_unc_err_cnt),
4609 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_dc_sop_eop_parity_err_cnt),
4612 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_rcv_csr_parity_err_cnt),
4615 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_rcv_qp_map_table_cor_err_cnt),
4618 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_rcv_qp_map_table_unc_err_cnt),
4621 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_rcv_data_cor_err_cnt),
4624 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_data_unc_err_cnt),
4627 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_hdr_cor_err_cnt),
4630 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_hdr_unc_err_cnt),
4633 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_dc_intf_parity_err_cnt),
4636 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_dma_csr_cor_err_cnt),
4639 /* SendPioErrStatus */
4640 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4641 			CNTR_NORMAL,
4642 			access_pio_pec_sop_head_parity_err_cnt),
4643 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4644 			CNTR_NORMAL,
4645 			access_pio_pcc_sop_head_parity_err_cnt),
4646 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4647 			0, 0, CNTR_NORMAL,
4648 			access_pio_last_returned_cnt_parity_err_cnt),
4649 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4650 			0, CNTR_NORMAL,
4651 			access_pio_current_free_cnt_parity_err_cnt),
4652 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4653 			CNTR_NORMAL,
4654 			access_pio_reserved_31_err_cnt),
4655 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4656 			CNTR_NORMAL,
4657 			access_pio_reserved_30_err_cnt),
4658 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_ppmc_sop_len_err_cnt),
4661 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4664 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_vl_fifo_parity_err_cnt),
4667 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_vlf_sop_parity_err_cnt),
4670 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_vlf_v1_len_parity_err_cnt),
4673 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_block_qw_count_parity_err_cnt),
4676 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_write_qw_valid_parity_err_cnt),
4679 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_state_machine_err_cnt),
4682 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_write_data_parity_err_cnt),
4685 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_host_addr_mem_cor_err_cnt),
4688 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_host_addr_mem_unc_err_cnt),
4691 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4694 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_init_sm_in_err_cnt),
4697 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_ppmc_pbl_fifo_err_cnt),
4700 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4701 			0, CNTR_NORMAL,
4702 			access_pio_credit_ret_fifo_parity_err_cnt),
4703 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4704 			CNTR_NORMAL,
4705 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4706 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4707 			CNTR_NORMAL,
4708 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4713 			CNTR_NORMAL,
4714 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4715 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_sm_pkt_reset_parity_err_cnt),
4718 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_pkt_evict_fifo_parity_err_cnt),
4721 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4722 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4723 			CNTR_NORMAL,
4724 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4725 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4726 			CNTR_NORMAL,
4727 			access_pio_sbrdctl_crrel_parity_err_cnt),
4728 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_pio_pec_fifo_parity_err_cnt),
4731 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_pio_pcc_fifo_parity_err_cnt),
4734 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_sb_mem_fifo1_err_cnt),
4737 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_sb_mem_fifo0_err_cnt),
4740 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_csr_parity_err_cnt),
4743 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_write_addr_parity_err_cnt),
4746 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_write_bad_ctxt_err_cnt),
4749 /* SendDmaErrStatus */
4750 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4751 			0, CNTR_NORMAL,
4752 			access_sdma_pcie_req_tracking_cor_err_cnt),
4753 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4754 			0, CNTR_NORMAL,
4755 			access_sdma_pcie_req_tracking_unc_err_cnt),
4756 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4757 			CNTR_NORMAL,
4758 			access_sdma_csr_parity_err_cnt),
4759 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4760 			CNTR_NORMAL,
4761 			access_sdma_rpy_tag_err_cnt),
4762 /* SendEgressErrStatus */
4763 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_tx_read_pio_memory_csr_unc_err_cnt),
4766 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4767 			0, CNTR_NORMAL,
4768 			access_tx_read_sdma_memory_csr_err_cnt),
4769 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_tx_egress_fifo_cor_err_cnt),
4772 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4773 			CNTR_NORMAL,
4774 			access_tx_read_pio_memory_cor_err_cnt),
4775 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_read_sdma_memory_cor_err_cnt),
4778 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_tx_sb_hdr_cor_err_cnt),
4781 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_credit_overrun_err_cnt),
4784 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_launch_fifo8_cor_err_cnt),
4787 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_launch_fifo7_cor_err_cnt),
4790 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_launch_fifo6_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_launch_fifo5_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo4_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo3_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo2_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo1_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo0_cor_err_cnt),
4811 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_credit_return_vl_err_cnt),
4814 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_hcrc_insertion_err_cnt),
4817 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_egress_fifo_unc_err_cnt),
4820 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_read_pio_memory_unc_err_cnt),
4823 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_read_sdma_memory_unc_err_cnt),
4826 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_sb_hdr_unc_err_cnt),
4829 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_credit_return_partiy_err_cnt),
4832 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4833 			0, 0, CNTR_NORMAL,
4834 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4835 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4836 			0, 0, CNTR_NORMAL,
4837 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4838 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4839 			0, 0, CNTR_NORMAL,
4840 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4842 			0, 0, CNTR_NORMAL,
4843 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4859 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_sdma15_disallowed_packet_err_cnt),
4862 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_sdma14_disallowed_packet_err_cnt),
4865 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_sdma13_disallowed_packet_err_cnt),
4868 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_sdma12_disallowed_packet_err_cnt),
4871 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma11_disallowed_packet_err_cnt),
4874 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma10_disallowed_packet_err_cnt),
4877 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma9_disallowed_packet_err_cnt),
4880 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma8_disallowed_packet_err_cnt),
4883 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma7_disallowed_packet_err_cnt),
4886 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma6_disallowed_packet_err_cnt),
4889 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma5_disallowed_packet_err_cnt),
4892 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma4_disallowed_packet_err_cnt),
4895 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma3_disallowed_packet_err_cnt),
4898 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma2_disallowed_packet_err_cnt),
4901 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma1_disallowed_packet_err_cnt),
4904 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma0_disallowed_packet_err_cnt),
4907 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4908 			CNTR_NORMAL,
4909 			access_tx_config_parity_err_cnt),
4910 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4911 			CNTR_NORMAL,
4912 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4913 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_tx_launch_csr_parity_err_cnt),
4916 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_tx_illegal_vl_err_cnt),
4919 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4920 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4921 			CNTR_NORMAL,
4922 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4923 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4924 			CNTR_NORMAL,
4925 			access_egress_reserved_10_err_cnt),
4926 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_egress_reserved_9_err_cnt),
4929 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4930 			0, 0, CNTR_NORMAL,
4931 			access_tx_sdma_launch_intf_parity_err_cnt),
4932 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_tx_pio_launch_intf_parity_err_cnt),
4935 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4936 			CNTR_NORMAL,
4937 			access_egress_reserved_6_err_cnt),
4938 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_tx_incorrect_link_state_err_cnt),
4941 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_tx_linkdown_err_cnt),
4944 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4945 			"EgressFifoUnderrunOrParityErr", 0, 0,
4946 			CNTR_NORMAL,
4947 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4948 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4949 			CNTR_NORMAL,
4950 			access_egress_reserved_2_err_cnt),
4951 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_pkt_integrity_mem_unc_err_cnt),
4954 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_tx_pkt_integrity_mem_cor_err_cnt),
4957 /* SendErrStatus */
4958 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_send_csr_write_bad_addr_err_cnt),
4961 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_send_csr_read_bad_addr_err_cnt),
4964 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_send_csr_parity_cnt),
4967 /* SendCtxtErrStatus */
4968 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_pio_write_out_of_bounds_err_cnt),
4971 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4972 			CNTR_NORMAL,
4973 			access_pio_write_overflow_err_cnt),
4974 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4975 			0, 0, CNTR_NORMAL,
4976 			access_pio_write_crosses_boundary_err_cnt),
4977 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_pio_disallowed_packet_err_cnt),
4980 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4981 			CNTR_NORMAL,
4982 			access_pio_inconsistent_sop_err_cnt),
4983 /* SendDmaEngErrStatus */
4984 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4985 			0, 0, CNTR_NORMAL,
4986 			access_sdma_header_request_fifo_cor_err_cnt),
4987 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4988 			CNTR_NORMAL,
4989 			access_sdma_header_storage_cor_err_cnt),
4990 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4991 			CNTR_NORMAL,
4992 			access_sdma_packet_tracking_cor_err_cnt),
4993 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4994 			CNTR_NORMAL,
4995 			access_sdma_assembly_cor_err_cnt),
4996 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4997 			CNTR_NORMAL,
4998 			access_sdma_desc_table_cor_err_cnt),
4999 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5000 			0, 0, CNTR_NORMAL,
5001 			access_sdma_header_request_fifo_unc_err_cnt),
5002 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_sdma_header_storage_unc_err_cnt),
5005 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5006 			CNTR_NORMAL,
5007 			access_sdma_packet_tracking_unc_err_cnt),
5008 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_assembly_unc_err_cnt),
5011 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5012 			CNTR_NORMAL,
5013 			access_sdma_desc_table_unc_err_cnt),
5014 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_timeout_err_cnt),
5017 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_header_length_err_cnt),
5020 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_header_address_err_cnt),
5023 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_header_select_err_cnt),
5026 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_reserved_9_err_cnt),
5029 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_packet_desc_overflow_err_cnt),
5032 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_length_mismatch_err_cnt),
5035 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_halt_err_cnt),
5038 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_mem_read_err_cnt),
5041 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_first_desc_err_cnt),
5044 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_tail_out_of_bounds_err_cnt),
5047 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_too_long_err_cnt),
5050 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_gen_mismatch_err_cnt),
5053 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_wrong_dw_err_cnt),
5056 };
5057 
5058 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5059 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5060 			CNTR_NORMAL),
5061 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5062 			CNTR_NORMAL),
5063 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5064 			CNTR_NORMAL),
5065 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5074 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5075 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5076 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5077 				      CNTR_SYNTH | CNTR_VL),
5078 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5079 				     CNTR_SYNTH | CNTR_VL),
5080 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5081 				      CNTR_SYNTH | CNTR_VL),
5082 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5083 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5084 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5085 			     access_sw_link_dn_cnt),
5086 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5087 			   access_sw_link_up_cnt),
5088 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5089 				 access_sw_unknown_frame_cnt),
5090 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			     access_sw_xmit_discards),
5092 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5093 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5094 				access_sw_xmit_discards),
5095 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5096 				 access_xmit_constraint_errs),
5097 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5098 				access_rcv_constraint_errs),
5099 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5100 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5101 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5102 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5103 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5104 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5105 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5106 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5107 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5108 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5109 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5110 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5111 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5112 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5113 			       access_sw_cpu_rc_acks),
5114 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5115 				access_sw_cpu_rc_qacks),
5116 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5117 				       access_sw_cpu_rc_delayed_comp),
5118 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5119 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5120 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5121 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5122 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5123 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5124 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5125 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5126 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5127 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5128 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5129 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5130 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5131 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5132 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5133 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5134 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5135 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5136 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5137 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5138 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5139 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5140 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5141 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5142 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5143 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5144 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5145 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5146 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5147 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5148 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5149 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5150 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5151 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5152 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5153 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5154 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5155 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5156 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5157 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5158 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5159 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5160 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5161 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5162 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5163 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5164 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5165 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5166 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5167 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5168 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5169 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5170 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5171 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5172 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5173 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5174 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5175 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5176 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5177 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5178 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5179 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5180 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5181 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5182 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5183 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5184 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5185 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5186 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5187 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5188 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5189 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5190 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5191 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5192 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5193 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5194 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5195 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5196 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5197 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5198 };
5199 
5200 /* ======================================================================== */
5201 
5202 /* return true if this is chip revision revision a */
5203 int is_ax(struct hfi1_devdata *dd)
5204 {
5205 	u8 chip_rev_minor =
5206 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5207 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5208 	return (chip_rev_minor & 0xf0) == 0;
5209 }
5210 
5211 /* return true if this is chip revision revision b */
5212 int is_bx(struct hfi1_devdata *dd)
5213 {
5214 	u8 chip_rev_minor =
5215 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5216 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5217 	return (chip_rev_minor & 0xF0) == 0x10;
5218 }
5219 
5220 /* return true is kernel urg disabled for rcd */
5221 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5222 {
5223 	u64 mask;
5224 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5225 	u8 bit = is % 64;
5226 
5227 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5228 	return !(mask & BIT_ULL(bit));
5229 }
5230 
5231 /*
5232  * Append string s to buffer buf.  Arguments curp and len are the current
5233  * position and remaining length, respectively.
5234  *
5235  * return 0 on success, 1 on out of room
5236  */
5237 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5238 {
5239 	char *p = *curp;
5240 	int len = *lenp;
5241 	int result = 0; /* success */
5242 	char c;
5243 
5244 	/* add a comma, if first in the buffer */
5245 	if (p != buf) {
5246 		if (len == 0) {
5247 			result = 1; /* out of room */
5248 			goto done;
5249 		}
5250 		*p++ = ',';
5251 		len--;
5252 	}
5253 
5254 	/* copy the string */
5255 	while ((c = *s++) != 0) {
5256 		if (len == 0) {
5257 			result = 1; /* out of room */
5258 			goto done;
5259 		}
5260 		*p++ = c;
5261 		len--;
5262 	}
5263 
5264 done:
5265 	/* write return values */
5266 	*curp = p;
5267 	*lenp = len;
5268 
5269 	return result;
5270 }
5271 
5272 /*
5273  * Using the given flag table, print a comma separated string into
5274  * the buffer.  End in '*' if the buffer is too short.
5275  */
5276 static char *flag_string(char *buf, int buf_len, u64 flags,
5277 			 struct flag_table *table, int table_size)
5278 {
5279 	char extra[32];
5280 	char *p = buf;
5281 	int len = buf_len;
5282 	int no_room = 0;
5283 	int i;
5284 
5285 	/* make sure there is at least 2 so we can form "*" */
5286 	if (len < 2)
5287 		return "";
5288 
5289 	len--;	/* leave room for a nul */
5290 	for (i = 0; i < table_size; i++) {
5291 		if (flags & table[i].flag) {
5292 			no_room = append_str(buf, &p, &len, table[i].str);
5293 			if (no_room)
5294 				break;
5295 			flags &= ~table[i].flag;
5296 		}
5297 	}
5298 
5299 	/* any undocumented bits left? */
5300 	if (!no_room && flags) {
5301 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5302 		no_room = append_str(buf, &p, &len, extra);
5303 	}
5304 
5305 	/* add * if ran out of room */
5306 	if (no_room) {
5307 		/* may need to back up to add space for a '*' */
5308 		if (len == 0)
5309 			--p;
5310 		*p++ = '*';
5311 	}
5312 
5313 	/* add final nul - space already allocated above */
5314 	*p = 0;
5315 	return buf;
5316 }
5317 
5318 /* first 8 CCE error interrupt source names */
5319 static const char * const cce_misc_names[] = {
5320 	"CceErrInt",		/* 0 */
5321 	"RxeErrInt",		/* 1 */
5322 	"MiscErrInt",		/* 2 */
5323 	"Reserved3",		/* 3 */
5324 	"PioErrInt",		/* 4 */
5325 	"SDmaErrInt",		/* 5 */
5326 	"EgressErrInt",		/* 6 */
5327 	"TxeErrInt"		/* 7 */
5328 };
5329 
5330 /*
5331  * Return the miscellaneous error interrupt name.
5332  */
5333 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5334 {
5335 	if (source < ARRAY_SIZE(cce_misc_names))
5336 		strncpy(buf, cce_misc_names[source], bsize);
5337 	else
5338 		snprintf(buf, bsize, "Reserved%u",
5339 			 source + IS_GENERAL_ERR_START);
5340 
5341 	return buf;
5342 }
5343 
5344 /*
5345  * Return the SDMA engine error interrupt name.
5346  */
5347 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5348 {
5349 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5350 	return buf;
5351 }
5352 
5353 /*
5354  * Return the send context error interrupt name.
5355  */
5356 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5357 {
5358 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5359 	return buf;
5360 }
5361 
5362 static const char * const various_names[] = {
5363 	"PbcInt",
5364 	"GpioAssertInt",
5365 	"Qsfp1Int",
5366 	"Qsfp2Int",
5367 	"TCritInt"
5368 };
5369 
5370 /*
5371  * Return the various interrupt name.
5372  */
5373 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5374 {
5375 	if (source < ARRAY_SIZE(various_names))
5376 		strncpy(buf, various_names[source], bsize);
5377 	else
5378 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5379 	return buf;
5380 }
5381 
5382 /*
5383  * Return the DC interrupt name.
5384  */
5385 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5386 {
5387 	static const char * const dc_int_names[] = {
5388 		"common",
5389 		"lcb",
5390 		"8051",
5391 		"lbm"	/* local block merge */
5392 	};
5393 
5394 	if (source < ARRAY_SIZE(dc_int_names))
5395 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5396 	else
5397 		snprintf(buf, bsize, "DCInt%u", source);
5398 	return buf;
5399 }
5400 
5401 static const char * const sdma_int_names[] = {
5402 	"SDmaInt",
5403 	"SdmaIdleInt",
5404 	"SdmaProgressInt",
5405 };
5406 
5407 /*
5408  * Return the SDMA engine interrupt name.
5409  */
5410 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5411 {
5412 	/* what interrupt */
5413 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5414 	/* which engine */
5415 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5416 
5417 	if (likely(what < 3))
5418 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5419 	else
5420 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5421 	return buf;
5422 }
5423 
5424 /*
5425  * Return the receive available interrupt name.
5426  */
5427 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5428 {
5429 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5430 	return buf;
5431 }
5432 
5433 /*
5434  * Return the receive urgent interrupt name.
5435  */
5436 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5437 {
5438 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5439 	return buf;
5440 }
5441 
5442 /*
5443  * Return the send credit interrupt name.
5444  */
5445 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5446 {
5447 	snprintf(buf, bsize, "SendCreditInt%u", source);
5448 	return buf;
5449 }
5450 
5451 /*
5452  * Return the reserved interrupt name.
5453  */
5454 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5455 {
5456 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5457 	return buf;
5458 }
5459 
5460 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5461 {
5462 	return flag_string(buf, buf_len, flags,
5463 			   cce_err_status_flags,
5464 			   ARRAY_SIZE(cce_err_status_flags));
5465 }
5466 
5467 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5468 {
5469 	return flag_string(buf, buf_len, flags,
5470 			   rxe_err_status_flags,
5471 			   ARRAY_SIZE(rxe_err_status_flags));
5472 }
5473 
5474 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5475 {
5476 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5477 			   ARRAY_SIZE(misc_err_status_flags));
5478 }
5479 
5480 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5481 {
5482 	return flag_string(buf, buf_len, flags,
5483 			   pio_err_status_flags,
5484 			   ARRAY_SIZE(pio_err_status_flags));
5485 }
5486 
5487 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5488 {
5489 	return flag_string(buf, buf_len, flags,
5490 			   sdma_err_status_flags,
5491 			   ARRAY_SIZE(sdma_err_status_flags));
5492 }
5493 
5494 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5495 {
5496 	return flag_string(buf, buf_len, flags,
5497 			   egress_err_status_flags,
5498 			   ARRAY_SIZE(egress_err_status_flags));
5499 }
5500 
5501 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   egress_err_info_flags,
5505 			   ARRAY_SIZE(egress_err_info_flags));
5506 }
5507 
5508 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5509 {
5510 	return flag_string(buf, buf_len, flags,
5511 			   send_err_status_flags,
5512 			   ARRAY_SIZE(send_err_status_flags));
5513 }
5514 
5515 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5516 {
5517 	char buf[96];
5518 	int i = 0;
5519 
5520 	/*
5521 	 * For most these errors, there is nothing that can be done except
5522 	 * report or record it.
5523 	 */
5524 	dd_dev_info(dd, "CCE Error: %s\n",
5525 		    cce_err_status_string(buf, sizeof(buf), reg));
5526 
5527 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5528 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5529 		/* this error requires a manual drop into SPC freeze mode */
5530 		/* then a fix up */
5531 		start_freeze_handling(dd->pport, FREEZE_SELF);
5532 	}
5533 
5534 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5535 		if (reg & (1ull << i)) {
5536 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5537 			/* maintain a counter over all cce_err_status errors */
5538 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5539 		}
5540 	}
5541 }
5542 
5543 /*
5544  * Check counters for receive errors that do not have an interrupt
5545  * associated with them.
5546  */
5547 #define RCVERR_CHECK_TIME 10
5548 static void update_rcverr_timer(struct timer_list *t)
5549 {
5550 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5551 	struct hfi1_pportdata *ppd = dd->pport;
5552 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5553 
5554 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5555 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5556 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5557 		set_link_down_reason(
5558 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5559 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5560 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5561 	}
5562 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5563 
5564 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5565 }
5566 
5567 static int init_rcverr(struct hfi1_devdata *dd)
5568 {
5569 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5570 	/* Assume the hardware counter has been reset */
5571 	dd->rcv_ovfl_cnt = 0;
5572 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5573 }
5574 
5575 static void free_rcverr(struct hfi1_devdata *dd)
5576 {
5577 	if (dd->rcverr_timer.function)
5578 		del_timer_sync(&dd->rcverr_timer);
5579 }
5580 
5581 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5582 {
5583 	char buf[96];
5584 	int i = 0;
5585 
5586 	dd_dev_info(dd, "Receive Error: %s\n",
5587 		    rxe_err_status_string(buf, sizeof(buf), reg));
5588 
5589 	if (reg & ALL_RXE_FREEZE_ERR) {
5590 		int flags = 0;
5591 
5592 		/*
5593 		 * Freeze mode recovery is disabled for the errors
5594 		 * in RXE_FREEZE_ABORT_MASK
5595 		 */
5596 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5597 			flags = FREEZE_ABORT;
5598 
5599 		start_freeze_handling(dd->pport, flags);
5600 	}
5601 
5602 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5603 		if (reg & (1ull << i))
5604 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5605 	}
5606 }
5607 
5608 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5609 {
5610 	char buf[96];
5611 	int i = 0;
5612 
5613 	dd_dev_info(dd, "Misc Error: %s",
5614 		    misc_err_status_string(buf, sizeof(buf), reg));
5615 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5616 		if (reg & (1ull << i))
5617 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5618 	}
5619 }
5620 
5621 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5622 {
5623 	char buf[96];
5624 	int i = 0;
5625 
5626 	dd_dev_info(dd, "PIO Error: %s\n",
5627 		    pio_err_status_string(buf, sizeof(buf), reg));
5628 
5629 	if (reg & ALL_PIO_FREEZE_ERR)
5630 		start_freeze_handling(dd->pport, 0);
5631 
5632 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5633 		if (reg & (1ull << i))
5634 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5635 	}
5636 }
5637 
5638 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5639 {
5640 	char buf[96];
5641 	int i = 0;
5642 
5643 	dd_dev_info(dd, "SDMA Error: %s\n",
5644 		    sdma_err_status_string(buf, sizeof(buf), reg));
5645 
5646 	if (reg & ALL_SDMA_FREEZE_ERR)
5647 		start_freeze_handling(dd->pport, 0);
5648 
5649 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5650 		if (reg & (1ull << i))
5651 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5652 	}
5653 }
5654 
5655 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5656 {
5657 	incr_cntr64(&ppd->port_xmit_discards);
5658 }
5659 
5660 static void count_port_inactive(struct hfi1_devdata *dd)
5661 {
5662 	__count_port_discards(dd->pport);
5663 }
5664 
5665 /*
5666  * We have had a "disallowed packet" error during egress. Determine the
5667  * integrity check which failed, and update relevant error counter, etc.
5668  *
5669  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5670  * bit of state per integrity check, and so we can miss the reason for an
5671  * egress error if more than one packet fails the same integrity check
5672  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5673  */
5674 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5675 					int vl)
5676 {
5677 	struct hfi1_pportdata *ppd = dd->pport;
5678 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5679 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5680 	char buf[96];
5681 
5682 	/* clear down all observed info as quickly as possible after read */
5683 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5684 
5685 	dd_dev_info(dd,
5686 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5687 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5688 
5689 	/* Eventually add other counters for each bit */
5690 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5691 		int weight, i;
5692 
5693 		/*
5694 		 * Count all applicable bits as individual errors and
5695 		 * attribute them to the packet that triggered this handler.
5696 		 * This may not be completely accurate due to limitations
5697 		 * on the available hardware error information.  There is
5698 		 * a single information register and any number of error
5699 		 * packets may have occurred and contributed to it before
5700 		 * this routine is called.  This means that:
5701 		 * a) If multiple packets with the same error occur before
5702 		 *    this routine is called, earlier packets are missed.
5703 		 *    There is only a single bit for each error type.
5704 		 * b) Errors may not be attributed to the correct VL.
5705 		 *    The driver is attributing all bits in the info register
5706 		 *    to the packet that triggered this call, but bits
5707 		 *    could be an accumulation of different packets with
5708 		 *    different VLs.
5709 		 * c) A single error packet may have multiple counts attached
5710 		 *    to it.  There is no way for the driver to know if
5711 		 *    multiple bits set in the info register are due to a
5712 		 *    single packet or multiple packets.  The driver assumes
5713 		 *    multiple packets.
5714 		 */
5715 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5716 		for (i = 0; i < weight; i++) {
5717 			__count_port_discards(ppd);
5718 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5719 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5720 			else if (vl == 15)
5721 				incr_cntr64(&ppd->port_xmit_discards_vl
5722 					    [C_VL_15]);
5723 		}
5724 	}
5725 }
5726 
5727 /*
5728  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5729  * register. Does it represent a 'port inactive' error?
5730  */
5731 static inline int port_inactive_err(u64 posn)
5732 {
5733 	return (posn >= SEES(TX_LINKDOWN) &&
5734 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5735 }
5736 
5737 /*
5738  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5739  * register. Does it represent a 'disallowed packet' error?
5740  */
5741 static inline int disallowed_pkt_err(int posn)
5742 {
5743 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5744 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5745 }
5746 
5747 /*
5748  * Input value is a bit position of one of the SDMA engine disallowed
5749  * packet errors.  Return which engine.  Use of this must be guarded by
5750  * disallowed_pkt_err().
5751  */
5752 static inline int disallowed_pkt_engine(int posn)
5753 {
5754 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5755 }
5756 
5757 /*
5758  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5759  * be done.
5760  */
5761 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5762 {
5763 	struct sdma_vl_map *m;
5764 	int vl;
5765 
5766 	/* range check */
5767 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5768 		return -1;
5769 
5770 	rcu_read_lock();
5771 	m = rcu_dereference(dd->sdma_map);
5772 	vl = m->engine_to_vl[engine];
5773 	rcu_read_unlock();
5774 
5775 	return vl;
5776 }
5777 
5778 /*
5779  * Translate the send context (sofware index) into a VL.  Return -1 if the
5780  * translation cannot be done.
5781  */
5782 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5783 {
5784 	struct send_context_info *sci;
5785 	struct send_context *sc;
5786 	int i;
5787 
5788 	sci = &dd->send_contexts[sw_index];
5789 
5790 	/* there is no information for user (PSM) and ack contexts */
5791 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5792 		return -1;
5793 
5794 	sc = sci->sc;
5795 	if (!sc)
5796 		return -1;
5797 	if (dd->vld[15].sc == sc)
5798 		return 15;
5799 	for (i = 0; i < num_vls; i++)
5800 		if (dd->vld[i].sc == sc)
5801 			return i;
5802 
5803 	return -1;
5804 }
5805 
5806 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5807 {
5808 	u64 reg_copy = reg, handled = 0;
5809 	char buf[96];
5810 	int i = 0;
5811 
5812 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5813 		start_freeze_handling(dd->pport, 0);
5814 	else if (is_ax(dd) &&
5815 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5816 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5817 		start_freeze_handling(dd->pport, 0);
5818 
5819 	while (reg_copy) {
5820 		int posn = fls64(reg_copy);
5821 		/* fls64() returns a 1-based offset, we want it zero based */
5822 		int shift = posn - 1;
5823 		u64 mask = 1ULL << shift;
5824 
5825 		if (port_inactive_err(shift)) {
5826 			count_port_inactive(dd);
5827 			handled |= mask;
5828 		} else if (disallowed_pkt_err(shift)) {
5829 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5830 
5831 			handle_send_egress_err_info(dd, vl);
5832 			handled |= mask;
5833 		}
5834 		reg_copy &= ~mask;
5835 	}
5836 
5837 	reg &= ~handled;
5838 
5839 	if (reg)
5840 		dd_dev_info(dd, "Egress Error: %s\n",
5841 			    egress_err_status_string(buf, sizeof(buf), reg));
5842 
5843 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5844 		if (reg & (1ull << i))
5845 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5846 	}
5847 }
5848 
5849 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5850 {
5851 	char buf[96];
5852 	int i = 0;
5853 
5854 	dd_dev_info(dd, "Send Error: %s\n",
5855 		    send_err_status_string(buf, sizeof(buf), reg));
5856 
5857 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5858 		if (reg & (1ull << i))
5859 			incr_cntr64(&dd->send_err_status_cnt[i]);
5860 	}
5861 }
5862 
5863 /*
5864  * The maximum number of times the error clear down will loop before
5865  * blocking a repeating error.  This value is arbitrary.
5866  */
5867 #define MAX_CLEAR_COUNT 20
5868 
5869 /*
5870  * Clear and handle an error register.  All error interrupts are funneled
5871  * through here to have a central location to correctly handle single-
5872  * or multi-shot errors.
5873  *
5874  * For non per-context registers, call this routine with a context value
5875  * of 0 so the per-context offset is zero.
5876  *
5877  * If the handler loops too many times, assume that something is wrong
5878  * and can't be fixed, so mask the error bits.
5879  */
5880 static void interrupt_clear_down(struct hfi1_devdata *dd,
5881 				 u32 context,
5882 				 const struct err_reg_info *eri)
5883 {
5884 	u64 reg;
5885 	u32 count;
5886 
5887 	/* read in a loop until no more errors are seen */
5888 	count = 0;
5889 	while (1) {
5890 		reg = read_kctxt_csr(dd, context, eri->status);
5891 		if (reg == 0)
5892 			break;
5893 		write_kctxt_csr(dd, context, eri->clear, reg);
5894 		if (likely(eri->handler))
5895 			eri->handler(dd, context, reg);
5896 		count++;
5897 		if (count > MAX_CLEAR_COUNT) {
5898 			u64 mask;
5899 
5900 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5901 				   eri->desc, reg);
5902 			/*
5903 			 * Read-modify-write so any other masked bits
5904 			 * remain masked.
5905 			 */
5906 			mask = read_kctxt_csr(dd, context, eri->mask);
5907 			mask &= ~reg;
5908 			write_kctxt_csr(dd, context, eri->mask, mask);
5909 			break;
5910 		}
5911 	}
5912 }
5913 
5914 /*
5915  * CCE block "misc" interrupt.  Source is < 16.
5916  */
5917 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5918 {
5919 	const struct err_reg_info *eri = &misc_errs[source];
5920 
5921 	if (eri->handler) {
5922 		interrupt_clear_down(dd, 0, eri);
5923 	} else {
5924 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5925 			   source);
5926 	}
5927 }
5928 
5929 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5930 {
5931 	return flag_string(buf, buf_len, flags,
5932 			   sc_err_status_flags,
5933 			   ARRAY_SIZE(sc_err_status_flags));
5934 }
5935 
5936 /*
5937  * Send context error interrupt.  Source (hw_context) is < 160.
5938  *
5939  * All send context errors cause the send context to halt.  The normal
5940  * clear-down mechanism cannot be used because we cannot clear the
5941  * error bits until several other long-running items are done first.
5942  * This is OK because with the context halted, nothing else is going
5943  * to happen on it anyway.
5944  */
5945 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5946 				unsigned int hw_context)
5947 {
5948 	struct send_context_info *sci;
5949 	struct send_context *sc;
5950 	char flags[96];
5951 	u64 status;
5952 	u32 sw_index;
5953 	int i = 0;
5954 	unsigned long irq_flags;
5955 
5956 	sw_index = dd->hw_to_sw[hw_context];
5957 	if (sw_index >= dd->num_send_contexts) {
5958 		dd_dev_err(dd,
5959 			   "out of range sw index %u for send context %u\n",
5960 			   sw_index, hw_context);
5961 		return;
5962 	}
5963 	sci = &dd->send_contexts[sw_index];
5964 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5965 	sc = sci->sc;
5966 	if (!sc) {
5967 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5968 			   sw_index, hw_context);
5969 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5970 		return;
5971 	}
5972 
5973 	/* tell the software that a halt has begun */
5974 	sc_stop(sc, SCF_HALTED);
5975 
5976 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5977 
5978 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5979 		    send_context_err_status_string(flags, sizeof(flags),
5980 						   status));
5981 
5982 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5983 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5984 
5985 	/*
5986 	 * Automatically restart halted kernel contexts out of interrupt
5987 	 * context.  User contexts must ask the driver to restart the context.
5988 	 */
5989 	if (sc->type != SC_USER)
5990 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5991 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5992 
5993 	/*
5994 	 * Update the counters for the corresponding status bits.
5995 	 * Note that these particular counters are aggregated over all
5996 	 * 160 contexts.
5997 	 */
5998 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5999 		if (status & (1ull << i))
6000 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6001 	}
6002 }
6003 
6004 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6005 				unsigned int source, u64 status)
6006 {
6007 	struct sdma_engine *sde;
6008 	int i = 0;
6009 
6010 	sde = &dd->per_sdma[source];
6011 #ifdef CONFIG_SDMA_VERBOSITY
6012 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6013 		   slashstrip(__FILE__), __LINE__, __func__);
6014 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6015 		   sde->this_idx, source, (unsigned long long)status);
6016 #endif
6017 	sde->err_cnt++;
6018 	sdma_engine_error(sde, status);
6019 
6020 	/*
6021 	* Update the counters for the corresponding status bits.
6022 	* Note that these particular counters are aggregated over
6023 	* all 16 DMA engines.
6024 	*/
6025 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6026 		if (status & (1ull << i))
6027 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6028 	}
6029 }
6030 
6031 /*
6032  * CCE block SDMA error interrupt.  Source is < 16.
6033  */
6034 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6035 {
6036 #ifdef CONFIG_SDMA_VERBOSITY
6037 	struct sdma_engine *sde = &dd->per_sdma[source];
6038 
6039 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6040 		   slashstrip(__FILE__), __LINE__, __func__);
6041 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6042 		   source);
6043 	sdma_dumpstate(sde);
6044 #endif
6045 	interrupt_clear_down(dd, source, &sdma_eng_err);
6046 }
6047 
6048 /*
6049  * CCE block "various" interrupt.  Source is < 8.
6050  */
6051 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6052 {
6053 	const struct err_reg_info *eri = &various_err[source];
6054 
6055 	/*
6056 	 * TCritInt cannot go through interrupt_clear_down()
6057 	 * because it is not a second tier interrupt. The handler
6058 	 * should be called directly.
6059 	 */
6060 	if (source == TCRIT_INT_SOURCE)
6061 		handle_temp_err(dd);
6062 	else if (eri->handler)
6063 		interrupt_clear_down(dd, 0, eri);
6064 	else
6065 		dd_dev_info(dd,
6066 			    "%s: Unimplemented/reserved interrupt %d\n",
6067 			    __func__, source);
6068 }
6069 
6070 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6071 {
6072 	/* src_ctx is always zero */
6073 	struct hfi1_pportdata *ppd = dd->pport;
6074 	unsigned long flags;
6075 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6076 
6077 	if (reg & QSFP_HFI0_MODPRST_N) {
6078 		if (!qsfp_mod_present(ppd)) {
6079 			dd_dev_info(dd, "%s: QSFP module removed\n",
6080 				    __func__);
6081 
6082 			ppd->driver_link_ready = 0;
6083 			/*
6084 			 * Cable removed, reset all our information about the
6085 			 * cache and cable capabilities
6086 			 */
6087 
6088 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6089 			/*
6090 			 * We don't set cache_refresh_required here as we expect
6091 			 * an interrupt when a cable is inserted
6092 			 */
6093 			ppd->qsfp_info.cache_valid = 0;
6094 			ppd->qsfp_info.reset_needed = 0;
6095 			ppd->qsfp_info.limiting_active = 0;
6096 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6097 					       flags);
6098 			/* Invert the ModPresent pin now to detect plug-in */
6099 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6100 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6101 
6102 			if ((ppd->offline_disabled_reason >
6103 			  HFI1_ODR_MASK(
6104 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6105 			  (ppd->offline_disabled_reason ==
6106 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6107 				ppd->offline_disabled_reason =
6108 				HFI1_ODR_MASK(
6109 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6110 
6111 			if (ppd->host_link_state == HLS_DN_POLL) {
6112 				/*
6113 				 * The link is still in POLL. This means
6114 				 * that the normal link down processing
6115 				 * will not happen. We have to do it here
6116 				 * before turning the DC off.
6117 				 */
6118 				queue_work(ppd->link_wq, &ppd->link_down_work);
6119 			}
6120 		} else {
6121 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6122 				    __func__);
6123 
6124 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6125 			ppd->qsfp_info.cache_valid = 0;
6126 			ppd->qsfp_info.cache_refresh_required = 1;
6127 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6128 					       flags);
6129 
6130 			/*
6131 			 * Stop inversion of ModPresent pin to detect
6132 			 * removal of the cable
6133 			 */
6134 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6135 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6136 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6137 
6138 			ppd->offline_disabled_reason =
6139 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6140 		}
6141 	}
6142 
6143 	if (reg & QSFP_HFI0_INT_N) {
6144 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6145 			    __func__);
6146 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6147 		ppd->qsfp_info.check_interrupt_flags = 1;
6148 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6149 	}
6150 
6151 	/* Schedule the QSFP work only if there is a cable attached. */
6152 	if (qsfp_mod_present(ppd))
6153 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6154 }
6155 
6156 static int request_host_lcb_access(struct hfi1_devdata *dd)
6157 {
6158 	int ret;
6159 
6160 	ret = do_8051_command(dd, HCMD_MISC,
6161 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6162 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6163 	if (ret != HCMD_SUCCESS) {
6164 		dd_dev_err(dd, "%s: command failed with error %d\n",
6165 			   __func__, ret);
6166 	}
6167 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6168 }
6169 
6170 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6171 {
6172 	int ret;
6173 
6174 	ret = do_8051_command(dd, HCMD_MISC,
6175 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6176 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6177 	if (ret != HCMD_SUCCESS) {
6178 		dd_dev_err(dd, "%s: command failed with error %d\n",
6179 			   __func__, ret);
6180 	}
6181 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6182 }
6183 
6184 /*
6185  * Set the LCB selector - allow host access.  The DCC selector always
6186  * points to the host.
