xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 76178cc7d5eb6dc881c3fccab882802e5d16f790)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(query_pkey),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 
574 	if (WARN_ON(size < sizeof(struct ib_device)))
575 		return NULL;
576 
577 	device = kzalloc(size, GFP_KERNEL);
578 	if (!device)
579 		return NULL;
580 
581 	if (rdma_restrack_init(device)) {
582 		kfree(device);
583 		return NULL;
584 	}
585 
586 	device->groups[0] = &ib_dev_attr_group;
587 	rdma_init_coredev(&device->coredev, device, &init_net);
588 
589 	INIT_LIST_HEAD(&device->event_handler_list);
590 	spin_lock_init(&device->event_handler_lock);
591 	mutex_init(&device->unregistration_lock);
592 	/*
593 	 * client_data needs to be alloc because we don't want our mark to be
594 	 * destroyed if the user stores NULL in the client data.
595 	 */
596 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
597 	init_rwsem(&device->client_data_rwsem);
598 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
599 	mutex_init(&device->compat_devs_mutex);
600 	init_completion(&device->unreg_completion);
601 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
602 
603 	return device;
604 }
605 EXPORT_SYMBOL(_ib_alloc_device);
606 
607 /**
608  * ib_dealloc_device - free an IB device struct
609  * @device:structure to free
610  *
611  * Free a structure allocated with ib_alloc_device().
612  */
613 void ib_dealloc_device(struct ib_device *device)
614 {
615 	if (device->ops.dealloc_driver)
616 		device->ops.dealloc_driver(device);
617 
618 	/*
619 	 * ib_unregister_driver() requires all devices to remain in the xarray
620 	 * while their ops are callable. The last op we call is dealloc_driver
621 	 * above.  This is needed to create a fence on op callbacks prior to
622 	 * allowing the driver module to unload.
623 	 */
624 	down_write(&devices_rwsem);
625 	if (xa_load(&devices, device->index) == device)
626 		xa_erase(&devices, device->index);
627 	up_write(&devices_rwsem);
628 
629 	/* Expedite releasing netdev references */
630 	free_netdevs(device);
631 
632 	WARN_ON(!xa_empty(&device->compat_devs));
633 	WARN_ON(!xa_empty(&device->client_data));
634 	WARN_ON(refcount_read(&device->refcount));
635 	rdma_restrack_clean(device);
636 	/* Balances with device_initialize */
637 	put_device(&device->dev);
638 }
639 EXPORT_SYMBOL(ib_dealloc_device);
640 
641 /*
642  * add_client_context() and remove_client_context() must be safe against
643  * parallel calls on the same device - registration/unregistration of both the
644  * device and client can be occurring in parallel.
645  *
646  * The routines need to be a fence, any caller must not return until the add
647  * or remove is fully completed.
648  */
649 static int add_client_context(struct ib_device *device,
650 			      struct ib_client *client)
651 {
652 	int ret = 0;
653 
654 	if (!device->kverbs_provider && !client->no_kverbs_req)
655 		return 0;
656 
657 	down_write(&device->client_data_rwsem);
658 	/*
659 	 * So long as the client is registered hold both the client and device
660 	 * unregistration locks.
661 	 */
662 	if (!refcount_inc_not_zero(&client->uses))
663 		goto out_unlock;
664 	refcount_inc(&device->refcount);
665 
666 	/*
667 	 * Another caller to add_client_context got here first and has already
668 	 * completely initialized context.
669 	 */
670 	if (xa_get_mark(&device->client_data, client->client_id,
671 		    CLIENT_DATA_REGISTERED))
672 		goto out;
673 
674 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
675 			      GFP_KERNEL));
676 	if (ret)
677 		goto out;
678 	downgrade_write(&device->client_data_rwsem);
679 	if (client->add)
680 		client->add(device);
681 
682 	/* Readers shall not see a client until add has been completed */
683 	xa_set_mark(&device->client_data, client->client_id,
684 		    CLIENT_DATA_REGISTERED);
685 	up_read(&device->client_data_rwsem);
686 	return 0;
687 
688 out:
689 	ib_device_put(device);
690 	ib_client_put(client);
691 out_unlock:
692 	up_write(&device->client_data_rwsem);
693 	return ret;
694 }
695 
696 static void remove_client_context(struct ib_device *device,
697 				  unsigned int client_id)
698 {
699 	struct ib_client *client;
700 	void *client_data;
701 
702 	down_write(&device->client_data_rwsem);
703 	if (!xa_get_mark(&device->client_data, client_id,
704 			 CLIENT_DATA_REGISTERED)) {
705 		up_write(&device->client_data_rwsem);
706 		return;
707 	}
708 	client_data = xa_load(&device->client_data, client_id);
709 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
710 	client = xa_load(&clients, client_id);
711 	up_write(&device->client_data_rwsem);
712 
713 	/*
714 	 * Notice we cannot be holding any exclusive locks when calling the
715 	 * remove callback as the remove callback can recurse back into any
716 	 * public functions in this module and thus try for any locks those
717 	 * functions take.
718 	 *
719 	 * For this reason clients and drivers should not call the
720 	 * unregistration functions will holdling any locks.
721 	 */
722 	if (client->remove)
723 		client->remove(device, client_data);
724 
725 	xa_erase(&device->client_data, client_id);
726 	ib_device_put(device);
727 	ib_client_put(client);
728 }
729 
730 static int alloc_port_data(struct ib_device *device)
731 {
732 	struct ib_port_data_rcu *pdata_rcu;
733 	unsigned int port;
734 
735 	if (device->port_data)
736 		return 0;
737 
738 	/* This can only be called once the physical port range is defined */
739 	if (WARN_ON(!device->phys_port_cnt))
740 		return -EINVAL;
741 
742 	/*
743 	 * device->port_data is indexed directly by the port number to make
744 	 * access to this data as efficient as possible.
745 	 *
746 	 * Therefore port_data is declared as a 1 based array with potential
747 	 * empty slots at the beginning.
748 	 */
749 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
750 					rdma_end_port(device) + 1),
751 			    GFP_KERNEL);
752 	if (!pdata_rcu)
753 		return -ENOMEM;
754 	/*
755 	 * The rcu_head is put in front of the port data array and the stored
756 	 * pointer is adjusted since we never need to see that member until
757 	 * kfree_rcu.
758 	 */
759 	device->port_data = pdata_rcu->pdata;
760 
761 	rdma_for_each_port (device, port) {
762 		struct ib_port_data *pdata = &device->port_data[port];
763 
764 		pdata->ib_dev = device;
765 		spin_lock_init(&pdata->pkey_list_lock);
766 		INIT_LIST_HEAD(&pdata->pkey_list);
767 		spin_lock_init(&pdata->netdev_lock);
768 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
769 	}
770 	return 0;
771 }
772 
773 static int verify_immutable(const struct ib_device *dev, u8 port)
774 {
775 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
776 			    rdma_max_mad_size(dev, port) != 0);
777 }
778 
779 static int setup_port_data(struct ib_device *device)
780 {
781 	unsigned int port;
782 	int ret;
783 
784 	ret = alloc_port_data(device);
785 	if (ret)
786 		return ret;
787 
788 	rdma_for_each_port (device, port) {
789 		struct ib_port_data *pdata = &device->port_data[port];
790 
791 		ret = device->ops.get_port_immutable(device, port,
792 						     &pdata->immutable);
793 		if (ret)
794 			return ret;
795 
796 		if (verify_immutable(device, port))
797 			return -EINVAL;
798 	}
799 	return 0;
800 }
801 
802 void ib_get_device_fw_str(struct ib_device *dev, char *str)
803 {
804 	if (dev->ops.get_dev_fw_str)
805 		dev->ops.get_dev_fw_str(dev, str);
806 	else
807 		str[0] = '\0';
808 }
809 EXPORT_SYMBOL(ib_get_device_fw_str);
810 
811 static void ib_policy_change_task(struct work_struct *work)
812 {
813 	struct ib_device *dev;
814 	unsigned long index;
815 
816 	down_read(&devices_rwsem);
817 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
818 		unsigned int i;
819 
820 		rdma_for_each_port (dev, i) {
821 			u64 sp;
822 			int ret = ib_get_cached_subnet_prefix(dev,
823 							      i,
824 							      &sp);
825 
826 			WARN_ONCE(ret,
827 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
828 				  ret);
829 			if (!ret)
830 				ib_security_cache_change(dev, i, sp);
831 		}
832 	}
833 	up_read(&devices_rwsem);
834 }
835 
836 static int ib_security_change(struct notifier_block *nb, unsigned long event,
837 			      void *lsm_data)
838 {
839 	if (event != LSM_POLICY_CHANGE)
840 		return NOTIFY_DONE;
841 
842 	schedule_work(&ib_policy_change_work);
843 	ib_mad_agent_security_change();
844 
845 	return NOTIFY_OK;
846 }
847 
848 static void compatdev_release(struct device *dev)
849 {
850 	struct ib_core_device *cdev =
851 		container_of(dev, struct ib_core_device, dev);
852 
853 	kfree(cdev);
854 }
855 
856 static int add_one_compat_dev(struct ib_device *device,
857 			      struct rdma_dev_net *rnet)
858 {
859 	struct ib_core_device *cdev;
860 	int ret;
861 
862 	lockdep_assert_held(&rdma_nets_rwsem);
863 	if (!ib_devices_shared_netns)
864 		return 0;
865 
866 	/*
867 	 * Create and add compat device in all namespaces other than where it
868 	 * is currently bound to.
