1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 71 union ib_gid *mgid); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->list, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del(&id_priv->list); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int i; 770 771 cma_dev = NULL; 772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 773 dgid = (union ib_gid *) &addr->sib_addr; 774 pkey = ntohs(addr->sib_pkey); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cur_dev, &dev_list, list) { 778 rdma_for_each_port (cur_dev->device, p) { 779 if (!rdma_cap_af_ib(cur_dev->device, p)) 780 continue; 781 782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 783 continue; 784 785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 786 continue; 787 for (i = 0; !rdma_query_gid(cur_dev->device, 788 p, i, &gid); 789 i++) { 790 if (!memcmp(&gid, dgid, sizeof(gid))) { 791 cma_dev = cur_dev; 792 sgid = gid; 793 id_priv->id.port_num = p; 794 goto found; 795 } 796 797 if (!cma_dev && (gid.global.subnet_prefix == 798 dgid->global.subnet_prefix) && 799 port_state == IB_PORT_ACTIVE) { 800 cma_dev = cur_dev; 801 sgid = gid; 802 id_priv->id.port_num = p; 803 goto found; 804 } 805 } 806 } 807 } 808 mutex_unlock(&lock); 809 return -ENODEV; 810 811 found: 812 cma_attach_to_dev(id_priv, cma_dev); 813 rdma_restrack_add(&id_priv->res); 814 mutex_unlock(&lock); 815 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 816 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 817 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 818 return 0; 819 } 820 821 static void cma_id_get(struct rdma_id_private *id_priv) 822 { 823 refcount_inc(&id_priv->refcount); 824 } 825 826 static void cma_id_put(struct rdma_id_private *id_priv) 827 { 828 if (refcount_dec_and_test(&id_priv->refcount)) 829 complete(&id_priv->comp); 830 } 831 832 static struct rdma_id_private * 833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 834 void *context, enum rdma_ucm_port_space ps, 835 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 836 { 837 struct rdma_id_private *id_priv; 838 839 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 840 if (!id_priv) 841 return ERR_PTR(-ENOMEM); 842 843 id_priv->state = RDMA_CM_IDLE; 844 id_priv->id.context = context; 845 id_priv->id.event_handler = event_handler; 846 id_priv->id.ps = ps; 847 id_priv->id.qp_type = qp_type; 848 id_priv->tos_set = false; 849 id_priv->timeout_set = false; 850 id_priv->min_rnr_timer_set = false; 851 id_priv->gid_type = IB_GID_TYPE_IB; 852 spin_lock_init(&id_priv->lock); 853 mutex_init(&id_priv->qp_mutex); 854 init_completion(&id_priv->comp); 855 refcount_set(&id_priv->refcount, 1); 856 mutex_init(&id_priv->handler_mutex); 857 INIT_LIST_HEAD(&id_priv->listen_list); 858 INIT_LIST_HEAD(&id_priv->mc_list); 859 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 860 id_priv->id.route.addr.dev_addr.net = get_net(net); 861 id_priv->seq_num &= 0x00ffffff; 862 863 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 864 if (parent) 865 rdma_restrack_parent_name(&id_priv->res, &parent->res); 866 867 return id_priv; 868 } 869 870 struct rdma_cm_id * 871 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 872 void *context, enum rdma_ucm_port_space ps, 873 enum ib_qp_type qp_type, const char *caller) 874 { 875 struct rdma_id_private *ret; 876 877 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 878 if (IS_ERR(ret)) 879 return ERR_CAST(ret); 880 881 rdma_restrack_set_name(&ret->res, caller); 882 return &ret->id; 883 } 884 EXPORT_SYMBOL(__rdma_create_kernel_id); 885 886 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 887 void *context, 888 enum rdma_ucm_port_space ps, 889 enum ib_qp_type qp_type) 890 { 891 struct rdma_id_private *ret; 892 893 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 894 ps, qp_type, NULL); 895 if (IS_ERR(ret)) 896 return ERR_CAST(ret); 897 898 rdma_restrack_set_name(&ret->res, NULL); 899 return &ret->id; 900 } 901 EXPORT_SYMBOL(rdma_create_user_id); 902 903 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 904 { 905 struct ib_qp_attr qp_attr; 906 int qp_attr_mask, ret; 907 908 qp_attr.qp_state = IB_QPS_INIT; 909 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 910 if (ret) 911 return ret; 912 913 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 914 if (ret) 915 return ret; 916 917 qp_attr.qp_state = IB_QPS_RTR; 918 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 919 if (ret) 920 return ret; 921 922 qp_attr.qp_state = IB_QPS_RTS; 923 qp_attr.sq_psn = 0; 924 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 925 926 return ret; 927 } 928 929 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 930 { 931 struct ib_qp_attr qp_attr; 932 int qp_attr_mask, ret; 933 934 qp_attr.qp_state = IB_QPS_INIT; 935 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 936 if (ret) 937 return ret; 938 939 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 940 } 941 942 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 943 struct ib_qp_init_attr *qp_init_attr) 944 { 945 struct rdma_id_private *id_priv; 946 struct ib_qp *qp; 947 int ret; 948 949 id_priv = container_of(id, struct rdma_id_private, id); 950 if (id->device != pd->device) { 951 ret = -EINVAL; 952 goto out_err; 953 } 954 955 qp_init_attr->port_num = id->port_num; 956 qp = ib_create_qp(pd, qp_init_attr); 957 if (IS_ERR(qp)) { 958 ret = PTR_ERR(qp); 959 goto out_err; 960 } 961 962 if (id->qp_type == IB_QPT_UD) 963 ret = cma_init_ud_qp(id_priv, qp); 964 else 965 ret = cma_init_conn_qp(id_priv, qp); 966 if (ret) 967 goto out_destroy; 968 969 id->qp = qp; 970 id_priv->qp_num = qp->qp_num; 971 id_priv->srq = (qp->srq != NULL); 972 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 973 return 0; 974 out_destroy: 975 ib_destroy_qp(qp); 976 out_err: 977 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 978 return ret; 979 } 980 EXPORT_SYMBOL(rdma_create_qp); 981 982 void rdma_destroy_qp(struct rdma_cm_id *id) 983 { 984 struct rdma_id_private *id_priv; 985 986 id_priv = container_of(id, struct rdma_id_private, id); 987 trace_cm_qp_destroy(id_priv); 988 mutex_lock(&id_priv->qp_mutex); 989 ib_destroy_qp(id_priv->id.qp); 990 id_priv->id.qp = NULL; 991 mutex_unlock(&id_priv->qp_mutex); 992 } 993 EXPORT_SYMBOL(rdma_destroy_qp); 994 995 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 996 struct rdma_conn_param *conn_param) 997 { 998 struct ib_qp_attr qp_attr; 999 int qp_attr_mask, ret; 1000 1001 mutex_lock(&id_priv->qp_mutex); 1002 if (!id_priv->id.qp) { 1003 ret = 0; 1004 goto out; 1005 } 1006 1007 /* Need to update QP attributes from default values. */ 1008 qp_attr.qp_state = IB_QPS_INIT; 1009 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1010 if (ret) 1011 goto out; 1012 1013 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1014 if (ret) 1015 goto out; 1016 1017 qp_attr.qp_state = IB_QPS_RTR; 1018 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1019 if (ret) 1020 goto out; 1021 1022 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1023 1024 if (conn_param) 1025 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1026 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1027 out: 1028 mutex_unlock(&id_priv->qp_mutex); 1029 return ret; 1030 } 1031 1032 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1033 struct rdma_conn_param *conn_param) 1034 { 1035 struct ib_qp_attr qp_attr; 1036 int qp_attr_mask, ret; 1037 1038 mutex_lock(&id_priv->qp_mutex); 1039 if (!id_priv->id.qp) { 1040 ret = 0; 1041 goto out; 1042 } 1043 1044 qp_attr.qp_state = IB_QPS_RTS; 1045 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1046 if (ret) 1047 goto out; 1048 1049 if (conn_param) 1050 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1051 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1052 out: 1053 mutex_unlock(&id_priv->qp_mutex); 1054 return ret; 1055 } 1056 1057 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1058 { 1059 struct ib_qp_attr qp_attr; 1060 int ret; 1061 1062 mutex_lock(&id_priv->qp_mutex); 1063 if (!id_priv->id.qp) { 1064 ret = 0; 1065 goto out; 1066 } 1067 1068 qp_attr.qp_state = IB_QPS_ERR; 1069 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1070 out: 1071 mutex_unlock(&id_priv->qp_mutex); 1072 return ret; 1073 } 1074 1075 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1076 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1077 { 1078 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1079 int ret; 1080 u16 pkey; 1081 1082 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1083 pkey = 0xffff; 1084 else 1085 pkey = ib_addr_get_pkey(dev_addr); 1086 1087 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1088 pkey, &qp_attr->pkey_index); 1089 if (ret) 1090 return ret; 1091 1092 qp_attr->port_num = id_priv->id.port_num; 1093 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1094 1095 if (id_priv->id.qp_type == IB_QPT_UD) { 1096 ret = cma_set_qkey(id_priv, 0); 1097 if (ret) 1098 return ret; 1099 1100 qp_attr->qkey = id_priv->qkey; 1101 *qp_attr_mask |= IB_QP_QKEY; 1102 } else { 1103 qp_attr->qp_access_flags = 0; 1104 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1105 } 1106 return 0; 1107 } 1108 1109 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1110 int *qp_attr_mask) 1111 { 1112 struct rdma_id_private *id_priv; 1113 int ret = 0; 1114 1115 id_priv = container_of(id, struct rdma_id_private, id); 1116 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1117 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1118 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1119 else 1120 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1121 qp_attr_mask); 1122 1123 if (qp_attr->qp_state == IB_QPS_RTR) 1124 qp_attr->rq_psn = id_priv->seq_num; 1125 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1126 if (!id_priv->cm_id.iw) { 1127 qp_attr->qp_access_flags = 0; 1128 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1129 } else 1130 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1131 qp_attr_mask); 1132 qp_attr->port_num = id_priv->id.port_num; 1133 *qp_attr_mask |= IB_QP_PORT; 1134 } else { 1135 ret = -ENOSYS; 1136 } 1137 