6187  */
6188 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6189 {
6190 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6191 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6192 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6193 }
6194 
6195 /*
6196  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6197  * points to the host.
6198  */
6199 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6200 {
6201 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6202 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6203 }
6204 
6205 /*
6206  * Acquire LCB access from the 8051.  If the host already has access,
6207  * just increment a counter.  Otherwise, inform the 8051 that the
6208  * host is taking access.
6209  *
6210  * Returns:
6211  *	0 on success
6212  *	-EBUSY if the 8051 has control and cannot be disturbed
6213  *	-errno if unable to acquire access from the 8051
6214  */
6215 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6216 {
6217 	struct hfi1_pportdata *ppd = dd->pport;
6218 	int ret = 0;
6219 
6220 	/*
6221 	 * Use the host link state lock so the operation of this routine
6222 	 * { link state check, selector change, count increment } can occur
6223 	 * as a unit against a link state change.  Otherwise there is a
6224 	 * race between the state change and the count increment.
6225 	 */
6226 	if (sleep_ok) {
6227 		mutex_lock(&ppd->hls_lock);
6228 	} else {
6229 		while (!mutex_trylock(&ppd->hls_lock))
6230 			udelay(1);
6231 	}
6232 
6233 	/* this access is valid only when the link is up */
6234 	if (ppd->host_link_state & HLS_DOWN) {
6235 		dd_dev_info(dd, "%s: link state %s not up\n",
6236 			    __func__, link_state_name(ppd->host_link_state));
6237 		ret = -EBUSY;
6238 		goto done;
6239 	}
6240 
6241 	if (dd->lcb_access_count == 0) {
6242 		ret = request_host_lcb_access(dd);
6243 		if (ret) {
6244 			dd_dev_err(dd,
6245 				   "%s: unable to acquire LCB access, err %d\n",
6246 				   __func__, ret);
6247 			goto done;
6248 		}
6249 		set_host_lcb_access(dd);
6250 	}
6251 	dd->lcb_access_count++;
6252 done:
6253 	mutex_unlock(&ppd->hls_lock);
6254 	return ret;
6255 }
6256 
6257 /*
6258  * Release LCB access by decrementing the use count.  If the count is moving
6259  * from 1 to 0, inform 8051 that it has control back.
6260  *
6261  * Returns:
6262  *	0 on success
6263  *	-errno if unable to release access to the 8051
6264  */
6265 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6266 {
6267 	int ret = 0;
6268 
6269 	/*
6270 	 * Use the host link state lock because the acquire needed it.
6271 	 * Here, we only need to keep { selector change, count decrement }
6272 	 * as a unit.
6273 	 */
6274 	if (sleep_ok) {
6275 		mutex_lock(&dd->pport->hls_lock);
6276 	} else {
6277 		while (!mutex_trylock(&dd->pport->hls_lock))
6278 			udelay(1);
6279 	}
6280 
6281 	if (dd->lcb_access_count == 0) {
6282 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6283 			   __func__);
6284 		goto done;
6285 	}
6286 
6287 	if (dd->lcb_access_count == 1) {
6288 		set_8051_lcb_access(dd);
6289 		ret = request_8051_lcb_access(dd);
6290 		if (ret) {
6291 			dd_dev_err(dd,
6292 				   "%s: unable to release LCB access, err %d\n",
6293 				   __func__, ret);
6294 			/* restore host access if the grant didn't work */
6295 			set_host_lcb_access(dd);
6296 			goto done;
6297 		}
6298 	}
6299 	dd->lcb_access_count--;
6300 done:
6301 	mutex_unlock(&dd->pport->hls_lock);
6302 	return ret;
6303 }
6304 
6305 /*
6306  * Initialize LCB access variables and state.  Called during driver load,
6307  * after most of the initialization is finished.
6308  *
6309  * The DC default is LCB access on for the host.  The driver defaults to
6310  * leaving access to the 8051.  Assign access now - this constrains the call
6311  * to this routine to be after all LCB set-up is done.  In particular, after
6312  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6313  */
6314 static void init_lcb_access(struct hfi1_devdata *dd)
6315 {
6316 	dd->lcb_access_count = 0;
6317 }
6318 
6319 /*
6320  * Write a response back to a 8051 request.
6321  */
6322 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6323 {
6324 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6325 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6326 		  (u64)return_code <<
6327 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6328 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6329 }
6330 
6331 /*
6332  * Handle host requests from the 8051.
6333  */
6334 static void handle_8051_request(struct hfi1_pportdata *ppd)
6335 {
6336 	struct hfi1_devdata *dd = ppd->dd;
6337 	u64 reg;
6338 	u16 data = 0;
6339 	u8 type;
6340 
6341 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6342 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6343 		return;	/* no request */
6344 
6345 	/* zero out COMPLETED so the response is seen */
6346 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6347 
6348 	/* extract request details */
6349 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6350 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6351 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6352 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6353 
6354 	switch (type) {
6355 	case HREQ_LOAD_CONFIG:
6356 	case HREQ_SAVE_CONFIG:
6357 	case HREQ_READ_CONFIG:
6358 	case HREQ_SET_TX_EQ_ABS:
6359 	case HREQ_SET_TX_EQ_REL:
6360 	case HREQ_ENABLE:
6361 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6362 			    type);
6363 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6364 		break;
6365 	case HREQ_LCB_RESET:
6366 		/* Put the LCB, RX FPE and TX FPE into reset */
6367 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6368 		/* Make sure the write completed */
6369 		(void)read_csr(dd, DCC_CFG_RESET);
6370 		/* Hold the reset long enough to take effect */
6371 		udelay(1);
6372 		/* Take the LCB, RX FPE and TX FPE out of reset */
6373 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6374 		hreq_response(dd, HREQ_SUCCESS, 0);
6375 
6376 		break;
6377 	case HREQ_CONFIG_DONE:
6378 		hreq_response(dd, HREQ_SUCCESS, 0);
6379 		break;
6380 
6381 	case HREQ_INTERFACE_TEST:
6382 		hreq_response(dd, HREQ_SUCCESS, data);
6383 		break;
6384 	default:
6385 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6386 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6387 		break;
6388 	}
6389 }
6390 
6391 /*
6392  * Set up allocation unit vaulue.
6393  */
6394 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6395 {
6396 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6397 
6398 	/* do not modify other values in the register */
6399 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6400 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6401 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6402 }
6403 
6404 /*
6405  * Set up initial VL15 credits of the remote.  Assumes the rest of
6406  * the CM credit registers are zero from a previous global or credit reset.
6407  * Shared limit for VL15 will always be 0.
6408  */
6409 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6410 {
6411 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6412 
6413 	/* set initial values for total and shared credit limit */
6414 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6415 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6416 
6417 	/*
6418 	 * Set total limit to be equal to VL15 credits.
6419 	 * Leave shared limit at 0.
6420 	 */
6421 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6422 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6423 
6424 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6425 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6426 }
6427 
6428 /*
6429  * Zero all credit details from the previous connection and
6430  * reset the CM manager's internal counters.
6431  */
6432 void reset_link_credits(struct hfi1_devdata *dd)
6433 {
6434 	int i;
6435 
6436 	/* remove all previous VL credit limits */
6437 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6438 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6439 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6440 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6441 	/* reset the CM block */
6442 	pio_send_control(dd, PSC_CM_RESET);
6443 	/* reset cached value */
6444 	dd->vl15buf_cached = 0;
6445 }
6446 
6447 /* convert a vCU to a CU */
6448 static u32 vcu_to_cu(u8 vcu)
6449 {
6450 	return 1 << vcu;
6451 }
6452 
6453 /* convert a CU to a vCU */
6454 static u8 cu_to_vcu(u32 cu)
6455 {
6456 	return ilog2(cu);
6457 }
6458 
6459 /* convert a vAU to an AU */
6460 static u32 vau_to_au(u8 vau)
6461 {
6462 	return 8 * (1 << vau);
6463 }
6464 
6465 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6466 {
6467 	ppd->sm_trap_qp = 0x0;
6468 	ppd->sa_qp = 0x1;
6469 }
6470 
6471 /*
6472  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6473  */
6474 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6475 {
6476 	u64 reg;
6477 
6478 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6479 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6480 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6481 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6482 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6483 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6484 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6485 	reg = read_csr(dd, DCC_CFG_RESET);
6486 	write_csr(dd, DCC_CFG_RESET, reg |
6487 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6488 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6489 	if (!abort) {
6490 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6491 		write_csr(dd, DCC_CFG_RESET, reg);
6492 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6493 	}
6494 }
6495 
6496 /*
6497  * This routine should be called after the link has been transitioned to
6498  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6499  * reset).
6500  *
6501  * The expectation is that the caller of this routine would have taken
6502  * care of properly transitioning the link into the correct state.
6503  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6504  *       before calling this function.
6505  */
6506 static void _dc_shutdown(struct hfi1_devdata *dd)
6507 {
6508 	lockdep_assert_held(&dd->dc8051_lock);
6509 
6510 	if (dd->dc_shutdown)
6511 		return;
6512 
6513 	dd->dc_shutdown = 1;
6514 	/* Shutdown the LCB */
6515 	lcb_shutdown(dd, 1);
6516 	/*
6517 	 * Going to OFFLINE would have causes the 8051 to put the
6518 	 * SerDes into reset already. Just need to shut down the 8051,
6519 	 * itself.
6520 	 */
6521 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6522 }
6523 
6524 static void dc_shutdown(struct hfi1_devdata *dd)
6525 {
6526 	mutex_lock(&dd->dc8051_lock);
6527 	_dc_shutdown(dd);
6528 	mutex_unlock(&dd->dc8051_lock);
6529 }
6530 
6531 /*
6532  * Calling this after the DC has been brought out of reset should not
6533  * do any damage.
6534  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6535  *       before calling this function.
6536  */
6537 static void _dc_start(struct hfi1_devdata *dd)
6538 {
6539 	lockdep_assert_held(&dd->dc8051_lock);
6540 
6541 	if (!dd->dc_shutdown)
6542 		return;
6543 
6544 	/* Take the 8051 out of reset */
6545 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6546 	/* Wait until 8051 is ready */
6547 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6548 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6549 			   __func__);
6550 
6551 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6552 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6553 	/* lcb_shutdown() with abort=1 does not restore these */
6554 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6555 	dd->dc_shutdown = 0;
6556 }
6557 
6558 static void dc_start(struct hfi1_devdata *dd)
6559 {
6560 	mutex_lock(&dd->dc8051_lock);
6561 	_dc_start(dd);
6562 	mutex_unlock(&dd->dc8051_lock);
6563 }
6564 
6565 /*
6566  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6567  */
6568 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6569 {
6570 	u64 rx_radr, tx_radr;
6571 	u32 version;
6572 
6573 	if (dd->icode != ICODE_FPGA_EMULATION)
6574 		return;
6575 
6576 	/*
6577 	 * These LCB defaults on emulator _s are good, nothing to do here:
6578 	 *	LCB_CFG_TX_FIFOS_RADR
6579 	 *	LCB_CFG_RX_FIFOS_RADR
6580 	 *	LCB_CFG_LN_DCLK
6581 	 *	LCB_CFG_IGNORE_LOST_RCLK
6582 	 */
6583 	if (is_emulator_s(dd))
6584 		return;
6585 	/* else this is _p */
6586 
6587 	version = emulator_rev(dd);
6588 	if (!is_ax(dd))
6589 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6590 
6591 	if (version <= 0x12) {
6592 		/* release 0x12 and below */
6593 
6594 		/*
6595 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6596 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6597 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6598 		 */
6599 		rx_radr =
6600 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6601 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6602 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6603 		/*
6604 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6605 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6606 		 */
6607 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6608 	} else if (version <= 0x18) {
6609 		/* release 0x13 up to 0x18 */
6610 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6611 		rx_radr =
6612 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6613 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6614 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6615 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6616 	} else if (version == 0x19) {
6617 		/* release 0x19 */
6618 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6619 		rx_radr =
6620 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6621 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6622 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6623 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6624 	} else if (version == 0x1a) {
6625 		/* release 0x1a */
6626 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6627 		rx_radr =
6628 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6629 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6630 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6631 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6632 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6633 	} else {
6634 		/* release 0x1b and higher */
6635 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6636 		rx_radr =
6637 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6638 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6639 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6640 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6641 	}
6642 
6643 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6644 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6645 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6646 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6647 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6648 }
6649 
6650 /*
6651  * Handle a SMA idle message
6652  *
6653  * This is a work-queue function outside of the interrupt.
6654  */
6655 void handle_sma_message(struct work_struct *work)
6656 {
6657 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6658 							sma_message_work);
6659 	struct hfi1_devdata *dd = ppd->dd;
6660 	u64 msg;
6661 	int ret;
6662 
6663 	/*
6664 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6665 	 * is stripped off
6666 	 */
6667 	ret = read_idle_sma(dd, &msg);
6668 	if (ret)
6669 		return;
6670 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6671 	/*
6672 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6673 	 */
6674 	switch (msg & 0xff) {
6675 	case SMA_IDLE_ARM:
6676 		/*
6677 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6678 		 * State Transitions
6679 		 *
6680 		 * Only expected in INIT or ARMED, discard otherwise.
6681 		 */
6682 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6683 			ppd->neighbor_normal = 1;
6684 		break;
6685 	case SMA_IDLE_ACTIVE:
6686 		/*
6687 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6688 		 * State Transitions
6689 		 *
6690 		 * Can activate the node.  Discard otherwise.
6691 		 */
6692 		if (ppd->host_link_state == HLS_UP_ARMED &&
6693 		    ppd->is_active_optimize_enabled) {
6694 			ppd->neighbor_normal = 1;
6695 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6696 			if (ret)
6697 				dd_dev_err(
6698 					dd,
6699 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6700 					__func__);
6701 		}
6702 		break;
6703 	default:
6704 		dd_dev_err(dd,
6705 			   "%s: received unexpected SMA idle message 0x%llx\n",
6706 			   __func__, msg);
6707 		break;
6708 	}
6709 }
6710 
6711 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6712 {
6713 	u64 rcvctrl;
6714 	unsigned long flags;
6715 
6716 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6717 	rcvctrl = read_csr(dd, RCV_CTRL);
6718 	rcvctrl |= add;
6719 	rcvctrl &= ~clear;
6720 	write_csr(dd, RCV_CTRL, rcvctrl);
6721 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6722 }
6723 
6724 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6725 {
6726 	adjust_rcvctrl(dd, add, 0);
6727 }
6728 
6729 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6730 {
6731 	adjust_rcvctrl(dd, 0, clear);
6732 }
6733 
6734 /*
6735  * Called from all interrupt handlers to start handling an SPC freeze.
6736  */
6737 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6738 {
6739 	struct hfi1_devdata *dd = ppd->dd;
6740 	struct send_context *sc;
6741 	int i;
6742 	int sc_flags;
6743 
6744 	if (flags & FREEZE_SELF)
6745 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6746 
6747 	/* enter frozen mode */
6748 	dd->flags |= HFI1_FROZEN;
6749 
6750 	/* notify all SDMA engines that they are going into a freeze */
6751 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6752 
6753 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6754 					      SCF_LINK_DOWN : 0);
6755 	/* do halt pre-handling on all enabled send contexts */
6756 	for (i = 0; i < dd->num_send_contexts; i++) {
6757 		sc = dd->send_contexts[i].sc;
6758 		if (sc && (sc->flags & SCF_ENABLED))
6759 			sc_stop(sc, sc_flags);
6760 	}
6761 
6762 	/* Send context are frozen. Notify user space */
6763 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6764 
6765 	if (flags & FREEZE_ABORT) {
6766 		dd_dev_err(dd,
6767 			   "Aborted freeze recovery. Please REBOOT system\n");
6768 		return;
6769 	}
6770 	/* queue non-interrupt handler */
6771 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6772 }
6773 
6774 /*
6775  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6776  * depending on the "freeze" parameter.
6777  *
6778  * No need to return an error if it times out, our only option
6779  * is to proceed anyway.
6780  */
6781 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6782 {
6783 	unsigned long timeout;
6784 	u64 reg;
6785 
6786 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6787 	while (1) {
6788 		reg = read_csr(dd, CCE_STATUS);
6789 		if (freeze) {
6790 			/* waiting until all indicators are set */
6791 			if ((reg & ALL_FROZE) == ALL_FROZE)
6792 				return;	/* all done */
6793 		} else {
6794 			/* waiting until all indicators are clear */
6795 			if ((reg & ALL_FROZE) == 0)
6796 				return; /* all done */
6797 		}
6798 
6799 		if (time_after(jiffies, timeout)) {
6800 			dd_dev_err(dd,
6801 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6802 				   freeze ? "" : "un", reg & ALL_FROZE,
6803 				   freeze ? ALL_FROZE : 0ull);
6804 			return;
6805 		}
6806 		usleep_range(80, 120);
6807 	}
6808 }
6809 
6810 /*
6811  * Do all freeze handling for the RXE block.
6812  */
6813 static void rxe_freeze(struct hfi1_devdata *dd)
6814 {
6815 	int i;
6816 	struct hfi1_ctxtdata *rcd;
6817 
6818 	/* disable port */
6819 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6820 
6821 	/* disable all receive contexts */
6822 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6823 		rcd = hfi1_rcd_get_by_index(dd, i);
6824 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6825 		hfi1_rcd_put(rcd);
6826 	}
6827 }
6828 
6829 /*
6830  * Unfreeze handling for the RXE block - kernel contexts only.
6831  * This will also enable the port.  User contexts will do unfreeze
6832  * handling on a per-context basis as they call into the driver.
6833  *
6834  */
6835 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6836 {
6837 	u32 rcvmask;
6838 	u16 i;
6839 	struct hfi1_ctxtdata *rcd;
6840 
6841 	/* enable all kernel contexts */
6842 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6843 		rcd = hfi1_rcd_get_by_index(dd, i);
6844 
6845 		/* Ensure all non-user contexts(including vnic) are enabled */
6846 		if (!rcd ||
6847 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6848 			hfi1_rcd_put(rcd);
6849 			continue;
6850 		}
6851 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6852 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6853 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6854 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6855 		hfi1_rcvctrl(dd, rcvmask, rcd);
6856 		hfi1_rcd_put(rcd);
6857 	}
6858 
6859 	/* enable port */
6860 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6861 }
6862 
6863 /*
6864  * Non-interrupt SPC freeze handling.
6865  *
6866  * This is a work-queue function outside of the triggering interrupt.
6867  */
6868 void handle_freeze(struct work_struct *work)
6869 {
6870 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6871 								freeze_work);
6872 	struct hfi1_devdata *dd = ppd->dd;
6873 
6874 	/* wait for freeze indicators on all affected blocks */
6875 	wait_for_freeze_status(dd, 1);
6876 
6877 	/* SPC is now frozen */
6878 
6879 	/* do send PIO freeze steps */
6880 	pio_freeze(dd);
6881 
6882 	/* do send DMA freeze steps */
6883 	sdma_freeze(dd);
6884 
6885 	/* do send egress freeze steps - nothing to do */
6886 
6887 	/* do receive freeze steps */
6888 	rxe_freeze(dd);
6889 
6890 	/*
6891 	 * Unfreeze the hardware - clear the freeze, wait for each
6892 	 * block's frozen bit to clear, then clear the frozen flag.
6893 	 */
6894 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6895 	wait_for_freeze_status(dd, 0);
6896 
6897 	if (is_ax(dd)) {
6898 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6899 		wait_for_freeze_status(dd, 1);
6900 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6901 		wait_for_freeze_status(dd, 0);
6902 	}
6903 
6904 	/* do send PIO unfreeze steps for kernel contexts */
6905 	pio_kernel_unfreeze(dd);
6906 
6907 	/* do send DMA unfreeze steps */
6908 	sdma_unfreeze(dd);
6909 
6910 	/* do send egress unfreeze steps - nothing to do */
6911 
6912 	/* do receive unfreeze steps for kernel contexts */
6913 	rxe_kernel_unfreeze(dd);
6914 
6915 	/*
6916 	 * The unfreeze procedure touches global device registers when
6917 	 * it disables and re-enables RXE. Mark the device unfrozen
6918 	 * after all that is done so other parts of the driver waiting
6919 	 * for the device to unfreeze don't do things out of order.
6920 	 *
6921 	 * The above implies that the meaning of HFI1_FROZEN flag is
6922 	 * "Device has gone into freeze mode and freeze mode handling
6923 	 * is still in progress."
6924 	 *
6925 	 * The flag will be removed when freeze mode processing has
6926 	 * completed.
6927 	 */
6928 	dd->flags &= ~HFI1_FROZEN;
6929 	wake_up(&dd->event_queue);
6930 
6931 	/* no longer frozen */
6932 }
6933 
6934 /**
6935  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6936  * counters.
6937  * @ppd: info of physical Hfi port
6938  * @link_width: new link width after link up or downgrade
6939  *
6940  * Update the PortXmitWait and PortVlXmitWait counters after
6941  * a link up or downgrade event to reflect a link width change.
6942  */
6943 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6944 {
6945 	int i;
6946 	u16 tx_width;
6947 	u16 link_speed;
6948 
6949 	tx_width = tx_link_width(link_width);
6950 	link_speed = get_link_speed(ppd->link_speed_active);
6951 
6952 	/*
6953 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6954 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6955 	 */
6956 	for (i = 0; i < C_VL_COUNT + 1; i++)
6957 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6958 }
6959 
6960 /*
6961  * Handle a link up interrupt from the 8051.
6962  *
6963  * This is a work-queue function outside of the interrupt.
6964  */
6965 void handle_link_up(struct work_struct *work)
6966 {
6967 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6968 						  link_up_work);
6969 	struct hfi1_devdata *dd = ppd->dd;
6970 
6971 	set_link_state(ppd, HLS_UP_INIT);
6972 
6973 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6974 	read_ltp_rtt(dd);
6975 	/*
6976 	 * OPA specifies that certain counters are cleared on a transition
6977 	 * to link up, so do that.
6978 	 */
6979 	clear_linkup_counters(dd);
6980 	/*
6981 	 * And (re)set link up default values.
6982 	 */
6983 	set_linkup_defaults(ppd);
6984 
6985 	/*
6986 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6987 	 * In case of quick linkup or simulator, vl15 value will be set by
6988 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6989 	 * called in those scenarios.
6990 	 */
6991 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6992 		set_up_vl15(dd, dd->vl15buf_cached);
6993 
6994 	/* enforce link speed enabled */
6995 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6996 		/* oops - current speed is not enabled, bounce */
6997 		dd_dev_err(dd,
6998 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6999 			   ppd->link_speed_active, ppd->link_speed_enabled);
7000 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7001 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7002 		set_link_state(ppd, HLS_DN_OFFLINE);
7003 		start_link(ppd);
7004 	}
7005 }
7006 
7007 /*
7008  * Several pieces of LNI information were cached for SMA in ppd.
7009  * Reset these on link down
7010  */
7011 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7012 {
7013 	ppd->neighbor_guid = 0;
7014 	ppd->neighbor_port_number = 0;
7015 	ppd->neighbor_type = 0;
7016 	ppd->neighbor_fm_security = 0;
7017 }
7018 
7019 static const char * const link_down_reason_strs[] = {
7020 	[OPA_LINKDOWN_REASON_NONE] = "None",
7021 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7022 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7023 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7024 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7025 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7026 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7027 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7028 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7029 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7030 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7031 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7032 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7033 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7034 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7035 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7036 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7037 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7038 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7039 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7040 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7041 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7042 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7043 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7044 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7045 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7046 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7047 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7048 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7049 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7050 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7051 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7052 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7053 					"Excessive buffer overrun",
7054 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7055 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7056 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7057 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7058 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7059 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7060 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7061 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7062 					"Local media not installed",
7063 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7064 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7065 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7066 					"End to end not installed",
7067 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7068 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7069 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7070 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7071 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7072 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7073 };
7074 
7075 /* return the neighbor link down reason string */
7076 static const char *link_down_reason_str(u8 reason)
7077 {
7078 	const char *str = NULL;
7079 
7080 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7081 		str = link_down_reason_strs[reason];
7082 	if (!str)
7083 		str = "(invalid)";
7084 
7085 	return str;
7086 }
7087 
7088 /*
7089  * Handle a link down interrupt from the 8051.
7090  *
7091  * This is a work-queue function outside of the interrupt.
7092  */
7093 void handle_link_down(struct work_struct *work)
7094 {
7095 	u8 lcl_reason, neigh_reason = 0;
7096 	u8 link_down_reason;
7097 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7098 						  link_down_work);
7099 	int was_up;
7100 	static const char ldr_str[] = "Link down reason: ";
7101 
7102 	if ((ppd->host_link_state &
7103 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7104 	     ppd->port_type == PORT_TYPE_FIXED)
7105 		ppd->offline_disabled_reason =
7106 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7107 
7108 	/* Go offline first, then deal with reading/writing through 8051 */
7109 	was_up = !!(ppd->host_link_state & HLS_UP);
7110 	set_link_state(ppd, HLS_DN_OFFLINE);
7111 	xchg(&ppd->is_link_down_queued, 0);
7112 
7113 	if (was_up) {
7114 		lcl_reason = 0;
7115 		/* link down reason is only valid if the link was up */
7116 		read_link_down_reason(ppd->dd, &link_down_reason);
7117 		switch (link_down_reason) {
7118 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7119 			/* the link went down, no idle message reason */
7120 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7121 				    ldr_str);
7122 			break;
7123 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7124 			/*
7125 			 * The neighbor reason is only valid if an idle message
7126 			 * was received for it.
7127 			 */
7128 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7129 			dd_dev_info(ppd->dd,
7130 				    "%sNeighbor link down message %d, %s\n",
7131 				    ldr_str, neigh_reason,
7132 				    link_down_reason_str(neigh_reason));
7133 			break;
7134 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7135 			dd_dev_info(ppd->dd,
7136 				    "%sHost requested link to go offline\n",
7137 				    ldr_str);
7138 			break;
7139 		default:
7140 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7141 				    ldr_str, link_down_reason);
7142 			break;
7143 		}
7144 
7145 		/*
7146 		 * If no reason, assume peer-initiated but missed
7147 		 * LinkGoingDown idle flits.
7148 		 */
7149 		if (neigh_reason == 0)
7150 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7151 	} else {
7152 		/* went down while polling or going up */
7153 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7154 	}
7155 
7156 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7157 
7158 	/* inform the SMA when the link transitions from up to down */
7159 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7160 	    ppd->neigh_link_down_reason.sma == 0) {
7161 		ppd->local_link_down_reason.sma =
7162 					ppd->local_link_down_reason.latest;
7163 		ppd->neigh_link_down_reason.sma =
7164 					ppd->neigh_link_down_reason.latest;
7165 	}
7166 
7167 	reset_neighbor_info(ppd);
7168 
7169 	/* disable the port */
7170 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7171 
7172 	/*
7173 	 * If there is no cable attached, turn the DC off. Otherwise,
7174 	 * start the link bring up.
7175 	 */
7176 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7177 		dc_shutdown(ppd->dd);
7178 	else
7179 		start_link(ppd);
7180 }
7181 
7182 void handle_link_bounce(struct work_struct *work)
7183 {
7184 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7185 							link_bounce_work);
7186 
7187 	/*
7188 	 * Only do something if the link is currently up.
7189 	 */
7190 	if (ppd->host_link_state & HLS_UP) {
7191 		set_link_state(ppd, HLS_DN_OFFLINE);
7192 		start_link(ppd);
7193 	} else {
7194 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7195 			    __func__, link_state_name(ppd->host_link_state));
7196 	}
7197 }
7198 
7199 /*
7200  * Mask conversion: Capability exchange to Port LTP.  The capability
7201  * exchange has an implicit 16b CRC that is mandatory.
7202  */
7203 static int cap_to_port_ltp(int cap)
7204 {
7205 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7206 
7207 	if (cap & CAP_CRC_14B)
7208 		port_ltp |= PORT_LTP_CRC_MODE_14;
7209 	if (cap & CAP_CRC_48B)
7210 		port_ltp |= PORT_LTP_CRC_MODE_48;
7211 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7212 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7213 
7214 	return port_ltp;
7215 }
7216 
7217 /*
7218  * Convert an OPA Port LTP mask to capability mask
7219  */
7220 int port_ltp_to_cap(int port_ltp)
7221 {
7222 	int cap_mask = 0;
7223 
7224 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7225 		cap_mask |= CAP_CRC_14B;
7226 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7227 		cap_mask |= CAP_CRC_48B;
7228 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7229 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7230 
7231 	return cap_mask;
7232 }
7233 
7234 /*
7235  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7236  */
7237 static int lcb_to_port_ltp(int lcb_crc)
7238 {
7239 	int port_ltp = 0;
7240 
7241 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7242 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7243 	else if (lcb_crc == LCB_CRC_48B)
7244 		port_ltp = PORT_LTP_CRC_MODE_48;
7245 	else if (lcb_crc == LCB_CRC_14B)
7246 		port_ltp = PORT_LTP_CRC_MODE_14;
7247 	else
7248 		port_ltp = PORT_LTP_CRC_MODE_16;
7249 
7250 	return port_ltp;
7251 }
7252 
7253 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7254 {
7255 	if (ppd->pkeys[2] != 0) {
7256 		ppd->pkeys[2] = 0;
7257 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7258 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7259 	}
7260 }
7261 
7262 /*
7263  * Convert the given link width to the OPA link width bitmask.
7264  */
7265 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7266 {
7267 	switch (width) {
7268 	case 0:
7269 		/*
7270 		 * Simulator and quick linkup do not set the width.
7271 		 * Just set it to 4x without complaint.
7272 		 */
7273 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7274 			return OPA_LINK_WIDTH_4X;
7275 		return 0; /* no lanes up */
7276 	case 1: return OPA_LINK_WIDTH_1X;
7277 	case 2: return OPA_LINK_WIDTH_2X;
7278 	case 3: return OPA_LINK_WIDTH_3X;
7279 	case 4: return OPA_LINK_WIDTH_4X;
7280 	default:
7281 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7282 			    __func__, width);
7283 		return OPA_LINK_WIDTH_4X;
7284 	}
7285 }
7286 
7287 /*
7288  * Do a population count on the bottom nibble.
7289  */
7290 static const u8 bit_counts[16] = {
7291 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7292 };
7293 
7294 static inline u8 nibble_to_count(u8 nibble)
7295 {
7296 	return bit_counts[nibble & 0xf];
7297 }
7298 
7299 /*
7300  * Read the active lane information from the 8051 registers and return
7301  * their widths.
7302  *
7303  * Active lane information is found in these 8051 registers:
7304  *	enable_lane_tx
7305  *	enable_lane_rx
7306  */
7307 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7308 			    u16 *rx_width)
7309 {
7310 	u16 tx, rx;
7311 	u8 enable_lane_rx;
7312 	u8 enable_lane_tx;
7313 	u8 tx_polarity_inversion;
7314 	u8 rx_polarity_inversion;
7315 	u8 max_rate;
7316 
7317 	/* read the active lanes */
7318 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7319 			 &rx_polarity_inversion, &max_rate);
7320 	read_local_lni(dd, &enable_lane_rx);
7321 
7322 	/* convert to counts */
7323 	tx = nibble_to_count(enable_lane_tx);
7324 	rx = nibble_to_count(enable_lane_rx);
7325 
7326 	/*
7327 	 * Set link_speed_active here, overriding what was set in
7328 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7329 	 * set the max_rate field in handle_verify_cap until v0.19.
7330 	 */
7331 	if ((dd->icode == ICODE_RTL_SILICON) &&
7332 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7333 		/* max_rate: 0 = 12.5G, 1 = 25G */
7334 		switch (max_rate) {
7335 		case 0:
7336 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7337 			break;
7338 		case 1:
7339 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7340 			break;
7341 		default:
7342 			dd_dev_err(dd,
7343 				   "%s: unexpected max rate %d, using 25Gb\n",
7344 				   __func__, (int)max_rate);
7345 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7346 			break;
7347 		}
7348 	}
7349 
7350 	dd_dev_info(dd,
7351 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7352 		    enable_lane_tx, tx, enable_lane_rx, rx);
7353 	*tx_width = link_width_to_bits(dd, tx);
7354 	*rx_width = link_width_to_bits(dd, rx);
7355 }
7356 
7357 /*
7358  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7359  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7360  * after link up.  I.e. look elsewhere for downgrade information.
7361  *
7362  * Bits are:
7363  *	+ bits [7:4] contain the number of active transmitters
7364  *	+ bits [3:0] contain the number of active receivers
7365  * These are numbers 1 through 4 and can be different values if the
7366  * link is asymmetric.
7367  *
7368  * verify_cap_local_fm_link_width[0] retains its original value.
7369  */
7370 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7371 			      u16 *rx_width)
7372 {
7373 	u16 widths, tx, rx;
7374 	u8 misc_bits, local_flags;
7375 	u16 active_tx, active_rx;
7376 
7377 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7378 	tx = widths >> 12;
7379 	rx = (widths >> 8) & 0xf;
7380 
7381 	*tx_width = link_width_to_bits(dd, tx);
7382 	*rx_width = link_width_to_bits(dd, rx);
7383 
7384 	/* print the active widths */
7385 	get_link_widths(dd, &active_tx, &active_rx);
7386 }
7387 
7388 /*
7389  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7390  * hardware information when the link first comes up.
7391  *
7392  * The link width is not available until after VerifyCap.AllFramesReceived
7393  * (the trigger for handle_verify_cap), so this is outside that routine
7394  * and should be called when the 8051 signals linkup.
7395  */
7396 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7397 {
7398 	u16 tx_width, rx_width;
7399 
7400 	/* get end-of-LNI link widths */
7401 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7402 
7403 	/* use tx_width as the link is supposed to be symmetric on link up */
7404 	ppd->link_width_active = tx_width;
7405 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7406 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7407 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7408 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7409 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7410 	/* cache the active egress rate (units {10^6 bits/sec]) */
7411 	ppd->current_egress_rate = active_egress_rate(ppd);
7412 }
7413 
7414 /*
7415  * Handle a verify capabilities interrupt from the 8051.
7416  *
7417  * This is a work-queue function outside of the interrupt.
7418  */
7419 void handle_verify_cap(struct work_struct *work)
7420 {
7421 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7422 								link_vc_work);
7423 	struct hfi1_devdata *dd = ppd->dd;
7424 	u64 reg;
7425 	u8 power_management;
7426 	u8 continuous;
7427 	u8 vcu;
7428 	u8 vau;
7429 	u8 z;
7430 	u16 vl15buf;
7431 	u16 link_widths;
7432 	u16 crc_mask;
7433 	u16 crc_val;
7434 	u16 device_id;
7435 	u16 active_tx, active_rx;
7436 	u8 partner_supported_crc;
7437 	u8 remote_tx_rate;
7438 	u8 device_rev;
7439 
7440 	set_link_state(ppd, HLS_VERIFY_CAP);
7441 
7442 	lcb_shutdown(dd, 0);
7443 	adjust_lcb_for_fpga_serdes(dd);
7444 
7445 	read_vc_remote_phy(dd, &power_management, &continuous);
7446 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7447 			      &partner_supported_crc);
7448 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7449 	read_remote_device_id(dd, &device_id, &device_rev);
7450 
7451 	/* print the active widths */
7452 	get_link_widths(dd, &active_tx, &active_rx);
7453 	dd_dev_info(dd,
7454 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7455 		    (int)power_management, (int)continuous);
7456 	dd_dev_info(dd,
7457 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7458 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7459 		    (int)partner_supported_crc);
7460 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7461 		    (u32)remote_tx_rate, (u32)link_widths);
7462 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7463 		    (u32)device_id, (u32)device_rev);
7464 	/*
7465 	 * The peer vAU value just read is the peer receiver value.  HFI does
7466 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7467 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7468 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7469 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7470 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7471 	 * subject to the Z value exception.
7472 	 */
7473 	if (vau == 0)
7474 		vau = 1;
7475 	set_up_vau(dd, vau);
7476 
7477 	/*
7478 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7479 	 * credits value and wait for link-up interrupt ot set it.
7480 	 */
7481 	set_up_vl15(dd, 0);
7482 	dd->vl15buf_cached = vl15buf;
7483 
7484 	/* set up the LCB CRC mode */
7485 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7486 
7487 	/* order is important: use the lowest bit in common */
7488 	if (crc_mask & CAP_CRC_14B)
7489 		crc_val = LCB_CRC_14B;
7490 	else if (crc_mask & CAP_CRC_48B)
7491 		crc_val = LCB_CRC_48B;
7492 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7493 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7494 	else
7495 		crc_val = LCB_CRC_16B;
7496 
7497 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7498 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7499 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7500 
7501 	/* set (14b only) or clear sideband credit */
7502 	reg = read_csr(dd, SEND_CM_CTRL);
7503 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7504 		write_csr(dd, SEND_CM_CTRL,
7505 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7506 	} else {
7507 		write_csr(dd, SEND_CM_CTRL,
7508 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7509 	}
7510 
7511 	ppd->link_speed_active = 0;	/* invalid value */
7512 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7513 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7514 		switch (remote_tx_rate) {
7515 		case 0:
7516 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7517 			break;
7518 		case 1:
7519 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7520 			break;
7521 		}
7522 	} else {
7523 		/* actual rate is highest bit of the ANDed rates */
7524 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7525 
7526 		if (rate & 2)
7527 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7528 		else if (rate & 1)
7529 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7530 	}
7531 	if (ppd->link_speed_active == 0) {
7532 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7533 			   __func__, (int)remote_tx_rate);
7534 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7535 	}
7536 
7537 	/*
7538 	 * Cache the values of the supported, enabled, and active
7539 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7540 	 * flags that are returned in the portinfo query differ from
7541 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7542 	 * variables. Convert these here.