869 	 */
870 	if (net_eq(read_pnet(&rnet->net),
871 		   read_pnet(&device->coredev.rdma_net)))
872 		return 0;
873 
874 	/*
875 	 * The first of init_net() or ib_register_device() to take the
876 	 * compat_devs_mutex wins and gets to add the device. Others will wait
877 	 * for completion here.
878 	 */
879 	mutex_lock(&device->compat_devs_mutex);
880 	cdev = xa_load(&device->compat_devs, rnet->id);
881 	if (cdev) {
882 		ret = 0;
883 		goto done;
884 	}
885 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
886 	if (ret)
887 		goto done;
888 
889 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
890 	if (!cdev) {
891 		ret = -ENOMEM;
892 		goto cdev_err;
893 	}
894 
895 	cdev->dev.parent = device->dev.parent;
896 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
897 	cdev->dev.release = compatdev_release;
898 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
899 
900 	ret = device_add(&cdev->dev);
901 	if (ret)
902 		goto add_err;
903 	ret = ib_setup_port_attrs(cdev);
904 	if (ret)
905 		goto port_err;
906 
907 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
908 			      cdev, GFP_KERNEL));
909 	if (ret)
910 		goto insert_err;
911 
912 	mutex_unlock(&device->compat_devs_mutex);
913 	return 0;
914 
915 insert_err:
916 	ib_free_port_attrs(cdev);
917 port_err:
918 	device_del(&cdev->dev);
919 add_err:
920 	put_device(&cdev->dev);
921 cdev_err:
922 	xa_release(&device->compat_devs, rnet->id);
923 done:
924 	mutex_unlock(&device->compat_devs_mutex);
925 	return ret;
926 }
927 
928 static void remove_one_compat_dev(struct ib_device *device, u32 id)
929 {
930 	struct ib_core_device *cdev;
931 
932 	mutex_lock(&device->compat_devs_mutex);
933 	cdev = xa_erase(&device->compat_devs, id);
934 	mutex_unlock(&device->compat_devs_mutex);
935 	if (cdev) {
936 		ib_free_port_attrs(cdev);
937 		device_del(&cdev->dev);
938 		put_device(&cdev->dev);
939 	}
940 }
941 
942 static void remove_compat_devs(struct ib_device *device)
943 {
944 	struct ib_core_device *cdev;
945 	unsigned long index;
946 
947 	xa_for_each (&device->compat_devs, index, cdev)
948 		remove_one_compat_dev(device, index);
949 }
950 
951 static int add_compat_devs(struct ib_device *device)
952 {
953 	struct rdma_dev_net *rnet;
954 	unsigned long index;
955 	int ret = 0;
956 
957 	lockdep_assert_held(&devices_rwsem);
958 
959 	down_read(&rdma_nets_rwsem);
960 	xa_for_each (&rdma_nets, index, rnet) {
961 		ret = add_one_compat_dev(device, rnet);
962 		if (ret)
963 			break;
964 	}
965 	up_read(&rdma_nets_rwsem);
966 	return ret;
967 }
968 
969 static void remove_all_compat_devs(void)
970 {
971 	struct ib_compat_device *cdev;
972 	struct ib_device *dev;
973 	unsigned long index;
974 
975 	down_read(&devices_rwsem);
976 	xa_for_each (&devices, index, dev) {
977 		unsigned long c_index = 0;
978 
979 		/* Hold nets_rwsem so that any other thread modifying this
980 		 * system param can sync with this thread.
981 		 */
982 		down_read(&rdma_nets_rwsem);
983 		xa_for_each (&dev->compat_devs, c_index, cdev)
984 			remove_one_compat_dev(dev, c_index);
985 		up_read(&rdma_nets_rwsem);
986 	}
987 	up_read(&devices_rwsem);
988 }
989 
990 static int add_all_compat_devs(void)
991 {
992 	struct rdma_dev_net *rnet;
993 	struct ib_device *dev;
994 	unsigned long index;
995 	int ret = 0;
996 
997 	down_read(&devices_rwsem);
998 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
999 		unsigned long net_index = 0;
1000 
1001 		/* Hold nets_rwsem so that any other thread modifying this
1002 		 * system param can sync with this thread.
1003 		 */
1004 		down_read(&rdma_nets_rwsem);
1005 		xa_for_each (&rdma_nets, net_index, rnet) {
1006 			ret = add_one_compat_dev(dev, rnet);
1007 			if (ret)
1008 				break;
1009 		}
1010 		up_read(&rdma_nets_rwsem);
1011 	}
1012 	up_read(&devices_rwsem);
1013 	if (ret)
1014 		remove_all_compat_devs();
1015 	return ret;
1016 }
1017 
1018 int rdma_compatdev_set(u8 enable)
1019 {
1020 	struct rdma_dev_net *rnet;
1021 	unsigned long index;
1022 	int ret = 0;
1023 
1024 	down_write(&rdma_nets_rwsem);
1025 	if (ib_devices_shared_netns == enable) {
1026 		up_write(&rdma_nets_rwsem);
1027 		return 0;
1028 	}
1029 
1030 	/* enable/disable of compat devices is not supported
1031 	 * when more than default init_net exists.
1032 	 */
1033 	xa_for_each (&rdma_nets, index, rnet) {
1034 		ret++;
1035 		break;
1036 	}
1037 	if (!ret)
1038 		ib_devices_shared_netns = enable;
1039 	up_write(&rdma_nets_rwsem);
1040 	if (ret)
1041 		return -EBUSY;
1042 
1043 	if (enable)
1044 		ret = add_all_compat_devs();
1045 	else
1046 		remove_all_compat_devs();
1047 	return ret;
1048 }
1049 
1050 static void rdma_dev_exit_net(struct net *net)
1051 {
1052 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1053 	struct ib_device *dev;
1054 	unsigned long index;
1055 	int ret;
1056 
1057 	down_write(&rdma_nets_rwsem);
1058 	/*
1059 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1060 	 */
1061 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1062 	WARN_ON(ret);
1063 	up_write(&rdma_nets_rwsem);
1064 
1065 	down_read(&devices_rwsem);
1066 	xa_for_each (&devices, index, dev) {
1067 		get_device(&dev->dev);
1068 		/*
1069 		 * Release the devices_rwsem so that pontentially blocking
1070 		 * device_del, doesn't hold the devices_rwsem for too long.
1071 		 */
1072 		up_read(&devices_rwsem);
1073 
1074 		remove_one_compat_dev(dev, rnet->id);
1075 
1076 		/*
1077 		 * If the real device is in the NS then move it back to init.
1078 		 */
1079 		rdma_dev_change_netns(dev, net, &init_net);
1080 
1081 		put_device(&dev->dev);
1082 		down_read(&devices_rwsem);
1083 	}
1084 	up_read(&devices_rwsem);
1085 
1086 	rdma_nl_net_exit(rnet);
1087 	xa_erase(&rdma_nets, rnet->id);
1088 }
1089 
1090 static __net_init int rdma_dev_init_net(struct net *net)
1091 {
1092 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1093 	unsigned long index;
1094 	struct ib_device *dev;
1095 	int ret;
1096 
1097 	write_pnet(&rnet->net, net);
1098 
1099 	ret = rdma_nl_net_init(rnet);
1100 	if (ret)
1101 		return ret;
1102 
1103 	/* No need to create any compat devices in default init_net. */
1104 	if (net_eq(net, &init_net))
1105 		return 0;
1106 
1107 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1108 	if (ret) {
1109 		rdma_nl_net_exit(rnet);
1110 		return ret;
1111 	}
1112 
1113 	down_read(&devices_rwsem);
1114 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1115 		/* Hold nets_rwsem so that netlink command cannot change
1116 		 * system configuration for device sharing mode.
1117 		 */
1118 		down_read(&rdma_nets_rwsem);
1119 		ret = add_one_compat_dev(dev, rnet);
1120 		up_read(&rdma_nets_rwsem);
1121 		if (ret)
1122 			break;
1123 	}
1124 	up_read(&devices_rwsem);
1125 
1126 	if (ret)
1127 		rdma_dev_exit_net(net);
1128 
1129 	return ret;
1130 }
1131 
1132 /*
1133  * Assign the unique string device name and the unique device index. This is
1134  * undone by ib_dealloc_device.
1135  */
1136 static int assign_name(struct ib_device *device, const char *name)
1137 {
1138 	static u32 last_id;
1139 	int ret;
1140 
1141 	down_write(&devices_rwsem);
1142 	/* Assign a unique name to the device */
1143 	if (strchr(name, '%'))
1144 		ret = alloc_name(device, name);
1145 	else
1146 		ret = dev_set_name(&device->dev, name);
1147 	if (ret)
1148 		goto out;
1149 
1150 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1151 		ret = -ENFILE;
1152 		goto out;
1153 	}
1154 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1155 
1156 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1157 			&last_id, GFP_KERNEL);
1158 	if (ret > 0)
1159 		ret = 0;
1160 
1161 out:
1162 	up_write(&devices_rwsem);
1163 	return ret;
1164 }
1165 
1166 static void setup_dma_device(struct ib_device *device)
1167 {
1168 	struct device *parent = device->dev.parent;
1169 
1170 	WARN_ON_ONCE(device->dma_device);
1171 	if (device->dev.dma_ops) {
1172 		/*
1173 		 * The caller provided custom DMA operations. Copy the
1174 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1175 		 * into device->dev.