1138 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1139 qp_attr->timeout = id_priv->timeout; 1140 1141 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1142 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(rdma_init_qp_attr); 1147 1148 static inline bool cma_zero_addr(const struct sockaddr *addr) 1149 { 1150 switch (addr->sa_family) { 1151 case AF_INET: 1152 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1153 case AF_INET6: 1154 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1155 case AF_IB: 1156 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1157 default: 1158 return false; 1159 } 1160 } 1161 1162 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1163 { 1164 switch (addr->sa_family) { 1165 case AF_INET: 1166 return ipv4_is_loopback( 1167 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1168 case AF_INET6: 1169 return ipv6_addr_loopback( 1170 &((struct sockaddr_in6 *)addr)->sin6_addr); 1171 case AF_IB: 1172 return ib_addr_loopback( 1173 &((struct sockaddr_ib *)addr)->sib_addr); 1174 default: 1175 return false; 1176 } 1177 } 1178 1179 static inline bool cma_any_addr(const struct sockaddr *addr) 1180 { 1181 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1182 } 1183 1184 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1185 { 1186 if (src->sa_family != dst->sa_family) 1187 return -1; 1188 1189 switch (src->sa_family) { 1190 case AF_INET: 1191 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1192 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1193 case AF_INET6: { 1194 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1195 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1196 bool link_local; 1197 1198 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1199 &dst_addr6->sin6_addr)) 1200 return 1; 1201 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1202 IPV6_ADDR_LINKLOCAL; 1203 /* Link local must match their scope_ids */ 1204 return link_local ? (src_addr6->sin6_scope_id != 1205 dst_addr6->sin6_scope_id) : 1206 0; 1207 } 1208 1209 default: 1210 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1211 &((struct sockaddr_ib *) dst)->sib_addr); 1212 } 1213 } 1214 1215 static __be16 cma_port(const struct sockaddr *addr) 1216 { 1217 struct sockaddr_ib *sib; 1218 1219 switch (addr->sa_family) { 1220 case AF_INET: 1221 return ((struct sockaddr_in *) addr)->sin_port; 1222 case AF_INET6: 1223 return ((struct sockaddr_in6 *) addr)->sin6_port; 1224 case AF_IB: 1225 sib = (struct sockaddr_ib *) addr; 1226 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1227 be64_to_cpu(sib->sib_sid_mask))); 1228 default: 1229 return 0; 1230 } 1231 } 1232 1233 static inline int cma_any_port(const struct sockaddr *addr) 1234 { 1235 return !cma_port(addr); 1236 } 1237 1238 static void cma_save_ib_info(struct sockaddr *src_addr, 1239 struct sockaddr *dst_addr, 1240 const struct rdma_cm_id *listen_id, 1241 const struct sa_path_rec *path) 1242 { 1243 struct sockaddr_ib *listen_ib, *ib; 1244 1245 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1246 if (src_addr) { 1247 ib = (struct sockaddr_ib *)src_addr; 1248 ib->sib_family = AF_IB; 1249 if (path) { 1250 ib->sib_pkey = path->pkey; 1251 ib->sib_flowinfo = path->flow_label; 1252 memcpy(&ib->sib_addr, &path->sgid, 16); 1253 ib->sib_sid = path->service_id; 1254 ib->sib_scope_id = 0; 1255 } else { 1256 ib->sib_pkey = listen_ib->sib_pkey; 1257 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1258 ib->sib_addr = listen_ib->sib_addr; 1259 ib->sib_sid = listen_ib->sib_sid; 1260 ib->sib_scope_id = listen_ib->sib_scope_id; 1261 } 1262 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1263 } 1264 if (dst_addr) { 1265 ib = (struct sockaddr_ib *)dst_addr; 1266 ib->sib_family = AF_IB; 1267 if (path) { 1268 ib->sib_pkey = path->pkey; 1269 ib->sib_flowinfo = path->flow_label; 1270 memcpy(&ib->sib_addr, &path->dgid, 16); 1271 } 1272 } 1273 } 1274 1275 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1276 struct sockaddr_in *dst_addr, 1277 struct cma_hdr *hdr, 1278 __be16 local_port) 1279 { 1280 if (src_addr) { 1281 *src_addr = (struct sockaddr_in) { 1282 .sin_family = AF_INET, 1283 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1284 .sin_port = local_port, 1285 }; 1286 } 1287 1288 if (dst_addr) { 1289 *dst_addr = (struct sockaddr_in) { 1290 .sin_family = AF_INET, 1291 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1292 .sin_port = hdr->port, 1293 }; 1294 } 1295 } 1296 1297 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1298 struct sockaddr_in6 *dst_addr, 1299 struct cma_hdr *hdr, 1300 __be16 local_port) 1301 { 1302 if (src_addr) { 1303 *src_addr = (struct sockaddr_in6) { 1304 .sin6_family = AF_INET6, 1305 .sin6_addr = hdr->dst_addr.ip6, 1306 .sin6_port = local_port, 1307 }; 1308 } 1309 1310 if (dst_addr) { 1311 *dst_addr = (struct sockaddr_in6) { 1312 .sin6_family = AF_INET6, 1313 .sin6_addr = hdr->src_addr.ip6, 1314 .sin6_port = hdr->port, 1315 }; 1316 } 1317 } 1318 1319 static u16 cma_port_from_service_id(__be64 service_id) 1320 { 1321 return (u16)be64_to_cpu(service_id); 