7543 	 */
7544 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7545 		/* supported crc modes */
7546 	ppd->port_ltp_crc_mode |=
7547 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7548 		/* enabled crc modes */
7549 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7550 		/* active crc mode */
7551 
7552 	/* set up the remote credit return table */
7553 	assign_remote_cm_au_table(dd, vcu);
7554 
7555 	/*
7556 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7557 	 * be applied on every link up.
7558 	 *
7559 	 * Adjust LCB error kill enable to kill the link if
7560 	 * these RBUF errors are seen:
7561 	 *	REPLAY_BUF_MBE_SMASK
7562 	 *	FLIT_INPUT_BUF_MBE_SMASK
7563 	 */
7564 	if (is_ax(dd)) {			/* fixed in B0 */
7565 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7566 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7567 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7568 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7569 	}
7570 
7571 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7572 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7573 
7574 	/* give 8051 access to the LCB CSRs */
7575 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7576 	set_8051_lcb_access(dd);
7577 
7578 	/* tell the 8051 to go to LinkUp */
7579 	set_link_state(ppd, HLS_GOING_UP);
7580 }
7581 
7582 /**
7583  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7584  * policy against the current active link widths.
7585  * @ppd: info of physical Hfi port
7586  * @refresh_widths: True indicates link downgrade event
7587  * @return: True indicates a successful link downgrade. False indicates
7588  *	    link downgrade event failed and the link will bounce back to
7589  *	    default link width.
7590  *
7591  * Called when the enabled policy changes or the active link widths
7592  * change.
7593  * Refresh_widths indicates that a link downgrade occurred. The
7594  * link_downgraded variable is set by refresh_widths and
7595  * determines the success/failure of the policy application.
7596  */
7597 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7598 				 bool refresh_widths)
7599 {
7600 	int do_bounce = 0;
7601 	int tries;
7602 	u16 lwde;
7603 	u16 tx, rx;
7604 	bool link_downgraded = refresh_widths;
7605 
7606 	/* use the hls lock to avoid a race with actual link up */
7607 	tries = 0;
7608 retry:
7609 	mutex_lock(&ppd->hls_lock);
7610 	/* only apply if the link is up */
7611 	if (ppd->host_link_state & HLS_DOWN) {
7612 		/* still going up..wait and retry */
7613 		if (ppd->host_link_state & HLS_GOING_UP) {
7614 			if (++tries < 1000) {
7615 				mutex_unlock(&ppd->hls_lock);
7616 				usleep_range(100, 120); /* arbitrary */
7617 				goto retry;
7618 			}
7619 			dd_dev_err(ppd->dd,
7620 				   "%s: giving up waiting for link state change\n",
7621 				   __func__);
7622 		}
7623 		goto done;
7624 	}
7625 
7626 	lwde = ppd->link_width_downgrade_enabled;
7627 
7628 	if (refresh_widths) {
7629 		get_link_widths(ppd->dd, &tx, &rx);
7630 		ppd->link_width_downgrade_tx_active = tx;
7631 		ppd->link_width_downgrade_rx_active = rx;
7632 	}
7633 
7634 	if (ppd->link_width_downgrade_tx_active == 0 ||
7635 	    ppd->link_width_downgrade_rx_active == 0) {
7636 		/* the 8051 reported a dead link as a downgrade */
7637 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7638 		link_downgraded = false;
7639 	} else if (lwde == 0) {
7640 		/* downgrade is disabled */
7641 
7642 		/* bounce if not at starting active width */
7643 		if ((ppd->link_width_active !=
7644 		     ppd->link_width_downgrade_tx_active) ||
7645 		    (ppd->link_width_active !=
7646 		     ppd->link_width_downgrade_rx_active)) {
7647 			dd_dev_err(ppd->dd,
7648 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7649 			dd_dev_err(ppd->dd,
7650 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7651 				   ppd->link_width_active,
7652 				   ppd->link_width_downgrade_tx_active,
7653 				   ppd->link_width_downgrade_rx_active);
7654 			do_bounce = 1;
7655 			link_downgraded = false;
7656 		}
7657 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7658 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7659 		/* Tx or Rx is outside the enabled policy */
7660 		dd_dev_err(ppd->dd,
7661 			   "Link is outside of downgrade allowed, downing link\n");
7662 		dd_dev_err(ppd->dd,
7663 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7664 			   lwde, ppd->link_width_downgrade_tx_active,
7665 			   ppd->link_width_downgrade_rx_active);
7666 		do_bounce = 1;
7667 		link_downgraded = false;
7668 	}
7669 
7670 done:
7671 	mutex_unlock(&ppd->hls_lock);
7672 
7673 	if (do_bounce) {
7674 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7675 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7676 		set_link_state(ppd, HLS_DN_OFFLINE);
7677 		start_link(ppd);
7678 	}
7679 
7680 	return link_downgraded;
7681 }
7682 
7683 /*
7684  * Handle a link downgrade interrupt from the 8051.
7685  *
7686  * This is a work-queue function outside of the interrupt.
7687  */
7688 void handle_link_downgrade(struct work_struct *work)
7689 {
7690 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7691 							link_downgrade_work);
7692 
7693 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7694 	if (apply_link_downgrade_policy(ppd, true))
7695 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7696 }
7697 
7698 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7699 {
7700 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7701 		ARRAY_SIZE(dcc_err_flags));
7702 }
7703 
7704 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7705 {
7706 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7707 		ARRAY_SIZE(lcb_err_flags));
7708 }
7709 
7710 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7711 {
7712 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7713 		ARRAY_SIZE(dc8051_err_flags));
7714 }
7715 
7716 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7717 {
7718 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7719 		ARRAY_SIZE(dc8051_info_err_flags));
7720 }
7721 
7722 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7723 {
7724 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7725 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7726 }
7727 
7728 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7729 {
7730 	struct hfi1_pportdata *ppd = dd->pport;
7731 	u64 info, err, host_msg;
7732 	int queue_link_down = 0;
7733 	char buf[96];
7734 
7735 	/* look at the flags */
7736 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7737 		/* 8051 information set by firmware */
7738 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7739 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7740 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7741 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7742 		host_msg = (info >>
7743 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7744 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7745 
7746 		/*
7747 		 * Handle error flags.
7748 		 */
7749 		if (err & FAILED_LNI) {
7750 			/*
7751 			 * LNI error indications are cleared by the 8051
7752 			 * only when starting polling.  Only pay attention
7753 			 * to them when in the states that occur during
7754 			 * LNI.
7755 			 */
7756 			if (ppd->host_link_state
7757 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7758 				queue_link_down = 1;
7759 				dd_dev_info(dd, "Link error: %s\n",
7760 					    dc8051_info_err_string(buf,
7761 								   sizeof(buf),
7762 								   err &
7763 								   FAILED_LNI));
7764 			}
7765 			err &= ~(u64)FAILED_LNI;
7766 		}
7767 		/* unknown frames can happen durning LNI, just count */
7768 		if (err & UNKNOWN_FRAME) {
7769 			ppd->unknown_frame_count++;
7770 			err &= ~(u64)UNKNOWN_FRAME;
7771 		}
7772 		if (err) {
7773 			/* report remaining errors, but do not do anything */
7774 			dd_dev_err(dd, "8051 info error: %s\n",
7775 				   dc8051_info_err_string(buf, sizeof(buf),
7776 							  err));
7777 		}
7778 
7779 		/*
7780 		 * Handle host message flags.
7781 		 */
7782 		if (host_msg & HOST_REQ_DONE) {
7783 			/*
7784 			 * Presently, the driver does a busy wait for
7785 			 * host requests to complete.  This is only an
7786 			 * informational message.
7787 			 * NOTE: The 8051 clears the host message
7788 			 * information *on the next 8051 command*.
7789 			 * Therefore, when linkup is achieved,
7790 			 * this flag will still be set.
7791 			 */
7792 			host_msg &= ~(u64)HOST_REQ_DONE;
7793 		}
7794 		if (host_msg & BC_SMA_MSG) {
7795 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7796 			host_msg &= ~(u64)BC_SMA_MSG;
7797 		}
7798 		if (host_msg & LINKUP_ACHIEVED) {
7799 			dd_dev_info(dd, "8051: Link up\n");
7800 			queue_work(ppd->link_wq, &ppd->link_up_work);
7801 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7802 		}
7803 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7804 			handle_8051_request(ppd);
7805 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7806 		}
7807 		if (host_msg & VERIFY_CAP_FRAME) {
7808 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7809 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7810 		}
7811 		if (host_msg & LINK_GOING_DOWN) {
7812 			const char *extra = "";
7813 			/* no downgrade action needed if going down */
7814 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7815 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7816 				extra = " (ignoring downgrade)";
7817 			}
7818 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7819 			queue_link_down = 1;
7820 			host_msg &= ~(u64)LINK_GOING_DOWN;
7821 		}
7822 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7823 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7824 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7825 		}
7826 		if (host_msg) {
7827 			/* report remaining messages, but do not do anything */
7828 			dd_dev_info(dd, "8051 info host message: %s\n",
7829 				    dc8051_info_host_msg_string(buf,
7830 								sizeof(buf),
7831 								host_msg));
7832 		}
7833 
7834 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7835 	}
7836 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7837 		/*
7838 		 * Lost the 8051 heartbeat.  If this happens, we
7839 		 * receive constant interrupts about it.  Disable
7840 		 * the interrupt after the first.
7841 		 */
7842 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7843 		write_csr(dd, DC_DC8051_ERR_EN,
7844 			  read_csr(dd, DC_DC8051_ERR_EN) &
7845 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7846 
7847 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7848 	}
7849 	if (reg) {
7850 		/* report the error, but do not do anything */
7851 		dd_dev_err(dd, "8051 error: %s\n",
7852 			   dc8051_err_string(buf, sizeof(buf), reg));
7853 	}
7854 
7855 	if (queue_link_down) {
7856 		/*
7857 		 * if the link is already going down or disabled, do not
7858 		 * queue another. If there's a link down entry already
7859 		 * queued, don't queue another one.
7860 		 */
7861 		if ((ppd->host_link_state &
7862 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7863 		    ppd->link_enabled == 0) {
7864 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7865 				    __func__, ppd->host_link_state,
7866 				    ppd->link_enabled);
7867 		} else {
7868 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7869 				dd_dev_info(dd,
7870 					    "%s: link down request already queued\n",
7871 					    __func__);
7872 			else
7873 				queue_work(ppd->link_wq, &ppd->link_down_work);
7874 		}
7875 	}
7876 }
7877 
7878 static const char * const fm_config_txt[] = {
7879 [0] =
7880 	"BadHeadDist: Distance violation between two head flits",
7881 [1] =
7882 	"BadTailDist: Distance violation between two tail flits",
7883 [2] =
7884 	"BadCtrlDist: Distance violation between two credit control flits",
7885 [3] =
7886 	"BadCrdAck: Credits return for unsupported VL",
7887 [4] =
7888 	"UnsupportedVLMarker: Received VL Marker",
7889 [5] =
7890 	"BadPreempt: Exceeded the preemption nesting level",
7891 [6] =
7892 	"BadControlFlit: Received unsupported control flit",
7893 /* no 7 */
7894 [8] =
7895 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7896 };
7897 
7898 static const char * const port_rcv_txt[] = {
7899 [1] =
7900 	"BadPktLen: Illegal PktLen",
7901 [2] =
7902 	"PktLenTooLong: Packet longer than PktLen",
7903 [3] =
7904 	"PktLenTooShort: Packet shorter than PktLen",
7905 [4] =
7906 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7907 [5] =
7908 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7909 [6] =
7910 	"BadL2: Illegal L2 opcode",
7911 [7] =
7912 	"BadSC: Unsupported SC",
7913 [9] =
7914 	"BadRC: Illegal RC",
7915 [11] =
7916 	"PreemptError: Preempting with same VL",
7917 [12] =
7918 	"PreemptVL15: Preempting a VL15 packet",
7919 };
7920 
7921 #define OPA_LDR_FMCONFIG_OFFSET 16
7922 #define OPA_LDR_PORTRCV_OFFSET 0
7923 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7924 {
7925 	u64 info, hdr0, hdr1;
7926 	const char *extra;
7927 	char buf[96];
7928 	struct hfi1_pportdata *ppd = dd->pport;
7929 	u8 lcl_reason = 0;
7930 	int do_bounce = 0;
7931 
7932 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7933 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7934 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7935 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7936 			/* set status bit */
7937 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7938 		}
7939 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7940 	}
7941 
7942 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7943 		struct hfi1_pportdata *ppd = dd->pport;
7944 		/* this counter saturates at (2^32) - 1 */
7945 		if (ppd->link_downed < (u32)UINT_MAX)
7946 			ppd->link_downed++;
7947 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7948 	}
7949 
7950 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7951 		u8 reason_valid = 1;
7952 
7953 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7954 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7955 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7956 			/* set status bit */
7957 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7958 		}
7959 		switch (info) {
7960 		case 0:
7961 		case 1:
7962 		case 2:
7963 		case 3:
7964 		case 4:
7965 		case 5:
7966 		case 6:
7967 			extra = fm_config_txt[info];
7968 			break;
7969 		case 8:
7970 			extra = fm_config_txt[info];
7971 			if (ppd->port_error_action &
7972 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7973 				do_bounce = 1;
7974 				/*
7975 				 * lcl_reason cannot be derived from info
7976 				 * for this error
7977 				 */
7978 				lcl_reason =
7979 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7980 			}
7981 			break;
7982 		default:
7983 			reason_valid = 0;
7984 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7985 			extra = buf;
7986 			break;
7987 		}
7988 
7989 		if (reason_valid && !do_bounce) {
7990 			do_bounce = ppd->port_error_action &
7991 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7992 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7993 		}
7994 
7995 		/* just report this */
7996 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7997 					extra);
7998 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7999 	}
8000 
8001 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8002 		u8 reason_valid = 1;
8003 
8004 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8005 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8006 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8007 		if (!(dd->err_info_rcvport.status_and_code &
8008 		      OPA_EI_STATUS_SMASK)) {
8009 			dd->err_info_rcvport.status_and_code =
8010 				info & OPA_EI_CODE_SMASK;
8011 			/* set status bit */
8012 			dd->err_info_rcvport.status_and_code |=
8013 				OPA_EI_STATUS_SMASK;
8014 			/*
8015 			 * save first 2 flits in the packet that caused
8016 			 * the error
8017 			 */
8018 			dd->err_info_rcvport.packet_flit1 = hdr0;
8019 			dd->err_info_rcvport.packet_flit2 = hdr1;
8020 		}
8021 		switch (info) {
8022 		case 1:
8023 		case 2:
8024 		case 3:
8025 		case 4:
8026 		case 5:
8027 		case 6:
8028 		case 7:
8029 		case 9:
8030 		case 11:
8031 		case 12:
8032 			extra = port_rcv_txt[info];
8033 			break;
8034 		default:
8035 			reason_valid = 0;
8036 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8037 			extra = buf;
8038 			break;
8039 		}
8040 
8041 		if (reason_valid && !do_bounce) {
8042 			do_bounce = ppd->port_error_action &
8043 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8044 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8045 		}
8046 
8047 		/* just report this */
8048 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8049 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8050 					extra, hdr0, hdr1);
8051 
8052 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8053 	}
8054 
8055 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8056 		/* informative only */
8057 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8058 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8059 	}
8060 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8061 		/* informative only */
8062 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8063 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8064 	}
8065 
8066 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8067 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8068 
8069 	/* report any remaining errors */
8070 	if (reg)
8071 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8072 					dcc_err_string(buf, sizeof(buf), reg));
8073 
8074 	if (lcl_reason == 0)
8075 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8076 
8077 	if (do_bounce) {
8078 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8079 					__func__);
8080 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8081 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8082 	}
8083 }
8084 
8085 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8086 {
8087 	char buf[96];
8088 
8089 	dd_dev_info(dd, "LCB Error: %s\n",
8090 		    lcb_err_string(buf, sizeof(buf), reg));
8091 }
8092 
8093 /*
8094  * CCE block DC interrupt.  Source is < 8.
8095  */
8096 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8097 {
8098 	const struct err_reg_info *eri = &dc_errs[source];
8099 
8100 	if (eri->handler) {
8101 		interrupt_clear_down(dd, 0, eri);
8102 	} else if (source == 3 /* dc_lbm_int */) {
8103 		/*
8104 		 * This indicates that a parity error has occurred on the
8105 		 * address/control lines presented to the LBM.  The error
8106 		 * is a single pulse, there is no associated error flag,
8107 		 * and it is non-maskable.  This is because if a parity
8108 		 * error occurs on the request the request is dropped.
8109 		 * This should never occur, but it is nice to know if it
8110 		 * ever does.
8111 		 */
8112 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8113 	} else {
8114 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8115 	}
8116 }
8117 
8118 /*
8119  * TX block send credit interrupt.  Source is < 160.
8120  */
8121 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8122 {
8123 	sc_group_release_update(dd, source);
8124 }
8125 
8126 /*
8127  * TX block SDMA interrupt.  Source is < 48.
8128  *
8129  * SDMA interrupts are grouped by type:
8130  *
8131  *	 0 -  N-1 = SDma
8132  *	 N - 2N-1 = SDmaProgress
8133  *	2N - 3N-1 = SDmaIdle
8134  */
8135 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8136 {
8137 	/* what interrupt */
8138 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8139 	/* which engine */
8140 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8141 
8142 #ifdef CONFIG_SDMA_VERBOSITY
8143 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8144 		   slashstrip(__FILE__), __LINE__, __func__);
8145 	sdma_dumpstate(&dd->per_sdma[which]);
8146 #endif
8147 
8148 	if (likely(what < 3 && which < dd->num_sdma)) {
8149 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8150 	} else {
8151 		/* should not happen */
8152 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8153 	}
8154 }
8155 
8156 /**
8157  * is_rcv_avail_int() - User receive context available IRQ handler
8158  * @dd: valid dd
8159  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8160  *
8161  * RX block receive available interrupt.  Source is < 160.
8162  *
8163  * This is the general interrupt handler for user (PSM) receive contexts,
8164  * and can only be used for non-threaded IRQs.
8165  */
8166 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8167 {
8168 	struct hfi1_ctxtdata *rcd;
8169 	char *err_detail;
8170 
8171 	if (likely(source < dd->num_rcv_contexts)) {
8172 		rcd = hfi1_rcd_get_by_index(dd, source);
8173 		if (rcd) {
8174 			handle_user_interrupt(rcd);
8175 			hfi1_rcd_put(rcd);
8176 			return;	/* OK */
8177 		}
8178 		/* received an interrupt, but no rcd */
8179 		err_detail = "dataless";
8180 	} else {
8181 		/* received an interrupt, but are not using that context */
8182 		err_detail = "out of range";
8183 	}
8184 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8185 		   err_detail, source);
8186 }
8187 
8188 /**
8189  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8190  * @dd: valid dd
8191  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8192  *
8193  * RX block receive urgent interrupt.  Source is < 160.
8194  *
8195  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8196  */
8197 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8198 {
8199 	struct hfi1_ctxtdata *rcd;
8200 	char *err_detail;
8201 
8202 	if (likely(source < dd->num_rcv_contexts)) {
8203 		rcd = hfi1_rcd_get_by_index(dd, source);
8204 		if (rcd) {
8205 			handle_user_interrupt(rcd);
8206 			hfi1_rcd_put(rcd);
8207 			return;	/* OK */
8208 		}
8209 		/* received an interrupt, but no rcd */
8210 		err_detail = "dataless";
8211 	} else {
8212 		/* received an interrupt, but are not using that context */
8213 		err_detail = "out of range";
8214 	}
8215 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8216 		   err_detail, source);
8217 }
8218 
8219 /*
8220  * Reserved range interrupt.  Should not be called in normal operation.
8221  */
8222 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8223 {
8224 	char name[64];
8225 
8226 	dd_dev_err(dd, "unexpected %s interrupt\n",
8227 		   is_reserved_name(name, sizeof(name), source));
8228 }
8229 
8230 static const struct is_table is_table[] = {
8231 /*
8232  * start		 end
8233  *				name func		interrupt func
8234  */
8235 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8236 				is_misc_err_name,	is_misc_err_int },
8237 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8238 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8239 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8240 				is_sendctxt_err_name,	is_sendctxt_err_int },
8241 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8242 				is_sdma_eng_name,	is_sdma_eng_int },
8243 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8244 				is_various_name,	is_various_int },
8245 { IS_DC_START,	     IS_DC_END,
8246 				is_dc_name,		is_dc_int },
8247 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8248 				is_rcv_avail_name,	is_rcv_avail_int },
8249 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8250 				is_rcv_urgent_name,	is_rcv_urgent_int },
8251 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8252 				is_send_credit_name,	is_send_credit_int},
8253 { IS_RESERVED_START,     IS_RESERVED_END,
8254 				is_reserved_name,	is_reserved_int},
8255 };
8256 
8257 /*
8258  * Interrupt source interrupt - called when the given source has an interrupt.
8259  * Source is a bit index into an array of 64-bit integers.
8260  */
8261 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8262 {
8263 	const struct is_table *entry;
8264 
8265 	/* avoids a double compare by walking the table in-order */
8266 	for (entry = &is_table[0]; entry->is_name; entry++) {
8267 		if (source <= entry->end) {
8268 			trace_hfi1_interrupt(dd, entry, source);
8269 			entry->is_int(dd, source - entry->start);
8270 			return;
8271 		}
8272 	}
8273 	/* fell off the end */
8274 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8275 }
8276 
8277 /**
8278  * general_interrupt -  General interrupt handler
8279  * @irq: MSIx IRQ vector
8280  * @data: hfi1 devdata
8281  *
8282  * This is able to correctly handle all non-threaded interrupts.  Receive
8283  * context DATA IRQs are threaded and are not supported by this handler.
8284  *
8285  */
8286 irqreturn_t general_interrupt(int irq, void *data)
8287 {
8288 	struct hfi1_devdata *dd = data;
8289 	u64 regs[CCE_NUM_INT_CSRS];
8290 	u32 bit;
8291 	int i;
8292 	irqreturn_t handled = IRQ_NONE;
8293 
8294 	this_cpu_inc(*dd->int_counter);
8295 
8296 	/* phase 1: scan and clear all handled interrupts */
8297 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8298 		if (dd->gi_mask[i] == 0) {
8299 			regs[i] = 0;	/* used later */
8300 			continue;
8301 		}
8302 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8303 				dd->gi_mask[i];
8304 		/* only clear if anything is set */
8305 		if (regs[i])
8306 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8307 	}
8308 
8309 	/* phase 2: call the appropriate handler */
8310 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8311 			 CCE_NUM_INT_CSRS * 64) {
8312 		is_interrupt(dd, bit);
8313 		handled = IRQ_HANDLED;
8314 	}
8315 
8316 	return handled;
8317 }
8318 
8319 irqreturn_t sdma_interrupt(int irq, void *data)
8320 {
8321 	struct sdma_engine *sde = data;
8322 	struct hfi1_devdata *dd = sde->dd;
8323 	u64 status;
8324 
8325 #ifdef CONFIG_SDMA_VERBOSITY
8326 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8327 		   slashstrip(__FILE__), __LINE__, __func__);
8328 	sdma_dumpstate(sde);
8329 #endif
8330 
8331 	this_cpu_inc(*dd->int_counter);
8332 
8333 	/* This read_csr is really bad in the hot path */
8334 	status = read_csr(dd,
8335 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8336 			  & sde->imask;
8337 	if (likely(status)) {
8338 		/* clear the interrupt(s) */
8339 		write_csr(dd,
8340 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8341 			  status);
8342 
8343 		/* handle the interrupt(s) */
8344 		sdma_engine_interrupt(sde, status);
8345 	} else {
8346 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8347 					sde->this_idx);
8348 	}
8349 	return IRQ_HANDLED;
8350 }
8351 
8352 /*
8353  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8354  * to insure that the write completed.  This does NOT guarantee that
8355  * queued DMA writes to memory from the chip are pushed.
8356  */
8357 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8358 {
8359 	struct hfi1_devdata *dd = rcd->dd;
8360 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8361 
8362 	write_csr(dd, addr, rcd->imask);
8363 	/* force the above write on the chip and get a value back */
8364 	(void)read_csr(dd, addr);
8365 }
8366 
8367 /* force the receive interrupt */
8368 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8369 {
8370 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8371 }
8372 
8373 /*
8374  * Return non-zero if a packet is present.
8375  *
8376  * This routine is called when rechecking for packets after the RcvAvail
8377  * interrupt has been cleared down.  First, do a quick check of memory for
8378  * a packet present.  If not found, use an expensive CSR read of the context
8379  * tail to determine the actual tail.  The CSR read is necessary because there
8380  * is no method to push pending DMAs to memory other than an interrupt and we
8381  * are trying to determine if we need to force an interrupt.
8382  */
8383 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8384 {
8385 	u32 tail;
8386 
8387 	if (hfi1_packet_present(rcd))
8388 		return 1;
8389 
8390 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8391 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8392 	return hfi1_rcd_head(rcd) != tail;
8393 }
8394 
8395 /*
8396  * Common code for receive contexts interrupt handlers.
8397  * Update traces, increment kernel IRQ counter and
8398  * setup ASPM when needed.
8399  */
8400 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8401 {
8402 	struct hfi1_devdata *dd = rcd->dd;
8403 
8404 	trace_hfi1_receive_interrupt(dd, rcd);
8405 	this_cpu_inc(*dd->int_counter);
8406 	aspm_ctx_disable(rcd);
8407 }
8408 
8409 /*
8410  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8411  * when there are packets present in the queue. When calling
8412  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8413  *
8414  * @rcd: valid receive context
8415  */
8416 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8417 {
8418 	clear_recv_intr(rcd);
8419 	if (check_packet_present(rcd))
8420 		force_recv_intr(rcd);
8421 }
8422 
8423 /**
8424  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8425  *
8426  * @rcd: Ptr to hfi1_ctxtdata of receive context
8427  *
8428  *  Hold IRQs so we can safely clear the interrupt and
8429  *  recheck for a packet that may have arrived after the previous
8430  *  check and the interrupt clear.  If a packet arrived, force another
8431  *  interrupt. This routine can be called at the end of receive packet
8432  *  processing in interrupt service routines, interrupt service thread
8433  *  and softirqs
8434  */
8435 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8436 {
8437 	unsigned long flags;
8438 
8439 	local_irq_save(flags);
8440 	__hfi1_rcd_eoi_intr(rcd);
8441 	local_irq_restore(flags);
8442 }
8443 
8444 /**
8445  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8446  * @napi: pointer to napi object
8447  * @budget: netdev budget
8448  */
8449 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8450 {
8451 	struct hfi1_netdev_rxq *rxq = container_of(napi,
8452 			struct hfi1_netdev_rxq, napi);
8453 	struct hfi1_ctxtdata *rcd = rxq->rcd;
8454 	int work_done = 0;
8455 
8456 	work_done = rcd->do_interrupt(rcd, budget);
8457 
8458 	if (work_done < budget) {
8459 		napi_complete_done(napi, work_done);
8460 		hfi1_rcd_eoi_intr(rcd);
8461 	}
8462 
8463 	return work_done;
8464 }
8465 
8466 /* Receive packet napi handler for netdevs VNIC and AIP  */
8467 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8468 {
8469 	struct hfi1_ctxtdata *rcd = data;
8470 
8471 	receive_interrupt_common(rcd);
8472 
8473 	if (likely(rcd->napi)) {
8474 		if (likely(napi_schedule_prep(rcd->napi)))
8475 			__napi_schedule_irqoff(rcd->napi);
8476 		else
8477 			__hfi1_rcd_eoi_intr(rcd);
8478 	} else {
8479 		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8480 			  rcd->ctxt);
8481 		__hfi1_rcd_eoi_intr(rcd);
8482 	}
8483 
8484 	return IRQ_HANDLED;
8485 }
8486 
8487 /*
8488  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8489  * This routine will try to handle packets immediately (latency), but if
8490  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8491  * chip receive interrupt is *not* cleared down until this or the thread (if
8492  * invoked) is finished.  The intent is to avoid extra interrupts while we
8493  * are processing packets anyway.
8494  */
8495 irqreturn_t receive_context_interrupt(int irq, void *data)
8496 {
8497 	struct hfi1_ctxtdata *rcd = data;
8498 	int disposition;
8499 
8500 	receive_interrupt_common(rcd);
8501 
8502 	/* receive interrupt remains blocked while processing packets */
8503 	disposition = rcd->do_interrupt(rcd, 0);
8504 
8505 	/*
8506 	 * Too many packets were seen while processing packets in this
8507 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8508 	 * remains blocked.
8509 	 */
8510 	if (disposition == RCV_PKT_LIMIT)
8511 		return IRQ_WAKE_THREAD;
8512 
8513 	__hfi1_rcd_eoi_intr(rcd);
8514 	return IRQ_HANDLED;
8515 }
8516 
8517 /*
8518  * Receive packet thread handler.  This expects to be invoked with the
8519  * receive interrupt still blocked.
8520  */
8521 irqreturn_t receive_context_thread(int irq, void *data)
8522 {
8523 	struct hfi1_ctxtdata *rcd = data;
8524 
8525 	/* receive interrupt is still blocked from the IRQ handler */
8526 	(void)rcd->do_interrupt(rcd, 1);
8527 
8528 	hfi1_rcd_eoi_intr(rcd);
8529 
8530 	return IRQ_HANDLED;
8531 }
8532 
8533 /* ========================================================================= */
8534 
8535 u32 read_physical_state(struct hfi1_devdata *dd)
8536 {
8537 	u64 reg;
8538 
8539 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8540 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8541 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8542 }
8543 
8544 u32 read_logical_state(struct hfi1_devdata *dd)
8545 {
8546 	u64 reg;
8547 
8548 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8549 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8550 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8551 }
8552 
8553 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8554 {
8555 	u64 reg;
8556 
8557 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8558 	/* clear current state, set new state */
8559 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8560 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8561 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8562 }
8563 
8564 /*
8565  * Use the 8051 to read a LCB CSR.
8566  */
8567 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8568 {
8569 	u32 regno;
8570 	int ret;
8571 
8572 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8573 		if (acquire_lcb_access(dd, 0) == 0) {
8574 			*data = read_csr(dd, addr);
8575 			release_lcb_access(dd, 0);
8576 			return 0;
8577 		}
8578 		return -EBUSY;
8579 	}
8580 
8581 	/* register is an index of LCB registers: (offset - base) / 8 */
8582 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8583 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8584 	if (ret != HCMD_SUCCESS)
8585 		return -EBUSY;
8586 	return 0;
8587 }
8588 
8589 /*
8590  * Provide a cache for some of the LCB registers in case the LCB is
8591  * unavailable.
8592  * (The LCB is unavailable in certain link states, for example.)
8593  */
8594 struct lcb_datum {
8595 	u32 off;
8596 	u64 val;
8597 };
8598 
8599 static struct lcb_datum lcb_cache[] = {
8600 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8601 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8602 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8603 };
8604 
8605 static void update_lcb_cache(struct hfi1_devdata *dd)
8606 {
8607 	int i;
8608 	int ret;
8609 	u64 val;
8610 
8611 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8612 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8613 
8614 		/* Update if we get good data */
8615 		if (likely(ret != -EBUSY))
8616 			lcb_cache[i].val = val;
8617 	}
8618 }
8619 
8620 static int read_lcb_cache(u32 off, u64 *val)
8621 {
8622 	int i;
8623 
8624 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8625 		if (lcb_cache[i].off == off) {
8626 			*val = lcb_cache[i].val;
8627 			return 0;
8628 		}
8629 	}
8630 
8631 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8632 	return -1;
8633 }
8634 
8635 /*
8636  * Read an LCB CSR.  Access may not be in host control, so check.
8637  * Return 0 on success, -EBUSY on failure.
8638  */
8639 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8640 {
8641 	struct hfi1_pportdata *ppd = dd->pport;
8642 
8643 	/* if up, go through the 8051 for the value */
8644 	if (ppd->host_link_state & HLS_UP)
8645 		return read_lcb_via_8051(dd, addr, data);
8646 	/* if going up or down, check the cache, otherwise, no access */
8647 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8648 		if (read_lcb_cache(addr, data))
8649 			return -EBUSY;
8650 		return 0;
8651 	}
8652 
8653 	/* otherwise, host has access */
8654 	*data = read_csr(dd, addr);
8655 	return 0;
8656 }
8657 
8658 /*
8659  * Use the 8051 to write a LCB CSR.
8660  */
8661 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8662 {
8663 	u32 regno;
8664 	int ret;
8665 
8666 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8667 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8668 		if (acquire_lcb_access(dd, 0) == 0) {
8669 			write_csr(dd, addr, data);
8670 			release_lcb_access(dd, 0);
8671 			return 0;
8672 		}
8673 		return -EBUSY;
8674 	}
8675 
8676 	/* register is an index of LCB registers: (offset - base) / 8 */
8677 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8678 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8679 	if (ret != HCMD_SUCCESS)
8680 		return -EBUSY;
8681 	return 0;
8682 }
8683 
8684 /*
8685  * Write an LCB CSR.  Access may not be in host control, so check.
8686  * Return 0 on success, -EBUSY on failure.
8687  */
8688 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8689 {
8690 	struct hfi1_pportdata *ppd = dd->pport;
8691 
8692 	/* if up, go through the 8051 for the value */
8693 	if (ppd->host_link_state & HLS_UP)
8694 		return write_lcb_via_8051(dd, addr, data);
8695 	/* if going up or down, no access */
8696 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8697 		return -EBUSY;
8698 	/* otherwise, host has access */
8699 	write_csr(dd, addr, data);
8700 	return 0;
8701 }
8702 
8703 /*
8704  * Returns:
8705  *	< 0 = Linux error, not able to get access
8706  *	> 0 = 8051 command RETURN_CODE
8707  */
8708 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8709 			   u64 *out_data)
8710 {
8711 	u64 reg, completed;
8712 	int return_code;
8713 	unsigned long timeout;
8714 
8715 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8716 
8717 	mutex_lock(&dd->dc8051_lock);
8718 
8719 	/* We can't send any commands to the 8051 if it's in reset */
8720 	if (dd->dc_shutdown) {
8721 		return_code = -ENODEV;
8722 		goto fail;
8723 	}
8724 
8725 	/*
8726 	 * If an 8051 host command timed out previously, then the 8051 is
8727 	 * stuck.
8728 	 *
8729 	 * On first timeout, attempt to reset and restart the entire DC
8730 	 * block (including 8051). (Is this too big of a hammer?)
8731 	 *
8732 	 * If the 8051 times out a second time, the reset did not bring it
8733 	 * back to healthy life. In that case, fail any subsequent commands.
8734 	 */
8735 	if (dd->dc8051_timed_out) {
8736 		if (dd->dc8051_timed_out > 1) {
8737 			dd_dev_err(dd,
8738 				   "Previous 8051 host command timed out, skipping command %u\n",
8739 				   type);
8740 			return_code = -ENXIO;
8741 			goto fail;
8742 		}
8743 		_dc_shutdown(dd);
8744 		_dc_start(dd);
8745 	}
8746 
8747 	/*
8748 	 * If there is no timeout, then the 8051 command interface is
8749 	 * waiting for a command.
8750 	 */
8751 
8752 	/*
8753 	 * When writing a LCB CSR, out_data contains the full value to
8754 	 * to be written, while in_data contains the relative LCB
8755 	 * address in 7:0.  Do the work here, rather than the caller,
8756 	 * of distrubting the write data to where it needs to go:
8757 	 *
8758 	 * Write data
8759 	 *   39:00 -> in_data[47:8]
8760 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8761 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8762 	 */
8763 	if (type == HCMD_WRITE_LCB_CSR) {
8764 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8765 		/* must preserve COMPLETED - it is tied to hardware */
8766 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8767 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8768 		reg |= ((((*out_data) >> 40) & 0xff) <<
8769 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8770 		      | ((((*out_data) >> 48) & 0xffff) <<
8771 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8772 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8773 	}
8774 
8775 	/*
8776 	 * Do two writes: the first to stabilize the type and req_data, the
8777 	 * second to activate.
8778 	 */
8779 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8780 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8781 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8782 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8783 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8784 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8785 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8786 
8787 	/* wait for completion, alternate: interrupt */
8788 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8789 	while (1) {
8790 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8791 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8792 		if (completed)
8793 			break;
8794 		if (time_after(jiffies, timeout)) {
8795 			dd->dc8051_timed_out++;
8796 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8797 			if (out_data)
8798 				*out_data = 0;
8799 			return_code = -ETIMEDOUT;
8800 			goto fail;
8801 		}
8802 		udelay(2);
8803 	}
8804 
8805 	if (out_data) {
8806 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8807 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8808 		if (type == HCMD_READ_LCB_CSR) {
8809 			/* top 16 bits are in a different register */
8810 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8811 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8812 				<< (48
8813 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8814 		}
8815 	}
8816 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8817 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8818 	dd->dc8051_timed_out = 0;
8819 	/*
8820 	 * Clear command for next user.
8821 	 */
8822 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8823 
8824 fail:
8825 	mutex_unlock(&dd->dc8051_lock);
8826 	return return_code;
8827 }
8828 
8829 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8830 {
8831 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8832 }
8833 
8834 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8835 		     u8 lane_id, u32 config_data)
8836 {
8837 	u64 data;
8838 	int ret;
8839 
8840 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8841 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8842 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8843 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8844 	if (ret != HCMD_SUCCESS) {
8845 		dd_dev_err(dd,
8846 			   "load 8051 config: field id %d, lane %d, err %d\n",
8847 			   (int)field_id, (int)lane_id, ret);
8848 	}
8849 	return ret;
8850 }
8851 
8852 /*
8853  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8854  * set the result, even on error.