1176 		 */
1177 		device->dma_device = &device->dev;
1178 		if (!device->dev.dma_mask) {
1179 			if (parent)
1180 				device->dev.dma_mask = parent->dma_mask;
1181 			else
1182 				WARN_ON_ONCE(true);
1183 		}
1184 		if (!device->dev.coherent_dma_mask) {
1185 			if (parent)
1186 				device->dev.coherent_dma_mask =
1187 					parent->coherent_dma_mask;
1188 			else
1189 				WARN_ON_ONCE(true);
1190 		}
1191 	} else {
1192 		/*
1193 		 * The caller did not provide custom DMA operations. Use the
1194 		 * DMA mapping operations of the parent device.
1195 		 */
1196 		WARN_ON_ONCE(!parent);
1197 		device->dma_device = parent;
1198 	}
1199 
1200 	if (!device->dev.dma_parms) {
1201 		if (parent) {
1202 			/*
1203 			 * The caller did not provide DMA parameters, so
1204 			 * 'parent' probably represents a PCI device. The PCI
1205 			 * core sets the maximum segment size to 64
1206 			 * KB. Increase this parameter to 2 GB.
1207 			 */
1208 			device->dev.dma_parms = parent->dma_parms;
1209 			dma_set_max_seg_size(device->dma_device, SZ_2G);
1210 		} else {
1211 			WARN_ON_ONCE(true);
1212 		}
1213 	}
1214 }
1215 
1216 /*
1217  * setup_device() allocates memory and sets up data that requires calling the
1218  * device ops, this is the only reason these actions are not done during
1219  * ib_alloc_device. It is undone by ib_dealloc_device().
1220  */
1221 static int setup_device(struct ib_device *device)
1222 {
1223 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1224 	int ret;
1225 
1226 	setup_dma_device(device);
1227 	ib_device_check_mandatory(device);
1228 
1229 	ret = setup_port_data(device);
1230 	if (ret) {
1231 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1232 		return ret;
1233 	}
1234 
1235 	memset(&device->attrs, 0, sizeof(device->attrs));
1236 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1237 	if (ret) {
1238 		dev_warn(&device->dev,
1239 			 "Couldn't query the device attributes\n");
1240 		return ret;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static void disable_device(struct ib_device *device)
1247 {
1248 	u32 cid;
1249 
1250 	WARN_ON(!refcount_read(&device->refcount));
1251 
1252 	down_write(&devices_rwsem);
1253 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1254 	up_write(&devices_rwsem);
1255 
1256 	/*
1257 	 * Remove clients in LIFO order, see assign_client_id. This could be
1258 	 * more efficient if xarray learns to reverse iterate. Since no new
1259 	 * clients can be added to this ib_device past this point we only need
1260 	 * the maximum possible client_id value here.
1261 	 */
1262 	down_read(&clients_rwsem);
1263 	cid = highest_client_id;
1264 	up_read(&clients_rwsem);
1265 	while (cid) {
1266 		cid--;
1267 		remove_client_context(device, cid);
1268 	}
1269 
1270 	/* Pairs with refcount_set in enable_device */
1271 	ib_device_put(device);
1272 	wait_for_completion(&device->unreg_completion);
1273 
1274 	/*
1275 	 * compat devices must be removed after device refcount drops to zero.
1276 	 * Otherwise init_net() may add more compatdevs after removing compat
1277 	 * devices and before device is disabled.
1278 	 */
1279 	remove_compat_devs(device);
1280 }
1281 
1282 /*
1283  * An enabled device is visible to all clients and to all the public facing
1284  * APIs that return a device pointer. This always returns with a new get, even
1285  * if it fails.
1286  */
1287 static int enable_device_and_get(struct ib_device *device)
1288 {
1289 	struct ib_client *client;
1290 	unsigned long index;
1291 	int ret = 0;
1292 
1293 	/*
1294 	 * One ref belongs to the xa and the other belongs to this
1295 	 * thread. This is needed to guard against parallel unregistration.
1296 	 */
1297 	refcount_set(&device->refcount, 2);
1298 	down_write(&devices_rwsem);
1299 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1300 
1301 	/*
1302 	 * By using downgrade_write() we ensure that no other thread can clear
1303 	 * DEVICE_REGISTERED while we are completing the client setup.
1304 	 */
1305 	downgrade_write(&devices_rwsem);
1306 
1307 	if (device->ops.enable_driver) {
1308 		ret = device->ops.enable_driver(device);
1309 		if (ret)
1310 			goto out;
1311 	}
1312 
1313 	down_read(&clients_rwsem);
1314 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1315 		ret = add_client_context(device, client);
1316 		if (ret)
1317 			break;
1318 	}
1319 	up_read(&clients_rwsem);
1320 	if (!ret)
1321 		ret = add_compat_devs(device);
1322 out:
1323 	up_read(&devices_rwsem);
1324 	return ret;
1325 }
1326 
1327 /**
1328  * ib_register_device - Register an IB device with IB core
1329  * @device: Device to register
1330  * @name: unique string device name. This may include a '%' which will
1331  * cause a unique index to be added to the passed device name.
1332  *
1333  * Low-level drivers use ib_register_device() to register their
1334  * devices with the IB core.  All registered clients will receive a
1335  * callback for each device that is added. @device must be allocated
1336  * with ib_alloc_device().
1337  *
1338  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1339  * asynchronously then the device pointer may become freed as soon as this
1340  * function returns.
1341  */
1342 int ib_register_device(struct ib_device *device, const char *name)
1343 {
1344 	int ret;
1345 
1346 	ret = assign_name(device, name);
1347 	if (ret)
1348 		return ret;
1349 
1350 	ret = setup_device(device);
1351 	if (ret)
1352 		return ret;
1353 
1354 	ret = ib_cache_setup_one(device);
1355 	if (ret) {
1356 		dev_warn(&device->dev,
1357 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1358 		return ret;
1359 	}
1360 
1361 	ib_device_register_rdmacg(device);
1362 
1363 	rdma_counter_init(device);
1364 
1365 	/*
1366 	 * Ensure that ADD uevent is not fired because it
1367 	 * is too early amd device is not initialized yet.
1368 	 */
1369 	dev_set_uevent_suppress(&device->dev, true);
1370 	ret = device_add(&device->dev);
1371 	if (ret)
1372 		goto cg_cleanup;
1373 
1374 	ret = ib_device_register_sysfs(device);
1375 	if (ret) {
1376 		dev_warn(&device->dev,
1377 			 "Couldn't register device with driver model\n");
1378 		goto dev_cleanup;
1379 	}
1380 
1381 	ret = enable_device_and_get(device);
1382 	dev_set_uevent_suppress(&device->dev, false);
1383 	/* Mark for userspace that device is ready */
1384 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1385 	if (ret) {
1386 		void (*dealloc_fn)(struct ib_device *);
1387 
1388 		/*
1389 		 * If we hit this error flow then we don't want to
1390 		 * automatically dealloc the device since the caller is
1391 		 * expected to call ib_dealloc_device() after
1392 		 * ib_register_device() fails. This is tricky due to the
1393 		 * possibility for a parallel unregistration along with this
1394 		 * error flow. Since we have a refcount here we know any
1395 		 * parallel flow is stopped in disable_device and will see the
1396 		 * NULL pointers, causing the responsibility to
1397 		 * ib_dealloc_device() to revert back to this thread.
1398 		 */
1399 		dealloc_fn = device->ops.dealloc_driver;
1400 		device->ops.dealloc_driver = NULL;
1401 		ib_device_put(device);
1402 		__ib_unregister_device(device);
1403 		device->ops.dealloc_driver = dealloc_fn;
1404 		return ret;
1405 	}
1406 	ib_device_put(device);
1407 
1408 	return 0;
1409 
1410 dev_cleanup:
1411 	device_del(&device->dev);
1412 cg_cleanup:
1413 	dev_set_uevent_suppress(&device->dev, false);
1414 	ib_device_unregister_rdmacg(device);
1415 	ib_cache_cleanup_one(device);
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL(ib_register_device);
1419 
1420 /* Callers must hold a get on the device. */
1421 static void __ib_unregister_device(struct ib_device *ib_dev)
1422 {
1423 	/*
1424 	 * We have a registration lock so that all the calls to unregister are
1425 	 * fully fenced, once any unregister returns the device is truely
1426 	 * unregistered even if multiple callers are unregistering it at the
1427 	 * same time. This also interacts with the registration flow and
1428 	 * provides sane semantics if register and unregister are racing.