1322 } 1323 1324 static int cma_save_ip_info(struct sockaddr *src_addr, 1325 struct sockaddr *dst_addr, 1326 const struct ib_cm_event *ib_event, 1327 __be64 service_id) 1328 { 1329 struct cma_hdr *hdr; 1330 __be16 port; 1331 1332 hdr = ib_event->private_data; 1333 if (hdr->cma_version != CMA_VERSION) 1334 return -EINVAL; 1335 1336 port = htons(cma_port_from_service_id(service_id)); 1337 1338 switch (cma_get_ip_ver(hdr)) { 1339 case 4: 1340 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1341 (struct sockaddr_in *)dst_addr, hdr, port); 1342 break; 1343 case 6: 1344 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1345 (struct sockaddr_in6 *)dst_addr, hdr, port); 1346 break; 1347 default: 1348 return -EAFNOSUPPORT; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int cma_save_net_info(struct sockaddr *src_addr, 1355 struct sockaddr *dst_addr, 1356 const struct rdma_cm_id *listen_id, 1357 const struct ib_cm_event *ib_event, 1358 sa_family_t sa_family, __be64 service_id) 1359 { 1360 if (sa_family == AF_IB) { 1361 if (ib_event->event == IB_CM_REQ_RECEIVED) 1362 cma_save_ib_info(src_addr, dst_addr, listen_id, 1363 ib_event->param.req_rcvd.primary_path); 1364 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1365 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1366 return 0; 1367 } 1368 1369 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1370 } 1371 1372 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1373 struct cma_req_info *req) 1374 { 1375 const struct ib_cm_req_event_param *req_param = 1376 &ib_event->param.req_rcvd; 1377 const struct ib_cm_sidr_req_event_param *sidr_param = 1378 &ib_event->param.sidr_req_rcvd; 1379 1380 switch (ib_event->event) { 1381 case IB_CM_REQ_RECEIVED: 1382 req->device = req_param->listen_id->device; 1383 req->port = req_param->port; 1384 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1385 sizeof(req->local_gid)); 1386 req->has_gid = true; 1387 req->service_id = req_param->primary_path->service_id; 1388 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1389 if (req->pkey != req_param->bth_pkey) 1390 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1391 "RDMA CMA: in the future this may cause the request to be dropped\n", 1392 req_param->bth_pkey, req->pkey); 1393 break; 1394 case IB_CM_SIDR_REQ_RECEIVED: 1395 req->device = sidr_param->listen_id->device; 1396 req->port = sidr_param->port; 1397 req->has_gid = false; 1398 req->service_id = sidr_param->service_id; 1399 req->pkey = sidr_param->pkey; 1400 if (req->pkey != sidr_param->bth_pkey) 1401 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1402 "RDMA CMA: in the future this may cause the request to be dropped\n", 1403 sidr_param->bth_pkey, req->pkey); 1404 break; 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1413 const struct sockaddr_in *dst_addr, 1414 const struct sockaddr_in *src_addr) 1415 { 1416 __be32 daddr = dst_addr->sin_addr.s_addr, 1417 saddr = src_addr->sin_addr.s_addr; 1418 struct fib_result res; 1419 struct flowi4 fl4; 1420 int err; 1421 bool ret; 1422 1423 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1424 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1425 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1426 ipv4_is_loopback(saddr)) 1427 return false; 1428 1429 memset(&fl4, 0, sizeof(fl4)); 1430 fl4.flowi4_iif = net_dev->ifindex; 1431 fl4.daddr = daddr; 1432 fl4.saddr = saddr; 1433 1434 rcu_read_lock(); 1435 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1436 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1437 rcu_read_unlock(); 1438 1439 return ret; 1440 } 1441 1442 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1443 const struct sockaddr_in6 *dst_addr, 1444 const struct sockaddr_in6 *src_addr) 1445 { 1446 #if IS_ENABLED(CONFIG_IPV6) 1447 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1448 IPV6_ADDR_LINKLOCAL; 1449 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1450 &src_addr->sin6_addr, net_dev->ifindex, 1451 NULL, strict); 1452 bool ret; 1453 1454 if (!rt) 1455 return false; 1456 1457 ret = rt->rt6i_idev->dev == net_dev; 1458 ip6_rt_put(rt); 1459 1460 return ret; 1461 #else 1462 return false; 1463 #endif 1464 } 1465 1466 static bool validate_net_dev(struct net_device *net_dev, 1467 const struct sockaddr *daddr, 1468 const struct sockaddr *saddr) 1469 { 1470 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1471 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1472 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1473 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1474 1475 switch (daddr->sa_family) { 1476 case AF_INET: 1477 return saddr->sa_family == AF_INET && 1478 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1479 1480 case AF_INET6: 1481 return saddr->sa_family == AF_INET6 && 1482 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1483 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 static struct net_device * 1490 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1491 { 1492 const struct ib_gid_attr *sgid_attr = NULL; 1493 struct