8855  * Return 0 on success, -errno on failure
8856  */
8857 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8858 		     u32 *result)
8859 {
8860 	u64 big_data;
8861 	u32 addr;
8862 	int ret;
8863 
8864 	/* address start depends on the lane_id */
8865 	if (lane_id < 4)
8866 		addr = (4 * NUM_GENERAL_FIELDS)
8867 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8868 	else
8869 		addr = 0;
8870 	addr += field_id * 4;
8871 
8872 	/* read is in 8-byte chunks, hardware will truncate the address down */
8873 	ret = read_8051_data(dd, addr, 8, &big_data);
8874 
8875 	if (ret == 0) {
8876 		/* extract the 4 bytes we want */
8877 		if (addr & 0x4)
8878 			*result = (u32)(big_data >> 32);
8879 		else
8880 			*result = (u32)big_data;
8881 	} else {
8882 		*result = 0;
8883 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8884 			   __func__, lane_id, field_id);
8885 	}
8886 
8887 	return ret;
8888 }
8889 
8890 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8891 			      u8 continuous)
8892 {
8893 	u32 frame;
8894 
8895 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8896 		| power_management << POWER_MANAGEMENT_SHIFT;
8897 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8898 				GENERAL_CONFIG, frame);
8899 }
8900 
8901 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8902 				 u16 vl15buf, u8 crc_sizes)
8903 {
8904 	u32 frame;
8905 
8906 	frame = (u32)vau << VAU_SHIFT
8907 		| (u32)z << Z_SHIFT
8908 		| (u32)vcu << VCU_SHIFT
8909 		| (u32)vl15buf << VL15BUF_SHIFT
8910 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8911 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8912 				GENERAL_CONFIG, frame);
8913 }
8914 
8915 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8916 				    u8 *flag_bits, u16 *link_widths)
8917 {
8918 	u32 frame;
8919 
8920 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8921 			 &frame);
8922 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8923 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8924 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8925 }
8926 
8927 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8928 				    u8 misc_bits,
8929 				    u8 flag_bits,
8930 				    u16 link_widths)
8931 {
8932 	u32 frame;
8933 
8934 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8935 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8936 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8937 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8938 		     frame);
8939 }
8940 
8941 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8942 				 u8 device_rev)
8943 {
8944 	u32 frame;
8945 
8946 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8947 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8948 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8949 }
8950 
8951 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8952 				  u8 *device_rev)
8953 {
8954 	u32 frame;
8955 
8956 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8957 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8958 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8959 			& REMOTE_DEVICE_REV_MASK;
8960 }
8961 
8962 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8963 {
8964 	u32 frame;
8965 	u32 mask;
8966 
8967 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8968 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8969 	/* Clear, then set field */
8970 	frame &= ~mask;
8971 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8972 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8973 				frame);
8974 }
8975 
8976 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8977 		      u8 *ver_patch)
8978 {
8979 	u32 frame;
8980 
8981 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8982 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8983 		STS_FM_VERSION_MAJOR_MASK;
8984 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8985 		STS_FM_VERSION_MINOR_MASK;
8986 
8987 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8988 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8989 		STS_FM_VERSION_PATCH_MASK;
8990 }
8991 
8992 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8993 			       u8 *continuous)
8994 {
8995 	u32 frame;
8996 
8997 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8998 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8999 					& POWER_MANAGEMENT_MASK;
9000 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9001 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9002 }
9003 
9004 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9005 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9006 {
9007 	u32 frame;
9008 
9009 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9010 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9011 	*z = (frame >> Z_SHIFT) & Z_MASK;
9012 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9013 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9014 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9015 }
9016 
9017 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9018 				      u8 *remote_tx_rate,
9019 				      u16 *link_widths)
9020 {
9021 	u32 frame;
9022 
9023 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9024 			 &frame);
9025 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9026 				& REMOTE_TX_RATE_MASK;
9027 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9028 }
9029 
9030 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9031 {
9032 	u32 frame;
9033 
9034 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9035 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9036 }
9037 
9038 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9039 {
9040 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9041 }
9042 
9043 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9044 {
9045 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9046 }
9047 
9048 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9049 {
9050 	u32 frame;
9051 	int ret;
9052 
9053 	*link_quality = 0;
9054 	if (dd->pport->host_link_state & HLS_UP) {
9055 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9056 				       &frame);
9057 		if (ret == 0)
9058 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9059 						& LINK_QUALITY_MASK;
9060 	}
9061 }
9062 
9063 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9064 {
9065 	u32 frame;
9066 
9067 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9068 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9069 }
9070 
9071 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9072 {
9073 	u32 frame;
9074 
9075 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9076 	*ldr = (frame & 0xff);
9077 }
9078 
9079 static int read_tx_settings(struct hfi1_devdata *dd,
9080 			    u8 *enable_lane_tx,
9081 			    u8 *tx_polarity_inversion,
9082 			    u8 *rx_polarity_inversion,
9083 			    u8 *max_rate)
9084 {
9085 	u32 frame;
9086 	int ret;
9087 
9088 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9089 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9090 				& ENABLE_LANE_TX_MASK;
9091 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9092 				& TX_POLARITY_INVERSION_MASK;
9093 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9094 				& RX_POLARITY_INVERSION_MASK;
9095 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9096 	return ret;
9097 }
9098 
9099 static int write_tx_settings(struct hfi1_devdata *dd,
9100 			     u8 enable_lane_tx,
9101 			     u8 tx_polarity_inversion,
9102 			     u8 rx_polarity_inversion,
9103 			     u8 max_rate)
9104 {
9105 	u32 frame;
9106 
9107 	/* no need to mask, all variable sizes match field widths */
9108 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9109 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9110 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9111 		| max_rate << MAX_RATE_SHIFT;
9112 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9113 }
9114 
9115 /*
9116  * Read an idle LCB message.
9117  *
9118  * Returns 0 on success, -EINVAL on error
9119  */
9120 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9121 {
9122 	int ret;
9123 
9124 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9125 	if (ret != HCMD_SUCCESS) {
9126 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9127 			   (u32)type, ret);
9128 		return -EINVAL;
9129 	}
9130 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9131 	/* return only the payload as we already know the type */
9132 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9133 	return 0;
9134 }
9135 
9136 /*
9137  * Read an idle SMA message.  To be done in response to a notification from
9138  * the 8051.
9139  *
9140  * Returns 0 on success, -EINVAL on error
9141  */
9142 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9143 {
9144 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9145 				 data);
9146 }
9147 
9148 /*
9149  * Send an idle LCB message.
9150  *
9151  * Returns 0 on success, -EINVAL on error
9152  */
9153 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9154 {
9155 	int ret;
9156 
9157 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9158 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9159 	if (ret != HCMD_SUCCESS) {
9160 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9161 			   data, ret);
9162 		return -EINVAL;
9163 	}
9164 	return 0;
9165 }
9166 
9167 /*
9168  * Send an idle SMA message.
9169  *
9170  * Returns 0 on success, -EINVAL on error
9171  */
9172 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9173 {
9174 	u64 data;
9175 
9176 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9177 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9178 	return send_idle_message(dd, data);
9179 }
9180 
9181 /*
9182  * Initialize the LCB then do a quick link up.  This may or may not be
9183  * in loopback.
9184  *
9185  * return 0 on success, -errno on error
9186  */
9187 static int do_quick_linkup(struct hfi1_devdata *dd)
9188 {
9189 	int ret;
9190 
9191 	lcb_shutdown(dd, 0);
9192 
9193 	if (loopback) {
9194 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9195 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9196 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9197 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9198 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9199 	}
9200 
9201 	/* start the LCBs */
9202 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9203 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9204 
9205 	/* simulator only loopback steps */
9206 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9207 		/* LCB_CFG_RUN.EN = 1 */
9208 		write_csr(dd, DC_LCB_CFG_RUN,
9209 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9210 
9211 		ret = wait_link_transfer_active(dd, 10);
9212 		if (ret)
9213 			return ret;
9214 
9215 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9216 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9217 	}
9218 
9219 	if (!loopback) {
9220 		/*
9221 		 * When doing quick linkup and not in loopback, both
9222 		 * sides must be done with LCB set-up before either
9223 		 * starts the quick linkup.  Put a delay here so that
9224 		 * both sides can be started and have a chance to be
9225 		 * done with LCB set up before resuming.
9226 		 */
9227 		dd_dev_err(dd,
9228 			   "Pausing for peer to be finished with LCB set up\n");
9229 		msleep(5000);
9230 		dd_dev_err(dd, "Continuing with quick linkup\n");
9231 	}
9232 
9233 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9234 	set_8051_lcb_access(dd);
9235 
9236 	/*
9237 	 * State "quick" LinkUp request sets the physical link state to
9238 	 * LinkUp without a verify capability sequence.
9239 	 * This state is in simulator v37 and later.
9240 	 */
9241 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9242 	if (ret != HCMD_SUCCESS) {
9243 		dd_dev_err(dd,
9244 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9245 			   __func__, ret);
9246 
9247 		set_host_lcb_access(dd);
9248 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9249 
9250 		if (ret >= 0)
9251 			ret = -EINVAL;
9252 		return ret;
9253 	}
9254 
9255 	return 0; /* success */
9256 }
9257 
9258 /*
9259  * Do all special steps to set up loopback.
9260  */
9261 static int init_loopback(struct hfi1_devdata *dd)
9262 {
9263 	dd_dev_info(dd, "Entering loopback mode\n");
9264 
9265 	/* all loopbacks should disable self GUID check */
9266 	write_csr(dd, DC_DC8051_CFG_MODE,
9267 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9268 
9269 	/*
9270 	 * The simulator has only one loopback option - LCB.  Switch
9271 	 * to that option, which includes quick link up.
9272 	 *
9273 	 * Accept all valid loopback values.
9274 	 */
9275 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9276 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9277 	     loopback == LOOPBACK_CABLE)) {
9278 		loopback = LOOPBACK_LCB;
9279 		quick_linkup = 1;
9280 		return 0;
9281 	}
9282 
9283 	/*
9284 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9285 	 */
9286 	if (loopback == LOOPBACK_SERDES)
9287 		return 0;
9288 
9289 	/* LCB loopback - handled at poll time */
9290 	if (loopback == LOOPBACK_LCB) {
9291 		quick_linkup = 1; /* LCB is always quick linkup */
9292 
9293 		/* not supported in emulation due to emulation RTL changes */
9294 		if (dd->icode == ICODE_FPGA_EMULATION) {
9295 			dd_dev_err(dd,
9296 				   "LCB loopback not supported in emulation\n");
9297 			return -EINVAL;
9298 		}
9299 		return 0;
9300 	}
9301 
9302 	/* external cable loopback requires no extra steps */
9303 	if (loopback == LOOPBACK_CABLE)
9304 		return 0;
9305 
9306 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9307 	return -EINVAL;
9308 }
9309 
9310 /*
9311  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9312  * used in the Verify Capability link width attribute.
9313  */
9314 static u16 opa_to_vc_link_widths(u16 opa_widths)
9315 {
9316 	int i;
9317 	u16 result = 0;
9318 
9319 	static const struct link_bits {
9320 		u16 from;
9321 		u16 to;
9322 	} opa_link_xlate[] = {
9323 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9324 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9325 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9326 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9327 	};
9328 
9329 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9330 		if (opa_widths & opa_link_xlate[i].from)
9331 			result |= opa_link_xlate[i].to;
9332 	}
9333 	return result;
9334 }
9335 
9336 /*
9337  * Set link attributes before moving to polling.
9338  */
9339 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9340 {
9341 	struct hfi1_devdata *dd = ppd->dd;
9342 	u8 enable_lane_tx;
9343 	u8 tx_polarity_inversion;
9344 	u8 rx_polarity_inversion;
9345 	int ret;
9346 	u32 misc_bits = 0;
9347 	/* reset our fabric serdes to clear any lingering problems */
9348 	fabric_serdes_reset(dd);
9349 
9350 	/* set the local tx rate - need to read-modify-write */
9351 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9352 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9353 	if (ret)
9354 		goto set_local_link_attributes_fail;
9355 
9356 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9357 		/* set the tx rate to the fastest enabled */
9358 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9359 			ppd->local_tx_rate = 1;
9360 		else
9361 			ppd->local_tx_rate = 0;
9362 	} else {
9363 		/* set the tx rate to all enabled */
9364 		ppd->local_tx_rate = 0;
9365 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9366 			ppd->local_tx_rate |= 2;
9367 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9368 			ppd->local_tx_rate |= 1;
9369 	}
9370 
9371 	enable_lane_tx = 0xF; /* enable all four lanes */
9372 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9373 				rx_polarity_inversion, ppd->local_tx_rate);
9374 	if (ret != HCMD_SUCCESS)
9375 		goto set_local_link_attributes_fail;
9376 
9377 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9378 	if (ret != HCMD_SUCCESS) {
9379 		dd_dev_err(dd,
9380 			   "Failed to set host interface version, return 0x%x\n",
9381 			   ret);
9382 		goto set_local_link_attributes_fail;
9383 	}
9384 
9385 	/*
9386 	 * DC supports continuous updates.
9387 	 */
9388 	ret = write_vc_local_phy(dd,
9389 				 0 /* no power management */,
9390 				 1 /* continuous updates */);
9391 	if (ret != HCMD_SUCCESS)
9392 		goto set_local_link_attributes_fail;
9393 
9394 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9395 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9396 				    ppd->port_crc_mode_enabled);
9397 	if (ret != HCMD_SUCCESS)
9398 		goto set_local_link_attributes_fail;
9399 
9400 	/*
9401 	 * SerDes loopback init sequence requires
9402 	 * setting bit 0 of MISC_CONFIG_BITS
9403 	 */
9404 	if (loopback == LOOPBACK_SERDES)
9405 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9406 
9407 	/*
9408 	 * An external device configuration request is used to reset the LCB
9409 	 * to retry to obtain operational lanes when the first attempt is
9410 	 * unsuccesful.
9411 	 */
9412 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9413 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9414 
9415 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9416 				       opa_to_vc_link_widths(
9417 						ppd->link_width_enabled));
9418 	if (ret != HCMD_SUCCESS)
9419 		goto set_local_link_attributes_fail;
9420 
9421 	/* let peer know who we are */
9422 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9423 	if (ret == HCMD_SUCCESS)
9424 		return 0;
9425 
9426 set_local_link_attributes_fail:
9427 	dd_dev_err(dd,
9428 		   "Failed to set local link attributes, return 0x%x\n",
9429 		   ret);
9430 	return ret;
9431 }
9432 
9433 /*
9434  * Call this to start the link.
9435  * Do not do anything if the link is disabled.
9436  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9437  */
9438 int start_link(struct hfi1_pportdata *ppd)
9439 {
9440 	/*
9441 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9442 	 * error rate.  Needs to be done before starting the link.
9443 	 */
9444 	tune_serdes(ppd);
9445 
9446 	if (!ppd->driver_link_ready) {
9447 		dd_dev_info(ppd->dd,
9448 			    "%s: stopping link start because driver is not ready\n",
9449 			    __func__);
9450 		return 0;
9451 	}
9452 
9453 	/*
9454 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9455 	 * pkey table can be configured properly if the HFI unit is connected
9456 	 * to switch port with MgmtAllowed=NO
9457 	 */
9458 	clear_full_mgmt_pkey(ppd);
9459 
9460 	return set_link_state(ppd, HLS_DN_POLL);
9461 }
9462 
9463 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9464 {
9465 	struct hfi1_devdata *dd = ppd->dd;
9466 	u64 mask;
9467 	unsigned long timeout;
9468 
9469 	/*
9470 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9471 	 * effect of power up on plug-in. We ignore this false positive
9472 	 * interrupt until the module has finished powering up by waiting for
9473 	 * a minimum timeout of the module inrush initialization time of
9474 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9475 	 * module have stabilized.
9476 	 */
9477 	msleep(500);
9478 
9479 	/*
9480 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9481 	 */
9482 	timeout = jiffies + msecs_to_jiffies(2000);
9483 	while (1) {
9484 		mask = read_csr(dd, dd->hfi1_id ?
9485 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9486 		if (!(mask & QSFP_HFI0_INT_N))
9487 			break;
9488 		if (time_after(jiffies, timeout)) {
9489 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9490 				    __func__);
9491 			break;
9492 		}
9493 		udelay(2);
9494 	}
9495 }
9496 
9497 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9498 {
9499 	struct hfi1_devdata *dd = ppd->dd;
9500 	u64 mask;
9501 
9502 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9503 	if (enable) {
9504 		/*
9505 		 * Clear the status register to avoid an immediate interrupt
9506 		 * when we re-enable the IntN pin
9507 		 */
9508 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9509 			  QSFP_HFI0_INT_N);
9510 		mask |= (u64)QSFP_HFI0_INT_N;
9511 	} else {
9512 		mask &= ~(u64)QSFP_HFI0_INT_N;
9513 	}
9514 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9515 }
9516 
9517 int reset_qsfp(struct hfi1_pportdata *ppd)
9518 {
9519 	struct hfi1_devdata *dd = ppd->dd;
9520 	u64 mask, qsfp_mask;
9521 
9522 	/* Disable INT_N from triggering QSFP interrupts */
9523 	set_qsfp_int_n(ppd, 0);
9524 
9525 	/* Reset the QSFP */
9526 	mask = (u64)QSFP_HFI0_RESET_N;
9527 
9528 	qsfp_mask = read_csr(dd,
9529 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9530 	qsfp_mask &= ~mask;
9531 	write_csr(dd,
9532 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9533 
9534 	udelay(10);
9535 
9536 	qsfp_mask |= mask;
9537 	write_csr(dd,
9538 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9539 
9540 	wait_for_qsfp_init(ppd);
9541 
9542 	/*
9543 	 * Allow INT_N to trigger the QSFP interrupt to watch
9544 	 * for alarms and warnings
9545 	 */
9546 	set_qsfp_int_n(ppd, 1);
9547 
9548 	/*
9549 	 * After the reset, AOC transmitters are enabled by default. They need
9550 	 * to be turned off to complete the QSFP setup before they can be
9551 	 * enabled again.
9552 	 */
9553 	return set_qsfp_tx(ppd, 0);
9554 }
9555 
9556 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9557 					u8 *qsfp_interrupt_status)
9558 {
9559 	struct hfi1_devdata *dd = ppd->dd;
9560 
9561 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9562 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9563 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9564 			   __func__);
9565 
9566 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9567 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9568 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9569 			   __func__);
9570 
9571 	/*
9572 	 * The remaining alarms/warnings don't matter if the link is down.
9573 	 */
9574 	if (ppd->host_link_state & HLS_DOWN)
9575 		return 0;
9576 
9577 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9578 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9579 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9580 			   __func__);
9581 
9582 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9583 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9584 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9585 			   __func__);
9586 
9587 	/* Byte 2 is vendor specific */
9588 
9589 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9590 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9591 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9592 			   __func__);
9593 
9594 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9595 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9596 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9597 			   __func__);
9598 
9599 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9600 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9601 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9602 			   __func__);
9603 
9604 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9605 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9606 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9607 			   __func__);
9608 
9609 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9610 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9611 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9612 			   __func__);
9613 
9614 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9615 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9616 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9617 			   __func__);
9618 
9619 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9620 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9621 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9622 			   __func__);
9623 
9624 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9625 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9626 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9627 			   __func__);
9628 
9629 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9630 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9631 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9632 			   __func__);
9633 
9634 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9635 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9636 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9637 			   __func__);
9638 
9639 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9640 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9641 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9642 			   __func__);
9643 
9644 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9645 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9646 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9647 			   __func__);
9648 
9649 	/* Bytes 9-10 and 11-12 are reserved */
9650 	/* Bytes 13-15 are vendor specific */
9651 
9652 	return 0;
9653 }
9654 
9655 /* This routine will only be scheduled if the QSFP module present is asserted */
9656 void qsfp_event(struct work_struct *work)
9657 {
9658 	struct qsfp_data *qd;
9659 	struct hfi1_pportdata *ppd;
9660 	struct hfi1_devdata *dd;
9661 
9662 	qd = container_of(work, struct qsfp_data, qsfp_work);
9663 	ppd = qd->ppd;
9664 	dd = ppd->dd;
9665 
9666 	/* Sanity check */
9667 	if (!qsfp_mod_present(ppd))
9668 		return;
9669 
9670 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9671 		dd_dev_info(ppd->dd,
9672 			    "%s: stopping link start because link is disabled\n",
9673 			    __func__);
9674 		return;
9675 	}
9676 
9677 	/*
9678 	 * Turn DC back on after cable has been re-inserted. Up until
9679 	 * now, the DC has been in reset to save power.
9680 	 */
9681 	dc_start(dd);
9682 
9683 	if (qd->cache_refresh_required) {
9684 		set_qsfp_int_n(ppd, 0);
9685 
9686 		wait_for_qsfp_init(ppd);
9687 
9688 		/*
9689 		 * Allow INT_N to trigger the QSFP interrupt to watch
9690 		 * for alarms and warnings
9691 		 */
9692 		set_qsfp_int_n(ppd, 1);
9693 
9694 		start_link(ppd);
9695 	}
9696 
9697 	if (qd->check_interrupt_flags) {
9698 		u8 qsfp_interrupt_status[16] = {0,};
9699 
9700 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9701 				  &qsfp_interrupt_status[0], 16) != 16) {
9702 			dd_dev_info(dd,
9703 				    "%s: Failed to read status of QSFP module\n",
9704 				    __func__);
9705 		} else {
9706 			unsigned long flags;
9707 
9708 			handle_qsfp_error_conditions(
9709 					ppd, qsfp_interrupt_status);
9710 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9711 			ppd->qsfp_info.check_interrupt_flags = 0;
9712 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9713 					       flags);
9714 		}
9715 	}
9716 }
9717 
9718 void init_qsfp_int(struct hfi1_devdata *dd)
9719 {
9720 	struct hfi1_pportdata *ppd = dd->pport;
9721 	u64 qsfp_mask;
9722 
9723 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9724 	/* Clear current status to avoid spurious interrupts */
9725 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9726 		  qsfp_mask);
9727 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9728 		  qsfp_mask);
9729 
9730 	set_qsfp_int_n(ppd, 0);
9731 
9732 	/* Handle active low nature of INT_N and MODPRST_N pins */
9733 	if (qsfp_mod_present(ppd))
9734 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9735 	write_csr(dd,
9736 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9737 		  qsfp_mask);
9738 
9739 	/* Enable the appropriate QSFP IRQ source */
9740 	if (!dd->hfi1_id)
9741 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9742 	else
9743 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9744 }
9745 
9746 /*
9747  * Do a one-time initialize of the LCB block.
9748  */
9749 static void init_lcb(struct hfi1_devdata *dd)
9750 {
9751 	/* simulator does not correctly handle LCB cclk loopback, skip */
9752 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9753 		return;
9754 
9755 	/* the DC has been reset earlier in the driver load */
9756 
9757 	/* set LCB for cclk loopback on the port */
9758 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9759 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9760 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9761 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9762 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9763 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9764 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9765 }
9766 
9767 /*
9768  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9769  * on error.
9770  */
9771 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9772 {
9773 	int ret;
9774 	u8 status;
9775 
9776 	/*
9777 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9778 	 * not present
9779 	 */
9780 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9781 		return 0;
9782 
9783 	/* read byte 2, the status byte */
9784 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9785 	if (ret < 0)
9786 		return ret;
9787 	if (ret != 1)
9788 		return -EIO;
9789 
9790 	return 0; /* success */
9791 }
9792 
9793 /*
9794  * Values for QSFP retry.
9795  *
9796  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9797  * arrived at from experience on a large cluster.
9798  */
9799 #define MAX_QSFP_RETRIES 20
9800 #define QSFP_RETRY_WAIT 500 /* msec */
9801 
9802 /*
9803  * Try a QSFP read.  If it fails, schedule a retry for later.
9804  * Called on first link activation after driver load.
9805  */
9806 static void try_start_link(struct hfi1_pportdata *ppd)
9807 {
9808 	if (test_qsfp_read(ppd)) {
9809 		/* read failed */
9810 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9811 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9812 			return;
9813 		}
9814 		dd_dev_info(ppd->dd,
9815 			    "QSFP not responding, waiting and retrying %d\n",
9816 			    (int)ppd->qsfp_retry_count);
9817 		ppd->qsfp_retry_count++;
9818 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9819 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9820 		return;
9821 	}
9822 	ppd->qsfp_retry_count = 0;
9823 
9824 	start_link(ppd);
9825 }
9826 
9827 /*
9828  * Workqueue function to start the link after a delay.
9829  */
9830 void handle_start_link(struct work_struct *work)
9831 {
9832 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9833 						  start_link_work.work);
9834 	try_start_link(ppd);
9835 }
9836 
9837 int bringup_serdes(struct hfi1_pportdata *ppd)
9838 {
9839 	struct hfi1_devdata *dd = ppd->dd;
9840 	u64 guid;
9841 	int ret;
9842 
9843 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9844 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9845 
9846 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9847 	if (!guid) {
9848 		if (dd->base_guid)
9849 			guid = dd->base_guid + ppd->port - 1;
9850 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9851 	}
9852 
9853 	/* Set linkinit_reason on power up per OPA spec */
9854 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9855 
9856 	/* one-time init of the LCB */
9857 	init_lcb(dd);
9858 
9859 	if (loopback) {
9860 		ret = init_loopback(dd);
9861 		if (ret < 0)
9862 			return ret;
9863 	}
9864 
9865 	get_port_type(ppd);
9866 	if (ppd->port_type == PORT_TYPE_QSFP) {
9867 		set_qsfp_int_n(ppd, 0);
9868 		wait_for_qsfp_init(ppd);
9869 		set_qsfp_int_n(ppd, 1);
9870 	}
9871 
9872 	try_start_link(ppd);
9873 	return 0;
9874 }
9875 
9876 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9877 {
9878 	struct hfi1_devdata *dd = ppd->dd;
9879 
9880 	/*
9881 	 * Shut down the link and keep it down.   First turn off that the
9882 	 * driver wants to allow the link to be up (driver_link_ready).
9883 	 * Then make sure the link is not automatically restarted
9884 	 * (link_enabled).  Cancel any pending restart.  And finally
9885 	 * go offline.
9886 	 */
9887 	ppd->driver_link_ready = 0;
9888 	ppd->link_enabled = 0;
9889 
9890 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9891 	flush_delayed_work(&ppd->start_link_work);
9892 	cancel_delayed_work_sync(&ppd->start_link_work);
9893 
9894 	ppd->offline_disabled_reason =
9895 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9896 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9897 			     OPA_LINKDOWN_REASON_REBOOT);
9898 	set_link_state(ppd, HLS_DN_OFFLINE);
9899 
9900 	/* disable the port */
9901 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9902 	cancel_work_sync(&ppd->freeze_work);
9903 }
9904 
9905 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9906 {
9907 	struct hfi1_pportdata *ppd;
9908 	int i;
9909 
9910 	ppd = (struct hfi1_pportdata *)(dd + 1);
9911 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9912 		ppd->ibport_data.rvp.rc_acks = NULL;
9913 		ppd->ibport_data.rvp.rc_qacks = NULL;
9914 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9915 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9916 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9917 		if (!ppd->ibport_data.rvp.rc_acks ||
9918 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9919 		    !ppd->ibport_data.rvp.rc_qacks)
9920 			return -ENOMEM;
9921 	}
9922 
9923 	return 0;
9924 }
9925 
9926 /*
9927  * index is the index into the receive array
9928  */
9929 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9930 		  u32 type, unsigned long pa, u16 order)
9931 {
9932 	u64 reg;
9933 
9934 	if (!(dd->flags & HFI1_PRESENT))
9935 		goto done;
9936 
9937 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9938 		pa = 0;
9939 		order = 0;
9940 	} else if (type > PT_INVALID) {
9941 		dd_dev_err(dd,
9942 			   "unexpected receive array type %u for index %u, not handled\n",
9943 			   type, index);
9944 		goto done;
9945 	}
9946 	trace_hfi1_put_tid(dd, index, type, pa, order);
9947 
9948 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9949 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9950 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9951 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9952 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9953 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9954 	writeq(reg, dd->rcvarray_wc + (index * 8));
9955 
9956 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9957 		/*
9958 		 * Eager entries are written and flushed
9959 		 *
9960 		 * Expected entries are flushed every 4 writes
9961 		 */
9962 		flush_wc();
9963 done:
9964 	return;
9965 }
9966 
9967 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9968 {
9969 	struct hfi1_devdata *dd = rcd->dd;
9970 	u32 i;
9971 
9972 	/* this could be optimized */
9973 	for (i = rcd->eager_base; i < rcd->eager_base +
9974 		     rcd->egrbufs.alloced; i++)
9975 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9976 
9977 	for (i = rcd->expected_base;
9978 			i < rcd->expected_base + rcd->expected_count; i++)
9979 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9980 }
9981 
9982 static const char * const ib_cfg_name_strings[] = {
9983 	"HFI1_IB_CFG_LIDLMC",
9984 	"HFI1_IB_CFG_LWID_DG_ENB",
9985 	"HFI1_IB_CFG_LWID_ENB",
9986 	"HFI1_IB_CFG_LWID",
9987 	"HFI1_IB_CFG_SPD_ENB",
9988 	"HFI1_IB_CFG_SPD",
9989 	"HFI1_IB_CFG_RXPOL_ENB",
9990 	"HFI1_IB_CFG_LREV_ENB",
9991 	"HFI1_IB_CFG_LINKLATENCY",
9992 	"HFI1_IB_CFG_HRTBT",
9993 	"HFI1_IB_CFG_OP_VLS",
9994 	"HFI1_IB_CFG_VL_HIGH_CAP",
9995 	"HFI1_IB_CFG_VL_LOW_CAP",
9996 	"HFI1_IB_CFG_OVERRUN_THRESH",
9997 	"HFI1_IB_CFG_PHYERR_THRESH",
9998 	"HFI1_IB_CFG_LINKDEFAULT",
9999 	"HFI1_IB_CFG_PKEYS",
10000 	"HFI1_IB_CFG_MTU",
10001 	"HFI1_IB_CFG_LSTATE",
10002 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10003 	"HFI1_IB_CFG_PMA_TICKS",
10004 	"HFI1_IB_CFG_PORT"
10005 };
10006 
10007 static const char *ib_cfg_name(int which)
10008 {
10009 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10010 		return "invalid";
10011 	return ib_cfg_name_strings[which];
10012 }
10013 
10014 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10015 {
10016 	struct hfi1_devdata *dd = ppd->dd;
10017 	int val = 0;
10018 
10019 	switch (which) {
10020 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10021 		val = ppd->link_width_enabled;
10022 		break;
10023 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10024 		val = ppd->link_width_active;
10025 		break;
10026 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10027 		val = ppd->link_speed_enabled;
10028 		break;
10029 	case HFI1_IB_CFG_SPD: /* current Link speed */
10030 		val = ppd->link_speed_active;
10031 		break;
10032 
10033 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10034 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10035 	case HFI1_IB_CFG_LINKLATENCY:
10036 		goto unimplemented;
10037 
10038 	case HFI1_IB_CFG_OP_VLS:
10039 		val = ppd->actual_vls_operational;
10040 		break;
10041 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10042 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10043 		break;
10044 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10045 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10046 		break;
10047 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10048 		val = ppd->overrun_threshold;
10049 		break;
10050 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10051 		val = ppd->phy_error_threshold;
10052 		break;
10053 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10054 		val = HLS_DEFAULT;
10055 		break;
10056 
10057 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10058 	case HFI1_IB_CFG_PMA_TICKS:
10059 	default:
10060 unimplemented:
10061 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10062 			dd_dev_info(
10063 				dd,
10064 				"%s: which %s: not implemented\n",
10065 				__func__,
10066 				ib_cfg_name(which));
10067 		break;
10068 	}
10069 
10070 	return val;
10071 }
10072 
10073 /*
10074  * The largest MAD packet size.
10075  */
10076 #define MAX_MAD_PACKET 2048
10077 
10078 /*
10079  * Return the maximum header bytes that can go on the _wire_
10080  * for this device. This count includes the ICRC which is
10081  * not part of the packet held in memory but it is appended
10082  * by the HW.
10083  * This is dependent on the device's receive header entry size.
10084  * HFI allows this to be set per-receive context, but the
10085  * driver presently enforces a global value.
10086  */
10087 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10088 {
10089 	/*
10090 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10091 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10092 	 * plus one DW for the ICRC appended by HW.
10093 	 *
10094 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10095 	 * We use rcd[0] as all context will have the same value. Also,
10096 	 * the first kernel context would have been allocated by now so
10097 	 * we are guaranteed a valid value.
10098 	 */
10099 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10100 }
10101 
10102 /*
10103  * Set Send Length
10104  * @ppd: per port data
10105  *
10106  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10107  * registers compare against LRH.PktLen, so use the max bytes included
10108  * in the LRH.
10109  *
10110  * This routine changes all VL values except VL15, which it maintains at
10111  * the same value.
10112  */
10113 static void set_send_length(struct hfi1_pportdata *ppd)
10114 {
10115 	struct hfi1_devdata *dd = ppd->dd;
10116 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10117 	u32 maxvlmtu = dd->vld[15].mtu;
10118 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10119 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10120 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10121 	int i, j;
10122 	u32 thres;
10123 
10124 	for (i = 0; i < ppd->vls_supported; i++) {
10125 		if (dd->vld[i].mtu > maxvlmtu)
10126 			maxvlmtu = dd->vld[i].mtu;
10127 		if (i <= 3)
10128 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10129 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10130 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10131 		else
10132 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10133 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10134 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10135 	}
10136 	write_csr(dd, SEND_LEN_CHECK0, len1);
10137 	write_csr(dd, SEND_LEN_CHECK1, len2);
10138 	/* adjust kernel credit return thresholds based on new MTUs */
10139 	/* all kernel receive contexts have the same hdrqentsize */
10140 	for (i = 0; i < ppd->vls_supported; i++) {
10141 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10142 			    sc_mtu_to_threshold(dd->vld[i].sc,
10143 						dd->vld[i].mtu,
10144 						get_hdrqentsize(dd->rcd[0])));
10145 		for (j = 0; j < INIT_SC_PER_VL; j++)
10146 			sc_set_cr_threshold(
10147 					pio_select_send_context_vl(dd, j, i),
10148 					    thres);
10149 	}
10150 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10151 		    sc_mtu_to_threshold(dd->vld[15].sc,
10152 					dd->vld[15].mtu,
10153 					dd->rcd[0]->rcvhdrqentsize));
10154 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10155 
10156 	/* Adjust maximum MTU for the port in DC */
10157 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10158 		(ilog2(maxvlmtu >> 8) + 1);
10159 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10160 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10161 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10162 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10163 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10164 }
10165 
10166 static void set_lidlmc(struct hfi1_pportdata *ppd)
10167 {
10168 	int i;
10169 	u64 sreg = 0;
10170 	struct hfi1_devdata *dd = ppd->dd;
10171 	u32 mask = ~((1U << ppd->lmc) - 1);
10172 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10173 	u32 lid;
10174 
10175 	/*
10176 	 * Program 0 in CSR if port lid is extended. This prevents
10177 	 * 9B packets being sent out for large lids.
10178 	 */
10179 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10180 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10181 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10182 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10183 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10184 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10185 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10186 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10187 
10188 	/*
10189 	 * Iterate over all the send contexts and set their SLID check
10190 	 */
10191 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10192 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10193 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10194 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10195 
10196 	for (i = 0; i < chip_send_contexts(dd); i++) {
10197 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10198 			  i, (u32)sreg);
10199 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10200 	}
10201 
10202 	/* Now we have to do the same thing for the sdma engines */
10203 	sdma_update_lmc(dd, mask, lid);
10204 }
10205 
10206 static const char *state_completed_string(u32 completed)
10207 {
10208 	static const char * const state_completed[] = {
10209 		"EstablishComm",
10210 		"OptimizeEQ",
10211 		"VerifyCap"
10212 	};
10213 
10214 	if (completed < ARRAY_SIZE(state_completed))
10215 		return state_completed[completed];
10216 
10217 	return "unknown";
10218 }
10219 
10220 static const char all_lanes_dead_timeout_expired[] =
10221 	"All lanes were inactive – was the interconnect media removed?";
10222 static const char tx_out_of_policy[] =
10223 	"Passing lanes on local port do not meet the local link width policy";
10224 static const char no_state_complete[] =
10225 	"State timeout occurred before link partner completed the state";
10226 static const char * const state_complete_reasons[] = {
10227 	[0x00] = "Reason unknown",
10228 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10229 	[0x02] = "Link partner reported failure",
10230 	[0x10] = "Unable to achieve frame sync on any lane",
10231 	[0x11] =
10232 	  "Unable to find a common bit rate with the link partner",
10233 	[0x12] =
10234 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10235 	[0x13] =
10236 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10237 	[0x14] = no_state_complete,
10238 	[0x15] =
10239 	  "State timeout occurred before link partner identified equalization presets",
10240 	[0x16] =
10241 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10242 	[0x17] = tx_out_of_policy,
10243 	[0x20] = all_lanes_dead_timeout_expired,
10244 	[0x21] =
10245 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10246 	[0x22] = no_state_complete,
10247 	[0x23] =
10248 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10249 	[0x24] = tx_out_of_policy,
10250 	[0x30] = all_lanes_dead_timeout_expired,
10251 	[0x31] =
10252 	  "State timeout occurred waiting for host to process received frames",
10253 	[0x32] = no_state_complete,
10254 	[0x33] =
10255 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10256 	[0x34] = tx_out_of_policy,
10257 	[0x35] = "Negotiated link width is mutually exclusive",
10258 	[0x36] =
10259 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10260 	[0x37] = "Unable to resolve secure data exchange",
10261 };
10262 
10263 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10264 						     u32 code)
10265 {
10266 	const char *str = NULL;
10267 
10268 	if (code < ARRAY_SIZE(state_complete_reasons))
10269 		str = state_complete_reasons[code];
10270 
10271 	if (str)
10272 		return str;
10273 	return "Reserved";
10274 }
10275 
10276 /* describe the given last state complete frame */
10277 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10278 				  const char *prefix)
10279 {
10280 	struct hfi1_devdata *dd = ppd->dd;
10281 	u32 success;
10282 	u32 state;
10283 	u32 reason;
10284 	u32 lanes;
10285 
10286 	/*
10287 	 * Decode frame:
10288 	 *  [ 0: 0] - success
10289 	 *  [ 3: 1] - state
10290 	 *  [ 7: 4] - next state timeout
10291 	 *  [15: 8] - reason code
10292 	 *  [31:16] - lanes
10293 	 */
10294 	success = frame & 0x1;
10295 	state = (frame >> 1) & 0x7;
10296 	reason = (frame >> 8) & 0xff;
10297 	lanes = (frame >> 16) & 0xffff;
10298 
10299 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10300 		   prefix, frame);
10301 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10302 		   state_completed_string(state), state);
10303 	dd_dev_err(dd, "    state successfully completed: %s\n",
10304 		   success ? "yes" : "no");
10305 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10306 		   reason, state_complete_reason_code_string(ppd, reason));
10307 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10308 }
10309 
10310 /*
10311  * Read the last state complete frames and explain them.  This routine
10312  * expects to be called if the link went down during link negotiation
10313  * and initialization (LNI).  That is, anywhere between polling and link up.