1429 	 */
1430 	mutex_lock(&ib_dev->unregistration_lock);
1431 	if (!refcount_read(&ib_dev->refcount))
1432 		goto out;
1433 
1434 	disable_device(ib_dev);
1435 
1436 	/* Expedite removing unregistered pointers from the hash table */
1437 	free_netdevs(ib_dev);
1438 
1439 	ib_device_unregister_sysfs(ib_dev);
1440 	device_del(&ib_dev->dev);
1441 	ib_device_unregister_rdmacg(ib_dev);
1442 	ib_cache_cleanup_one(ib_dev);
1443 
1444 	/*
1445 	 * Drivers using the new flow may not call ib_dealloc_device except
1446 	 * in error unwind prior to registration success.
1447 	 */
1448 	if (ib_dev->ops.dealloc_driver) {
1449 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1450 		ib_dealloc_device(ib_dev);
1451 	}
1452 out:
1453 	mutex_unlock(&ib_dev->unregistration_lock);
1454 }
1455 
1456 /**
1457  * ib_unregister_device - Unregister an IB device
1458  * @ib_dev: The device to unregister
1459  *
1460  * Unregister an IB device.  All clients will receive a remove callback.
1461  *
1462  * Callers should call this routine only once, and protect against races with
1463  * registration. Typically it should only be called as part of a remove
1464  * callback in an implementation of driver core's struct device_driver and
1465  * related.
1466  *
1467  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1468  * this function.
1469  */
1470 void ib_unregister_device(struct ib_device *ib_dev)
1471 {
1472 	get_device(&ib_dev->dev);
1473 	__ib_unregister_device(ib_dev);
1474 	put_device(&ib_dev->dev);
1475 }
1476 EXPORT_SYMBOL(ib_unregister_device);
1477 
1478 /**
1479  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1480  * @ib_dev: The device to unregister
1481  *
1482  * This is the same as ib_unregister_device(), except it includes an internal
1483  * ib_device_put() that should match a 'get' obtained by the caller.
1484  *
1485  * It is safe to call this routine concurrently from multiple threads while
1486  * holding the 'get'. When the function returns the device is fully
1487  * unregistered.
1488  *
1489  * Drivers using this flow MUST use the driver_unregister callback to clean up
1490  * their resources associated with the device and dealloc it.
1491  */
1492 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1493 {
1494 	WARN_ON(!ib_dev->ops.dealloc_driver);
1495 	get_device(&ib_dev->dev);
1496 	ib_device_put(ib_dev);
1497 	__ib_unregister_device(ib_dev);
1498 	put_device(&ib_dev->dev);
1499 }
1500 EXPORT_SYMBOL(ib_unregister_device_and_put);
1501 
1502 /**
1503  * ib_unregister_driver - Unregister all IB devices for a driver
1504  * @driver_id: The driver to unregister
1505  *
1506  * This implements a fence for device unregistration. It only returns once all
1507  * devices associated with the driver_id have fully completed their
1508  * unregistration and returned from ib_unregister_device*().
1509  *
1510  * If device's are not yet unregistered it goes ahead and starts unregistering
1511  * them.
1512  *
1513  * This does not block creation of new devices with the given driver_id, that
1514  * is the responsibility of the caller.
1515  */
1516 void ib_unregister_driver(enum rdma_driver_id driver_id)
1517 {
1518 	struct ib_device *ib_dev;
1519 	unsigned long index;
1520 
1521 	down_read(&devices_rwsem);
1522 	xa_for_each (&devices, index, ib_dev) {
1523 		if (ib_dev->ops.driver_id != driver_id)
1524 			continue;
1525 
1526 		get_device(&ib_dev->dev);
1527 		up_read(&devices_rwsem);
1528 
1529 		WARN_ON(!ib_dev->ops.dealloc_driver);
1530 		__ib_unregister_device(ib_dev);
1531 
1532 		put_device(&ib_dev->dev);
1533 		down_read(&devices_rwsem);
1534 	}
1535 	up_read(&devices_rwsem);
1536 }
1537 EXPORT_SYMBOL(ib_unregister_driver);
1538 
1539 static void ib_unregister_work(struct work_struct *work)
1540 {
1541 	struct ib_device *ib_dev =
1542 		container_of(work, struct ib_device, unregistration_work);
1543 
1544 	__ib_unregister_device(ib_dev);
1545 	put_device(&ib_dev->dev);
1546 }
1547 
1548 /**
1549  * ib_unregister_device_queued - Unregister a device using a work queue
1550  * @ib_dev: The device to unregister
1551  *
1552  * This schedules an asynchronous unregistration using a WQ for the device. A
1553  * driver should use this to avoid holding locks while doing unregistration,
1554  * such as holding the RTNL lock.
1555  *
1556  * Drivers using this API must use ib_unregister_driver before module unload
1557  * to ensure that all scheduled unregistrations have completed.
1558  */
1559 void ib_unregister_device_queued(struct ib_device *ib_dev)
1560 {
1561 	WARN_ON(!refcount_read(&ib_dev->refcount));
1562 	WARN_ON(!ib_dev->ops.dealloc_driver);
1563 	get_device(&ib_dev->dev);
1564 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1565 		put_device(&ib_dev->dev);
1566 }
1567 EXPORT_SYMBOL(ib_unregister_device_queued);
1568 
1569 /*
1570  * The caller must pass in a device that has the kref held and the refcount
1571  * released. If the device is in cur_net and still registered then it is moved
1572  * into net.
1573  */
1574 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1575 				 struct net *net)
1576 {
1577 	int ret2 = -EINVAL;
1578 	int ret;
1579 
1580 	mutex_lock(&device->unregistration_lock);
1581 
1582 	/*
1583 	 * If a device not under ib_device_get() or if the unregistration_lock
1584 	 * is not held, the namespace can be changed, or it can be unregistered.
1585 	 * Check again under the lock.
1586 	 */
1587 	if (refcount_read(&device->refcount) == 0 ||
1588 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1589 		ret = -ENODEV;
1590 		goto out;
1591 	}
1592 
1593 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1594 	disable_device(device);
1595 
1596 	/*
1597 	 * At this point no one can be using the device, so it is safe to
1598 	 * change the namespace.
1599 	 */
1600 	write_pnet(&device->coredev.rdma_net, net);
1601 
1602 	down_read(&devices_rwsem);
1603 	/*
1604 	 * Currently rdma devices are system wide unique. So the device name
1605 	 * is guaranteed free in the new namespace. Publish the new namespace
1606 	 * at the sysfs level.
1607 	 */
1608 	ret = device_rename(&device->dev, dev_name(&device->dev));
1609 	up_read(&devices_rwsem);
1610 	if (ret) {
1611 		dev_warn(&device->dev,
1612 			 "%s: Couldn't rename device after namespace change\n",
1613 			 __func__);
1614 		/* Try and put things back and re-enable the device */
1615 		write_pnet(&device->coredev.rdma_net, cur_net);
1616 	}
1617 
1618 	ret2 = enable_device_and_get(device);
1619 	if (ret2) {
1620 		/*
1621 		 * This shouldn't really happen, but if it does, let the user
1622 		 * retry at later point. So don't disable the device.
1623 		 */
1624 		dev_warn(&device->dev,
1625 			 "%s: Couldn't re-enable device after namespace change\n",
1626 			 __func__);
1627 	}
1628 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1629 
1630 	ib_device_put(device);
1631 out:
1632 	mutex_unlock(&device->unregistration_lock);
1633 	if (ret)
1634 		return ret;
1635 	return ret2;
1636 }
1637 
1638 int ib_device_set_netns_put(struct sk_buff *skb,
1639 			    struct ib_device *dev, u32 ns_fd)
1640 {
1641 	struct net *net;
1642 	int ret;
1643 
1644 	net = get_net_ns_by_fd(ns_fd);
1645 	if (IS_ERR(net)) {
1646 		ret = PTR_ERR(net);
1647 		goto net_err;
1648 	}
1649 
1650 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1651 		ret = -EPERM;
1652 		goto ns_err;
1653 	}
1654 
1655 	/*
1656 	 * Currently supported only for those providers which support
1657 	 * disassociation and don't do port specific sysfs init. Once a
1658 	 * port_cleanup infrastructure is implemented, this limitation will be
1659 	 * removed.
1660 	 */
1661 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1662 	    ib_devices_shared_netns) {
1663 		ret = -EOPNOTSUPP;
1664 		goto ns_err;
1665 	}
1666 
1667 	get_device(&dev->dev);
1668 	ib_device_put(dev);
1669 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1670 	put_device(&dev->dev);
1671 
1672 	put_net(net);
1673 	return ret;
1674 
1675 ns_err:
1676 	put_net(net);
1677 net_err:
1678 	ib_device_put(dev);
1679 	return ret;
1680 }
1681 
1682 static struct pernet_operations rdma_dev_net_ops = {
1683 	.init = rdma_dev_init_net,
1684 	.exit = rdma_dev_exit_net,
1685 	.id = &rdma_dev_net_id,
1686 	.size = sizeof(struct rdma_dev_net),
1687 };
1688 
1689 static int assign_client_id(struct ib_client *client)
1690 {
1691 	int ret;
1692 
1693 	down_write(&clients_rwsem);
1694 	/*
1695 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1696 	 * achieve this we assign client_ids so they are sorted in
1697 	 * registration order.