net_device *ndev; 1494 1495 if (ib_event->event == IB_CM_REQ_RECEIVED) 1496 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1497 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1498 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1499 1500 if (!sgid_attr) 1501 return NULL; 1502 1503 rcu_read_lock(); 1504 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1505 if (IS_ERR(ndev)) 1506 ndev = NULL; 1507 else 1508 dev_hold(ndev); 1509 rcu_read_unlock(); 1510 return ndev; 1511 } 1512 1513 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1514 struct cma_req_info *req) 1515 { 1516 struct sockaddr *listen_addr = 1517 (struct sockaddr *)&req->listen_addr_storage; 1518 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1519 struct net_device *net_dev; 1520 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1521 int err; 1522 1523 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1524 req->service_id); 1525 if (err) 1526 return ERR_PTR(err); 1527 1528 if (rdma_protocol_roce(req->device, req->port)) 1529 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1530 else 1531 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1532 req->pkey, 1533 gid, listen_addr); 1534 if (!net_dev) 1535 return ERR_PTR(-ENODEV); 1536 1537 return net_dev; 1538 } 1539 1540 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1541 { 1542 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1543 } 1544 1545 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1546 const struct cma_hdr *hdr) 1547 { 1548 struct sockaddr *addr = cma_src_addr(id_priv); 1549 __be32 ip4_addr; 1550 struct in6_addr ip6_addr; 1551 1552 if (cma_any_addr(addr) && !id_priv->afonly) 1553 return true; 1554 1555 switch (addr->sa_family) { 1556 case AF_INET: 1557 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1558 if (cma_get_ip_ver(hdr) != 4) 1559 return false; 1560 if (!cma_any_addr(addr) && 1561 hdr->dst_addr.ip4.addr != ip4_addr) 1562 return false; 1563 break; 1564 case AF_INET6: 1565 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1566 if (cma_get_ip_ver(hdr) != 6) 1567 return false; 1568 if (!cma_any_addr(addr) && 1569 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1570 return false; 1571 break; 1572 case AF_IB: 1573 return true; 1574 default: 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1582 { 1583 struct ib_device *device = id->device; 1584 const u32 port_num = id->port_num ?: rdma_start_port(device); 1585 1586 return rdma_protocol_roce(device, port_num); 1587 } 1588 1589 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1590 { 1591 const struct sockaddr *daddr = 1592 (const struct sockaddr *)&req->listen_addr_storage; 1593 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1594 1595 /* Returns true if the req is for IPv6 link local */ 1596 return (daddr->sa_family == AF_INET6 && 1597 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1598 } 1599 1600 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1601 const struct net_device *net_dev, 1602 const struct cma_req_info *req) 1603 { 1604 const struct rdma_addr *addr = &id->route.addr; 1605 1606 if (!net_dev) 1607 /* This request is an AF_IB request */ 1608 return (!id->port_num || id->port_num == req->port) && 1609 (addr->src_addr.ss_family == AF_IB); 1610 1611 /* 1612 * If the request is not for IPv6 link local, allow matching 1613 * request to any netdevice of the one or multiport rdma device. 1614 */ 1615 if (!cma_is_req_ipv6_ll(req)) 1616 return true; 1617 /* 1618 * Net namespaces must match, and if the listner is listening 1619 * on a specific netdevice than netdevice must match as well. 1620 */ 1621 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1622 (!!addr->dev_addr.bound_dev_if == 1623 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1624 return true; 1625 else 1626 return false; 1627 } 1628 1629 static struct rdma_id_private *cma_find_listener( 1630 const struct rdma_bind_list *bind_list, 1631 const struct ib_cm_id *cm_id, 1632 const struct ib_cm_event *ib_event, 1633 const struct cma_req_info *req, 1634 const struct net_device *net_dev) 1635 { 1636 struct rdma_id_private *id_priv, *id_priv_dev; 1637 1638 lockdep_assert_held(&lock); 1639 1640 if (!bind_list) 1641 return ERR_PTR(-EINVAL); 1642 1643 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1644 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1645 if (id_priv->id.device == cm_id->device && 1646 cma_match_net_dev(&id_priv->id, net_dev, req)) 1647 return id_priv; 1648 list_for_each_entry(id_priv_dev, 1649 &id_priv->listen_list, 1650 listen_list) { 1651 if (id_priv_dev->id.device == cm_id->device && 1652 cma_match_net_dev(&id_priv_dev->id, 1653 net_dev, req)) 1654 return id_priv_dev; 1655 } 1656 } 1657 } 1658 1659 return ERR_PTR(-EINVAL); 1660 } 1661 1662 static struct rdma_id_private * 1663 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1664 const struct ib_cm_event *ib_event, 1665 struct cma_req_info *req, 1666 struct net_device **net_dev) 1667 { 1668 struct rdma_bind_list *bind_list; 1669 struct rdma_id_private *id_priv; 1670 int