10314  */
10315 static void check_lni_states(struct hfi1_pportdata *ppd)
10316 {
10317 	u32 last_local_state;
10318 	u32 last_remote_state;
10319 
10320 	read_last_local_state(ppd->dd, &last_local_state);
10321 	read_last_remote_state(ppd->dd, &last_remote_state);
10322 
10323 	/*
10324 	 * Don't report anything if there is nothing to report.  A value of
10325 	 * 0 means the link was taken down while polling and there was no
10326 	 * training in-process.
10327 	 */
10328 	if (last_local_state == 0 && last_remote_state == 0)
10329 		return;
10330 
10331 	decode_state_complete(ppd, last_local_state, "transmitted");
10332 	decode_state_complete(ppd, last_remote_state, "received");
10333 }
10334 
10335 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10336 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10337 {
10338 	u64 reg;
10339 	unsigned long timeout;
10340 
10341 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10342 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10343 	while (1) {
10344 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10345 		if (reg)
10346 			break;
10347 		if (time_after(jiffies, timeout)) {
10348 			dd_dev_err(dd,
10349 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10350 			return -ETIMEDOUT;
10351 		}
10352 		udelay(2);
10353 	}
10354 	return 0;
10355 }
10356 
10357 /* called when the logical link state is not down as it should be */
10358 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10359 {
10360 	struct hfi1_devdata *dd = ppd->dd;
10361 
10362 	/*
10363 	 * Bring link up in LCB loopback
10364 	 */
10365 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10366 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10367 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10368 
10369 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10370 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10371 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10372 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10373 
10374 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10375 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10376 	udelay(3);
10377 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10378 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10379 
10380 	wait_link_transfer_active(dd, 100);
10381 
10382 	/*
10383 	 * Bring the link down again.
10384 	 */
10385 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10386 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10387 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10388 
10389 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10390 }
10391 
10392 /*
10393  * Helper for set_link_state().  Do not call except from that routine.
10394  * Expects ppd->hls_mutex to be held.
10395  *
10396  * @rem_reason value to be sent to the neighbor
10397  *
10398  * LinkDownReasons only set if transition succeeds.
10399  */
10400 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10401 {
10402 	struct hfi1_devdata *dd = ppd->dd;
10403 	u32 previous_state;
10404 	int offline_state_ret;
10405 	int ret;
10406 
10407 	update_lcb_cache(dd);
10408 
10409 	previous_state = ppd->host_link_state;
10410 	ppd->host_link_state = HLS_GOING_OFFLINE;
10411 
10412 	/* start offline transition */
10413 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10414 
10415 	if (ret != HCMD_SUCCESS) {
10416 		dd_dev_err(dd,
10417 			   "Failed to transition to Offline link state, return %d\n",
10418 			   ret);
10419 		return -EINVAL;
10420 	}
10421 	if (ppd->offline_disabled_reason ==
10422 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10423 		ppd->offline_disabled_reason =
10424 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10425 
10426 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10427 	if (offline_state_ret < 0)
10428 		return offline_state_ret;
10429 
10430 	/* Disabling AOC transmitters */
10431 	if (ppd->port_type == PORT_TYPE_QSFP &&
10432 	    ppd->qsfp_info.limiting_active &&
10433 	    qsfp_mod_present(ppd)) {
10434 		int ret;
10435 
10436 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10437 		if (ret == 0) {
10438 			set_qsfp_tx(ppd, 0);
10439 			release_chip_resource(dd, qsfp_resource(dd));
10440 		} else {
10441 			/* not fatal, but should warn */
10442 			dd_dev_err(dd,
10443 				   "Unable to acquire lock to turn off QSFP TX\n");
10444 		}
10445 	}
10446 
10447 	/*
10448 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10449 	 * can take a while for the link to go down.
10450 	 */
10451 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10452 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10453 		if (ret < 0)
10454 			return ret;
10455 	}
10456 
10457 	/*
10458 	 * Now in charge of LCB - must be after the physical state is
10459 	 * offline.quiet and before host_link_state is changed.
10460 	 */
10461 	set_host_lcb_access(dd);
10462 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10463 
10464 	/* make sure the logical state is also down */
10465 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10466 	if (ret)
10467 		force_logical_link_state_down(ppd);
10468 
10469 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10470 	update_statusp(ppd, IB_PORT_DOWN);
10471 
10472 	/*
10473 	 * The LNI has a mandatory wait time after the physical state
10474 	 * moves to Offline.Quiet.  The wait time may be different
10475 	 * depending on how the link went down.  The 8051 firmware
10476 	 * will observe the needed wait time and only move to ready
10477 	 * when that is completed.  The largest of the quiet timeouts
10478 	 * is 6s, so wait that long and then at least 0.5s more for
10479 	 * other transitions, and another 0.5s for a buffer.
10480 	 */
10481 	ret = wait_fm_ready(dd, 7000);
10482 	if (ret) {
10483 		dd_dev_err(dd,
10484 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10485 		/* state is really offline, so make it so */
10486 		ppd->host_link_state = HLS_DN_OFFLINE;
10487 		return ret;
10488 	}
10489 
10490 	/*
10491 	 * The state is now offline and the 8051 is ready to accept host
10492 	 * requests.
10493 	 *	- change our state
10494 	 *	- notify others if we were previously in a linkup state
10495 	 */
10496 	ppd->host_link_state = HLS_DN_OFFLINE;
10497 	if (previous_state & HLS_UP) {
10498 		/* went down while link was up */
10499 		handle_linkup_change(dd, 0);
10500 	} else if (previous_state
10501 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10502 		/* went down while attempting link up */
10503 		check_lni_states(ppd);
10504 
10505 		/* The QSFP doesn't need to be reset on LNI failure */
10506 		ppd->qsfp_info.reset_needed = 0;
10507 	}
10508 
10509 	/* the active link width (downgrade) is 0 on link down */
10510 	ppd->link_width_active = 0;
10511 	ppd->link_width_downgrade_tx_active = 0;
10512 	ppd->link_width_downgrade_rx_active = 0;
10513 	ppd->current_egress_rate = 0;
10514 	return 0;
10515 }
10516 
10517 /* return the link state name */
10518 static const char *link_state_name(u32 state)
10519 {
10520 	const char *name;
10521 	int n = ilog2(state);
10522 	static const char * const names[] = {
10523 		[__HLS_UP_INIT_BP]	 = "INIT",
10524 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10525 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10526 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10527 		[__HLS_DN_POLL_BP]	 = "POLL",
10528 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10529 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10530 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10531 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10532 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10533 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10534 	};
10535 
10536 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10537 	return name ? name : "unknown";
10538 }
10539 
10540 /* return the link state reason name */
10541 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10542 {
10543 	if (state == HLS_UP_INIT) {
10544 		switch (ppd->linkinit_reason) {
10545 		case OPA_LINKINIT_REASON_LINKUP:
10546 			return "(LINKUP)";
10547 		case OPA_LINKINIT_REASON_FLAPPING:
10548 			return "(FLAPPING)";
10549 		case OPA_LINKINIT_OUTSIDE_POLICY:
10550 			return "(OUTSIDE_POLICY)";
10551 		case OPA_LINKINIT_QUARANTINED:
10552 			return "(QUARANTINED)";
10553 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10554 			return "(INSUFIC_CAPABILITY)";
10555 		default:
10556 			break;
10557 		}
10558 	}
10559 	return "";
10560 }
10561 
10562 /*
10563  * driver_pstate - convert the driver's notion of a port's
10564  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10565  * Return -1 (converted to a u32) to indicate error.
10566  */
10567 u32 driver_pstate(struct hfi1_pportdata *ppd)
10568 {
10569 	switch (ppd->host_link_state) {
10570 	case HLS_UP_INIT:
10571 	case HLS_UP_ARMED:
10572 	case HLS_UP_ACTIVE:
10573 		return IB_PORTPHYSSTATE_LINKUP;
10574 	case HLS_DN_POLL:
10575 		return IB_PORTPHYSSTATE_POLLING;
10576 	case HLS_DN_DISABLE:
10577 		return IB_PORTPHYSSTATE_DISABLED;
10578 	case HLS_DN_OFFLINE:
10579 		return OPA_PORTPHYSSTATE_OFFLINE;
10580 	case HLS_VERIFY_CAP:
10581 		return IB_PORTPHYSSTATE_TRAINING;
10582 	case HLS_GOING_UP:
10583 		return IB_PORTPHYSSTATE_TRAINING;
10584 	case HLS_GOING_OFFLINE:
10585 		return OPA_PORTPHYSSTATE_OFFLINE;
10586 	case HLS_LINK_COOLDOWN:
10587 		return OPA_PORTPHYSSTATE_OFFLINE;
10588 	case HLS_DN_DOWNDEF:
10589 	default:
10590 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10591 			   ppd->host_link_state);
10592 		return  -1;
10593 	}
10594 }
10595 
10596 /*
10597  * driver_lstate - convert the driver's notion of a port's
10598  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10599  * (converted to a u32) to indicate error.
10600  */
10601 u32 driver_lstate(struct hfi1_pportdata *ppd)
10602 {
10603 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10604 		return IB_PORT_DOWN;
10605 
10606 	switch (ppd->host_link_state & HLS_UP) {
10607 	case HLS_UP_INIT:
10608 		return IB_PORT_INIT;
10609 	case HLS_UP_ARMED:
10610 		return IB_PORT_ARMED;
10611 	case HLS_UP_ACTIVE:
10612 		return IB_PORT_ACTIVE;
10613 	default:
10614 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10615 			   ppd->host_link_state);
10616 	return -1;
10617 	}
10618 }
10619 
10620 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10621 			  u8 neigh_reason, u8 rem_reason)
10622 {
10623 	if (ppd->local_link_down_reason.latest == 0 &&
10624 	    ppd->neigh_link_down_reason.latest == 0) {
10625 		ppd->local_link_down_reason.latest = lcl_reason;
10626 		ppd->neigh_link_down_reason.latest = neigh_reason;
10627 		ppd->remote_link_down_reason = rem_reason;
10628 	}
10629 }
10630 
10631 /**
10632  * data_vls_operational() - Verify if data VL BCT credits and MTU
10633  *			    are both set.
10634  * @ppd: pointer to hfi1_pportdata structure
10635  *
10636  * Return: true - Ok, false -otherwise.
10637  */
10638 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10639 {
10640 	int i;
10641 	u64 reg;
10642 
10643 	if (!ppd->actual_vls_operational)
10644 		return false;
10645 
10646 	for (i = 0; i < ppd->vls_supported; i++) {
10647 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10648 		if ((reg && !ppd->dd->vld[i].mtu) ||
10649 		    (!reg && ppd->dd->vld[i].mtu))
10650 			return false;
10651 	}
10652 
10653 	return true;
10654 }
10655 
10656 /*
10657  * Change the physical and/or logical link state.
10658  *
10659  * Do not call this routine while inside an interrupt.  It contains
10660  * calls to routines that can take multiple seconds to finish.
10661  *
10662  * Returns 0 on success, -errno on failure.
10663  */
10664 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10665 {
10666 	struct hfi1_devdata *dd = ppd->dd;
10667 	struct ib_event event = {.device = NULL};
10668 	int ret1, ret = 0;
10669 	int orig_new_state, poll_bounce;
10670 
10671 	mutex_lock(&ppd->hls_lock);
10672 
10673 	orig_new_state = state;
10674 	if (state == HLS_DN_DOWNDEF)
10675 		state = HLS_DEFAULT;
10676 
10677 	/* interpret poll -> poll as a link bounce */
10678 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10679 		      state == HLS_DN_POLL;
10680 
10681 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10682 		    link_state_name(ppd->host_link_state),
10683 		    link_state_name(orig_new_state),
10684 		    poll_bounce ? "(bounce) " : "",
10685 		    link_state_reason_name(ppd, state));
10686 
10687 	/*
10688 	 * If we're going to a (HLS_*) link state that implies the logical
10689 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10690 	 * reset is_sm_config_started to 0.
10691 	 */
10692 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10693 		ppd->is_sm_config_started = 0;
10694 
10695 	/*
10696 	 * Do nothing if the states match.  Let a poll to poll link bounce
10697 	 * go through.
10698 	 */
10699 	if (ppd->host_link_state == state && !poll_bounce)
10700 		goto done;
10701 
10702 	switch (state) {
10703 	case HLS_UP_INIT:
10704 		if (ppd->host_link_state == HLS_DN_POLL &&
10705 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10706 			/*
10707 			 * Quick link up jumps from polling to here.
10708 			 *
10709 			 * Whether in normal or loopback mode, the
10710 			 * simulator jumps from polling to link up.
10711 			 * Accept that here.
10712 			 */
10713 			/* OK */
10714 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10715 			goto unexpected;
10716 		}
10717 
10718 		/*
10719 		 * Wait for Link_Up physical state.
10720 		 * Physical and Logical states should already be
10721 		 * be transitioned to LinkUp and LinkInit respectively.
10722 		 */
10723 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10724 		if (ret) {
10725 			dd_dev_err(dd,
10726 				   "%s: physical state did not change to LINK-UP\n",
10727 				   __func__);
10728 			break;
10729 		}
10730 
10731 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10732 		if (ret) {
10733 			dd_dev_err(dd,
10734 				   "%s: logical state did not change to INIT\n",
10735 				   __func__);
10736 			break;
10737 		}
10738 
10739 		/* clear old transient LINKINIT_REASON code */
10740 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10741 			ppd->linkinit_reason =
10742 				OPA_LINKINIT_REASON_LINKUP;
10743 
10744 		/* enable the port */
10745 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10746 
10747 		handle_linkup_change(dd, 1);
10748 		pio_kernel_linkup(dd);
10749 
10750 		/*
10751 		 * After link up, a new link width will have been set.
10752 		 * Update the xmit counters with regards to the new
10753 		 * link width.
10754 		 */
10755 		update_xmit_counters(ppd, ppd->link_width_active);
10756 
10757 		ppd->host_link_state = HLS_UP_INIT;
10758 		update_statusp(ppd, IB_PORT_INIT);
10759 		break;
10760 	case HLS_UP_ARMED:
10761 		if (ppd->host_link_state != HLS_UP_INIT)
10762 			goto unexpected;
10763 
10764 		if (!data_vls_operational(ppd)) {
10765 			dd_dev_err(dd,
10766 				   "%s: Invalid data VL credits or mtu\n",
10767 				   __func__);
10768 			ret = -EINVAL;
10769 			break;
10770 		}
10771 
10772 		set_logical_state(dd, LSTATE_ARMED);
10773 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10774 		if (ret) {
10775 			dd_dev_err(dd,
10776 				   "%s: logical state did not change to ARMED\n",
10777 				   __func__);
10778 			break;
10779 		}
10780 		ppd->host_link_state = HLS_UP_ARMED;
10781 		update_statusp(ppd, IB_PORT_ARMED);
10782 		/*
10783 		 * The simulator does not currently implement SMA messages,
10784 		 * so neighbor_normal is not set.  Set it here when we first
10785 		 * move to Armed.
10786 		 */
10787 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10788 			ppd->neighbor_normal = 1;
10789 		break;
10790 	case HLS_UP_ACTIVE:
10791 		if (ppd->host_link_state != HLS_UP_ARMED)
10792 			goto unexpected;
10793 
10794 		set_logical_state(dd, LSTATE_ACTIVE);
10795 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10796 		if (ret) {
10797 			dd_dev_err(dd,
10798 				   "%s: logical state did not change to ACTIVE\n",
10799 				   __func__);
10800 		} else {
10801 			/* tell all engines to go running */
10802 			sdma_all_running(dd);
10803 			ppd->host_link_state = HLS_UP_ACTIVE;
10804 			update_statusp(ppd, IB_PORT_ACTIVE);
10805 
10806 			/* Signal the IB layer that the port has went active */
10807 			event.device = &dd->verbs_dev.rdi.ibdev;
10808 			event.element.port_num = ppd->port;
10809 			event.event = IB_EVENT_PORT_ACTIVE;
10810 		}
10811 		break;
10812 	case HLS_DN_POLL:
10813 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10814 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10815 		    dd->dc_shutdown)
10816 			dc_start(dd);
10817 		/* Hand LED control to the DC */
10818 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10819 
10820 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10821 			u8 tmp = ppd->link_enabled;
10822 
10823 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10824 			if (ret) {
10825 				ppd->link_enabled = tmp;
10826 				break;
10827 			}
10828 			ppd->remote_link_down_reason = 0;
10829 
10830 			if (ppd->driver_link_ready)
10831 				ppd->link_enabled = 1;
10832 		}
10833 
10834 		set_all_slowpath(ppd->dd);
10835 		ret = set_local_link_attributes(ppd);
10836 		if (ret)
10837 			break;
10838 
10839 		ppd->port_error_action = 0;
10840 
10841 		if (quick_linkup) {
10842 			/* quick linkup does not go into polling */
10843 			ret = do_quick_linkup(dd);
10844 		} else {
10845 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10846 			if (!ret1)
10847 				ret1 = wait_phys_link_out_of_offline(ppd,
10848 								     3000);
10849 			if (ret1 != HCMD_SUCCESS) {
10850 				dd_dev_err(dd,
10851 					   "Failed to transition to Polling link state, return 0x%x\n",
10852 					   ret1);
10853 				ret = -EINVAL;
10854 			}
10855 		}
10856 
10857 		/*
10858 		 * Change the host link state after requesting DC8051 to
10859 		 * change its physical state so that we can ignore any
10860 		 * interrupt with stale LNI(XX) error, which will not be
10861 		 * cleared until DC8051 transitions to Polling state.
10862 		 */
10863 		ppd->host_link_state = HLS_DN_POLL;
10864 		ppd->offline_disabled_reason =
10865 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10866 		/*
10867 		 * If an error occurred above, go back to offline.  The
10868 		 * caller may reschedule another attempt.
10869 		 */
10870 		if (ret)
10871 			goto_offline(ppd, 0);
10872 		else
10873 			log_physical_state(ppd, PLS_POLLING);
10874 		break;
10875 	case HLS_DN_DISABLE:
10876 		/* link is disabled */
10877 		ppd->link_enabled = 0;
10878 
10879 		/* allow any state to transition to disabled */
10880 
10881 		/* must transition to offline first */
10882 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10883 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10884 			if (ret)
10885 				break;
10886 			ppd->remote_link_down_reason = 0;
10887 		}
10888 
10889 		if (!dd->dc_shutdown) {
10890 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10891 			if (ret1 != HCMD_SUCCESS) {
10892 				dd_dev_err(dd,
10893 					   "Failed to transition to Disabled link state, return 0x%x\n",
10894 					   ret1);
10895 				ret = -EINVAL;
10896 				break;
10897 			}
10898 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10899 			if (ret) {
10900 				dd_dev_err(dd,
10901 					   "%s: physical state did not change to DISABLED\n",
10902 					   __func__);
10903 				break;
10904 			}
10905 			dc_shutdown(dd);
10906 		}
10907 		ppd->host_link_state = HLS_DN_DISABLE;
10908 		break;
10909 	case HLS_DN_OFFLINE:
10910 		if (ppd->host_link_state == HLS_DN_DISABLE)
10911 			dc_start(dd);
10912 
10913 		/* allow any state to transition to offline */
10914 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10915 		if (!ret)
10916 			ppd->remote_link_down_reason = 0;
10917 		break;
10918 	case HLS_VERIFY_CAP:
10919 		if (ppd->host_link_state != HLS_DN_POLL)
10920 			goto unexpected;
10921 		ppd->host_link_state = HLS_VERIFY_CAP;
10922 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10923 		break;
10924 	case HLS_GOING_UP:
10925 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10926 			goto unexpected;
10927 
10928 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10929 		if (ret1 != HCMD_SUCCESS) {
10930 			dd_dev_err(dd,
10931 				   "Failed to transition to link up state, return 0x%x\n",
10932 				   ret1);
10933 			ret = -EINVAL;
10934 			break;
10935 		}
10936 		ppd->host_link_state = HLS_GOING_UP;
10937 		break;
10938 
10939 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10940 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10941 	default:
10942 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10943 			    __func__, state);
10944 		ret = -EINVAL;
10945 		break;
10946 	}
10947 
10948 	goto done;
10949 
10950 unexpected:
10951 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10952 		   __func__, link_state_name(ppd->host_link_state),
10953 		   link_state_name(state));
10954 	ret = -EINVAL;
10955 
10956 done:
10957 	mutex_unlock(&ppd->hls_lock);
10958 
10959 	if (event.device)
10960 		ib_dispatch_event(&event);
10961 
10962 	return ret;
10963 }
10964 
10965 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10966 {
10967 	u64 reg;
10968 	int ret = 0;
10969 
10970 	switch (which) {
10971 	case HFI1_IB_CFG_LIDLMC:
10972 		set_lidlmc(ppd);
10973 		break;
10974 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10975 		/*
10976 		 * The VL Arbitrator high limit is sent in units of 4k
10977 		 * bytes, while HFI stores it in units of 64 bytes.
10978 		 */
10979 		val *= 4096 / 64;
10980 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10981 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10982 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10983 		break;
10984 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10985 		/* HFI only supports POLL as the default link down state */
10986 		if (val != HLS_DN_POLL)
10987 			ret = -EINVAL;
10988 		break;
10989 	case HFI1_IB_CFG_OP_VLS:
10990 		if (ppd->vls_operational != val) {
10991 			ppd->vls_operational = val;
10992 			if (!ppd->port)
10993 				ret = -EINVAL;
10994 		}
10995 		break;
10996 	/*
10997 	 * For link width, link width downgrade, and speed enable, always AND
10998 	 * the setting with what is actually supported.  This has two benefits.
10999 	 * First, enabled can't have unsupported values, no matter what the
11000 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11001 	 * "fill in with your supported value" have all the bits in the
11002 	 * field set, so simply ANDing with supported has the desired result.
11003 	 */
11004 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11005 		ppd->link_width_enabled = val & ppd->link_width_supported;
11006 		break;
11007 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11008 		ppd->link_width_downgrade_enabled =
11009 				val & ppd->link_width_downgrade_supported;
11010 		break;
11011 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11012 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11013 		break;
11014 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11015 		/*
11016 		 * HFI does not follow IB specs, save this value
11017 		 * so we can report it, if asked.
11018 		 */
11019 		ppd->overrun_threshold = val;
11020 		break;
11021 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11022 		/*
11023 		 * HFI does not follow IB specs, save this value
11024 		 * so we can report it, if asked.
11025 		 */
11026 		ppd->phy_error_threshold = val;
11027 		break;
11028 
11029 	case HFI1_IB_CFG_MTU:
11030 		set_send_length(ppd);
11031 		break;
11032 
11033 	case HFI1_IB_CFG_PKEYS:
11034 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11035 			set_partition_keys(ppd);
11036 		break;
11037 
11038 	default:
11039 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11040 			dd_dev_info(ppd->dd,
11041 				    "%s: which %s, val 0x%x: not implemented\n",
11042 				    __func__, ib_cfg_name(which), val);
11043 		break;
11044 	}
11045 	return ret;
11046 }
11047 
11048 /* begin functions related to vl arbitration table caching */
11049 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11050 {
11051 	int i;
11052 
11053 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11054 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11055 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11056 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11057 
11058 	/*
11059 	 * Note that we always return values directly from the
11060 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11061 	 * 'Get(VLArbTable)'. This is obviously correct after a
11062 	 * 'Set(VLArbTable)', since the cache will then be up to
11063 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11064 	 * since then both the cache, and the relevant h/w registers
11065 	 * will be zeroed.
11066 	 */
11067 
11068 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11069 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11070 }
11071 
11072 /*
11073  * vl_arb_lock_cache
11074  *
11075  * All other vl_arb_* functions should be called only after locking
11076  * the cache.
11077  */
11078 static inline struct vl_arb_cache *
11079 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11080 {
11081 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11082 		return NULL;
11083 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11084 	return &ppd->vl_arb_cache[idx];
11085 }
11086 
11087 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11088 {
11089 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11090 }
11091 
11092 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11093 			     struct ib_vl_weight_elem *vl)
11094 {
11095 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11096 }
11097 
11098 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11099 			     struct ib_vl_weight_elem *vl)
11100 {
11101 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11102 }
11103 
11104 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11105 			      struct ib_vl_weight_elem *vl)
11106 {
11107 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11108 }
11109 
11110 /* end functions related to vl arbitration table caching */
11111 
11112 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11113 			  u32 size, struct ib_vl_weight_elem *vl)
11114 {
11115 	struct hfi1_devdata *dd = ppd->dd;
11116 	u64 reg;
11117 	unsigned int i, is_up = 0;
11118 	int drain, ret = 0;
11119 
11120 	mutex_lock(&ppd->hls_lock);
11121 
11122 	if (ppd->host_link_state & HLS_UP)
11123 		is_up = 1;
11124 
11125 	drain = !is_ax(dd) && is_up;
11126 
11127 	if (drain)
11128 		/*
11129 		 * Before adjusting VL arbitration weights, empty per-VL
11130 		 * FIFOs, otherwise a packet whose VL weight is being
11131 		 * set to 0 could get stuck in a FIFO with no chance to
11132 		 * egress.
11133 		 */
11134 		ret = stop_drain_data_vls(dd);
11135 
11136 	if (ret) {
11137 		dd_dev_err(
11138 			dd,
11139 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11140 			__func__);
11141 		goto err;
11142 	}
11143 
11144 	for (i = 0; i < size; i++, vl++) {
11145 		/*
11146 		 * NOTE: The low priority shift and mask are used here, but
11147 		 * they are the same for both the low and high registers.
11148 		 */
11149 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11150 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11151 		      | (((u64)vl->weight
11152 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11153 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11154 		write_csr(dd, target + (i * 8), reg);
11155 	}
11156 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11157 
11158 	if (drain)
11159 		open_fill_data_vls(dd); /* reopen all VLs */
11160 
11161 err:
11162 	mutex_unlock(&ppd->hls_lock);
11163 
11164 	return ret;
11165 }
11166 
11167 /*
11168  * Read one credit merge VL register.
11169  */
11170 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11171 			   struct vl_limit *vll)
11172 {
11173 	u64 reg = read_csr(dd, csr);
11174 
11175 	vll->dedicated = cpu_to_be16(
11176 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11177 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11178 	vll->shared = cpu_to_be16(
11179 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11180 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11181 }
11182 
11183 /*
11184  * Read the current credit merge limits.
11185  */
11186 static int get_buffer_control(struct hfi1_devdata *dd,
11187 			      struct buffer_control *bc, u16 *overall_limit)
11188 {
11189 	u64 reg;
11190 	int i;
11191 
11192 	/* not all entries are filled in */
11193 	memset(bc, 0, sizeof(*bc));
11194 
11195 	/* OPA and HFI have a 1-1 mapping */
11196 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11197 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11198 
11199 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11200 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11201 
11202 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11203 	bc->overall_shared_limit = cpu_to_be16(
11204 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11205 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11206 	if (overall_limit)
11207 		*overall_limit = (reg
11208 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11209 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11210 	return sizeof(struct buffer_control);
11211 }
11212 
11213 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11214 {
11215 	u64 reg;
11216 	int i;
11217 
11218 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11219 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11220 	for (i = 0; i < sizeof(u64); i++) {
11221 		u8 byte = *(((u8 *)&reg) + i);
11222 
11223 		dp->vlnt[2 * i] = byte & 0xf;
11224 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11225 	}
11226 
11227 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11228 	for (i = 0; i < sizeof(u64); i++) {
11229 		u8 byte = *(((u8 *)&reg) + i);
11230 
11231 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11232 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11233 	}
11234 	return sizeof(struct sc2vlnt);
11235 }
11236 
11237 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11238 			      struct ib_vl_weight_elem *vl)
11239 {
11240 	unsigned int i;
11241 
11242 	for (i = 0; i < nelems; i++, vl++) {
11243 		vl->vl = 0xf;
11244 		vl->weight = 0;
11245 	}
11246 }
11247 
11248 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11249 {
11250 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11251 		  DC_SC_VL_VAL(15_0,
11252 			       0, dp->vlnt[0] & 0xf,
11253 			       1, dp->vlnt[1] & 0xf,
11254 			       2, dp->vlnt[2] & 0xf,
11255 			       3, dp->vlnt[3] & 0xf,
11256 			       4, dp->vlnt[4] & 0xf,
11257 			       5, dp->vlnt[5] & 0xf,
11258 			       6, dp->vlnt[6] & 0xf,
11259 			       7, dp->vlnt[7] & 0xf,
11260 			       8, dp->vlnt[8] & 0xf,
11261 			       9, dp->vlnt[9] & 0xf,
11262 			       10, dp->vlnt[10] & 0xf,
11263 			       11, dp->vlnt[11] & 0xf,
11264 			       12, dp->vlnt[12] & 0xf,
11265 			       13, dp->vlnt[13] & 0xf,
11266 			       14, dp->vlnt[14] & 0xf,
11267 			       15, dp->vlnt[15] & 0xf));
11268 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11269 		  DC_SC_VL_VAL(31_16,
11270 			       16, dp->vlnt[16] & 0xf,
11271 			       17, dp->vlnt[17] & 0xf,
11272 			       18, dp->vlnt[18] & 0xf,
11273 			       19, dp->vlnt[19] & 0xf,
11274 			       20, dp->vlnt[20] & 0xf,
11275 			       21, dp->vlnt[21] & 0xf,
11276 			       22, dp->vlnt[22] & 0xf,
11277 			       23, dp->vlnt[23] & 0xf,
11278 			       24, dp->vlnt[24] & 0xf,
11279 			       25, dp->vlnt[25] & 0xf,
11280 			       26, dp->vlnt[26] & 0xf,
11281 			       27, dp->vlnt[27] & 0xf,
11282 			       28, dp->vlnt[28] & 0xf,
11283 			       29, dp->vlnt[29] & 0xf,
11284 			       30, dp->vlnt[30] & 0xf,
11285 			       31, dp->vlnt[31] & 0xf));
11286 }
11287 
11288 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11289 			u16 limit)
11290 {
11291 	if (limit != 0)
11292 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11293 			    what, (int)limit, idx);
11294 }
11295 
11296 /* change only the shared limit portion of SendCmGLobalCredit */
11297 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11298 {
11299 	u64 reg;
11300 
11301 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11302 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11303 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11304 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11305 }
11306 
11307 /* change only the total credit limit portion of SendCmGLobalCredit */
11308 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11309 {
11310 	u64 reg;
11311 
11312 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11313 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11314 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11315 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11316 }
11317 
11318 /* set the given per-VL shared limit */
11319 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11320 {
11321 	u64 reg;
11322 	u32 addr;
11323 
11324 	if (vl < TXE_NUM_DATA_VL)
11325 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11326 	else
11327 		addr = SEND_CM_CREDIT_VL15;
11328 
11329 	reg = read_csr(dd, addr);
11330 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11331 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11332 	write_csr(dd, addr, reg);
11333 }
11334 
11335 /* set the given per-VL dedicated limit */
11336 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11337 {
11338 	u64 reg;
11339 	u32 addr;
11340 
11341 	if (vl < TXE_NUM_DATA_VL)
11342 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11343 	else
11344 		addr = SEND_CM_CREDIT_VL15;
11345 
11346 	reg = read_csr(dd, addr);
11347 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11348 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11349 	write_csr(dd, addr, reg);
11350 }
11351 
11352 /* spin until the given per-VL status mask bits clear */
11353 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11354 				     const char *which)
11355 {
11356 	unsigned long timeout;
11357 	u64 reg;
11358 
11359 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11360 	while (1) {
11361 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11362 
11363 		if (reg == 0)
11364 			return;	/* success */
11365 		if (time_after(jiffies, timeout))
11366 			break;		/* timed out */
11367 		udelay(1);
11368 	}
11369 
11370 	dd_dev_err(dd,
11371 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11372 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11373 	/*
11374 	 * If this occurs, it is likely there was a credit loss on the link.
11375 	 * The only recovery from that is a link bounce.
11376 	 */
11377 	dd_dev_err(dd,
11378 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11379 }
11380 
11381 /*
11382  * The number of credits on the VLs may be changed while everything
11383  * is "live", but the following algorithm must be followed due to
11384  * how the hardware is actually implemented.  In particular,
11385  * Return_Credit_Status[] is the only correct status check.
11386  *
11387  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11388  *     set Global_Shared_Credit_Limit = 0
11389  *     use_all_vl = 1
11390  * mask0 = all VLs that are changing either dedicated or shared limits
11391  * set Shared_Limit[mask0] = 0
11392  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11393  * if (changing any dedicated limit)
11394  *     mask1 = all VLs that are lowering dedicated limits
11395  *     lower Dedicated_Limit[mask1]
11396  *     spin until Return_Credit_Status[mask1] == 0
11397  *     raise Dedicated_Limits
11398  * raise Shared_Limits
11399  * raise Global_Shared_Credit_Limit
11400  *
11401  * lower = if the new limit is lower, set the limit to the new value
11402  * raise = if the new limit is higher than the current value (may be changed
11403  *	earlier in the algorithm), set the new limit to the new value
11404  */
11405 int set_buffer_control(struct hfi1_pportdata *ppd,
11406 		       struct buffer_control *new_bc)
11407 {
11408 	struct hfi1_devdata *dd = ppd->dd;
11409 	u64 changing_mask, ld_mask, stat_mask;
11410 	int change_count;
11411 	int i, use_all_mask;
11412 	int this_shared_changing;
11413 	int vl_count = 0, ret;
11414 	/*
11415 	 * A0: add the variable any_shared_limit_changing below and in the
11416 	 * algorithm above.  If removing A0 support, it can be removed.
11417 	 */
11418 	int any_shared_limit_changing;
11419 	struct buffer_control cur_bc;
11420 	u8 changing[OPA_MAX_VLS];
11421 	u8 lowering_dedicated[OPA_MAX_VLS];
11422 	u16 cur_total;
11423 	u32 new_total = 0;
11424 	const u64 all_mask =
11425 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11426 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11427 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11428 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11429 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11430 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11431 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11432 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11433 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11434 
11435 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11436 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11437 
11438 	/* find the new total credits, do sanity check on unused VLs */
11439 	for (i = 0; i < OPA_MAX_VLS; i++) {
11440 		if (valid_vl(i)) {
11441 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11442 			continue;
11443 		}
11444 		nonzero_msg(dd, i, "dedicated",
11445 			    be16_to_cpu(new_bc->vl[i].dedicated));
11446 		nonzero_msg(dd, i, "shared",
11447 			    be16_to_cpu(new_bc->vl[i].shared));
11448 		new_bc->vl[i].dedicated = 0;
11449 		new_bc->vl[i].shared = 0;
11450 	}
11451 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11452 
11453 	/* fetch the current values */
11454 	get_buffer_control(dd, &cur_bc, &cur_total);
11455 
11456 	/*
11457 	 * Create the masks we will use.
11458 	 */
11459 	memset(changing, 0, sizeof(changing));
11460 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11461 	/*
11462 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11463 	 * increasing order
11464 	 */
11465 	stat_mask =
11466 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11467 	changing_mask = 0;
11468 	ld_mask = 0;
11469 	change_count = 0;
11470 	any_shared_limit_changing = 0;
11471 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11472 		if (!valid_vl(i))
11473 			continue;
11474 		this_shared_changing = new_bc->vl[i].shared
11475 						!= cur_bc.vl[i].shared;
11476 		if (this_shared_changing)
11477 			any_shared_limit_changing = 1;
11478 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11479 		    this_shared_changing) {
11480 			changing[i] = 1;
11481 			changing_mask |= stat_mask;
11482 			change_count++;
11483 		}
11484 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11485 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11486 			lowering_dedicated[i] = 1;
11487 			ld_mask |= stat_mask;
11488 		}
11489 	}
11490 
11491 	/* bracket the credit change with a total adjustment */
11492 	if (new_total > cur_total)
11493 		set_global_limit(dd, new_total);
11494 
11495 	/*
11496 	 * Start the credit change algorithm.
11497 	 */
11498 	use_all_mask = 0;
11499 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11500 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11501 	    (is_ax(dd) && any_shared_limit_changing)) {
11502 		set_global_shared(dd, 0);
11503 		cur_bc.overall_shared_limit = 0;
11504 		use_all_mask = 1;
11505 	}
11506 
11507 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11508 		if (!valid_vl(i))
11509 			continue;
11510 
11511 		if (changing[i]) {
11512 			set_vl_shared(dd, i, 0);
11513 			cur_bc.vl[i].shared = 0;
11514 		}
11515 	}
11516 
11517 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11518 				 "shared");
11519 
11520 	if (change_count > 0) {
11521 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11522 			if (!valid_vl(i))
11523 				continue;
11524 
11525 			if (lowering_dedicated[i]) {
11526 				set_vl_dedicated(dd, i,
11527 						 be16_to_cpu(new_bc->
11528 							     vl[i].dedicated));
11529 				cur_bc.vl[i].dedicated =
11530 						new_bc->vl[i].dedicated;
11531 			}
11532 		}
11533 
11534 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11535 
11536 		/* now raise all dedicated that are going up */
11537 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11538 			if (!valid_vl(i))
11539 				continue;
11540 
11541 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11542 					be16_to_cpu(cur_bc.vl[i].dedicated))
11543 				set_vl_dedicated(dd, i,
11544 						 be16_to_cpu(new_bc->
11545 							     vl[i].dedicated));
11546 		}
11547 	}
11548 
11549 	/* next raise all shared that are going up */
11550 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11551 		if (!valid_vl(i))
11552 			continue;
11553 
11554 		if (be16_to_cpu(new_bc->vl[i].shared) >
11555 				be16_to_cpu(cur_bc.vl[i].shared))
11556 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11557 	}
11558 
11559 	/* finally raise the global shared */
11560 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11561 	    be16_to_cpu(cur_bc.overall_shared_limit))
11562 		set_global_shared(dd,
11563 				  be16_to_cpu(new_bc->overall_shared_limit));
11564 
11565 	/* bracket the credit change with a total adjustment */
11566 	if (new_total < cur_total)
11567 		set_global_limit(dd, new_total);
11568 
11569 	/*
11570 	 * Determine the actual number of operational VLS using the number of
11571 	 * dedicated and shared credits for each VL.