1698 	 */
1699 	client->client_id = highest_client_id;
1700 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1701 	if (ret)
1702 		goto out;
1703 
1704 	highest_client_id++;
1705 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1706 
1707 out:
1708 	up_write(&clients_rwsem);
1709 	return ret;
1710 }
1711 
1712 static void remove_client_id(struct ib_client *client)
1713 {
1714 	down_write(&clients_rwsem);
1715 	xa_erase(&clients, client->client_id);
1716 	for (; highest_client_id; highest_client_id--)
1717 		if (xa_load(&clients, highest_client_id - 1))
1718 			break;
1719 	up_write(&clients_rwsem);
1720 }
1721 
1722 /**
1723  * ib_register_client - Register an IB client
1724  * @client:Client to register
1725  *
1726  * Upper level users of the IB drivers can use ib_register_client() to
1727  * register callbacks for IB device addition and removal.  When an IB
1728  * device is added, each registered client's add method will be called
1729  * (in the order the clients were registered), and when a device is
1730  * removed, each client's remove method will be called (in the reverse
1731  * order that clients were registered).  In addition, when
1732  * ib_register_client() is called, the client will receive an add
1733  * callback for all devices already registered.
1734  */
1735 int ib_register_client(struct ib_client *client)
1736 {
1737 	struct ib_device *device;
1738 	unsigned long index;
1739 	int ret;
1740 
1741 	refcount_set(&client->uses, 1);
1742 	init_completion(&client->uses_zero);
1743 	ret = assign_client_id(client);
1744 	if (ret)
1745 		return ret;
1746 
1747 	down_read(&devices_rwsem);
1748 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1749 		ret = add_client_context(device, client);
1750 		if (ret) {
1751 			up_read(&devices_rwsem);
1752 			ib_unregister_client(client);
1753 			return ret;
1754 		}
1755 	}
1756 	up_read(&devices_rwsem);
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(ib_register_client);
1760 
1761 /**
1762  * ib_unregister_client - Unregister an IB client
1763  * @client:Client to unregister
1764  *
1765  * Upper level users use ib_unregister_client() to remove their client
1766  * registration.  When ib_unregister_client() is called, the client
1767  * will receive a remove callback for each IB device still registered.
1768  *
1769  * This is a full fence, once it returns no client callbacks will be called,
1770  * or are running in another thread.
1771  */
1772 void ib_unregister_client(struct ib_client *client)
1773 {
1774 	struct ib_device *device;
1775 	unsigned long index;
1776 
1777 	down_write(&clients_rwsem);
1778 	ib_client_put(client);
1779 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1780 	up_write(&clients_rwsem);
1781 
1782 	/* We do not want to have locks while calling client->remove() */
1783 	rcu_read_lock();
1784 	xa_for_each (&devices, index, device) {
1785 		if (!ib_device_try_get(device))
1786 			continue;
1787 		rcu_read_unlock();
1788 
1789 		remove_client_context(device, client->client_id);
1790 
1791 		ib_device_put(device);
1792 		rcu_read_lock();
1793 	}
1794 	rcu_read_unlock();
1795 
1796 	/*
1797 	 * remove_client_context() is not a fence, it can return even though a
1798 	 * removal is ongoing. Wait until all removals are completed.
1799 	 */
1800 	wait_for_completion(&client->uses_zero);
1801 	remove_client_id(client);
1802 }
1803 EXPORT_SYMBOL(ib_unregister_client);
1804 
1805 static int __ib_get_global_client_nl_info(const char *client_name,
1806 					  struct ib_client_nl_info *res)
1807 {
1808 	struct ib_client *client;
1809 	unsigned long index;
1810 	int ret = -ENOENT;
1811 
1812 	down_read(&clients_rwsem);
1813 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1814 		if (strcmp(client->name, client_name) != 0)
1815 			continue;
1816 		if (!client->get_global_nl_info) {
1817 			ret = -EOPNOTSUPP;
1818 			break;
1819 		}
1820 		ret = client->get_global_nl_info(res);
1821 		if (WARN_ON(ret == -ENOENT))
1822 			ret = -EINVAL;
1823 		if (!ret && res->cdev)
1824 			get_device(res->cdev);
1825 		break;
1826 	}
1827 	up_read(&clients_rwsem);
1828 	return ret;
1829 }
1830 
1831 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1832 				   const char *client_name,
1833 				   struct ib_client_nl_info *res)
1834 {
1835 	unsigned long index;
1836 	void *client_data;
1837 	int ret = -ENOENT;
1838 
1839 	down_read(&ibdev->client_data_rwsem);
1840 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1841 			     CLIENT_DATA_REGISTERED) {
1842 		struct ib_client *client = xa_load(&clients, index);
1843 
1844 		if (!client || strcmp(client->name, client_name) != 0)
1845 			continue;
1846 		if (!client->get_nl_info) {
1847 			ret = -EOPNOTSUPP;
1848 			break;
1849 		}
1850 		ret = client->get_nl_info(ibdev, client_data, res);
1851 		if (WARN_ON(ret == -ENOENT))
1852 			ret = -EINVAL;
1853 
1854 		/*
1855 		 * The cdev is guaranteed valid as long as we are inside the
1856 		 * client_data_rwsem as remove_one can't be called. Keep it
1857 		 * valid for the caller.
1858 		 */
1859 		if (!ret && res->cdev)
1860 			get_device(res->cdev);
1861 		break;
1862 	}
1863 	up_read(&ibdev->client_data_rwsem);
1864 
1865 	return ret;
1866 }
1867 
1868 /**
1869  * ib_get_client_nl_info - Fetch the nl_info from a client
1870  * @device - IB device
1871  * @client_name - Name of the client
1872  * @res - Result of the query
1873  */
1874 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1875 			  struct ib_client_nl_info *res)
1876 {
1877 	int ret;
1878 
1879 	if (ibdev)
1880 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1881 	else
1882 		ret = __ib_get_global_client_nl_info(client_name, res);
1883 #ifdef CONFIG_MODULES
1884 	if (ret == -ENOENT) {
1885 		request_module("rdma-client-%s", client_name);
1886 		if (ibdev)
1887 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1888 		else
1889 			ret = __ib_get_global_client_nl_info(client_name, res);
1890 	}
1891 #endif
1892 	if (ret) {
1893 		if (ret == -ENOENT)
1894 			return -EOPNOTSUPP;
1895 		return ret;
1896 	}
1897 
1898 	if (WARN_ON(!res->cdev))
1899 		return -EINVAL;
1900 	return 0;
1901 }
1902 
1903 /**
1904  * ib_set_client_data - Set IB client context
1905  * @device:Device to set context for
1906  * @client:Client to set context for
1907  * @data:Context to set
1908  *
1909  * ib_set_client_data() sets client context data that can be retrieved with
1910  * ib_get_client_data(). This can only be called while the client is
1911  * registered to the device, once the ib_client remove() callback returns this
1912  * cannot be called.
1913  */
1914 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1915 			void *data)
1916 {
1917 	void *rc;
1918 
1919 	if (WARN_ON(IS_ERR(data)))
1920 		data = NULL;
1921 
1922 	rc = xa_store(&device->client_data, client->client_id, data,
1923 		      GFP_KERNEL);
1924 	WARN_ON(xa_is_err(rc));
1925 }
1926 EXPORT_SYMBOL(ib_set_client_data);
1927 
1928 /**
1929  * ib_register_event_handler - Register an IB event handler
1930  * @event_handler:Handler to register
1931  *
1932  * ib_register_event_handler() registers an event handler that will be
1933  * called back when asynchronous IB events occur (as defined in
1934  * chapter 11 of the InfiniBand Architecture Specification).  This
1935  * callback may occur in interrupt context.
1936  */
1937 void ib_register_event_handler(struct ib_event_handler *event_handler)
1938 {
1939 	unsigned long flags;
1940 
1941 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1942 	list_add_tail(&event_handler->list,
1943 		      &event_handler->device->event_handler_list);
1944 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1945 }
1946 EXPORT_SYMBOL(ib_register_event_handler);
1947 
1948 /**
1949  * ib_unregister_event_handler - Unregister an event handler
1950  * @event_handler:Handler to unregister
1951  *
1952  * Unregister an event handler registered with
1953  * ib_register_event_handler().
1954  */
1955 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1956 {
1957 	unsigned long flags;
1958 
1959 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1960 	list_del(&event_handler->list);
1961 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1962 }
1963 EXPORT_SYMBOL(ib_unregister_event_handler);
1964 
1965 /**
1966  * ib_dispatch_event - Dispatch an asynchronous event
1967  * @event:Event to dispatch
1968  *
1969  * Low-level drivers must call ib_dispatch_event() to dispatch the
1970  * event to all registered event handlers when an asynchronous event
1971  * occurs.