err; 1671 1672 err = cma_save_req_info(ib_event, req); 1673 if (err) 1674 return ERR_PTR(err); 1675 1676 *net_dev = cma_get_net_dev(ib_event, req); 1677 if (IS_ERR(*net_dev)) { 1678 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1679 /* Assuming the protocol is AF_IB */ 1680 *net_dev = NULL; 1681 } else { 1682 return ERR_CAST(*net_dev); 1683 } 1684 } 1685 1686 mutex_lock(&lock); 1687 /* 1688 * Net namespace might be getting deleted while route lookup, 1689 * cm_id lookup is in progress. Therefore, perform netdevice 1690 * validation, cm_id lookup under rcu lock. 1691 * RCU lock along with netdevice state check, synchronizes with 1692 * netdevice migrating to different net namespace and also avoids 1693 * case where net namespace doesn't get deleted while lookup is in 1694 * progress. 1695 * If the device state is not IFF_UP, its properties such as ifindex 1696 * and nd_net cannot be trusted to remain valid without rcu lock. 1697 * net/core/dev.c change_net_namespace() ensures to synchronize with 1698 * ongoing operations on net device after device is closed using 1699 * synchronize_net(). 1700 */ 1701 rcu_read_lock(); 1702 if (*net_dev) { 1703 /* 1704 * If netdevice is down, it is likely that it is administratively 1705 * down or it might be migrating to different namespace. 1706 * In that case avoid further processing, as the net namespace 1707 * or ifindex may change. 1708 */ 1709 if (((*net_dev)->flags & IFF_UP) == 0) { 1710 id_priv = ERR_PTR(-EHOSTUNREACH); 1711 goto err; 1712 } 1713 1714 if (!validate_net_dev(*net_dev, 1715 (struct sockaddr *)&req->listen_addr_storage, 1716 (struct sockaddr *)&req->src_addr_storage)) { 1717 id_priv = ERR_PTR(-EHOSTUNREACH); 1718 goto err; 1719 } 1720 } 1721 1722 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1723 rdma_ps_from_service_id(req->service_id), 1724 cma_port_from_service_id(req->service_id)); 1725 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1726 err: 1727 rcu_read_unlock(); 1728 mutex_unlock(&lock); 1729 if (IS_ERR(id_priv) && *net_dev) { 1730 dev_put(*net_dev); 1731 *net_dev = NULL; 1732 } 1733 return id_priv; 1734 } 1735 1736 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1737 { 1738 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1739 } 1740 1741 static void cma_cancel_route(struct rdma_id_private *id_priv) 1742 { 1743 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1744 if (id_priv->query) 1745 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1746 } 1747 } 1748 1749 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1750 { 1751 struct rdma_id_private *dev_id_priv; 1752 1753 lockdep_assert_held(&lock); 1754 1755 /* 1756 * Remove from listen_any_list to prevent added devices from spawning 1757 * additional listen requests. 1758 */ 1759 list_del(&id_priv->list); 1760 1761 while (!list_empty(&id_priv->listen_list)) { 1762 dev_id_priv = list_entry(id_priv->listen_list.next, 1763 struct rdma_id_private, listen_list); 1764 /* sync with device removal to avoid duplicate destruction */ 1765 list_del_init(&dev_id_priv->list); 1766 list_del(&dev_id_priv->listen_list); 1767 mutex_unlock(&lock); 1768 1769 rdma_destroy_id(&dev_id_priv->id); 1770 mutex_lock(&lock); 1771 } 1772 } 1773 1774 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1775 { 1776 mutex_lock(&lock); 1777 _cma_cancel_listens(id_priv); 1778 mutex_unlock(&lock); 1779 } 1780 1781 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1782 enum rdma_cm_state state) 1783 { 1784 switch (state) { 1785 case RDMA_CM_ADDR_QUERY: 1786 /* 1787 * We can avoid doing the rdma_addr_cancel() based on state, 1788 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1789 * Notice that the addr_handler work could still be exiting 1790 * outside this state, however due to the interaction with the 1791 * handler_mutex the work is guaranteed not to touch id_priv 1792 * during exit. 1793 */ 1794 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1795 break; 1796 case RDMA_CM_ROUTE_QUERY: 1797 cma_cancel_route(id_priv); 1798 break; 1799 case RDMA_CM_LISTEN: 1800 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1801 cma_cancel_listens(id_priv); 1802 break; 1803 default: 1804 break; 1805 } 1806 } 1807 1808 static void cma_release_port(struct rdma_id_private *id_priv) 1809 { 1810 struct rdma_bind_list *bind_list = id_priv->bind_list; 1811 struct net *net = id_priv->id.route.addr.dev_addr.net; 1812 1813 if (!bind_list) 1814 return; 1815 1816 mutex_lock(&lock); 1817 hlist_del(&id_priv->node); 1818 if (hlist_empty(&bind_list->owners)) { 1819 cma_ps_remove(net, bind_list->ps, bind_list->port); 1820 kfree(bind_list); 1821 } 1822 mutex_unlock(&lock); 1823 } 1824 1825 static void destroy_mc(struct rdma_id_private *id_priv, 1826 struct cma_multicast *mc) 1827 { 1828 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1829 1830 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1831 ib_sa_free_multicast(mc->sa_mc); 1832 1833 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1834 struct rdma_dev_addr *dev_addr = 1835 &id_priv->id.route.addr.dev_addr; 