11572 	 */
11573 	if (change_count > 0) {
11574 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11575 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11576 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11577 				vl_count++;
11578 		ppd->actual_vls_operational = vl_count;
11579 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11580 				    ppd->actual_vls_operational :
11581 				    ppd->vls_operational,
11582 				    NULL);
11583 		if (ret == 0)
11584 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11585 					   ppd->actual_vls_operational :
11586 					   ppd->vls_operational, NULL);
11587 		if (ret)
11588 			return ret;
11589 	}
11590 	return 0;
11591 }
11592 
11593 /*
11594  * Read the given fabric manager table. Return the size of the
11595  * table (in bytes) on success, and a negative error code on
11596  * failure.
11597  */
11598 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11599 
11600 {
11601 	int size;
11602 	struct vl_arb_cache *vlc;
11603 
11604 	switch (which) {
11605 	case FM_TBL_VL_HIGH_ARB:
11606 		size = 256;
11607 		/*
11608 		 * OPA specifies 128 elements (of 2 bytes each), though
11609 		 * HFI supports only 16 elements in h/w.
11610 		 */
11611 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11612 		vl_arb_get_cache(vlc, t);
11613 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11614 		break;
11615 	case FM_TBL_VL_LOW_ARB:
11616 		size = 256;
11617 		/*
11618 		 * OPA specifies 128 elements (of 2 bytes each), though
11619 		 * HFI supports only 16 elements in h/w.
11620 		 */
11621 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11622 		vl_arb_get_cache(vlc, t);
11623 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11624 		break;
11625 	case FM_TBL_BUFFER_CONTROL:
11626 		size = get_buffer_control(ppd->dd, t, NULL);
11627 		break;
11628 	case FM_TBL_SC2VLNT:
11629 		size = get_sc2vlnt(ppd->dd, t);
11630 		break;
11631 	case FM_TBL_VL_PREEMPT_ELEMS:
11632 		size = 256;
11633 		/* OPA specifies 128 elements, of 2 bytes each */
11634 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11635 		break;
11636 	case FM_TBL_VL_PREEMPT_MATRIX:
11637 		size = 256;
11638 		/*
11639 		 * OPA specifies that this is the same size as the VL
11640 		 * arbitration tables (i.e., 256 bytes).
11641 		 */
11642 		break;
11643 	default:
11644 		return -EINVAL;
11645 	}
11646 	return size;
11647 }
11648 
11649 /*
11650  * Write the given fabric manager table.
11651  */
11652 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11653 {
11654 	int ret = 0;
11655 	struct vl_arb_cache *vlc;
11656 
11657 	switch (which) {
11658 	case FM_TBL_VL_HIGH_ARB:
11659 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11660 		if (vl_arb_match_cache(vlc, t)) {
11661 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11662 			break;
11663 		}
11664 		vl_arb_set_cache(vlc, t);
11665 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11666 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11667 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11668 		break;
11669 	case FM_TBL_VL_LOW_ARB:
11670 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11671 		if (vl_arb_match_cache(vlc, t)) {
11672 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11673 			break;
11674 		}
11675 		vl_arb_set_cache(vlc, t);
11676 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11677 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11678 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11679 		break;
11680 	case FM_TBL_BUFFER_CONTROL:
11681 		ret = set_buffer_control(ppd, t);
11682 		break;
11683 	case FM_TBL_SC2VLNT:
11684 		set_sc2vlnt(ppd->dd, t);
11685 		break;
11686 	default:
11687 		ret = -EINVAL;
11688 	}
11689 	return ret;
11690 }
11691 
11692 /*
11693  * Disable all data VLs.
11694  *
11695  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11696  */
11697 static int disable_data_vls(struct hfi1_devdata *dd)
11698 {
11699 	if (is_ax(dd))
11700 		return 1;
11701 
11702 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11703 
11704 	return 0;
11705 }
11706 
11707 /*
11708  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11709  * Just re-enables all data VLs (the "fill" part happens
11710  * automatically - the name was chosen for symmetry with
11711  * stop_drain_data_vls()).
11712  *
11713  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11714  */
11715 int open_fill_data_vls(struct hfi1_devdata *dd)
11716 {
11717 	if (is_ax(dd))
11718 		return 1;
11719 
11720 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11721 
11722 	return 0;
11723 }
11724 
11725 /*
11726  * drain_data_vls() - assumes that disable_data_vls() has been called,
11727  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11728  * engines to drop to 0.
11729  */
11730 static void drain_data_vls(struct hfi1_devdata *dd)
11731 {
11732 	sc_wait(dd);
11733 	sdma_wait(dd);
11734 	pause_for_credit_return(dd);
11735 }
11736 
11737 /*
11738  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11739  *
11740  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11741  * meant to be used like this:
11742  *
11743  * stop_drain_data_vls(dd);
11744  * // do things with per-VL resources
11745  * open_fill_data_vls(dd);
11746  */
11747 int stop_drain_data_vls(struct hfi1_devdata *dd)
11748 {
11749 	int ret;
11750 
11751 	ret = disable_data_vls(dd);
11752 	if (ret == 0)
11753 		drain_data_vls(dd);
11754 
11755 	return ret;
11756 }
11757 
11758 /*
11759  * Convert a nanosecond time to a cclock count.  No matter how slow
11760  * the cclock, a non-zero ns will always have a non-zero result.
11761  */
11762 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11763 {
11764 	u32 cclocks;
11765 
11766 	if (dd->icode == ICODE_FPGA_EMULATION)
11767 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11768 	else  /* simulation pretends to be ASIC */
11769 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11770 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11771 		cclocks = 1;
11772 	return cclocks;
11773 }
11774 
11775 /*
11776  * Convert a cclock count to nanoseconds. Not matter how slow
11777  * the cclock, a non-zero cclocks will always have a non-zero result.
11778  */
11779 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11780 {
11781 	u32 ns;
11782 
11783 	if (dd->icode == ICODE_FPGA_EMULATION)
11784 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11785 	else  /* simulation pretends to be ASIC */
11786 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11787 	if (cclocks && !ns)
11788 		ns = 1;
11789 	return ns;
11790 }
11791 
11792 /*
11793  * Dynamically adjust the receive interrupt timeout for a context based on
11794  * incoming packet rate.
11795  *
11796  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11797  */
11798 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11799 {
11800 	struct hfi1_devdata *dd = rcd->dd;
11801 	u32 timeout = rcd->rcvavail_timeout;
11802 
11803 	/*
11804 	 * This algorithm doubles or halves the timeout depending on whether
11805 	 * the number of packets received in this interrupt were less than or
11806 	 * greater equal the interrupt count.
11807 	 *
11808 	 * The calculations below do not allow a steady state to be achieved.
11809 	 * Only at the endpoints it is possible to have an unchanging
11810 	 * timeout.
11811 	 */
11812 	if (npkts < rcv_intr_count) {
11813 		/*
11814 		 * Not enough packets arrived before the timeout, adjust
11815 		 * timeout downward.
11816 		 */
11817 		if (timeout < 2) /* already at minimum? */
11818 			return;
11819 		timeout >>= 1;
11820 	} else {
11821 		/*
11822 		 * More than enough packets arrived before the timeout, adjust
11823 		 * timeout upward.
11824 		 */
11825 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11826 			return;
11827 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11828 	}
11829 
11830 	rcd->rcvavail_timeout = timeout;
11831 	/*
11832 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11833 	 * been verified to be in range
11834 	 */
11835 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11836 			(u64)timeout <<
11837 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11838 }
11839 
11840 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11841 		    u32 intr_adjust, u32 npkts)
11842 {
11843 	struct hfi1_devdata *dd = rcd->dd;
11844 	u64 reg;
11845 	u32 ctxt = rcd->ctxt;
11846 
11847 	/*
11848 	 * Need to write timeout register before updating RcvHdrHead to ensure
11849 	 * that a new value is used when the HW decides to restart counting.
11850 	 */
11851 	if (intr_adjust)
11852 		adjust_rcv_timeout(rcd, npkts);
11853 	if (updegr) {
11854 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11855 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11856 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11857 	}
11858 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11859 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11860 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11861 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11862 }
11863 
11864 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11865 {
11866 	u32 head, tail;
11867 
11868 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11869 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11870 
11871 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11872 		tail = get_rcvhdrtail(rcd);
11873 	else
11874 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11875 
11876 	return head == tail;
11877 }
11878 
11879 /*
11880  * Context Control and Receive Array encoding for buffer size:
11881  *	0x0 invalid
11882  *	0x1   4 KB
11883  *	0x2   8 KB
11884  *	0x3  16 KB
11885  *	0x4  32 KB
11886  *	0x5  64 KB
11887  *	0x6 128 KB
11888  *	0x7 256 KB
11889  *	0x8 512 KB (Receive Array only)
11890  *	0x9   1 MB (Receive Array only)
11891  *	0xa   2 MB (Receive Array only)
11892  *
11893  *	0xB-0xF - reserved (Receive Array only)
11894  *
11895  *
11896  * This routine assumes that the value has already been sanity checked.
11897  */
11898 static u32 encoded_size(u32 size)
11899 {
11900 	switch (size) {
11901 	case   4 * 1024: return 0x1;
11902 	case   8 * 1024: return 0x2;
11903 	case  16 * 1024: return 0x3;
11904 	case  32 * 1024: return 0x4;
11905 	case  64 * 1024: return 0x5;
11906 	case 128 * 1024: return 0x6;
11907 	case 256 * 1024: return 0x7;
11908 	case 512 * 1024: return 0x8;
11909 	case   1 * 1024 * 1024: return 0x9;
11910 	case   2 * 1024 * 1024: return 0xa;
11911 	}
11912 	return 0x1;	/* if invalid, go with the minimum size */
11913 }
11914 
11915 /**
11916  * encode_rcv_header_entry_size - return chip specific encoding for size
11917  * @size: size in dwords
11918  *
11919  * Convert a receive header entry size that to the encoding used in the CSR.
11920  *
11921  * Return a zero if the given size is invalid, otherwise the encoding.
11922  */
11923 u8 encode_rcv_header_entry_size(u8 size)
11924 {
11925 	/* there are only 3 valid receive header entry sizes */
11926 	if (size == 2)
11927 		return 1;
11928 	if (size == 16)
11929 		return 2;
11930 	if (size == 32)
11931 		return 4;
11932 	return 0; /* invalid */
11933 }
11934 
11935 /**
11936  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11937  * @dd: the device data
11938  * @thecnt: the header count
11939  */
11940 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11941 {
11942 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11943 		dd_dev_err(dd, "Receive header queue count too small\n");
11944 		return -EINVAL;
11945 	}
11946 
11947 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11948 		dd_dev_err(dd,
11949 			   "Receive header queue count cannot be greater than %u\n",
11950 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11951 		return -EINVAL;
11952 	}
11953 
11954 	if (thecnt % HDRQ_INCREMENT) {
11955 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11956 			   thecnt, HDRQ_INCREMENT);
11957 		return -EINVAL;
11958 	}
11959 
11960 	return 0;
11961 }
11962 
11963 /**
11964  * set_hdrq_regs - set header queue registers for context
11965  * @dd: the device data
11966  * @ctxt: the context
11967  * @entsize: the dword entry size
11968  * @hdrcnt: the number of header entries
11969  */
11970 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11971 {
11972 	u64 reg;
11973 
11974 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11975 	      RCV_HDR_CNT_CNT_SHIFT;
11976 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11977 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
11978 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11979 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11980 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11981 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11982 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11983 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11984 
11985 	/*
11986 	 * Program dummy tail address for every receive context
11987 	 * before enabling any receive context
11988 	 */
11989 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11990 			dd->rcvhdrtail_dummy_dma);
11991 }
11992 
11993 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11994 		  struct hfi1_ctxtdata *rcd)
11995 {
11996 	u64 rcvctrl, reg;
11997 	int did_enable = 0;
11998 	u16 ctxt;
11999 
12000 	if (!rcd)
12001 		return;
12002 
12003 	ctxt = rcd->ctxt;
12004 
12005 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12006 
12007 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12008 	/* if the context already enabled, don't do the extra steps */
12009 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12010 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12011 		/* reset the tail and hdr addresses, and sequence count */
12012 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12013 				rcd->rcvhdrq_dma);
12014 		if (hfi1_rcvhdrtail_kvaddr(rcd))
12015 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12016 					rcd->rcvhdrqtailaddr_dma);
12017 		hfi1_set_seq_cnt(rcd, 1);
12018 
12019 		/* reset the cached receive header queue head value */
12020 		hfi1_set_rcd_head(rcd, 0);
12021 
12022 		/*
12023 		 * Zero the receive header queue so we don't get false
12024 		 * positives when checking the sequence number.  The
12025 		 * sequence numbers could land exactly on the same spot.
12026 		 * E.g. a rcd restart before the receive header wrapped.
12027 		 */
12028 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12029 
12030 		/* starting timeout */
12031 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12032 
12033 		/* enable the context */
12034 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12035 
12036 		/* clean the egr buffer size first */
12037 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12038 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12039 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12040 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12041 
12042 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12043 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12044 		did_enable = 1;
12045 
12046 		/* zero RcvEgrIndexHead */
12047 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12048 
12049 		/* set eager count and base index */
12050 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12051 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12052 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12053 			(((rcd->eager_base >> RCV_SHIFT)
12054 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12055 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12056 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12057 
12058 		/*
12059 		 * Set TID (expected) count and base index.
12060 		 * rcd->expected_count is set to individual RcvArray entries,
12061 		 * not pairs, and the CSR takes a pair-count in groups of
12062 		 * four, so divide by 8.
12063 		 */
12064 		reg = (((rcd->expected_count >> RCV_SHIFT)
12065 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12066 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12067 		      (((rcd->expected_base >> RCV_SHIFT)
12068 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12069 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12070 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12071 		if (ctxt == HFI1_CTRL_CTXT)
12072 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12073 	}
12074 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12075 		write_csr(dd, RCV_VL15, 0);
12076 		/*
12077 		 * When receive context is being disabled turn on tail
12078 		 * update with a dummy tail address and then disable
12079 		 * receive context.
12080 		 */
12081 		if (dd->rcvhdrtail_dummy_dma) {
12082 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12083 					dd->rcvhdrtail_dummy_dma);
12084 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12085 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12086 		}
12087 
12088 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12089 	}
12090 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12091 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12092 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12093 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12094 	}
12095 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12096 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12097 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12098 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12099 	}
12100 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12101 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12102 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12103 		/* See comment on RcvCtxtCtrl.TailUpd above */
12104 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12105 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12106 	}
12107 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12108 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12109 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12110 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12111 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12112 		/*
12113 		 * In one-packet-per-eager mode, the size comes from
12114 		 * the RcvArray entry.
12115 		 */
12116 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12117 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12118 	}
12119 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12120 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12121 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12122 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12123 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12124 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12125 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12126 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12127 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12128 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12129 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12130 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12131 			      IS_RCVURGENT_START + rcd->ctxt, true);
12132 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12133 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12134 			      IS_RCVURGENT_START + rcd->ctxt, false);
12135 
12136 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12137 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12138 
12139 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12140 	if (did_enable &&
12141 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12142 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12143 		if (reg != 0) {
12144 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12145 				    ctxt, reg);
12146 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12147 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12148 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12149 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12150 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12151 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12152 				    ctxt, reg, reg == 0 ? "not" : "still");
12153 		}
12154 	}
12155 
12156 	if (did_enable) {
12157 		/*
12158 		 * The interrupt timeout and count must be set after
12159 		 * the context is enabled to take effect.
12160 		 */
12161 		/* set interrupt timeout */
12162 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12163 				(u64)rcd->rcvavail_timeout <<
12164 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12165 
12166 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12167 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12168 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12169 	}
12170 
12171 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12172 		/*
12173 		 * If the context has been disabled and the Tail Update has
12174 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12175 		 * so it doesn't contain an address that is invalid.
12176 		 */
12177 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12178 				dd->rcvhdrtail_dummy_dma);
12179 }
12180 
12181 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12182 {
12183 	int ret;
12184 	u64 val = 0;
12185 
12186 	if (namep) {
12187 		ret = dd->cntrnameslen;
12188 		*namep = dd->cntrnames;
12189 	} else {
12190 		const struct cntr_entry *entry;
12191 		int i, j;
12192 
12193 		ret = (dd->ndevcntrs) * sizeof(u64);
12194 
12195 		/* Get the start of the block of counters */
12196 		*cntrp = dd->cntrs;
12197 
12198 		/*
12199 		 * Now go and fill in each counter in the block.
12200 		 */
12201 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12202 			entry = &dev_cntrs[i];
12203 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12204 			if (entry->flags & CNTR_DISABLED) {
12205 				/* Nothing */
12206 				hfi1_cdbg(CNTR, "\tDisabled\n");
12207 			} else {
12208 				if (entry->flags & CNTR_VL) {
12209 					hfi1_cdbg(CNTR, "\tPer VL\n");
12210 					for (j = 0; j < C_VL_COUNT; j++) {
12211 						val = entry->rw_cntr(entry,
12212 								  dd, j,
12213 								  CNTR_MODE_R,
12214 								  0);
12215 						hfi1_cdbg(
12216 						   CNTR,
12217 						   "\t\tRead 0x%llx for %d\n",
12218 						   val, j);
12219 						dd->cntrs[entry->offset + j] =
12220 									    val;
12221 					}
12222 				} else if (entry->flags & CNTR_SDMA) {
12223 					hfi1_cdbg(CNTR,
12224 						  "\t Per SDMA Engine\n");
12225 					for (j = 0; j < chip_sdma_engines(dd);
12226 					     j++) {
12227 						val =
12228 						entry->rw_cntr(entry, dd, j,
12229 							       CNTR_MODE_R, 0);
12230 						hfi1_cdbg(CNTR,
12231 							  "\t\tRead 0x%llx for %d\n",
12232 							  val, j);
12233 						dd->cntrs[entry->offset + j] =
12234 									val;
12235 					}
12236 				} else {
12237 					val = entry->rw_cntr(entry, dd,
12238 							CNTR_INVALID_VL,
12239 							CNTR_MODE_R, 0);
12240 					dd->cntrs[entry->offset] = val;
12241 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12242 				}
12243 			}
12244 		}
12245 	}
12246 	return ret;
12247 }
12248 
12249 /*
12250  * Used by sysfs to create files for hfi stats to read
12251  */
12252 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12253 {
12254 	int ret;
12255 	u64 val = 0;
12256 
12257 	if (namep) {
12258 		ret = ppd->dd->portcntrnameslen;
12259 		*namep = ppd->dd->portcntrnames;
12260 	} else {
12261 		const struct cntr_entry *entry;
12262 		int i, j;
12263 
12264 		ret = ppd->dd->nportcntrs * sizeof(u64);
12265 		*cntrp = ppd->cntrs;
12266 
12267 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12268 			entry = &port_cntrs[i];
12269 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12270 			if (entry->flags & CNTR_DISABLED) {
12271 				/* Nothing */
12272 				hfi1_cdbg(CNTR, "\tDisabled\n");
12273 				continue;
12274 			}
12275 
12276 			if (entry->flags & CNTR_VL) {
12277 				hfi1_cdbg(CNTR, "\tPer VL");
12278 				for (j = 0; j < C_VL_COUNT; j++) {
12279 					val = entry->rw_cntr(entry, ppd, j,
12280 							       CNTR_MODE_R,
12281 							       0);
12282 					hfi1_cdbg(
12283 					   CNTR,
12284 					   "\t\tRead 0x%llx for %d",
12285 					   val, j);
12286 					ppd->cntrs[entry->offset + j] = val;
12287 				}
12288 			} else {
12289 				val = entry->rw_cntr(entry, ppd,
12290 						       CNTR_INVALID_VL,
12291 						       CNTR_MODE_R,
12292 						       0);
12293 				ppd->cntrs[entry->offset] = val;
12294 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12295 			}
12296 		}
12297 	}
12298 	return ret;
12299 }
12300 
12301 static void free_cntrs(struct hfi1_devdata *dd)
12302 {
12303 	struct hfi1_pportdata *ppd;
12304 	int i;
12305 
12306 	if (dd->synth_stats_timer.function)
12307 		del_timer_sync(&dd->synth_stats_timer);
12308 	ppd = (struct hfi1_pportdata *)(dd + 1);
12309 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12310 		kfree(ppd->cntrs);
12311 		kfree(ppd->scntrs);
12312 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12313 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12314 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12315 		ppd->cntrs = NULL;
12316 		ppd->scntrs = NULL;
12317 		ppd->ibport_data.rvp.rc_acks = NULL;
12318 		ppd->ibport_data.rvp.rc_qacks = NULL;
12319 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12320 	}
12321 	kfree(dd->portcntrnames);
12322 	dd->portcntrnames = NULL;
12323 	kfree(dd->cntrs);
12324 	dd->cntrs = NULL;
12325 	kfree(dd->scntrs);
12326 	dd->scntrs = NULL;
12327 	kfree(dd->cntrnames);
12328 	dd->cntrnames = NULL;
12329 	if (dd->update_cntr_wq) {
12330 		destroy_workqueue(dd->update_cntr_wq);
12331 		dd->update_cntr_wq = NULL;
12332 	}
12333 }
12334 
12335 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12336 			      u64 *psval, void *context, int vl)
12337 {
12338 	u64 val;
12339 	u64 sval = *psval;
12340 
12341 	if (entry->flags & CNTR_DISABLED) {
12342 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12343 		return 0;
12344 	}
12345 
12346 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12347 
12348 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12349 
12350 	/* If its a synthetic counter there is more work we need to do */
12351 	if (entry->flags & CNTR_SYNTH) {
12352 		if (sval == CNTR_MAX) {
12353 			/* No need to read already saturated */
12354 			return CNTR_MAX;
12355 		}
12356 
12357 		if (entry->flags & CNTR_32BIT) {
12358 			/* 32bit counters can wrap multiple times */
12359 			u64 upper = sval >> 32;
12360 			u64 lower = (sval << 32) >> 32;
12361 
12362 			if (lower > val) { /* hw wrapped */
12363 				if (upper == CNTR_32BIT_MAX)
12364 					val = CNTR_MAX;
12365 				else
12366 					upper++;
12367 			}
12368 
12369 			if (val != CNTR_MAX)
12370 				val = (upper << 32) | val;
12371 
12372 		} else {
12373 			/* If we rolled we are saturated */
12374 			if ((val < sval) || (val > CNTR_MAX))
12375 				val = CNTR_MAX;
12376 		}
12377 	}
12378 
12379 	*psval = val;
12380 
12381 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12382 
12383 	return val;
12384 }
12385 
12386 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12387 			       struct cntr_entry *entry,
12388 			       u64 *psval, void *context, int vl, u64 data)
12389 {
12390 	u64 val;
12391 
12392 	if (entry->flags & CNTR_DISABLED) {
12393 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12394 		return 0;
12395 	}
12396 
12397 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12398 
12399 	if (entry->flags & CNTR_SYNTH) {
12400 		*psval = data;
12401 		if (entry->flags & CNTR_32BIT) {
12402 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12403 					     (data << 32) >> 32);
12404 			val = data; /* return the full 64bit value */
12405 		} else {
12406 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12407 					     data);
12408 		}
12409 	} else {
12410 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12411 	}
12412 
12413 	*psval = val;
12414 
12415 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12416 
12417 	return val;
12418 }
12419 
12420 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12421 {
12422 	struct cntr_entry *entry;
12423 	u64 *sval;
12424 
12425 	entry = &dev_cntrs[index];
12426 	sval = dd->scntrs + entry->offset;
12427 
12428 	if (vl != CNTR_INVALID_VL)
12429 		sval += vl;
12430 
12431 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12432 }
12433 
12434 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12435 {
12436 	struct cntr_entry *entry;
12437 	u64 *sval;
12438 
12439 	entry = &dev_cntrs[index];
12440 	sval = dd->scntrs + entry->offset;
12441 
12442 	if (vl != CNTR_INVALID_VL)
12443 		sval += vl;
12444 
12445 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12446 }
12447 
12448 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12449 {
12450 	struct cntr_entry *entry;
12451 	u64 *sval;
12452 
12453 	entry = &port_cntrs[index];
12454 	sval = ppd->scntrs + entry->offset;
12455 
12456 	if (vl != CNTR_INVALID_VL)
12457 		sval += vl;
12458 
12459 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12460 	    (index <= C_RCV_HDR_OVF_LAST)) {
12461 		/* We do not want to bother for disabled contexts */
12462 		return 0;
12463 	}
12464 
12465 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12466 }
12467 
12468 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12469 {
12470 	struct cntr_entry *entry;
12471 	u64 *sval;
12472 
12473 	entry = &port_cntrs[index];
12474 	sval = ppd->scntrs + entry->offset;
12475 
12476 	if (vl != CNTR_INVALID_VL)
12477 		sval += vl;
12478 
12479 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12480 	    (index <= C_RCV_HDR_OVF_LAST)) {
12481 		/* We do not want to bother for disabled contexts */
12482 		return 0;
12483 	}
12484 
12485 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12486 }
12487 
12488 static void do_update_synth_timer(struct work_struct *work)
12489 {
12490 	u64 cur_tx;
12491 	u64 cur_rx;
12492 	u64 total_flits;
12493 	u8 update = 0;
12494 	int i, j, vl;
12495 	struct hfi1_pportdata *ppd;
12496 	struct cntr_entry *entry;
12497 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12498 					       update_cntr_work);
12499 
12500 	/*
12501 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12502 	 * check to watch for potential roll over. We can do this by looking at
12503 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12504 	 * we have to iterate all the counters and update.
12505 	 */
12506 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12507 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12508 
12509 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12510 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12511 
12512 	hfi1_cdbg(
12513 	    CNTR,
12514 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12515 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12516 
12517 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12518 		/*
12519 		 * May not be strictly necessary to update but it won't hurt and
12520 		 * simplifies the logic here.
12521 		 */
12522 		update = 1;
12523 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12524 			  dd->unit);
12525 	} else {
12526 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12527 		hfi1_cdbg(CNTR,
12528 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12529 			  total_flits, (u64)CNTR_32BIT_MAX);
12530 		if (total_flits >= CNTR_32BIT_MAX) {
12531 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12532 				  dd->unit);
12533 			update = 1;
12534 		}
12535 	}
12536 
12537 	if (update) {
12538 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12539 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12540 			entry = &dev_cntrs[i];
12541 			if (entry->flags & CNTR_VL) {
12542 				for (vl = 0; vl < C_VL_COUNT; vl++)
12543 					read_dev_cntr(dd, i, vl);
12544 			} else {
12545 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12546 			}
12547 		}
12548 		ppd = (struct hfi1_pportdata *)(dd + 1);
12549 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12550 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12551 				entry = &port_cntrs[j];
12552 				if (entry->flags & CNTR_VL) {
12553 					for (vl = 0; vl < C_VL_COUNT; vl++)
12554 						read_port_cntr(ppd, j, vl);
12555 				} else {
12556 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12557 				}
12558 			}
12559 		}
12560 
12561 		/*
12562 		 * We want the value in the register. The goal is to keep track
12563 		 * of the number of "ticks" not the counter value. In other
12564 		 * words if the register rolls we want to notice it and go ahead
12565 		 * and force an update.
12566 		 */
12567 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12568 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12569 						CNTR_MODE_R, 0);
12570 
12571 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12572 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12573 						CNTR_MODE_R, 0);
12574 
12575 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12576 			  dd->unit, dd->last_tx, dd->last_rx);
12577 
12578 	} else {
12579 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12580 	}
12581 }
12582 
12583 static void update_synth_timer(struct timer_list *t)
12584 {
12585 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12586 
12587 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12588 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12589 }
12590 
12591 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12592 static int init_cntrs(struct hfi1_devdata *dd)
12593 {
12594 	int i, rcv_ctxts, j;
12595 	size_t sz;
12596 	char *p;
12597 	char name[C_MAX_NAME];
12598 	struct hfi1_pportdata *ppd;
12599 	const char *bit_type_32 = ",32";
12600 	const int bit_type_32_sz = strlen(bit_type_32);
12601 	u32 sdma_engines = chip_sdma_engines(dd);
12602 
12603 	/* set up the stats timer; the add_timer is done at the end */
12604 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12605 
12606 	/***********************/
12607 	/* per device counters */
12608 	/***********************/
12609 
12610 	/* size names and determine how many we have*/
12611 	dd->ndevcntrs = 0;
12612 	sz = 0;
12613 
12614 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12615 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12616 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12617 			continue;
12618 		}
12619 
12620 		if (dev_cntrs[i].flags & CNTR_VL) {
12621 			dev_cntrs[i].offset = dd->ndevcntrs;
12622 			for (j = 0; j < C_VL_COUNT; j++) {
12623 				snprintf(name, C_MAX_NAME, "%s%d",
12624 					 dev_cntrs[i].name, vl_from_idx(j));
12625 				sz += strlen(name);
12626 				/* Add ",32" for 32-bit counters */
12627 				if (dev_cntrs[i].flags & CNTR_32BIT)
12628 					sz += bit_type_32_sz;
12629 				sz++;
12630 				dd->ndevcntrs++;
12631 			}
12632 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12633 			dev_cntrs[i].offset = dd->ndevcntrs;
12634 			for (j = 0; j < sdma_engines; j++) {
12635 				snprintf(name, C_MAX_NAME, "%s%d",
12636 					 dev_cntrs[i].name, j);
12637 				sz += strlen(name);
12638 				/* Add ",32" for 32-bit counters */
12639 				if (dev_cntrs[i].flags & CNTR_32BIT)
12640 					sz += bit_type_32_sz;
12641 				sz++;
12642 				dd->ndevcntrs++;
12643 			}
12644 		} else {
12645 			/* +1 for newline. */
12646 			sz += strlen(dev_cntrs[i].name) + 1;
12647 			/* Add ",32" for 32-bit counters */
12648 			if (dev_cntrs[i].flags & CNTR_32BIT)
12649 				sz += bit_type_32_sz;
12650 			dev_cntrs[i].offset = dd->ndevcntrs;
12651 			dd->ndevcntrs++;
12652 		}
12653 	}
12654 
12655 	/* allocate space for the counter values */
12656 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12657 			    GFP_KERNEL);
12658 	if (!dd->cntrs)
12659 		goto bail;
12660 
12661 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12662 	if (!dd->scntrs)
12663 		goto bail;
12664 
12665 	/* allocate space for the counter names */
12666 	dd->cntrnameslen = sz;
12667 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12668 	if (!dd->cntrnames)
12669 		goto bail;
12670 
12671 	/* fill in the names */
12672 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12673 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12674 			/* Nothing */
12675 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12676 			for (j = 0; j < C_VL_COUNT; j++) {
12677 				snprintf(name, C_MAX_NAME, "%s%d",
12678 					 dev_cntrs[i].name,
12679 					 vl_from_idx(j));
12680 				memcpy(p, name, strlen(name));
12681 				p += strlen(name);
12682 
12683 				/* Counter is 32 bits */
12684 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12685 					memcpy(p, bit_type_32, bit_type_32_sz);
12686 					p += bit_type_32_sz;
12687 				}
12688 
12689 				*p++ = '\n';
12690 			}
12691 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12692 			for (j = 0; j < sdma_engines; j++) {
12693 				snprintf(name, C_MAX_NAME, "%s%d",
12694 					 dev_cntrs[i].name, j);
12695 				memcpy(p, name, strlen(name));
12696 				p += strlen(name);
12697 
12698 				/* Counter is 32 bits */
12699 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12700 					memcpy(p, bit_type_32, bit_type_32_sz);
12701 					p += bit_type_32_sz;
12702 				}
12703 
12704 				*p++ = '\n';
12705 			}
12706 		} else {
12707 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12708 			p += strlen(dev_cntrs[i].name);
12709 
12710 			/* Counter is 32 bits */
12711 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12712 				memcpy(p, bit_type_32, bit_type_32_sz);
12713 				p += bit_type_32_sz;
12714 			}
12715 
12716 			*p++ = '\n';
12717 		}
12718 	}
12719 
12720 	/*********************/
12721 	/* per port counters */
12722 	/*********************/
12723 
12724 	/*
12725 	 * Go through the counters for the overflows and disable the ones we
12726 	 * don't need. This varies based on platform so we need to do it
12727 	 * dynamically here.
12728 	 */
12729 	rcv_ctxts = dd->num_rcv_contexts;
12730 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12731 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12732 		port_cntrs[i].flags |= CNTR_DISABLED;
12733 	}
12734 
12735 	/* size port counter names and determine how many we have*/
12736 	sz = 0;
12737 	dd->nportcntrs = 0;
12738 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12739 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12740 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12741 			continue;
12742 		}
12743 
12744 		if (port_cntrs[i].flags & CNTR_VL) {
12745 			port_cntrs[i].offset = dd->nportcntrs;
12746 			for (j = 0; j < C_VL_COUNT; j++) {
12747 				snprintf(name, C_MAX_NAME, "%s%d",
12748 					 port_cntrs[i].name, vl_from_idx(j));
12749 				sz += strlen(name);
12750 				/* Add ",32" for 32-bit counters */
12751 				if (port_cntrs[i].flags & CNTR_32BIT)
12752 					sz += bit_type_32_sz;
12753 				sz++;
12754 				dd->nportcntrs++;
12755 			}
12756 		} else {
12757 			/* +1 for newline */
12758 			sz += strlen(port_cntrs[i].name) + 1;
12759 			/* Add ",32" for 32-bit counters */
12760 			if (port_cntrs[i].flags & CNTR_32BIT)
12761 				sz += bit_type_32_sz;
12762 			port_cntrs[i].offset = dd->nportcntrs;
12763 			dd->nportcntrs++;
12764 		}
12765 	}
12766 
12767 	/* allocate space for the counter names */
12768 	dd->portcntrnameslen = sz;
12769 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12770 	if (!dd->portcntrnames)
12771 		goto bail;
12772 
12773 	/* fill in port cntr names */
12774 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12775 		if (port_cntrs[i].flags & CNTR_DISABLED)
12776 			continue;
12777 
12778 		if (port_cntrs[i].flags & CNTR_VL) {
12779 			for (j = 0; j < C_VL_COUNT; j++) {
12780 				snprintf(name, C_MAX_NAME, "%s%d",
12781 					 port_cntrs[i].name, vl_from_idx(j));
12782 				memcpy(p, name, strlen(name));
12783 				p += strlen(name);
12784 
12785 				/* Counter is 32 bits */
12786 				if (port_cntrs[i].flags & CNTR_32BIT) {
12787 					memcpy(p, bit_type_32, bit_type_32_sz);
12788 					p += bit_type_32_sz;
12789 				}
12790 
12791 				*p++ = '\n';
12792 			}
12793 		} else {
12794 			memcpy(p, port_cntrs[i].name,
12795 			       strlen(port_cntrs[i].name));
12796 			p += strlen(port_cntrs[i].name);
12797 
12798 			/* Counter is 32 bits */
12799 			if (port_cntrs[i].flags & CNTR_32BIT) {
12800 				memcpy(p, bit_type_32, bit_type_32_sz);
12801 				p += bit_type_32_sz;
12802 			}
12803 
12804 			*p++ = '\n';
12805 		}
12806 	}
12807 
12808 	/* allocate per port storage for counter values */
12809 	ppd = (struct hfi1_pportdata *)(dd + 1);
12810 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12811 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12812 		if (!ppd->cntrs)
12813 			goto bail;
12814 
12815 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12816 		if (!ppd->scntrs)
12817 			goto bail;
12818 	}
12819 
12820 	/* CPU counters need to be allocated and zeroed */
12821 	if (init_cpu_counters(dd))
12822 		goto bail;
12823 
12824 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12825 						     WQ_MEM_RECLAIM, dd->unit);
12826 	if (!dd->update_cntr_wq)
12827 		goto bail;
12828 
12829 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12830 
12831 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12832 	return 0;
12833 bail:
12834 	free_cntrs(dd);
12835 	return -ENOMEM;
12836 }
12837 
12838 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12839 {
12840 	switch (chip_lstate) {
12841 	case LSTATE_DOWN:
12842 		return IB_PORT_DOWN;
12843 	case LSTATE_INIT:
12844 		return IB_PORT_INIT;
12845 	case LSTATE_ARMED:
12846 		return IB_PORT_ARMED;
12847 	case LSTATE_ACTIVE:
12848 		return IB_PORT_ACTIVE;
12849 	default:
12850 		dd_dev_err(dd,
12851 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12852 			   chip_lstate);
12853 		return IB_PORT_DOWN;
12854 	}
12855 }
12856 
12857 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12858 {
12859 	/* look at the HFI meta-states only */
12860 	switch (chip_pstate & 0xf0) {
12861 	case PLS_DISABLED:
12862 		return IB_PORTPHYSSTATE_DISABLED;
12863 	case PLS_OFFLINE:
12864 		return OPA_PORTPHYSSTATE_OFFLINE;
12865 	case PLS_POLLING:
12866 		return IB_PORTPHYSSTATE_POLLING;
12867 	case PLS_CONFIGPHY:
12868 		return IB_PORTPHYSSTATE_TRAINING;
12869 	case PLS_LINKUP:
12870 		return IB_PORTPHYSSTATE_LINKUP;
12871 	case PLS_PHYTEST:
12872 		return IB_PORTPHYSSTATE_PHY_TEST;
12873 	default:
12874 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12875 			   chip_pstate);
12876 		return IB_PORTPHYSSTATE_DISABLED;
12877 	}
12878 }
12879 
12880 /* return the OPA port logical state name */
12881 const char *opa_lstate_name(u32 lstate)
12882 {
12883 	static const char * const port_logical_names[] = {
12884 		"PORT_NOP",
12885 		"PORT_DOWN",
12886 		"PORT_INIT",
12887 		"PORT_ARMED",
12888 		"PORT_ACTIVE",
12889 		"PORT_ACTIVE_DEFER",
12890 	};
12891 	if (lstate < ARRAY_SIZE(port_logical_names))
12892 		return port_logical_names[lstate];
12893 	return "unknown";
12894 }
12895 
12896 /* return the OPA port physical state name */
12897 const char *opa_pstate_name(u32 pstate)
12898 {
12899 	static const char * const port_physical_names[] = {
12900 		"PHYS_NOP",
12901 		"reserved1",
12902 		"PHYS_POLL",
12903 		"PHYS_DISABLED",
12904 		"PHYS_TRAINING",
12905 		"PHYS_LINKUP",
12906 		"PHYS_LINK_ERR_RECOVER",
12907 		"PHYS_PHY_TEST",
12908 		"reserved8",
12909 		"PHYS_OFFLINE",
12910 		"PHYS_GANGED",
12911 		"PHYS_TEST",
12912 	};
12913 	if (pstate < ARRAY_SIZE(port_physical_names))
12914 		return port_physical_names[pstate];
12915 	return "unknown";
12916 }
12917 
12918 /**
12919  * update_statusp - Update userspace status flag
12920  * @ppd: Port data structure
12921  * @state: port state information
12922  *
12923  * Actual port status is determined by the host_link_state value
12924  * in the ppd.