1972  */
1973 void ib_dispatch_event(struct ib_event *event)
1974 {
1975 	unsigned long flags;
1976 	struct ib_event_handler *handler;
1977 
1978 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1979 
1980 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1981 		handler->handler(handler, event);
1982 
1983 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1984 }
1985 EXPORT_SYMBOL(ib_dispatch_event);
1986 
1987 static int iw_query_port(struct ib_device *device,
1988 			   u8 port_num,
1989 			   struct ib_port_attr *port_attr)
1990 {
1991 	struct in_device *inetdev;
1992 	struct net_device *netdev;
1993 	int err;
1994 
1995 	memset(port_attr, 0, sizeof(*port_attr));
1996 
1997 	netdev = ib_device_get_netdev(device, port_num);
1998 	if (!netdev)
1999 		return -ENODEV;
2000 
2001 	port_attr->max_mtu = IB_MTU_4096;
2002 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2003 
2004 	if (!netif_carrier_ok(netdev)) {
2005 		port_attr->state = IB_PORT_DOWN;
2006 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2007 	} else {
2008 		rcu_read_lock();
2009 		inetdev = __in_dev_get_rcu(netdev);
2010 
2011 		if (inetdev && inetdev->ifa_list) {
2012 			port_attr->state = IB_PORT_ACTIVE;
2013 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2014 		} else {
2015 			port_attr->state = IB_PORT_INIT;
2016 			port_attr->phys_state =
2017 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2018 		}
2019 
2020 		rcu_read_unlock();
2021 	}
2022 
2023 	dev_put(netdev);
2024 	err = device->ops.query_port(device, port_num, port_attr);
2025 	if (err)
2026 		return err;
2027 
2028 	return 0;
2029 }
2030 
2031 static int __ib_query_port(struct ib_device *device,
2032 			   u8 port_num,
2033 			   struct ib_port_attr *port_attr)
2034 {
2035 	union ib_gid gid = {};
2036 	int err;
2037 
2038 	memset(port_attr, 0, sizeof(*port_attr));
2039 
2040 	err = device->ops.query_port(device, port_num, port_attr);
2041 	if (err || port_attr->subnet_prefix)
2042 		return err;
2043 
2044 	if (rdma_port_get_link_layer(device, port_num) !=
2045 	    IB_LINK_LAYER_INFINIBAND)
2046 		return 0;
2047 
2048 	err = device->ops.query_gid(device, port_num, 0, &gid);
2049 	if (err)
2050 		return err;
2051 
2052 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2053 	return 0;
2054 }
2055 
2056 /**
2057  * ib_query_port - Query IB port attributes
2058  * @device:Device to query
2059  * @port_num:Port number to query
2060  * @port_attr:Port attributes
2061  *
2062  * ib_query_port() returns the attributes of a port through the
2063  * @port_attr pointer.
2064  */
2065 int ib_query_port(struct ib_device *device,
2066 		  u8 port_num,
2067 		  struct ib_port_attr *port_attr)
2068 {
2069 	if (!rdma_is_port_valid(device, port_num))
2070 		return -EINVAL;
2071 
2072 	if (rdma_protocol_iwarp(device, port_num))
2073 		return iw_query_port(device, port_num, port_attr);
2074 	else
2075 		return __ib_query_port(device, port_num, port_attr);
2076 }
2077 EXPORT_SYMBOL(ib_query_port);
2078 
2079 static void add_ndev_hash(struct ib_port_data *pdata)
2080 {
2081 	unsigned long flags;
2082 
2083 	might_sleep();
2084 
2085 	spin_lock_irqsave(&ndev_hash_lock, flags);
2086 	if (hash_hashed(&pdata->ndev_hash_link)) {
2087 		hash_del_rcu(&pdata->ndev_hash_link);
2088 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2089 		/*
2090 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2091 		 * grace period
2092 		 */
2093 		synchronize_rcu();
2094 		spin_lock_irqsave(&ndev_hash_lock, flags);
2095 	}
2096 	if (pdata->netdev)
2097 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2098 			     (uintptr_t)pdata->netdev);
2099 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2100 }
2101 
2102 /**
2103  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2104  * @ib_dev: Device to modify
2105  * @ndev: net_device to affiliate, may be NULL
2106  * @port: IB port the net_device is connected to
2107  *
2108  * Drivers should use this to link the ib_device to a netdev so the netdev
2109  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2110  * affiliated with any port.
2111  *
2112  * The caller must ensure that the given ndev is not unregistered or
2113  * unregistering, and that either the ib_device is unregistered or
2114  * ib_device_set_netdev() is called with NULL when the ndev sends a
2115  * NETDEV_UNREGISTER event.
2116  */
2117 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2118 			 unsigned int port)
2119 {
2120 	struct net_device *old_ndev;
2121 	struct ib_port_data *pdata;
2122 	unsigned long flags;
2123 	int ret;
2124 
2125 	/*
2126 	 * Drivers wish to call this before ib_register_driver, so we have to
2127 	 * setup the port data early.
2128 	 */
2129 	ret = alloc_port_data(ib_dev);
2130 	if (ret)
2131 		return ret;
2132 
2133 	if (!rdma_is_port_valid(ib_dev, port))
2134 		return -EINVAL;
2135 
2136 	pdata = &ib_dev->port_data[port];
2137 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2138 	old_ndev = rcu_dereference_protected(
2139 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2140 	if (old_ndev == ndev) {
2141 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2142 		return 0;
2143 	}
2144 
2145 	if (ndev)
2146 		dev_hold(ndev);
2147 	rcu_assign_pointer(pdata->netdev, ndev);
2148 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2149 
2150 	add_ndev_hash(pdata);
2151 	if (old_ndev)
2152 		dev_put(old_ndev);
2153 
2154 	return 0;
2155 }
2156 EXPORT_SYMBOL(ib_device_set_netdev);
2157 
2158 static void free_netdevs(struct ib_device *ib_dev)
2159 {
2160 	unsigned long flags;
2161 	unsigned int port;
2162 
2163 	if (!ib_dev->port_data)
2164 		return;
2165 
2166 	rdma_for_each_port (ib_dev, port) {
2167 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2168 		struct net_device *ndev;
2169 
2170 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2171 		ndev = rcu_dereference_protected(
2172 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2173 		if (ndev) {
2174 			spin_lock(&ndev_hash_lock);
2175 			hash_del_rcu(&pdata->ndev_hash_link);
2176 			spin_unlock(&ndev_hash_lock);
2177 
2178 			/*
2179 			 * If this is the last dev_put there is still a
2180 			 * synchronize_rcu before the netdev is kfreed, so we
2181 			 * can continue to rely on unlocked pointer
2182 			 * comparisons after the put
2183 			 */
2184 			rcu_assign_pointer(pdata->netdev, NULL);
2185 			dev_put(ndev);
2186 		}
2187 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2188 	}
2189 }
2190 
2191 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2192 					unsigned int port)
2193 {
2194 	struct ib_port_data *pdata;
2195 	struct net_device *res;
2196 
2197 	if (!rdma_is_port_valid(ib_dev, port))
2198 		return NULL;
2199 
2200 	pdata = &ib_dev->port_data[port];
2201 
2202 	/*
2203 	 * New drivers should use ib_device_set_netdev() not the legacy
2204 	 * get_netdev().
2205 	 */
2206 	if (ib_dev->ops.get_netdev)
2207 		res = ib_dev->ops.get_netdev(ib_dev, port);
2208 	else {
2209 		spin_lock(&pdata->netdev_lock);
2210 		res = rcu_dereference_protected(
2211 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2212 		if (res)
2213 			dev_hold(res);
2214 		spin_unlock(&pdata->netdev_lock);
2215 	}
2216 
2217 	/*
2218 	 * If we are starting to unregister expedite things by preventing
2219 	 * propagation of an unregistering netdev.
2220 	 */
2221 	if (res && res->reg_state != NETREG_REGISTERED) {
2222 		dev_put(res);
2223 		return NULL;
2224 	}
2225 
2226 	return res;
2227 }
2228 
2229 /**
2230  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2231  * @ndev: netdev to locate
2232  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2233  *
2234  * Find and hold an ib_device that is associated with a netdev via
2235  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2236  * returned pointer.
2237  */
2238 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2239 					  enum rdma_driver_id driver_id)
2240 {
2241 	struct ib_device *res = NULL;
2242 	struct ib_port_data *cur;
2243 
2244 	rcu_read_lock();
2245 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2246 				    (uintptr_t)ndev) {
2247 		if (rcu_access_pointer(cur->netdev) == ndev &&
2248 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2249 		     cur->ib_dev->ops.driver_id == driver_id) &&
2250 		    ib_device_try_get(cur->ib_dev)) {
2251 			res = cur->ib_dev;
2252 			break;
2253 		}
2254 	}
2255 	rcu_read_unlock();
2256 
2257 	return res;
2258 }
2259 EXPORT_SYMBOL(ib_device_get_by_netdev);
2260 
2261 /**
2262  * ib_enum_roce_netdev - enumerate all RoCE ports
2263  * @ib_dev : IB device we want to query
2264  * @filter: Should we call the callback?
2265  * @filter_cookie: Cookie passed to filter
2266  * @cb: Callback to call for each found RoCE ports
2267  * @cookie: Cookie passed back to the callback
2268  *
2269  * Enumerates all of the physical RoCE ports of ib_dev
2270  * which are related to netdevice and calls callback() on each
2271  * device for which filter() function returns non zero.