1836 struct net_device *ndev = NULL; 1837 1838 if (dev_addr->bound_dev_if) 1839 ndev = dev_get_by_index(dev_addr->net, 1840 dev_addr->bound_dev_if); 1841 if (ndev) { 1842 union ib_gid mgid; 1843 1844 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1845 &mgid); 1846 1847 if (!send_only) 1848 cma_igmp_send(ndev, &mgid, false); 1849 1850 dev_put(ndev); 1851 } 1852 1853 cancel_work_sync(&mc->iboe_join.work); 1854 } 1855 kfree(mc); 1856 } 1857 1858 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1859 { 1860 struct cma_multicast *mc; 1861 1862 while (!list_empty(&id_priv->mc_list)) { 1863 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1864 list); 1865 list_del(&mc->list); 1866 destroy_mc(id_priv, mc); 1867 } 1868 } 1869 1870 static void _destroy_id(struct rdma_id_private *id_priv, 1871 enum rdma_cm_state state) 1872 { 1873 cma_cancel_operation(id_priv, state); 1874 1875 rdma_restrack_del(&id_priv->res); 1876 if (id_priv->cma_dev) { 1877 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1878 if (id_priv->cm_id.ib) 1879 ib_destroy_cm_id(id_priv->cm_id.ib); 1880 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1881 if (id_priv->cm_id.iw) 1882 iw_destroy_cm_id(id_priv->cm_id.iw); 1883 } 1884 cma_leave_mc_groups(id_priv); 1885 cma_release_dev(id_priv); 1886 } 1887 1888 cma_release_port(id_priv); 1889 cma_id_put(id_priv); 1890 wait_for_completion(&id_priv->comp); 1891 1892 if (id_priv->internal_id) 1893 cma_id_put(id_priv->id.context); 1894 1895 kfree(id_priv->id.route.path_rec); 1896 1897 put_net(id_priv->id.route.addr.dev_addr.net); 1898 kfree(id_priv); 1899 } 1900 1901 /* 1902 * destroy an ID from within the handler_mutex. This ensures that no other 1903 * handlers can start running concurrently. 1904 */ 1905 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1906 __releases(&idprv->handler_mutex) 1907 { 1908 enum rdma_cm_state state; 1909 unsigned long flags; 1910 1911 trace_cm_id_destroy(id_priv); 1912 1913 /* 1914 * Setting the state to destroyed under the handler mutex provides a 1915 * fence against calling handler callbacks. If this is invoked due to 1916 * the failure of a handler callback then it guarentees that no future 1917 * handlers will be called. 1918 */ 1919 lockdep_assert_held(&id_priv->handler_mutex); 1920 spin_lock_irqsave(&id_priv->lock, flags); 1921 state = id_priv->state; 1922 id_priv->state = RDMA_CM_DESTROYING; 1923 spin_unlock_irqrestore(&id_priv->lock, flags); 1924 mutex_unlock(&id_priv->handler_mutex); 1925 _destroy_id(id_priv, state); 1926 } 1927 1928 void rdma_destroy_id(struct rdma_cm_id *id) 1929 { 1930 struct rdma_id_private *id_priv = 1931 container_of(id, struct rdma_id_private, id); 1932 1933 mutex_lock(&id_priv->handler_mutex); 1934 destroy_id_handler_unlock(id_priv); 1935 } 1936 EXPORT_SYMBOL(rdma_destroy_id); 1937 1938 static int cma_rep_recv(struct rdma_id_private *id_priv) 1939 { 1940 int ret; 1941 1942 ret = cma_modify_qp_rtr(id_priv, NULL); 1943 if (ret) 1944 goto reject; 1945 1946 ret = cma_modify_qp_rts(id_priv, NULL); 1947 if (ret) 1948 goto reject; 1949 1950 trace_cm_send_rtu(id_priv); 1951 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1952 if (ret) 1953 goto reject; 1954 1955 return 0; 1956 reject: 1957 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1958 cma_modify_qp_err(id_priv); 1959 trace_cm_send_rej(id_priv); 1960 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1961 NULL, 0, NULL, 0); 1962 return ret; 1963 } 1964 1965 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1966 const struct ib_cm_rep_event_param *rep_data, 1967 void *private_data) 1968 { 1969 event->param.conn.private_data = private_data; 1970 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1971 event->param.conn.responder_resources = rep_data->responder_resources; 1972 event->param.conn.initiator_depth = rep_data->initiator_depth; 1973 event->param.conn.flow_control = rep_data->flow_control; 1974 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1975 event->param.conn.srq = rep_data->srq; 1976 event->param.conn.qp_num = rep_data->remote_qpn; 1977 1978 event->ece.vendor_id = rep_data->ece.vendor_id; 1979 event->ece.attr_mod = rep_data->ece.attr_mod; 1980 } 1981 1982 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1983 struct rdma_cm_event *event) 1984 { 1985 int ret; 1986 1987 lockdep_assert_held(&id_priv->handler_mutex); 1988 1989 trace_cm_event_handler(id_priv, event); 1990 ret = id_priv->id.event_handler(&id_priv->id, event); 1991 trace_cm_event_done(id_priv, event, ret); 1992 return ret; 1993 } 1994 1995 static int cma_ib_handler(struct ib_cm_id *cm_id, 1996 const struct ib_cm_event *ib_event) 1997 { 1998 struct rdma_id_private *id_priv = cm_id->context; 1999 struct rdma_cm_event event = {}; 2000 enum rdma_cm_state state; 2001 int ret; 2002 2003 mutex_lock(&id_priv->handler_mutex); 2004 state = READ_ONCE(id_priv->state); 2005 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2006 state != RDMA_CM_CONNECT) || 2007 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2008 state != RDMA_CM_DISCONNECT)) 2009 