12925  *
12926  * host_link_state MUST be updated before updating the user space
12927  * statusp.
12928  */
12929 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12930 {
12931 	/*
12932 	 * Set port status flags in the page mapped into userspace
12933 	 * memory. Do it here to ensure a reliable state - this is
12934 	 * the only function called by all state handling code.
12935 	 * Always set the flags due to the fact that the cache value
12936 	 * might have been changed explicitly outside of this
12937 	 * function.
12938 	 */
12939 	if (ppd->statusp) {
12940 		switch (state) {
12941 		case IB_PORT_DOWN:
12942 		case IB_PORT_INIT:
12943 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12944 					   HFI1_STATUS_IB_READY);
12945 			break;
12946 		case IB_PORT_ARMED:
12947 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12948 			break;
12949 		case IB_PORT_ACTIVE:
12950 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12951 			break;
12952 		}
12953 	}
12954 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12955 		    opa_lstate_name(state), state);
12956 }
12957 
12958 /**
12959  * wait_logical_linkstate - wait for an IB link state change to occur
12960  * @ppd: port device
12961  * @state: the state to wait for
12962  * @msecs: the number of milliseconds to wait
12963  *
12964  * Wait up to msecs milliseconds for IB link state change to occur.
12965  * For now, take the easy polling route.
12966  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12967  */
12968 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12969 				  int msecs)
12970 {
12971 	unsigned long timeout;
12972 	u32 new_state;
12973 
12974 	timeout = jiffies + msecs_to_jiffies(msecs);
12975 	while (1) {
12976 		new_state = chip_to_opa_lstate(ppd->dd,
12977 					       read_logical_state(ppd->dd));
12978 		if (new_state == state)
12979 			break;
12980 		if (time_after(jiffies, timeout)) {
12981 			dd_dev_err(ppd->dd,
12982 				   "timeout waiting for link state 0x%x\n",
12983 				   state);
12984 			return -ETIMEDOUT;
12985 		}
12986 		msleep(20);
12987 	}
12988 
12989 	return 0;
12990 }
12991 
12992 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12993 {
12994 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12995 
12996 	dd_dev_info(ppd->dd,
12997 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12998 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12999 }
13000 
13001 /*
13002  * Read the physical hardware link state and check if it matches host
13003  * drivers anticipated state.
13004  */
13005 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13006 {
13007 	u32 read_state = read_physical_state(ppd->dd);
13008 
13009 	if (read_state == state) {
13010 		log_state_transition(ppd, state);
13011 	} else {
13012 		dd_dev_err(ppd->dd,
13013 			   "anticipated phy link state 0x%x, read 0x%x\n",
13014 			   state, read_state);
13015 	}
13016 }
13017 
13018 /*
13019  * wait_physical_linkstate - wait for an physical link state change to occur
13020  * @ppd: port device
13021  * @state: the state to wait for
13022  * @msecs: the number of milliseconds to wait
13023  *
13024  * Wait up to msecs milliseconds for physical link state change to occur.
13025  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13026  */
13027 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13028 				   int msecs)
13029 {
13030 	u32 read_state;
13031 	unsigned long timeout;
13032 
13033 	timeout = jiffies + msecs_to_jiffies(msecs);
13034 	while (1) {
13035 		read_state = read_physical_state(ppd->dd);
13036 		if (read_state == state)
13037 			break;
13038 		if (time_after(jiffies, timeout)) {
13039 			dd_dev_err(ppd->dd,
13040 				   "timeout waiting for phy link state 0x%x\n",
13041 				   state);
13042 			return -ETIMEDOUT;
13043 		}
13044 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13045 	}
13046 
13047 	log_state_transition(ppd, state);
13048 	return 0;
13049 }
13050 
13051 /*
13052  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13053  * @ppd: port device
13054  * @msecs: the number of milliseconds to wait
13055  *
13056  * Wait up to msecs milliseconds for any offline physical link
13057  * state change to occur.
13058  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13059  */
13060 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13061 					    int msecs)
13062 {
13063 	u32 read_state;
13064 	unsigned long timeout;
13065 
13066 	timeout = jiffies + msecs_to_jiffies(msecs);
13067 	while (1) {
13068 		read_state = read_physical_state(ppd->dd);
13069 		if ((read_state & 0xF0) == PLS_OFFLINE)
13070 			break;
13071 		if (time_after(jiffies, timeout)) {
13072 			dd_dev_err(ppd->dd,
13073 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13074 				   read_state, msecs);
13075 			return -ETIMEDOUT;
13076 		}
13077 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13078 	}
13079 
13080 	log_state_transition(ppd, read_state);
13081 	return read_state;
13082 }
13083 
13084 /*
13085  * wait_phys_link_out_of_offline - wait for any out of offline state
13086  * @ppd: port device
13087  * @msecs: the number of milliseconds to wait
13088  *
13089  * Wait up to msecs milliseconds for any out of offline physical link
13090  * state change to occur.
13091  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13092  */
13093 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13094 					 int msecs)
13095 {
13096 	u32 read_state;
13097 	unsigned long timeout;
13098 
13099 	timeout = jiffies + msecs_to_jiffies(msecs);
13100 	while (1) {
13101 		read_state = read_physical_state(ppd->dd);
13102 		if ((read_state & 0xF0) != PLS_OFFLINE)
13103 			break;
13104 		if (time_after(jiffies, timeout)) {
13105 			dd_dev_err(ppd->dd,
13106 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13107 				   read_state, msecs);
13108 			return -ETIMEDOUT;
13109 		}
13110 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13111 	}
13112 
13113 	log_state_transition(ppd, read_state);
13114 	return read_state;
13115 }
13116 
13117 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13118 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13119 
13120 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13121 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13122 
13123 void hfi1_init_ctxt(struct send_context *sc)
13124 {
13125 	if (sc) {
13126 		struct hfi1_devdata *dd = sc->dd;
13127 		u64 reg;
13128 		u8 set = (sc->type == SC_USER ?
13129 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13130 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13131 		reg = read_kctxt_csr(dd, sc->hw_context,
13132 				     SEND_CTXT_CHECK_ENABLE);
13133 		if (set)
13134 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13135 		else
13136 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13137 		write_kctxt_csr(dd, sc->hw_context,
13138 				SEND_CTXT_CHECK_ENABLE, reg);
13139 	}
13140 }
13141 
13142 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13143 {
13144 	int ret = 0;
13145 	u64 reg;
13146 
13147 	if (dd->icode != ICODE_RTL_SILICON) {
13148 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13149 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13150 				    __func__);
13151 		return -EINVAL;
13152 	}
13153 	reg = read_csr(dd, ASIC_STS_THERM);
13154 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13155 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13156 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13157 			ASIC_STS_THERM_LO_TEMP_MASK);
13158 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13159 			ASIC_STS_THERM_HI_TEMP_MASK);
13160 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13161 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13162 	/* triggers is a 3-bit value - 1 bit per trigger. */
13163 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13164 
13165 	return ret;
13166 }
13167 
13168 /* ========================================================================= */
13169 
13170 /**
13171  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13172  * @dd: valid devdata
13173  * @src: IRQ source to determine register index from
13174  * @bits: the bits to set or clear
13175  * @set: true == set the bits, false == clear the bits
13176  *
13177  */
13178 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13179 			   bool set)
13180 {
13181 	u64 reg;
13182 	u16 idx = src / BITS_PER_REGISTER;
13183 
13184 	spin_lock(&dd->irq_src_lock);
13185 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13186 	if (set)
13187 		reg |= bits;
13188 	else
13189 		reg &= ~bits;
13190 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13191 	spin_unlock(&dd->irq_src_lock);
13192 }
13193 
13194 /**
13195  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13196  * @dd: valid devdata
13197  * @first: first IRQ source to set/clear
13198  * @last: last IRQ source (inclusive) to set/clear
13199  * @set: true == set the bits, false == clear the bits
13200  *
13201  * If first == last, set the exact source.
13202  */
13203 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13204 {
13205 	u64 bits = 0;
13206 	u64 bit;
13207 	u16 src;
13208 
13209 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13210 		return -EINVAL;
13211 
13212 	if (last < first)
13213 		return -ERANGE;
13214 
13215 	for (src = first; src <= last; src++) {
13216 		bit = src % BITS_PER_REGISTER;
13217 		/* wrapped to next register? */
13218 		if (!bit && bits) {
13219 			read_mod_write(dd, src - 1, bits, set);
13220 			bits = 0;
13221 		}
13222 		bits |= BIT_ULL(bit);
13223 	}
13224 	read_mod_write(dd, last, bits, set);
13225 
13226 	return 0;
13227 }
13228 
13229 /*
13230  * Clear all interrupt sources on the chip.
13231  */
13232 void clear_all_interrupts(struct hfi1_devdata *dd)
13233 {
13234 	int i;
13235 
13236 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13237 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13238 
13239 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13240 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13241 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13242 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13243 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13244 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13245 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13246 	for (i = 0; i < chip_send_contexts(dd); i++)
13247 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13248 	for (i = 0; i < chip_sdma_engines(dd); i++)
13249 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13250 
13251 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13252 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13253 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13254 }
13255 
13256 /*
13257  * Remap the interrupt source from the general handler to the given MSI-X
13258  * interrupt.
13259  */
13260 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13261 {
13262 	u64 reg;
13263 	int m, n;
13264 
13265 	/* clear from the handled mask of the general interrupt */
13266 	m = isrc / 64;
13267 	n = isrc % 64;
13268 	if (likely(m < CCE_NUM_INT_CSRS)) {
13269 		dd->gi_mask[m] &= ~((u64)1 << n);
13270 	} else {
13271 		dd_dev_err(dd, "remap interrupt err\n");
13272 		return;
13273 	}
13274 
13275 	/* direct the chip source to the given MSI-X interrupt */
13276 	m = isrc / 8;
13277 	n = isrc % 8;
13278 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13279 	reg &= ~((u64)0xff << (8 * n));
13280 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13281 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13282 }
13283 
13284 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13285 {
13286 	/*
13287 	 * SDMA engine interrupt sources grouped by type, rather than
13288 	 * engine.  Per-engine interrupts are as follows:
13289 	 *	SDMA
13290 	 *	SDMAProgress
13291 	 *	SDMAIdle
13292 	 */
13293 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13294 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13295 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13296 }
13297 
13298 /*
13299  * Set the general handler to accept all interrupts, remap all
13300  * chip interrupts back to MSI-X 0.
13301  */
13302 void reset_interrupts(struct hfi1_devdata *dd)
13303 {
13304 	int i;
13305 
13306 	/* all interrupts handled by the general handler */
13307 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13308 		dd->gi_mask[i] = ~(u64)0;
13309 
13310 	/* all chip interrupts map to MSI-X 0 */
13311 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13312 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13313 }
13314 
13315 /**
13316  * set_up_interrupts() - Initialize the IRQ resources and state
13317  * @dd: valid devdata
13318  *
13319  */
13320 static int set_up_interrupts(struct hfi1_devdata *dd)
13321 {
13322 	int ret;
13323 
13324 	/* mask all interrupts */
13325 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13326 
13327 	/* clear all pending interrupts */
13328 	clear_all_interrupts(dd);
13329 
13330 	/* reset general handler mask, chip MSI-X mappings */
13331 	reset_interrupts(dd);
13332 
13333 	/* ask for MSI-X interrupts */
13334 	ret = msix_initialize(dd);
13335 	if (ret)
13336 		return ret;
13337 
13338 	ret = msix_request_irqs(dd);
13339 	if (ret)
13340 		msix_clean_up_interrupts(dd);
13341 
13342 	return ret;
13343 }
13344 
13345 /*
13346  * Set up context values in dd.  Sets:
13347  *
13348  *	num_rcv_contexts - number of contexts being used
13349  *	n_krcv_queues - number of kernel contexts
13350  *	first_dyn_alloc_ctxt - first dynamically allocated context
13351  *                             in array of contexts
13352  *	freectxts  - number of free user contexts
13353  *	num_send_contexts - number of PIO send contexts being used
13354  *	num_netdev_contexts - number of contexts reserved for netdev
13355  */
13356 static int set_up_context_variables(struct hfi1_devdata *dd)
13357 {
13358 	unsigned long num_kernel_contexts;
13359 	u16 num_netdev_contexts;
13360 	int ret;
13361 	unsigned ngroups;
13362 	int rmt_count;
13363 	int user_rmt_reduced;
13364 	u32 n_usr_ctxts;
13365 	u32 send_contexts = chip_send_contexts(dd);
13366 	u32 rcv_contexts = chip_rcv_contexts(dd);
13367 
13368 	/*
13369 	 * Kernel receive contexts:
13370 	 * - Context 0 - control context (VL15/multicast/error)
13371 	 * - Context 1 - first kernel context
13372 	 * - Context 2 - second kernel context
13373 	 * ...
13374 	 */
13375 	if (n_krcvqs)
13376 		/*
13377 		 * n_krcvqs is the sum of module parameter kernel receive
13378 		 * contexts, krcvqs[].  It does not include the control
13379 		 * context, so add that.
13380 		 */
13381 		num_kernel_contexts = n_krcvqs + 1;
13382 	else
13383 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13384 	/*
13385 	 * Every kernel receive context needs an ACK send context.
13386 	 * one send context is allocated for each VL{0-7} and VL15
13387 	 */
13388 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13389 		dd_dev_err(dd,
13390 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13391 			   send_contexts - num_vls - 1,
13392 			   num_kernel_contexts);
13393 		num_kernel_contexts = send_contexts - num_vls - 1;
13394 	}
13395 
13396 	/*
13397 	 * User contexts:
13398 	 *	- default to 1 user context per real (non-HT) CPU core if
13399 	 *	  num_user_contexts is negative
13400 	 */
13401 	if (num_user_contexts < 0)
13402 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13403 	else
13404 		n_usr_ctxts = num_user_contexts;
13405 	/*
13406 	 * Adjust the counts given a global max.
13407 	 */
13408 	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13409 		dd_dev_err(dd,
13410 			   "Reducing # user receive contexts to: %u, from %u\n",
13411 			   (u32)(rcv_contexts - num_kernel_contexts),
13412 			   n_usr_ctxts);
13413 		/* recalculate */
13414 		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13415 	}
13416 
13417 	num_netdev_contexts =
13418 		hfi1_num_netdev_contexts(dd, rcv_contexts -
13419 					 (num_kernel_contexts + n_usr_ctxts),
13420 					 &node_affinity.real_cpu_mask);
13421 	/*
13422 	 * The RMT entries are currently allocated as shown below:
13423 	 * 1. QOS (0 to 128 entries);
13424 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13425 	 *    num_netdev_contexts);
13426 	 * 3. netdev (num_netdev_contexts).
13427 	 * It should be noted that FECN oversubscribe num_netdev_contexts
13428 	 * entries of RMT because both netdev and PSM could allocate any receive
13429 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13430 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13431 	 * context.
13432 	 */
13433 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_netdev_contexts * 2);
13434 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13435 		rmt_count += num_kernel_contexts - 1;
13436 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13437 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13438 		dd_dev_err(dd,
13439 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13440 			   n_usr_ctxts,
13441 			   user_rmt_reduced);
13442 		/* recalculate */
13443 		n_usr_ctxts = user_rmt_reduced;
13444 	}
13445 
13446 	/* the first N are kernel contexts, the rest are user/netdev contexts */
13447 	dd->num_rcv_contexts =
13448 		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13449 	dd->n_krcv_queues = num_kernel_contexts;
13450 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13451 	dd->num_netdev_contexts = num_netdev_contexts;
13452 	dd->num_user_contexts = n_usr_ctxts;
13453 	dd->freectxts = n_usr_ctxts;
13454 	dd_dev_info(dd,
13455 		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13456 		    rcv_contexts,
13457 		    (int)dd->num_rcv_contexts,
13458 		    (int)dd->n_krcv_queues,
13459 		    dd->num_netdev_contexts,
13460 		    dd->num_user_contexts);
13461 
13462 	/*
13463 	 * Receive array allocation:
13464 	 *   All RcvArray entries are divided into groups of 8. This
13465 	 *   is required by the hardware and will speed up writes to
13466 	 *   consecutive entries by using write-combining of the entire
13467 	 *   cacheline.
13468 	 *
13469 	 *   The number of groups are evenly divided among all contexts.
13470 	 *   any left over groups will be given to the first N user
13471 	 *   contexts.
13472 	 */
13473 	dd->rcv_entries.group_size = RCV_INCREMENT;
13474 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13475 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13476 	dd->rcv_entries.nctxt_extra = ngroups -
13477 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13478 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13479 		    dd->rcv_entries.ngroups,
13480 		    dd->rcv_entries.nctxt_extra);
13481 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13482 	    MAX_EAGER_ENTRIES * 2) {
13483 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13484 			dd->rcv_entries.group_size;
13485 		dd_dev_info(dd,
13486 			    "RcvArray group count too high, change to %u\n",
13487 			    dd->rcv_entries.ngroups);
13488 		dd->rcv_entries.nctxt_extra = 0;
13489 	}
13490 	/*
13491 	 * PIO send contexts
13492 	 */
13493 	ret = init_sc_pools_and_sizes(dd);
13494 	if (ret >= 0) {	/* success */
13495 		dd->num_send_contexts = ret;
13496 		dd_dev_info(
13497 			dd,
13498 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13499 			send_contexts,
13500 			dd->num_send_contexts,
13501 			dd->sc_sizes[SC_KERNEL].count,
13502 			dd->sc_sizes[SC_ACK].count,
13503 			dd->sc_sizes[SC_USER].count,
13504 			dd->sc_sizes[SC_VL15].count);
13505 		ret = 0;	/* success */
13506 	}
13507 
13508 	return ret;
13509 }
13510 
13511 /*
13512  * Set the device/port partition key table. The MAD code
13513  * will ensure that, at least, the partial management
13514  * partition key is present in the table.
13515  */
13516 static void set_partition_keys(struct hfi1_pportdata *ppd)
13517 {
13518 	struct hfi1_devdata *dd = ppd->dd;
13519 	u64 reg = 0;
13520 	int i;
13521 
13522 	dd_dev_info(dd, "Setting partition keys\n");
13523 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13524 		reg |= (ppd->pkeys[i] &
13525 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13526 			((i % 4) *
13527 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13528 		/* Each register holds 4 PKey values. */
13529 		if ((i % 4) == 3) {
13530 			write_csr(dd, RCV_PARTITION_KEY +
13531 				  ((i - 3) * 2), reg);
13532 			reg = 0;
13533 		}
13534 	}
13535 
13536 	/* Always enable HW pkeys check when pkeys table is set */
13537 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13538 }
13539 
13540 /*
13541  * These CSRs and memories are uninitialized on reset and must be
13542  * written before reading to set the ECC/parity bits.
13543  *
13544  * NOTE: All user context CSRs that are not mmaped write-only
13545  * (e.g. the TID flows) must be initialized even if the driver never
13546  * reads them.
13547  */
13548 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13549 {
13550 	int i, j;
13551 
13552 	/* CceIntMap */
13553 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13554 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13555 
13556 	/* SendCtxtCreditReturnAddr */
13557 	for (i = 0; i < chip_send_contexts(dd); i++)
13558 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13559 
13560 	/* PIO Send buffers */
13561 	/* SDMA Send buffers */
13562 	/*
13563 	 * These are not normally read, and (presently) have no method
13564 	 * to be read, so are not pre-initialized
13565 	 */
13566 
13567 	/* RcvHdrAddr */
13568 	/* RcvHdrTailAddr */
13569 	/* RcvTidFlowTable */
13570 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13571 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13572 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13573 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13574 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13575 	}
13576 
13577 	/* RcvArray */
13578 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13579 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13580 
13581 	/* RcvQPMapTable */
13582 	for (i = 0; i < 32; i++)
13583 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13584 }
13585 
13586 /*
13587  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13588  */
13589 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13590 			     u64 ctrl_bits)
13591 {
13592 	unsigned long timeout;
13593 	u64 reg;
13594 
13595 	/* is the condition present? */
13596 	reg = read_csr(dd, CCE_STATUS);
13597 	if ((reg & status_bits) == 0)
13598 		return;
13599 
13600 	/* clear the condition */
13601 	write_csr(dd, CCE_CTRL, ctrl_bits);
13602 
13603 	/* wait for the condition to clear */
13604 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13605 	while (1) {
13606 		reg = read_csr(dd, CCE_STATUS);
13607 		if ((reg & status_bits) == 0)
13608 			return;
13609 		if (time_after(jiffies, timeout)) {
13610 			dd_dev_err(dd,
13611 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13612 				   status_bits, reg & status_bits);
13613 			return;
13614 		}
13615 		udelay(1);
13616 	}
13617 }
13618 
13619 /* set CCE CSRs to chip reset defaults */
13620 static void reset_cce_csrs(struct hfi1_devdata *dd)
13621 {
13622 	int i;
13623 
13624 	/* CCE_REVISION read-only */
13625 	/* CCE_REVISION2 read-only */
13626 	/* CCE_CTRL - bits clear automatically */
13627 	/* CCE_STATUS read-only, use CceCtrl to clear */
13628 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13629 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13630 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13631 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13632 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13633 	/* CCE_ERR_STATUS read-only */
13634 	write_csr(dd, CCE_ERR_MASK, 0);
13635 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13636 	/* CCE_ERR_FORCE leave alone */
13637 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13638 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13639 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13640 	/* CCE_PCIE_CTRL leave alone */
13641 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13642 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13643 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13644 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13645 	}
13646 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13647 		/* CCE_MSIX_PBA read-only */
13648 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13649 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13650 	}
13651 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13652 		write_csr(dd, CCE_INT_MAP, 0);
13653 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13654 		/* CCE_INT_STATUS read-only */
13655 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13656 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13657 		/* CCE_INT_FORCE leave alone */
13658 		/* CCE_INT_BLOCKED read-only */
13659 	}
13660 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13661 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13662 }
13663 
13664 /* set MISC CSRs to chip reset defaults */
13665 static void reset_misc_csrs(struct hfi1_devdata *dd)
13666 {
13667 	int i;
13668 
13669 	for (i = 0; i < 32; i++) {
13670 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13671 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13672 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13673 	}
13674 	/*
13675 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13676 	 * only be written 128-byte chunks
13677 	 */
13678 	/* init RSA engine to clear lingering errors */
13679 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13680 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13681 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13682 	/* MISC_STS_8051_DIGEST read-only */
13683 	/* MISC_STS_SBM_DIGEST read-only */
13684 	/* MISC_STS_PCIE_DIGEST read-only */
13685 	/* MISC_STS_FAB_DIGEST read-only */
13686 	/* MISC_ERR_STATUS read-only */
13687 	write_csr(dd, MISC_ERR_MASK, 0);
13688 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13689 	/* MISC_ERR_FORCE leave alone */
13690 }
13691 
13692 /* set TXE CSRs to chip reset defaults */
13693 static void reset_txe_csrs(struct hfi1_devdata *dd)
13694 {
13695 	int i;
13696 
13697 	/*
13698 	 * TXE Kernel CSRs
13699 	 */
13700 	write_csr(dd, SEND_CTRL, 0);
13701 	__cm_reset(dd, 0);	/* reset CM internal state */
13702 	/* SEND_CONTEXTS read-only */
13703 	/* SEND_DMA_ENGINES read-only */
13704 	/* SEND_PIO_MEM_SIZE read-only */
13705 	/* SEND_DMA_MEM_SIZE read-only */
13706 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13707 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13708 	/* SEND_PIO_ERR_STATUS read-only */
13709 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13710 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13711 	/* SEND_PIO_ERR_FORCE leave alone */
13712 	/* SEND_DMA_ERR_STATUS read-only */
13713 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13714 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13715 	/* SEND_DMA_ERR_FORCE leave alone */
13716 	/* SEND_EGRESS_ERR_STATUS read-only */
13717 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13718 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13719 	/* SEND_EGRESS_ERR_FORCE leave alone */
13720 	write_csr(dd, SEND_BTH_QP, 0);
13721 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13722 	write_csr(dd, SEND_SC2VLT0, 0);
13723 	write_csr(dd, SEND_SC2VLT1, 0);
13724 	write_csr(dd, SEND_SC2VLT2, 0);
13725 	write_csr(dd, SEND_SC2VLT3, 0);
13726 	write_csr(dd, SEND_LEN_CHECK0, 0);
13727 	write_csr(dd, SEND_LEN_CHECK1, 0);
13728 	/* SEND_ERR_STATUS read-only */
13729 	write_csr(dd, SEND_ERR_MASK, 0);
13730 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13731 	/* SEND_ERR_FORCE read-only */
13732 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13733 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13734 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13735 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13736 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13737 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13738 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13739 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13740 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13741 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13742 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13743 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13744 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13745 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13746 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13747 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13748 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13749 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13750 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13751 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13752 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13753 	/* SEND_CM_CREDIT_USED_VL read-only */
13754 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13755 	/* SEND_EGRESS_CTXT_STATUS read-only */
13756 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13757 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13758 	/* SEND_EGRESS_ERR_INFO read-only */
13759 	/* SEND_EGRESS_ERR_SOURCE read-only */
13760 
13761 	/*
13762 	 * TXE Per-Context CSRs
13763 	 */
13764 	for (i = 0; i < chip_send_contexts(dd); i++) {
13765 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13766 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13767 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13768 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13769 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13770 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13771 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13772 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13773 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13774 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13775 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13776 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13777 	}
13778 
13779 	/*
13780 	 * TXE Per-SDMA CSRs
13781 	 */
13782 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13783 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13784 		/* SEND_DMA_STATUS read-only */
13785 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13786 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13787 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13788 		/* SEND_DMA_HEAD read-only */
13789 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13790 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13791 		/* SEND_DMA_IDLE_CNT read-only */
13792 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13793 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13794 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13795 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13796 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13797 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13798 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13799 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13800 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13801 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13802 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13803 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13804 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13805 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13806 	}
13807 }
13808 
13809 /*
13810  * Expect on entry:
13811  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13812  */
13813 static void init_rbufs(struct hfi1_devdata *dd)
13814 {
13815 	u64 reg;
13816 	int count;
13817 
13818 	/*
13819 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13820 	 * clear.
13821 	 */
13822 	count = 0;
13823 	while (1) {
13824 		reg = read_csr(dd, RCV_STATUS);
13825 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13826 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13827 			break;
13828 		/*
13829 		 * Give up after 1ms - maximum wait time.
13830 		 *
13831 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13832 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13833 		 *	136 KB / (66% * 250MB/s) = 844us
13834 		 */
13835 		if (count++ > 500) {
13836 			dd_dev_err(dd,
13837 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13838 				   __func__, reg);
13839 			break;
13840 		}
13841 		udelay(2); /* do not busy-wait the CSR */
13842 	}
13843 
13844 	/* start the init - expect RcvCtrl to be 0 */
13845 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13846 
13847 	/*
13848 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13849 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13850 	 * The delay in the first run through the loop below is sufficient and
13851 	 * required before the first read of RcvStatus.RxRbufInintDone.
13852 	 */
13853 	read_csr(dd, RCV_CTRL);
13854 
13855 	/* wait for the init to finish */
13856 	count = 0;
13857 	while (1) {
13858 		/* delay is required first time through - see above */
13859 		udelay(2); /* do not busy-wait the CSR */
13860 		reg = read_csr(dd, RCV_STATUS);
13861 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13862 			break;
13863 
13864 		/* give up after 100us - slowest possible at 33MHz is 73us */
13865 		if (count++ > 50) {
13866 			dd_dev_err(dd,
13867 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13868 				   __func__);
13869 			break;
13870 		}
13871 	}
13872 }
13873 
13874 /* set RXE CSRs to chip reset defaults */
13875 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13876 {
13877 	int i, j;
13878 
13879 	/*
13880 	 * RXE Kernel CSRs
13881 	 */
13882 	write_csr(dd, RCV_CTRL, 0);
13883 	init_rbufs(dd);
13884 	/* RCV_STATUS read-only */
13885 	/* RCV_CONTEXTS read-only */
13886 	/* RCV_ARRAY_CNT read-only */
13887 	/* RCV_BUF_SIZE read-only */
13888 	write_csr(dd, RCV_BTH_QP, 0);
13889 	write_csr(dd, RCV_MULTICAST, 0);
13890 	write_csr(dd, RCV_BYPASS, 0);
13891 	write_csr(dd, RCV_VL15, 0);
13892 	/* this is a clear-down */
13893 	write_csr(dd, RCV_ERR_INFO,
13894 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13895 	/* RCV_ERR_STATUS read-only */
13896 	write_csr(dd, RCV_ERR_MASK, 0);
13897 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13898 	/* RCV_ERR_FORCE leave alone */
13899 	for (i = 0; i < 32; i++)
13900 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13901 	for (i = 0; i < 4; i++)
13902 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13903 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13904 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13905 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13906 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13907 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13908 		clear_rsm_rule(dd, i);
13909 	for (i = 0; i < 32; i++)
13910 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13911 
13912 	/*
13913 	 * RXE Kernel and User Per-Context CSRs
13914 	 */
13915 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13916 		/* kernel */
13917 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13918 		/* RCV_CTXT_STATUS read-only */
13919 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13920 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13921 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13922 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13923 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13924 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13925 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13926 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13927 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13928 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13929 
13930 		/* user */
13931 		/* RCV_HDR_TAIL read-only */
13932 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13933 		/* RCV_EGR_INDEX_TAIL read-only */
13934 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13935 		/* RCV_EGR_OFFSET_TAIL read-only */
13936 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13937 			write_uctxt_csr(dd, i,
13938 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13939 		}
13940 	}
13941 }
13942 
13943 /*
13944  * Set sc2vl tables.
13945  *
13946  * They power on to zeros, so to avoid send context errors
13947  * they need to be set:
13948  *
13949  * SC 0-7 -> VL 0-7 (respectively)
13950  * SC 15  -> VL 15
13951  * otherwise
13952  *        -> VL 0
13953  */
13954 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13955 {
13956 	int i;
13957 	/* init per architecture spec, constrained by hardware capability */
13958 
13959 	/* HFI maps sent packets */
13960 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13961 		0,
13962 		0, 0, 1, 1,
13963 		2, 2, 3, 3,
13964 		4, 4, 5, 5,
13965 		6, 6, 7, 7));
13966 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13967 		1,
13968 		8, 0, 9, 0,
13969 		10, 0, 11, 0,
13970 		12, 0, 13, 0,
13971 		14, 0, 15, 15));
13972 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13973 		2,
13974 		16, 0, 17, 0,
13975 		18, 0, 19, 0,
13976 		20, 0, 21, 0,
13977 		22, 0, 23, 0));
13978 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13979 		3,
13980 		24, 0, 25, 0,
13981 		26, 0, 27, 0,
13982 		28, 0, 29, 0,
13983 		30, 0, 31, 0));
13984 
13985 	/* DC maps received packets */
13986 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13987 		15_0,
13988 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13989 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13990 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13991 		31_16,
13992 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13993 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13994 
13995 	/* initialize the cached sc2vl values consistently with h/w */
13996 	for (i = 0; i < 32; i++) {
13997 		if (i < 8 || i == 15)
13998 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13999 		else
14000 			*((u8 *)(dd->sc2vl) + i) = 0;
14001 	}
14002 }
14003 
14004 /*
14005  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14006  * depend on the chip going through a power-on reset - a driver may be loaded
14007  * and unloaded many times.
14008  *
14009  * Do not write any CSR values to the chip in this routine - there may be
14010  * a reset following the (possible) FLR in this routine.
14011  *
14012  */
14013 static int init_chip(struct hfi1_devdata *dd)
14014 {
14015 	int i;
14016 	int ret = 0;
14017 
14018 	/*
14019 	 * Put the HFI CSRs in a known state.
14020 	 * Combine this with a DC reset.
14021 	 *
14022 	 * Stop the device from doing anything while we do a
14023 	 * reset.  We know there are no other active users of
14024 	 * the device since we are now in charge.  Turn off
14025 	 * off all outbound and inbound traffic and make sure
14026 	 * the device does not generate any interrupts.
14027 	 */
14028 
14029 	/* disable send contexts and SDMA engines */
14030 	write_csr(dd, SEND_CTRL, 0);
14031 	for (i = 0; i < chip_send_contexts(dd); i++)
14032 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14033 	for (i = 0; i < chip_sdma_engines(dd); i++)
14034 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14035 	/* disable port (turn off RXE inbound traffic) and contexts */
14036 	write_csr(dd, RCV_CTRL, 0);
14037 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14038 		write_csr(dd, RCV_CTXT_CTRL, 0);
14039 	/* mask all interrupt sources */
14040 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14041 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14042 
14043 	/*
14044 	 * DC Reset: do a full DC reset before the register clear.
14045 	 * A recommended length of time to hold is one CSR read,
14046 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14047 	 * across the clear.
14048 	 */
14049 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14050 	(void)read_csr(dd, CCE_DC_CTRL);
14051 
14052 	if (use_flr) {
14053 		/*
14054 		 * A FLR will reset the SPC core and part of the PCIe.
14055 		 * The parts that need to be restored have already been
14056 		 * saved.
14057 		 */
14058 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14059 
14060 		/* do the FLR, the DC reset will remain */
14061 		pcie_flr(dd->pcidev);
14062 
14063 		/* restore command and BARs */
14064 		ret = restore_pci_variables(dd);
14065 		if (ret) {
14066 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14067 				   __func__);
14068 			return ret;
14069 		}
14070 
14071 		if (is_ax(dd)) {
14072 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14073 			pcie_flr(dd->pcidev);
14074 			ret = restore_pci_variables(dd);
14075 			if (ret) {
14076 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14077 					   __func__);
14078 				return ret;
14079 			}
14080 		}
14081 	} else {
14082 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14083 		reset_cce_csrs(dd);
14084 		reset_txe_csrs(dd);
14085 		reset_rxe_csrs(dd);
14086 		reset_misc_csrs(dd);
14087 	}
14088 	/* clear the DC reset */
14089 	write_csr(dd, CCE_DC_CTRL, 0);
14090 
14091 	/* Set the LED off */
14092 	setextled(dd, 0);
14093 
14094 	/*
14095 	 * Clear the QSFP reset.
14096 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14097 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14098 	 * anything plugged constantly in reset, if it pays attention
14099 	 * to RESET_N.
14100 	 * Prime examples of this are optical cables. Set all pins high.
14101 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14102 	 * MODPRS_N are input only and their value is ignored.
14103 	 */
14104 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14105 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14106 	init_chip_resources(dd);
14107 	return ret;
14108 }
14109 
14110 static void init_early_variables(struct hfi1_devdata *dd)
14111 {
14112 	int i;
14113 
14114 	/* assign link credit variables */
14115 	dd->vau = CM_VAU;
14116 	dd->link_credits = CM_GLOBAL_CREDITS;
14117 	if (is_ax(dd))
14118 		dd->link_credits--;
14119 	dd->vcu = cu_to_vcu(hfi1_cu);
14120 	/* enough room for 8 MAD packets plus header - 17K */
14121 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14122 	if (dd->vl15_init > dd->link_credits)
14123 		dd->vl15_init = dd->link_credits;
14124 
14125 	write_uninitialized_csrs_and_memories(dd);
14126 
14127 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14128 		for (i = 0; i < dd->num_pports; i++) {
14129 			struct hfi1_pportdata *ppd = &dd->pport[i];
14130 
14131 			set_partition_keys(ppd);
14132 		}
14133 	init_sc2vl_tables(dd);
14134 }
14135 
14136 static void init_kdeth_qp(struct hfi1_devdata *dd)
14137 {
14138 	write_csr(dd, SEND_BTH_QP,
14139 		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14140 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14141 
14142 	write_csr(dd, RCV_BTH_QP,
14143 		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14144 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14145 }
14146 
14147 /**
14148  * hfi1_get_qp_map - get qp map
14149  * @dd: device data
14150  * @idx: index to read
14151  */
14152 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14153 {
14154 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14155 
14156 	reg >>= (idx % 8) * 8;
14157 	return reg;
14158 }
14159 
14160 /**
14161  * init_qpmap_table - init qp map
14162  * @dd: device data
14163  * @first_ctxt: first context
14164  * @last_ctxt: first context
14165  *
14166  * This return sets the qpn mapping table that
14167  * is indexed by qpn[8:1].
14168  *
14169  * The routine will round robin the 256 settings
14170  * from first_ctxt to last_ctxt.
14171  *
14172  * The first/last looks ahead to having specialized
14173  * receive contexts for mgmt and bypass.  Normal
14174  * verbs traffic will assumed to be on a range
14175  * of receive contexts.
14176  */
14177 static void init_qpmap_table(struct hfi1_devdata *dd,
14178 			     u32 first_ctxt,
14179 			     u32 last_ctxt)
14180 {
14181 	u64 reg = 0;
14182 	u64 regno = RCV_QP_MAP_TABLE;
14183 	int i;
14184 	u64 ctxt = first_ctxt;
14185 
14186 	for (i = 0; i < 256; i++) {
14187 		reg |= ctxt << (8 * (i % 8));
14188 		ctxt++;
14189 		if (ctxt > last_ctxt)
14190 			ctxt = first_ctxt;
14191 		if (i % 8 == 7) {
14192 			write_csr(dd, regno, reg);
14193 			reg = 0;
14194 			regno += 8;
14195 		}
14196 	}
14197 
14198 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14199 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14200 }
14201 
14202 struct rsm_map_table {
14203 	u64 map[NUM_MAP_REGS];
14204 	unsigned int used;
14205 };
14206 
14207 struct rsm_rule_data {
14208 	u8 offset;
14209 	u8 pkt_type;
14210 	u32 field1_off;
14211 	u32 field2_off;
14212 	u32 index1_off;
14213 	u32 index1_width;
14214 	u32 index2_off;
14215 	u32 index2_width;
14216 	u32 mask1;
14217 	u32 value1;
14218 	u32 mask2;
14219 	u32 value2;
14220 };
14221 
14222 /*
14223  * Return an initialized RMT map table for users to fill in.  OK if it
14224  * returns NULL, indicating no table.