2272  */
2273 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2274 			 roce_netdev_filter filter,
2275 			 void *filter_cookie,
2276 			 roce_netdev_callback cb,
2277 			 void *cookie)
2278 {
2279 	unsigned int port;
2280 
2281 	rdma_for_each_port (ib_dev, port)
2282 		if (rdma_protocol_roce(ib_dev, port)) {
2283 			struct net_device *idev =
2284 				ib_device_get_netdev(ib_dev, port);
2285 
2286 			if (filter(ib_dev, port, idev, filter_cookie))
2287 				cb(ib_dev, port, idev, cookie);
2288 
2289 			if (idev)
2290 				dev_put(idev);
2291 		}
2292 }
2293 
2294 /**
2295  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2296  * @filter: Should we call the callback?
2297  * @filter_cookie: Cookie passed to filter
2298  * @cb: Callback to call for each found RoCE ports
2299  * @cookie: Cookie passed back to the callback
2300  *
2301  * Enumerates all RoCE devices' physical ports which are related
2302  * to netdevices and calls callback() on each device for which
2303  * filter() function returns non zero.
2304  */
2305 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2306 			      void *filter_cookie,
2307 			      roce_netdev_callback cb,
2308 			      void *cookie)
2309 {
2310 	struct ib_device *dev;
2311 	unsigned long index;
2312 
2313 	down_read(&devices_rwsem);
2314 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2315 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2316 	up_read(&devices_rwsem);
2317 }
2318 
2319 /**
2320  * ib_enum_all_devs - enumerate all ib_devices
2321  * @cb: Callback to call for each found ib_device
2322  *
2323  * Enumerates all ib_devices and calls callback() on each device.
2324  */
2325 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2326 		     struct netlink_callback *cb)
2327 {
2328 	unsigned long index;
2329 	struct ib_device *dev;
2330 	unsigned int idx = 0;
2331 	int ret = 0;
2332 
2333 	down_read(&devices_rwsem);
2334 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2335 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2336 			continue;
2337 
2338 		ret = nldev_cb(dev, skb, cb, idx);
2339 		if (ret)
2340 			break;
2341 		idx++;
2342 	}
2343 	up_read(&devices_rwsem);
2344 	return ret;
2345 }
2346 
2347 /**
2348  * ib_query_pkey - Get P_Key table entry
2349  * @device:Device to query
2350  * @port_num:Port number to query
2351  * @index:P_Key table index to query
2352  * @pkey:Returned P_Key
2353  *
2354  * ib_query_pkey() fetches the specified P_Key table entry.
2355  */
2356 int ib_query_pkey(struct ib_device *device,
2357 		  u8 port_num, u16 index, u16 *pkey)
2358 {
2359 	if (!rdma_is_port_valid(device, port_num))
2360 		return -EINVAL;
2361 
2362 	return device->ops.query_pkey(device, port_num, index, pkey);
2363 }
2364 EXPORT_SYMBOL(ib_query_pkey);
2365 
2366 /**
2367  * ib_modify_device - Change IB device attributes
2368  * @device:Device to modify
2369  * @device_modify_mask:Mask of attributes to change
2370  * @device_modify:New attribute values
2371  *
2372  * ib_modify_device() changes a device's attributes as specified by
2373  * the @device_modify_mask and @device_modify structure.
2374  */
2375 int ib_modify_device(struct ib_device *device,
2376 		     int device_modify_mask,
2377 		     struct ib_device_modify *device_modify)
2378 {
2379 	if (!device->ops.modify_device)
2380 		return -EOPNOTSUPP;
2381 
2382 	return device->ops.modify_device(device, device_modify_mask,
2383 					 device_modify);
2384 }
2385 EXPORT_SYMBOL(ib_modify_device);
2386 
2387 /**
2388  * ib_modify_port - Modifies the attributes for the specified port.
2389  * @device: The device to modify.
2390  * @port_num: The number of the port to modify.
2391  * @port_modify_mask: Mask used to specify which attributes of the port
2392  *   to change.
2393  * @port_modify: New attribute values for the port.
2394  *
2395  * ib_modify_port() changes a port's attributes as specified by the
2396  * @port_modify_mask and @port_modify structure.
2397  */
2398 int ib_modify_port(struct ib_device *device,
2399 		   u8 port_num, int port_modify_mask,
2400 		   struct ib_port_modify *port_modify)
2401 {
2402 	int rc;
2403 
2404 	if (!rdma_is_port_valid(device, port_num))
2405 		return -EINVAL;
2406 
2407 	if (device->ops.modify_port)
2408 		rc = device->ops.modify_port(device, port_num,
2409 					     port_modify_mask,
2410 					     port_modify);
2411 	else if (rdma_protocol_roce(device, port_num) &&
2412 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2413 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2414 		rc = 0;
2415 	else
2416 		rc = -EOPNOTSUPP;
2417 	return rc;
2418 }
2419 EXPORT_SYMBOL(ib_modify_port);
2420 
2421 /**
2422  * ib_find_gid - Returns the port number and GID table index where
2423  *   a specified GID value occurs. Its searches only for IB link layer.
2424  * @device: The device to query.
2425  * @gid: The GID value to search for.
2426  * @port_num: The port number of the device where the GID value was found.
2427  * @index: The index into the GID table where the GID was found.  This
2428  *   parameter may be NULL.
2429  */
2430 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2431 		u8 *port_num, u16 *index)
2432 {
2433 	union ib_gid tmp_gid;
2434 	unsigned int port;
2435 	int ret, i;
2436 
2437 	rdma_for_each_port (device, port) {
2438 		if (!rdma_protocol_ib(device, port))
2439 			continue;
2440 
2441 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2442 		     ++i) {
2443 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2444 			if (ret)
2445 				return ret;
2446 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2447 				*port_num = port;
2448 				if (index)
2449 					*index = i;
2450 				return 0;
2451 			}
2452 		}
2453 	}
2454 
2455 	return -ENOENT;
2456 }
2457 EXPORT_SYMBOL(ib_find_gid);
2458 
2459 /**
2460  * ib_find_pkey - Returns the PKey table index where a specified
2461  *   PKey value occurs.
2462  * @device: The device to query.
2463  * @port_num: The port number of the device to search for the PKey.
2464  * @pkey: The PKey value to search for.
2465  * @index: The index into the PKey table where the PKey was found.
2466  */
2467 int ib_find_pkey(struct ib_device *device,
2468 		 u8 port_num, u16 pkey, u16 *index)
2469 {
2470 	int ret, i;
2471 	u16 tmp_pkey;
2472 	int partial_ix = -1;
2473 
2474 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2475 	     ++i) {
2476 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2477 		if (ret)
2478 			return ret;
2479 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2480 			/* if there is full-member pkey take it.*/
2481 			if (tmp_pkey & 0x8000) {
2482 				*index = i;
2483 				return 0;
2484 			}
2485 			if (partial_ix < 0)
2486 				partial_ix = i;
2487 		}
2488 	}
2489 
2490 	/*no full-member, if exists take the limited*/
2491 	if (partial_ix >= 0) {
2492 		*index = partial_ix;
2493 		return 0;
2494 	}
2495 	return -ENOENT;
2496 }
2497 EXPORT_SYMBOL(ib_find_pkey);
2498 
2499 /**
2500  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2501  * for a received CM request
2502  * @dev:	An RDMA device on which the request has been received.
2503  * @port:	Port number on the RDMA device.
2504  * @pkey:	The Pkey the request came on.
2505  * @gid:	A GID that the net_dev uses to communicate.
2506  * @addr:	Contains the IP address that the request specified as its
2507  *		destination.
2508  *
2509  */
2510 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2511 					    u8 port,
2512 					    u16 pkey,
2513 					    const union ib_gid *gid,
2514 					    const struct sockaddr *addr)
2515 {
2516 	struct net_device *net_dev = NULL;
2517 	unsigned long index;
2518 	void *client_data;
2519 
2520 	if (!rdma_protocol_ib(dev, port))
2521 		return NULL;
2522 
2523 	/*
2524 	 * Holding the read side guarantees that the client will not become
2525 	 * unregistered while we are calling get_net_dev_by_params()
2526 	 */
2527 	down_read(&dev->client_data_rwsem);
2528 	xan_for_each_marked (&dev->client_data, index, client_data,
2529 			     CLIENT_DATA_REGISTERED) {
2530 		struct ib_client *client = xa_load(&clients, index);
2531 
2532 		if (!client || !client->get_net_dev_by_params)
2533 			continue;
2534 
2535 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2536 							addr, client_data);
2537 		if (net_dev)
2538 			break;
2539 	}
2540 	up_read(&dev->client_data_rwsem);
2541 
2542 	return net_dev;
2543 }
2544 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2545 
2546 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2547 {
2548 	struct ib_device_ops *dev_ops = &dev->ops;
2549 #define SET_DEVICE_OP(ptr, name)                                               \
2550 	do {                                                                   \
2551 		if (ops->name)                                                 \
2552 			if (!((ptr)->name))				       \
2553 				(ptr)->name = ops->name;                       \
2554 	} while (0)
2555 
2556 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2557 
2558 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2559 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2560 			dev_ops->driver_id != ops->driver_id);
2561 		dev_ops->driver_id = ops->driver_id;
2562 	}
2563 	if (ops->owner) {
2564 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2565 		dev_ops->owner = ops->owner;
2566 	}
2567 	if (ops->uverbs_abi_ver)
2568 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2569 
2570 	dev_ops->uverbs_no_driver_id_binding |=
2571 		ops->uverbs_no_driver_id_binding;
2572 
2573 	SET_DEVICE_OP(dev_ops, add_gid);
2574 	SET_DEVICE_OP(dev_ops, advise_mr);
2575 	SET_DEVICE_OP(dev_ops, alloc_dm);
2576 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2577 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2578 	SET_DEVICE_OP(dev_ops, alloc_mr);
2579 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2580 	SET_DEVICE_OP(dev_ops, alloc_mw);
2581 	SET_DEVICE_OP(dev_ops, alloc_pd);
2582 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2583 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2584 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2585 	SET_DEVICE_OP(dev_ops, attach_mcast);
2586 	SET_DEVICE_OP(dev_ops, check_mr_status);
2587 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2588 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2589 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2590 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2591 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2592 	SET_DEVICE_OP(dev_ops, create_ah);
2593 	SET_DEVICE_OP(dev_ops, create_counters);
2594 	SET_DEVICE_OP(dev_ops, create_cq);
2595 	SET_DEVICE_OP(dev_ops, create_flow);
2596 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2597 	SET_DEVICE_OP(dev_ops, create_qp);
2598 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2599 	SET_DEVICE_OP(dev_ops, create_srq);
2600 	SET_DEVICE_OP(dev_ops, create_wq);
2601 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2602 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2603 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2604 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2605 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2606 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2607 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2608 	SET_DEVICE_OP(dev_ops, del_gid);
2609 	SET_DEVICE_OP(dev_ops, dereg_mr);
2610 	SET_DEVICE_OP(dev_ops, destroy_ah);
2611 	SET_DEVICE_OP(dev_ops, destroy_counters);
2612 	SET_DEVICE_OP(dev_ops, destroy_cq);
2613 	SET_DEVICE_OP(dev_ops, destroy_flow);
2614 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2615 	SET_DEVICE_OP(dev_ops, destroy_qp);
2616 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2617 	SET_DEVICE_OP(dev_ops, destroy_srq);
2618 	SET_DEVICE_OP(dev_ops, destroy_wq);
2619 	SET_DEVICE_OP(dev_ops, detach_mcast);
2620 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2621 	SET_DEVICE_OP(dev_ops, drain_rq);
2622 	SET_DEVICE_OP(dev_ops, drain_sq);
2623 	SET_DEVICE_OP(dev_ops, enable_driver);
2624 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2625 	SET_DEVICE_OP(dev_ops, fill_stat_entry);
2626 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2627 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2628 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2629 	SET_DEVICE_OP(dev_ops, get_link_layer);
2630 	SET_DEVICE_OP(dev_ops, get_netdev);
2631 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2632 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2633 	SET_DEVICE_OP(dev_ops, get_vf_config);
2634 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2635 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2636 	SET_DEVICE_OP(dev_ops, init_port);
2637 	SET_DEVICE_OP(dev_ops, iw_accept);
2638 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2639 	SET_DEVICE_OP(dev_ops, iw_connect);
2640 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2641 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2642 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2643 	SET_DEVICE_OP(dev_ops, iw_reject);
2644 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2645 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2646 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2647 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2648 	SET_DEVICE_OP(dev_ops, mmap);
2649 	SET_DEVICE_OP(dev_ops, mmap_free);
2650 	SET_DEVICE_OP(dev_ops, modify_ah);
2651 	SET_DEVICE_OP(dev_ops, modify_cq);
2652 	SET_DEVICE_OP(dev_ops, modify_device);
2653 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2654 	SET_DEVICE_OP(dev_ops, modify_port);
2655 	SET_DEVICE_OP(dev_ops, modify_qp);
2656 	SET_DEVICE_OP(dev_ops, modify_srq);
2657 	SET_DEVICE_OP(dev_ops, modify_wq);
2658 	SET_DEVICE_OP(dev_ops, peek_cq);
2659 	SET_DEVICE_OP(dev_ops, poll_cq);
2660 	SET_DEVICE_OP(dev_ops, post_recv);
2661 	SET_DEVICE_OP(dev_ops, post_send);
2662 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2663 	SET_DEVICE_OP(dev_ops, process_mad);
2664 	SET_DEVICE_OP(dev_ops, query_ah);
2665 	SET_DEVICE_OP(dev_ops, query_device);
2666 	SET_DEVICE_OP(dev_ops, query_gid);
2667 	SET_DEVICE_OP(dev_ops, query_pkey);
2668 	SET_DEVICE_OP(dev_ops, query_port);
2669 	SET_DEVICE_OP(dev_ops, query_qp);
2670 	SET_DEVICE_OP(dev_ops, query_srq);
2671 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2672 	SET_DEVICE_OP(dev_ops, read_counters);
2673 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2674 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2675 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2676 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2677 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2678 	SET_DEVICE_OP(dev_ops, resize_cq);
2679 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2680 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2681 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2682 
2683 	SET_OBJ_SIZE(dev_ops, ib_ah);
2684 	SET_OBJ_SIZE(dev_ops, ib_cq);
2685 	SET_OBJ_SIZE(dev_ops, ib_pd);
2686 	SET_OBJ_SIZE(dev_ops, ib_srq);
2687 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2688 }
2689 EXPORT_SYMBOL(ib_set_device_ops);
2690 
2691 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2692 	[RDMA_NL_LS_OP_RESOLVE] = {
2693 		.doit = ib_nl_handle_resolve_resp,
2694 		.flags = RDMA_NL_ADMIN_PERM,
2695 	},
2696 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2697 		.doit = ib_nl_handle_set_timeout,
2698 		.flags = RDMA_NL_ADMIN_PERM,
2699 	},
2700 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2701 		.doit = ib_nl_handle_ip_res_resp,
2702 		.flags = RDMA_NL_ADMIN_PERM,
2703 	},
2704 };
2705 
2706 static int __init ib_core_init(void)
2707 {
2708 	int ret;
2709 
2710 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2711 	if (!ib_wq)
2712 		return -ENOMEM;
2713 
2714 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2715 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2716 	if (!ib_comp_wq) {
2717 		ret = -ENOMEM;
2718 		goto err;
2719 	}
2720 
2721 	ib_comp_unbound_wq =
2722 		alloc_workqueue("ib-comp-unb-wq",
2723 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2724 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2725 	if (!ib_comp_unbound_wq) {
2726 		ret = -ENOMEM;
2727 		goto err_comp;
2728 	}
2729 
2730 	ret = class_register(&ib_class);
2731 	if (ret) {
2732 		pr_warn("Couldn't create InfiniBand device class\n");
2733 		goto err_comp_unbound;
2734 	}
2735 
2736 	rdma_nl_init();
2737 
2738 	ret = addr_init();
2739 	if (ret) {
2740 		pr_warn("Could't init IB address resolution\n");
2741 		goto err_ibnl;
2742 	}
2743 
2744 	ret = ib_mad_init();
2745 	if (ret) {
2746 		pr_warn("Couldn't init IB MAD\n");
2747 		goto err_addr;
2748 	}
2749 
2750 	ret = ib_sa_init();
2751 	if (ret) {
2752 		pr_warn("Couldn't init SA\n");
2753 		goto err_mad;
2754 	}
2755 
2756 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2757 	if (ret) {
2758 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2759 		goto err_sa;
2760 	}
2761 
2762 	ret = register_pernet_device(&rdma_dev_net_ops);
2763 	if (ret) {
2764 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2765 		goto err_compat;
2766 	}
2767 
2768 	nldev_init();
2769 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2770 	roce_gid_mgmt_init();
2771 
2772 	return 0;
2773 
2774 err_compat:
2775 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2776 err_sa:
2777 	ib_sa_cleanup();
2778 err_mad:
2779 	ib_mad_cleanup();
2780 err_addr:
2781 	addr_cleanup();
2782 err_ibnl:
2783 	class_unregister(&ib_class);
2784 err_comp_unbound:
2785 	destroy_workqueue(ib_comp_unbound_wq);
2786 err_comp:
2787 	destroy_workqueue(ib_comp_wq);
2788 err:
2789 	destroy_workqueue(ib_wq);
2790 	return ret;
2791 }
2792 
2793 static void __exit ib_core_cleanup(void)
2794 {
2795 	roce_gid_mgmt_cleanup();
2796 	nldev_exit();
2797 	rdma_nl_unregister(RDMA_NL_LS);
2798 	unregister_pernet_device(&rdma_dev_net_ops);
2799 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2800 	ib_sa_cleanup();
2801 	ib_mad_cleanup();
2802 	addr_cleanup();
2803 	rdma_nl_exit();
2804 	class_unregister(&ib_class);
2805 	destroy_workqueue(ib_comp_unbound_wq);
2806 	destroy_workqueue(ib_comp_wq);
2807 	/* Make sure that any pending umem accounting work is done. */
2808 	destroy_workqueue(ib_wq);
2809 	flush_workqueue(system_unbound_wq);
2810 	WARN_ON(!xa_empty(&clients));
2811 	WARN_ON(!xa_empty(&devices));
2812 }
2813 
2814 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2815 
2816 /* ib core relies on netdev stack to first register net_ns_type_operations
2817  * ns kobject type before ib_core initialization.
2818  */
2819 fs_initcall(ib_core_init);
2820 module_exit(ib_core_cleanup);
2821