14225  */
14226 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14227 {
14228 	struct rsm_map_table *rmt;
14229 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14230 
14231 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14232 	if (rmt) {
14233 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14234 		rmt->used = 0;
14235 	}
14236 
14237 	return rmt;
14238 }
14239 
14240 /*
14241  * Write the final RMT map table to the chip and free the table.  OK if
14242  * table is NULL.
14243  */
14244 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14245 				   struct rsm_map_table *rmt)
14246 {
14247 	int i;
14248 
14249 	if (rmt) {
14250 		/* write table to chip */
14251 		for (i = 0; i < NUM_MAP_REGS; i++)
14252 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14253 
14254 		/* enable RSM */
14255 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14256 	}
14257 }
14258 
14259 /* Is a receive side mapping rule */
14260 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14261 {
14262 	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14263 }
14264 
14265 /*
14266  * Add a receive side mapping rule.
14267  */
14268 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14269 			 struct rsm_rule_data *rrd)
14270 {
14271 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14272 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14273 		  1ull << rule_index | /* enable bit */
14274 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14275 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14276 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14277 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14278 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14279 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14280 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14281 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14282 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14283 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14284 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14285 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14286 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14287 }
14288 
14289 /*
14290  * Clear a receive side mapping rule.
14291  */
14292 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14293 {
14294 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14295 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14296 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14297 }
14298 
14299 /* return the number of RSM map table entries that will be used for QOS */
14300 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14301 			   unsigned int *np)
14302 {
14303 	int i;
14304 	unsigned int m, n;
14305 	u8 max_by_vl = 0;
14306 
14307 	/* is QOS active at all? */
14308 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14309 	    num_vls == 1 ||
14310 	    krcvqsset <= 1)
14311 		goto no_qos;
14312 
14313 	/* determine bits for qpn */
14314 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14315 		if (krcvqs[i] > max_by_vl)
14316 			max_by_vl = krcvqs[i];
14317 	if (max_by_vl > 32)
14318 		goto no_qos;
14319 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14320 
14321 	/* determine bits for vl */
14322 	n = ilog2(__roundup_pow_of_two(num_vls));
14323 
14324 	/* reject if too much is used */
14325 	if ((m + n) > 7)
14326 		goto no_qos;
14327 
14328 	if (mp)
14329 		*mp = m;
14330 	if (np)
14331 		*np = n;
14332 
14333 	return 1 << (m + n);
14334 
14335 no_qos:
14336 	if (mp)
14337 		*mp = 0;
14338 	if (np)
14339 		*np = 0;
14340 	return 0;
14341 }
14342 
14343 /**
14344  * init_qos - init RX qos
14345  * @dd: device data
14346  * @rmt: RSM map table
14347  *
14348  * This routine initializes Rule 0 and the RSM map table to implement
14349  * quality of service (qos).
14350  *
14351  * If all of the limit tests succeed, qos is applied based on the array
14352  * interpretation of krcvqs where entry 0 is VL0.
14353  *
14354  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14355  * feed both the RSM map table and the single rule.
14356  */
14357 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14358 {
14359 	struct rsm_rule_data rrd;
14360 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14361 	unsigned int rmt_entries;
14362 	u64 reg;
14363 
14364 	if (!rmt)
14365 		goto bail;
14366 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14367 	if (rmt_entries == 0)
14368 		goto bail;
14369 	qpns_per_vl = 1 << m;
14370 
14371 	/* enough room in the map table? */
14372 	rmt_entries = 1 << (m + n);
14373 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14374 		goto bail;
14375 
14376 	/* add qos entries to the RSM map table */
14377 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14378 		unsigned tctxt;
14379 
14380 		for (qpn = 0, tctxt = ctxt;
14381 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14382 			unsigned idx, regoff, regidx;
14383 
14384 			/* generate the index the hardware will produce */
14385 			idx = rmt->used + ((qpn << n) ^ i);
14386 			regoff = (idx % 8) * 8;
14387 			regidx = idx / 8;
14388 			/* replace default with context number */
14389 			reg = rmt->map[regidx];
14390 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14391 				<< regoff);
14392 			reg |= (u64)(tctxt++) << regoff;
14393 			rmt->map[regidx] = reg;
14394 			if (tctxt == ctxt + krcvqs[i])
14395 				tctxt = ctxt;
14396 		}
14397 		ctxt += krcvqs[i];
14398 	}
14399 
14400 	rrd.offset = rmt->used;
14401 	rrd.pkt_type = 2;
14402 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14403 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14404 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14405 	rrd.index1_width = n;
14406 	rrd.index2_off = QPN_SELECT_OFFSET;
14407 	rrd.index2_width = m + n;
14408 	rrd.mask1 = LRH_BTH_MASK;
14409 	rrd.value1 = LRH_BTH_VALUE;
14410 	rrd.mask2 = LRH_SC_MASK;
14411 	rrd.value2 = LRH_SC_VALUE;
14412 
14413 	/* add rule 0 */
14414 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14415 
14416 	/* mark RSM map entries as used */
14417 	rmt->used += rmt_entries;
14418 	/* map everything else to the mcast/err/vl15 context */
14419 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14420 	dd->qos_shift = n + 1;
14421 	return;
14422 bail:
14423 	dd->qos_shift = 1;
14424 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14425 }
14426 
14427 static void init_fecn_handling(struct hfi1_devdata *dd,
14428 			       struct rsm_map_table *rmt)
14429 {
14430 	struct rsm_rule_data rrd;
14431 	u64 reg;
14432 	int i, idx, regoff, regidx, start;
14433 	u8 offset;
14434 	u32 total_cnt;
14435 
14436 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14437 		/* Exclude context 0 */
14438 		start = 1;
14439 	else
14440 		start = dd->first_dyn_alloc_ctxt;
14441 
14442 	total_cnt = dd->num_rcv_contexts - start;
14443 
14444 	/* there needs to be enough room in the map table */
14445 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14446 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14447 		return;
14448 	}
14449 
14450 	/*
14451 	 * RSM will extract the destination context as an index into the
14452 	 * map table.  The destination contexts are a sequential block
14453 	 * in the range start...num_rcv_contexts-1 (inclusive).
14454 	 * Map entries are accessed as offset + extracted value.  Adjust
14455 	 * the added offset so this sequence can be placed anywhere in
14456 	 * the table - as long as the entries themselves do not wrap.
14457 	 * There are only enough bits in offset for the table size, so
14458 	 * start with that to allow for a "negative" offset.
14459 	 */
14460 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14461 
14462 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14463 	     i++, idx++) {
14464 		/* replace with identity mapping */
14465 		regoff = (idx % 8) * 8;
14466 		regidx = idx / 8;
14467 		reg = rmt->map[regidx];
14468 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14469 		reg |= (u64)i << regoff;
14470 		rmt->map[regidx] = reg;
14471 	}
14472 
14473 	/*
14474 	 * For RSM intercept of Expected FECN packets:
14475 	 * o packet type 0 - expected
14476 	 * o match on F (bit 95), using select/match 1, and
14477 	 * o match on SH (bit 133), using select/match 2.
14478 	 *
14479 	 * Use index 1 to extract the 8-bit receive context from DestQP
14480 	 * (start at bit 64).  Use that as the RSM map table index.
14481 	 */
14482 	rrd.offset = offset;
14483 	rrd.pkt_type = 0;
14484 	rrd.field1_off = 95;
14485 	rrd.field2_off = 133;
14486 	rrd.index1_off = 64;
14487 	rrd.index1_width = 8;
14488 	rrd.index2_off = 0;
14489 	rrd.index2_width = 0;
14490 	rrd.mask1 = 1;
14491 	rrd.value1 = 1;
14492 	rrd.mask2 = 1;
14493 	rrd.value2 = 1;
14494 
14495 	/* add rule 1 */
14496 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14497 
14498 	rmt->used += total_cnt;
14499 }
14500 
14501 static inline bool hfi1_is_rmt_full(int start, int spare)
14502 {
14503 	return (start + spare) > NUM_MAP_ENTRIES;
14504 }
14505 
14506 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14507 {
14508 	u8 i, j;
14509 	u8 ctx_id = 0;
14510 	u64 reg;
14511 	u32 regoff;
14512 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14513 	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14514 
14515 	/* We already have contexts mapped in RMT */
14516 	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14517 		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14518 		return true;
14519 	}
14520 
14521 	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14522 		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14523 			   rmt_start);
14524 		return false;
14525 	}
14526 
14527 	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14528 		rmt_start,
14529 		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14530 
14531 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14532 	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14533 	reg = read_csr(dd, regoff);
14534 	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14535 		/* Update map register with netdev context */
14536 		j = (rmt_start + i) % 8;
14537 		reg &= ~(0xffllu << (j * 8));
14538 		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14539 		/* Wrap up netdev ctx index */
14540 		ctx_id %= ctxt_count;
14541 		/* Write back map register */
14542 		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14543 			dev_dbg(&(dd)->pcidev->dev,
14544 				"RMT[%d] =0x%llx\n",
14545 				regoff - RCV_RSM_MAP_TABLE, reg);
14546 
14547 			write_csr(dd, regoff, reg);
14548 			regoff += 8;
14549 			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14550 				reg = read_csr(dd, regoff);
14551 		}
14552 	}
14553 
14554 	return true;
14555 }
14556 
14557 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14558 				 int rule, struct rsm_rule_data *rrd)
14559 {
14560 	if (!hfi1_netdev_update_rmt(dd)) {
14561 		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14562 		return;
14563 	}
14564 
14565 	add_rsm_rule(dd, rule, rrd);
14566 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14567 }
14568 
14569 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14570 {
14571 	/*
14572 	 * go through with the initialisation only if this rule actually doesn't
14573 	 * exist yet
14574 	 */
14575 	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14576 		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14577 		struct rsm_rule_data rrd = {
14578 			.offset = rmt_start,
14579 			.pkt_type = IB_PACKET_TYPE,
14580 			.field1_off = LRH_BTH_MATCH_OFFSET,
14581 			.mask1 = LRH_BTH_MASK,
14582 			.value1 = LRH_BTH_VALUE,
14583 			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14584 			.mask2 = BTH_DESTQP_MASK,
14585 			.value2 = BTH_DESTQP_VALUE,
14586 			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14587 					ilog2(NUM_NETDEV_MAP_ENTRIES),
14588 			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14589 			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14590 			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14591 		};
14592 
14593 		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14594 	}
14595 }
14596 
14597 /* Initialize RSM for VNIC */
14598 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14599 {
14600 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14601 	struct rsm_rule_data rrd = {
14602 		/* Add rule for vnic */
14603 		.offset = rmt_start,
14604 		.pkt_type = 4,
14605 		/* Match 16B packets */
14606 		.field1_off = L2_TYPE_MATCH_OFFSET,
14607 		.mask1 = L2_TYPE_MASK,
14608 		.value1 = L2_16B_VALUE,
14609 		/* Match ETH L4 packets */
14610 		.field2_off = L4_TYPE_MATCH_OFFSET,
14611 		.mask2 = L4_16B_TYPE_MASK,
14612 		.value2 = L4_16B_ETH_VALUE,
14613 		/* Calc context from veswid and entropy */
14614 		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14615 		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14616 		.index2_off = L2_16B_ENTROPY_OFFSET,
14617 		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14618 	};
14619 
14620 	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14621 }
14622 
14623 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14624 {
14625 	clear_rsm_rule(dd, RSM_INS_VNIC);
14626 }
14627 
14628 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14629 {
14630 	/* only actually clear the rule if it's the last user asking to do so */
14631 	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14632 		clear_rsm_rule(dd, RSM_INS_AIP);
14633 }
14634 
14635 static int init_rxe(struct hfi1_devdata *dd)
14636 {
14637 	struct rsm_map_table *rmt;
14638 	u64 val;
14639 
14640 	/* enable all receive errors */
14641 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14642 
14643 	rmt = alloc_rsm_map_table(dd);
14644 	if (!rmt)
14645 		return -ENOMEM;
14646 
14647 	/* set up QOS, including the QPN map table */
14648 	init_qos(dd, rmt);
14649 	init_fecn_handling(dd, rmt);
14650 	complete_rsm_map_table(dd, rmt);
14651 	/* record number of used rsm map entries for netdev */
14652 	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14653 	kfree(rmt);
14654 
14655 	/*
14656 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14657 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14658 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14659 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14660 	 * Max_PayLoad_Size set to its minimum of 128.
14661 	 *
14662 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14663 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14664 	 * tune_pcie_caps() which is called after this routine.
14665 	 */
14666 
14667 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14668 	val = read_csr(dd, RCV_BYPASS);
14669 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14670 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14671 		RCV_BYPASS_HDR_SIZE_SHIFT);
14672 	write_csr(dd, RCV_BYPASS, val);
14673 	return 0;
14674 }
14675 
14676 static void init_other(struct hfi1_devdata *dd)
14677 {
14678 	/* enable all CCE errors */
14679 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14680 	/* enable *some* Misc errors */
14681 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14682 	/* enable all DC errors, except LCB */
14683 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14684 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14685 }
14686 
14687 /*
14688  * Fill out the given AU table using the given CU.  A CU is defined in terms
14689  * AUs.  The table is a an encoding: given the index, how many AUs does that
14690  * represent?
14691  *
14692  * NOTE: Assumes that the register layout is the same for the
14693  * local and remote tables.
14694  */
14695 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14696 			       u32 csr0to3, u32 csr4to7)
14697 {
14698 	write_csr(dd, csr0to3,
14699 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14700 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14701 		  2ull * cu <<
14702 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14703 		  4ull * cu <<
14704 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14705 	write_csr(dd, csr4to7,
14706 		  8ull * cu <<
14707 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14708 		  16ull * cu <<
14709 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14710 		  32ull * cu <<
14711 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14712 		  64ull * cu <<
14713 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14714 }
14715 
14716 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14717 {
14718 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14719 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14720 }
14721 
14722 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14723 {
14724 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14725 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14726 }
14727 
14728 static void init_txe(struct hfi1_devdata *dd)
14729 {
14730 	int i;
14731 
14732 	/* enable all PIO, SDMA, general, and Egress errors */
14733 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14734 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14735 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14736 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14737 
14738 	/* enable all per-context and per-SDMA engine errors */
14739 	for (i = 0; i < chip_send_contexts(dd); i++)
14740 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14741 	for (i = 0; i < chip_sdma_engines(dd); i++)
14742 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14743 
14744 	/* set the local CU to AU mapping */
14745 	assign_local_cm_au_table(dd, dd->vcu);
14746 
14747 	/*
14748 	 * Set reasonable default for Credit Return Timer
14749 	 * Don't set on Simulator - causes it to choke.
14750 	 */
14751 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14752 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14753 }
14754 
14755 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14756 		       u16 jkey)
14757 {
14758 	u8 hw_ctxt;
14759 	u64 reg;
14760 
14761 	if (!rcd || !rcd->sc)
14762 		return -EINVAL;
14763 
14764 	hw_ctxt = rcd->sc->hw_context;
14765 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14766 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14767 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14768 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14769 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14770 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14771 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14772 	/*
14773 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14774 	 */
14775 	if (!is_ax(dd)) {
14776 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14777 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14778 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14779 	}
14780 
14781 	/* Enable J_KEY check on receive context. */
14782 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14783 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14784 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14785 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14786 
14787 	return 0;
14788 }
14789 
14790 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14791 {
14792 	u8 hw_ctxt;
14793 	u64 reg;
14794 
14795 	if (!rcd || !rcd->sc)
14796 		return -EINVAL;
14797 
14798 	hw_ctxt = rcd->sc->hw_context;
14799 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14800 	/*
14801 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14802 	 * This check would not have been enabled for A0 h/w, see
14803 	 * set_ctxt_jkey().
14804 	 */
14805 	if (!is_ax(dd)) {
14806 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14807 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14808 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14809 	}
14810 	/* Turn off the J_KEY on the receive side */
14811 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14812 
14813 	return 0;
14814 }
14815 
14816 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14817 		       u16 pkey)
14818 {
14819 	u8 hw_ctxt;
14820 	u64 reg;
14821 
14822 	if (!rcd || !rcd->sc)
14823 		return -EINVAL;
14824 
14825 	hw_ctxt = rcd->sc->hw_context;
14826 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14827 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14828 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14829 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14830 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14831 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14832 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14833 
14834 	return 0;
14835 }
14836 
14837 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14838 {
14839 	u8 hw_ctxt;
14840 	u64 reg;
14841 
14842 	if (!ctxt || !ctxt->sc)
14843 		return -EINVAL;
14844 
14845 	hw_ctxt = ctxt->sc->hw_context;
14846 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14847 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14848 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14849 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14850 
14851 	return 0;
14852 }
14853 
14854 /*
14855  * Start doing the clean up the chip. Our clean up happens in multiple
14856  * stages and this is just the first.
14857  */
14858 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14859 {
14860 	aspm_exit(dd);
14861 	free_cntrs(dd);
14862 	free_rcverr(dd);
14863 	finish_chip_resources(dd);
14864 }
14865 
14866 #define HFI_BASE_GUID(dev) \
14867 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14868 
14869 /*
14870  * Information can be shared between the two HFIs on the same ASIC
14871  * in the same OS.  This function finds the peer device and sets
14872  * up a shared structure.
14873  */
14874 static int init_asic_data(struct hfi1_devdata *dd)
14875 {
14876 	unsigned long index;
14877 	struct hfi1_devdata *peer;
14878 	struct hfi1_asic_data *asic_data;
14879 	int ret = 0;
14880 
14881 	/* pre-allocate the asic structure in case we are the first device */
14882 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14883 	if (!asic_data)
14884 		return -ENOMEM;
14885 
14886 	xa_lock_irq(&hfi1_dev_table);
14887 	/* Find our peer device */
14888 	xa_for_each(&hfi1_dev_table, index, peer) {
14889 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14890 		    dd->unit != peer->unit)
14891 			break;
14892 	}
14893 
14894 	if (peer) {
14895 		/* use already allocated structure */
14896 		dd->asic_data = peer->asic_data;
14897 		kfree(asic_data);
14898 	} else {
14899 		dd->asic_data = asic_data;
14900 		mutex_init(&dd->asic_data->asic_resource_mutex);
14901 	}
14902 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14903 	xa_unlock_irq(&hfi1_dev_table);
14904 
14905 	/* first one through - set up i2c devices */
14906 	if (!peer)
14907 		ret = set_up_i2c(dd, dd->asic_data);
14908 
14909 	return ret;
14910 }
14911 
14912 /*
14913  * Set dd->boardname.  Use a generic name if a name is not returned from
14914  * EFI variable space.
14915  *
14916  * Return 0 on success, -ENOMEM if space could not be allocated.
14917  */
14918 static int obtain_boardname(struct hfi1_devdata *dd)
14919 {
14920 	/* generic board description */
14921 	const char generic[] =
14922 		"Cornelis Omni-Path Host Fabric Interface Adapter 100 Series";
14923 	unsigned long size;
14924 	int ret;
14925 
14926 	ret = read_hfi1_efi_var(dd, "description", &size,
14927 				(void **)&dd->boardname);
14928 	if (ret) {
14929 		dd_dev_info(dd, "Board description not found\n");
14930 		/* use generic description */
14931 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14932 		if (!dd->boardname)
14933 			return -ENOMEM;
14934 	}
14935 	return 0;
14936 }
14937 
14938 /*
14939  * Check the interrupt registers to make sure that they are mapped correctly.
14940  * It is intended to help user identify any mismapping by VMM when the driver
14941  * is running in a VM. This function should only be called before interrupt
14942  * is set up properly.
14943  *
14944  * Return 0 on success, -EINVAL on failure.
14945  */
14946 static int check_int_registers(struct hfi1_devdata *dd)
14947 {
14948 	u64 reg;
14949 	u64 all_bits = ~(u64)0;
14950 	u64 mask;
14951 
14952 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14953 	mask = read_csr(dd, CCE_INT_MASK);
14954 	write_csr(dd, CCE_INT_MASK, 0ull);
14955 	reg = read_csr(dd, CCE_INT_MASK);
14956 	if (reg)
14957 		goto err_exit;
14958 
14959 	/* Clear all interrupt status bits */
14960 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14961 	reg = read_csr(dd, CCE_INT_STATUS);
14962 	if (reg)
14963 		goto err_exit;
14964 
14965 	/* Set all interrupt status bits */
14966 	write_csr(dd, CCE_INT_FORCE, all_bits);
14967 	reg = read_csr(dd, CCE_INT_STATUS);
14968 	if (reg != all_bits)
14969 		goto err_exit;
14970 
14971 	/* Restore the interrupt mask */
14972 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14973 	write_csr(dd, CCE_INT_MASK, mask);
14974 
14975 	return 0;
14976 err_exit:
14977 	write_csr(dd, CCE_INT_MASK, mask);
14978 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14979 	return -EINVAL;
14980 }
14981 
14982 /**
14983  * hfi1_init_dd() - Initialize most of the dd structure.
14984  * @dd: the dd device
14985  *
14986  * This is global, and is called directly at init to set up the
14987  * chip-specific function pointers for later use.
14988  */
14989 int hfi1_init_dd(struct hfi1_devdata *dd)
14990 {
14991 	struct pci_dev *pdev = dd->pcidev;
14992 	struct hfi1_pportdata *ppd;
14993 	u64 reg;
14994 	int i, ret;
14995 	static const char * const inames[] = { /* implementation names */
14996 		"RTL silicon",
14997 		"RTL VCS simulation",
14998 		"RTL FPGA emulation",
14999 		"Functional simulator"
15000 	};
15001 	struct pci_dev *parent = pdev->bus->self;
15002 	u32 sdma_engines = chip_sdma_engines(dd);
15003 
15004 	ppd = dd->pport;
15005 	for (i = 0; i < dd->num_pports; i++, ppd++) {
15006 		int vl;
15007 		/* init common fields */
15008 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15009 		/* DC supports 4 link widths */
15010 		ppd->link_width_supported =
15011 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15012 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15013 		ppd->link_width_downgrade_supported =
15014 			ppd->link_width_supported;
15015 		/* start out enabling only 4X */
15016 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15017 		ppd->link_width_downgrade_enabled =
15018 					ppd->link_width_downgrade_supported;
15019 		/* link width active is 0 when link is down */
15020 		/* link width downgrade active is 0 when link is down */
15021 
15022 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15023 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15024 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15025 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15026 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15027 		}
15028 		ppd->vls_supported = num_vls;
15029 		ppd->vls_operational = ppd->vls_supported;
15030 		/* Set the default MTU. */
15031 		for (vl = 0; vl < num_vls; vl++)
15032 			dd->vld[vl].mtu = hfi1_max_mtu;
15033 		dd->vld[15].mtu = MAX_MAD_PACKET;
15034 		/*
15035 		 * Set the initial values to reasonable default, will be set
15036 		 * for real when link is up.
15037 		 */
15038 		ppd->overrun_threshold = 0x4;
15039 		ppd->phy_error_threshold = 0xf;
15040 		ppd->port_crc_mode_enabled = link_crc_mask;
15041 		/* initialize supported LTP CRC mode */
15042 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15043 		/* initialize enabled LTP CRC mode */
15044 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15045 		/* start in offline */
15046 		ppd->host_link_state = HLS_DN_OFFLINE;
15047 		init_vl_arb_caches(ppd);
15048 	}
15049 
15050 	/*
15051 	 * Do remaining PCIe setup and save PCIe values in dd.
15052 	 * Any error printing is already done by the init code.
15053 	 * On return, we have the chip mapped.
15054 	 */
15055 	ret = hfi1_pcie_ddinit(dd, pdev);
15056 	if (ret < 0)
15057 		goto bail_free;
15058 
15059 	/* Save PCI space registers to rewrite after device reset */
15060 	ret = save_pci_variables(dd);
15061 	if (ret < 0)
15062 		goto bail_cleanup;
15063 
15064 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15065 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15066 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15067 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15068 
15069 	/*
15070 	 * Check interrupt registers mapping if the driver has no access to
15071 	 * the upstream component. In this case, it is likely that the driver
15072 	 * is running in a VM.
15073 	 */
15074 	if (!parent) {
15075 		ret = check_int_registers(dd);
15076 		if (ret)
15077 			goto bail_cleanup;
15078 	}
15079 
15080 	/*
15081 	 * obtain the hardware ID - NOT related to unit, which is a
15082 	 * software enumeration
15083 	 */
15084 	reg = read_csr(dd, CCE_REVISION2);
15085 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15086 					& CCE_REVISION2_HFI_ID_MASK;
15087 	/* the variable size will remove unwanted bits */
15088 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15089 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15090 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15091 		    dd->icode < ARRAY_SIZE(inames) ?
15092 		    inames[dd->icode] : "unknown", (int)dd->irev);
15093 
15094 	/* speeds the hardware can support */
15095 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15096 	/* speeds allowed to run at */
15097 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15098 	/* give a reasonable active value, will be set on link up */
15099 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15100 
15101 	/* fix up link widths for emulation _p */
15102 	ppd = dd->pport;
15103 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15104 		ppd->link_width_supported =
15105 			ppd->link_width_enabled =
15106 			ppd->link_width_downgrade_supported =
15107 			ppd->link_width_downgrade_enabled =
15108 				OPA_LINK_WIDTH_1X;
15109 	}
15110 	/* insure num_vls isn't larger than number of sdma engines */
15111 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15112 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15113 			   num_vls, sdma_engines);
15114 		num_vls = sdma_engines;
15115 		ppd->vls_supported = sdma_engines;
15116 		ppd->vls_operational = ppd->vls_supported;
15117 	}
15118 
15119 	/*
15120 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15121 	 * Limit the max if larger than the field holds.  If timeout is
15122 	 * non-zero, then the calculated field will be at least 1.
15123 	 *
15124 	 * Must be after icode is set up - the cclock rate depends
15125 	 * on knowing the hardware being used.
15126 	 */
15127 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15128 	if (dd->rcv_intr_timeout_csr >
15129 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15130 		dd->rcv_intr_timeout_csr =
15131 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15132 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15133 		dd->rcv_intr_timeout_csr = 1;
15134 
15135 	/* needs to be done before we look for the peer device */
15136 	read_guid(dd);
15137 
15138 	/* set up shared ASIC data with peer device */
15139 	ret = init_asic_data(dd);
15140 	if (ret)
15141 		goto bail_cleanup;
15142 
15143 	/* obtain chip sizes, reset chip CSRs */
15144 	ret = init_chip(dd);
15145 	if (ret)
15146 		goto bail_cleanup;
15147 
15148 	/* read in the PCIe link speed information */
15149 	ret = pcie_speeds(dd);
15150 	if (ret)
15151 		goto bail_cleanup;
15152 
15153 	/* call before get_platform_config(), after init_chip_resources() */
15154 	ret = eprom_init(dd);
15155 	if (ret)
15156 		goto bail_free_rcverr;
15157 
15158 	/* Needs to be called before hfi1_firmware_init */
15159 	get_platform_config(dd);
15160 
15161 	/* read in firmware */
15162 	ret = hfi1_firmware_init(dd);
15163 	if (ret)
15164 		goto bail_cleanup;
15165 
15166 	/*
15167 	 * In general, the PCIe Gen3 transition must occur after the
15168 	 * chip has been idled (so it won't initiate any PCIe transactions
15169 	 * e.g. an interrupt) and before the driver changes any registers
15170 	 * (the transition will reset the registers).
15171 	 *
15172 	 * In particular, place this call after:
15173 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15174 	 * - pcie_speeds()   - reads the current link speed
15175 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15176 	 *			    downloaded
15177 	 */
15178 	ret = do_pcie_gen3_transition(dd);
15179 	if (ret)
15180 		goto bail_cleanup;
15181 
15182 	/*
15183 	 * This should probably occur in hfi1_pcie_init(), but historically
15184 	 * occurs after the do_pcie_gen3_transition() code.
15185 	 */
15186 	tune_pcie_caps(dd);
15187 
15188 	/* start setting dd values and adjusting CSRs */
15189 	init_early_variables(dd);
15190 
15191 	parse_platform_config(dd);
15192 
15193 	ret = obtain_boardname(dd);
15194 	if (ret)
15195 		goto bail_cleanup;
15196 
15197 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15198 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15199 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15200 		 (u32)dd->majrev,
15201 		 (u32)dd->minrev,
15202 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15203 		    & CCE_REVISION_SW_MASK);
15204 
15205 	/* alloc VNIC/AIP rx data */
15206 	ret = hfi1_alloc_rx(dd);
15207 	if (ret)
15208 		goto bail_cleanup;
15209 
15210 	ret = set_up_context_variables(dd);
15211 	if (ret)
15212 		goto bail_cleanup;
15213 
15214 	/* set initial RXE CSRs */
15215 	ret = init_rxe(dd);
15216 	if (ret)
15217 		goto bail_cleanup;
15218 
15219 	/* set initial TXE CSRs */
15220 	init_txe(dd);
15221 	/* set initial non-RXE, non-TXE CSRs */
15222 	init_other(dd);
15223 	/* set up KDETH QP prefix in both RX and TX CSRs */
15224 	init_kdeth_qp(dd);
15225 
15226 	ret = hfi1_dev_affinity_init(dd);
15227 	if (ret)
15228 		goto bail_cleanup;
15229 
15230 	/* send contexts must be set up before receive contexts */
15231 	ret = init_send_contexts(dd);
15232 	if (ret)
15233 		goto bail_cleanup;
15234 
15235 	ret = hfi1_create_kctxts(dd);
15236 	if (ret)
15237 		goto bail_cleanup;
15238 
15239 	/*
15240 	 * Initialize aspm, to be done after gen3 transition and setting up
15241 	 * contexts and before enabling interrupts
15242 	 */
15243 	aspm_init(dd);
15244 
15245 	ret = init_pervl_scs(dd);
15246 	if (ret)
15247 		goto bail_cleanup;
15248 
15249 	/* sdma init */
15250 	for (i = 0; i < dd->num_pports; ++i) {
15251 		ret = sdma_init(dd, i);
15252 		if (ret)
15253 			goto bail_cleanup;
15254 	}
15255 
15256 	/* use contexts created by hfi1_create_kctxts */
15257 	ret = set_up_interrupts(dd);
15258 	if (ret)
15259 		goto bail_cleanup;
15260 
15261 	ret = hfi1_comp_vectors_set_up(dd);
15262 	if (ret)
15263 		goto bail_clear_intr;
15264 
15265 	/* set up LCB access - must be after set_up_interrupts() */
15266 	init_lcb_access(dd);
15267 
15268 	/*
15269 	 * Serial number is created from the base guid:
15270 	 * [27:24] = base guid [38:35]
15271 	 * [23: 0] = base guid [23: 0]
15272 	 */
15273 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15274 		 (dd->base_guid & 0xFFFFFF) |
15275 		     ((dd->base_guid >> 11) & 0xF000000));
15276 
15277 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15278 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15279 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15280 
15281 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15282 	if (ret)
15283 		goto bail_clear_intr;
15284 
15285 	thermal_init(dd);
15286 
15287 	ret = init_cntrs(dd);
15288 	if (ret)
15289 		goto bail_clear_intr;
15290 
15291 	ret = init_rcverr(dd);
15292 	if (ret)
15293 		goto bail_free_cntrs;
15294 
15295 	init_completion(&dd->user_comp);
15296 
15297 	/* The user refcount starts with one to inidicate an active device */
15298 	refcount_set(&dd->user_refcount, 1);
15299 
15300 	goto bail;
15301 
15302 bail_free_rcverr:
15303 	free_rcverr(dd);
15304 bail_free_cntrs:
15305 	free_cntrs(dd);
15306 bail_clear_intr:
15307 	hfi1_comp_vectors_clean_up(dd);
15308 	msix_clean_up_interrupts(dd);
15309 bail_cleanup:
15310 	hfi1_free_rx(dd);
15311 	hfi1_pcie_ddcleanup(dd);
15312 bail_free:
15313 	hfi1_free_devdata(dd);
15314 bail:
15315 	return ret;
15316 }
15317 
15318 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15319 			u32 dw_len)
15320 {
15321 	u32 delta_cycles;
15322 	u32 current_egress_rate = ppd->current_egress_rate;
15323 	/* rates here are in units of 10^6 bits/sec */
15324 
15325 	if (desired_egress_rate == -1)
15326 		return 0; /* shouldn't happen */
15327 
15328 	if (desired_egress_rate >= current_egress_rate)
15329 		return 0; /* we can't help go faster, only slower */
15330 
15331 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15332 			egress_cycles(dw_len * 4, current_egress_rate);
15333 
15334 	return (u16)delta_cycles;
15335 }
15336 
15337 /**
15338  * create_pbc - build a pbc for transmission
15339  * @ppd: info of physical Hfi port
15340  * @flags: special case flags or-ed in built pbc
15341  * @srate_mbs: static rate
15342  * @vl: vl
15343  * @dw_len: dword length (header words + data words + pbc words)
15344  *
15345  * Create a PBC with the given flags, rate, VL, and length.
15346  *
15347  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15348  * for verbs, which does not use this PSM feature.  The lone other caller
15349  * is for the diagnostic interface which calls this if the user does not
15350  * supply their own PBC.
15351  */
15352 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15353 	       u32 dw_len)
15354 {
15355 	u64 pbc, delay = 0;
15356 
15357 	if (unlikely(srate_mbs))
15358 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15359 
15360 	pbc = flags
15361 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15362 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15363 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15364 		| (dw_len & PBC_LENGTH_DWS_MASK)
15365 			<< PBC_LENGTH_DWS_SHIFT;
15366 
15367 	return pbc;
15368 }
15369 
15370 #define SBUS_THERMAL    0x4f
15371 #define SBUS_THERM_MONITOR_MODE 0x1
15372 
15373 #define THERM_FAILURE(dev, ret, reason) \
15374 	dd_dev_err((dd),						\
15375 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15376 		   (reason), (ret))
15377 
15378 /*
15379  * Initialize the thermal sensor.
15380  *
15381  * After initialization, enable polling of thermal sensor through
15382  * SBus interface. In order for this to work, the SBus Master
15383  * firmware has to be loaded due to the fact that the HW polling
15384  * logic uses SBus interrupts, which are not supported with
15385  * default firmware. Otherwise, no data will be returned through
15386  * the ASIC_STS_THERM CSR.
15387  */
15388 static int thermal_init(struct hfi1_devdata *dd)
15389 {
15390 	int ret = 0;
15391 
15392 	if (dd->icode != ICODE_RTL_SILICON ||
15393 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15394 		return ret;
15395 
15396 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15397 	if (ret) {
15398 		THERM_FAILURE(dd, ret, "Acquire SBus");
15399 		return ret;
15400 	}
15401 
15402 	dd_dev_info(dd, "Initializing thermal sensor\n");
15403 	/* Disable polling of thermal readings */
15404 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15405 	msleep(100);
15406 	/* Thermal Sensor Initialization */
15407 	/*    Step 1: Reset the Thermal SBus Receiver */
15408 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15409 				RESET_SBUS_RECEIVER, 0);
15410 	if (ret) {
15411 		THERM_FAILURE(dd, ret, "Bus Reset");
15412 		goto done;
15413 	}
15414 	/*    Step 2: Set Reset bit in Thermal block */
15415 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15416 				WRITE_SBUS_RECEIVER, 0x1);
15417 	if (ret) {
15418 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15419 		goto done;
15420 	}
15421 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15422 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15423 				WRITE_SBUS_RECEIVER, 0x32);
15424 	if (ret) {
15425 		THERM_FAILURE(dd, ret, "Write Clock Div");
15426 		goto done;
15427 	}
15428 	/*    Step 4: Select temperature mode */
15429 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15430 				WRITE_SBUS_RECEIVER,
15431 				SBUS_THERM_MONITOR_MODE);
15432 	if (ret) {
15433 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15434 		goto done;
15435 	}
15436 	/*    Step 5: De-assert block reset and start conversion */
15437 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15438 				WRITE_SBUS_RECEIVER, 0x2);
15439 	if (ret) {
15440 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15441 		goto done;
15442 	}
15443 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15444 	msleep(22);
15445 
15446 	/* Enable polling of thermal readings */
15447 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15448 
15449 	/* Set initialized flag */
15450 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15451 	if (ret)
15452 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15453 
15454 done:
15455 	release_chip_resource(dd, CR_SBUS);
15456 	return ret;
15457 }
15458 
15459 static void handle_temp_err(struct hfi1_devdata *dd)
15460 {
15461 	struct hfi1_pportdata *ppd = &dd->pport[0];
15462 	/*
15463 	 * Thermal Critical Interrupt
15464 	 * Put the device into forced freeze mode, take link down to
15465 	 * offline, and put DC into reset.
15466 	 */
15467 	dd_dev_emerg(dd,
15468 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15469 	dd->flags |= HFI1_FORCED_FREEZE;
15470 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15471 	/*
15472 	 * Shut DC down as much and as quickly as possible.
15473 	 *
15474 	 * Step 1: Take the link down to OFFLINE. This will cause the
15475 	 *         8051 to put the Serdes in reset. However, we don't want to
15476 	 *         go through the entire link state machine since we want to
15477 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15478 	 *         but rather an attempt to save the chip.
15479 	 *         Code below is almost the same as quiet_serdes() but avoids
15480 	 *         all the extra work and the sleeps.
15481 	 */
15482 	ppd->driver_link_ready = 0;
15483 	ppd->link_enabled = 0;
15484 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15485 				PLS_OFFLINE);
15486 	/*
15487 	 * Step 2: Shutdown LCB and 8051
15488 	 *         After shutdown, do not restore DC_CFG_RESET value.
15489 	 */
15490 	dc_shutdown(dd);
15491 }
15492