goto out; 2010 2011 switch (ib_event->event) { 2012 case IB_CM_REQ_ERROR: 2013 case IB_CM_REP_ERROR: 2014 event.event = RDMA_CM_EVENT_UNREACHABLE; 2015 event.status = -ETIMEDOUT; 2016 break; 2017 case IB_CM_REP_RECEIVED: 2018 if (state == RDMA_CM_CONNECT && 2019 (id_priv->id.qp_type != IB_QPT_UD)) { 2020 trace_cm_send_mra(id_priv); 2021 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2022 } 2023 if (id_priv->id.qp) { 2024 event.status = cma_rep_recv(id_priv); 2025 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2026 RDMA_CM_EVENT_ESTABLISHED; 2027 } else { 2028 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2029 } 2030 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2031 ib_event->private_data); 2032 break; 2033 case IB_CM_RTU_RECEIVED: 2034 case IB_CM_USER_ESTABLISHED: 2035 event.event = RDMA_CM_EVENT_ESTABLISHED; 2036 break; 2037 case IB_CM_DREQ_ERROR: 2038 event.status = -ETIMEDOUT; 2039 fallthrough; 2040 case IB_CM_DREQ_RECEIVED: 2041 case IB_CM_DREP_RECEIVED: 2042 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2043 RDMA_CM_DISCONNECT)) 2044 goto out; 2045 event.event = RDMA_CM_EVENT_DISCONNECTED; 2046 break; 2047 case IB_CM_TIMEWAIT_EXIT: 2048 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2049 break; 2050 case IB_CM_MRA_RECEIVED: 2051 /* ignore event */ 2052 goto out; 2053 case IB_CM_REJ_RECEIVED: 2054 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2055 ib_event->param.rej_rcvd.reason)); 2056 cma_modify_qp_err(id_priv); 2057 event.status = ib_event->param.rej_rcvd.reason; 2058 event.event = RDMA_CM_EVENT_REJECTED; 2059 event.param.conn.private_data = ib_event->private_data; 2060 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2061 break; 2062 default: 2063 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2064 ib_event->event); 2065 goto out; 2066 } 2067 2068 ret = cma_cm_event_handler(id_priv, &event); 2069 if (ret) { 2070 /* Destroy the CM ID by returning a non-zero value. */ 2071 id_priv->cm_id.ib = NULL; 2072 destroy_id_handler_unlock(id_priv); 2073 return ret; 2074 } 2075 out: 2076 mutex_unlock(&id_priv->handler_mutex); 2077 return 0; 2078 } 2079 2080 static struct rdma_id_private * 2081 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2082 const struct ib_cm_event *ib_event, 2083 struct net_device *net_dev) 2084 { 2085 struct rdma_id_private *listen_id_priv; 2086 struct rdma_id_private *id_priv; 2087 struct rdma_cm_id *id; 2088 struct rdma_route *rt; 2089 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2090 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2091 const __be64 service_id = 2092 ib_event->param.req_rcvd.primary_path->service_id; 2093 int ret; 2094 2095 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2096 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2097 listen_id->event_handler, listen_id->context, 2098 listen_id->ps, 2099 ib_event->param.req_rcvd.qp_type, 2100 listen_id_priv); 2101 if (IS_ERR(id_priv)) 2102 return NULL; 2103 2104 id = &id_priv->id; 2105 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2106 (struct sockaddr *)&id->route.addr.dst_addr, 2107 listen_id, ib_event, ss_family, service_id)) 2108 goto err; 2109 2110 rt = &id->route; 2111 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2112 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2113 GFP_KERNEL); 2114 if (!rt->path_rec) 2115 goto err; 2116 2117 rt->path_rec[0] = *path; 2118 if (rt->num_paths == 2) 2119 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2120 2121 if (net_dev) { 2122 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2123 } else { 2124 if (!cma_protocol_roce(listen_id) && 2125 cma_any_addr(cma_src_addr(id_priv))) { 2126 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2127 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2128 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2129 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2130 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2131 if (ret) 2132 goto err; 2133 } 2134 } 2135 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2136 2137 id_priv->state = RDMA_CM_CONNECT; 2138 return id_priv; 2139 2140 err: 2141 rdma_destroy_id(id); 2142 return NULL; 2143 } 2144 2145 static struct rdma_id_private * 2146 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2147 const struct ib_cm_event *ib_event, 2148 struct net_device *net_dev) 2149 { 2150 const struct rdma_id_private *listen_id_priv; 2151 struct rdma_id_private *id_priv; 2152 struct rdma_cm_id *id; 2153 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2154 struct net *net = listen_id->route.addr.dev_addr.net; 2155 int ret; 2156 2157 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2158 id_priv = __rdma_create_id(net, listen_id->event_handler, 2159 listen_id->context, listen_id->ps, IB_QPT_UD, 2160 listen_id_priv); 2161 if (IS_ERR(id_priv)) 2162 return NULL; 2163 2164 id = &id_priv->id; 2165 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2166 (struct sockaddr *)&id->route.addr.dst_addr, 2167 listen_id, ib_event, ss_family, 2168 ib_event->param.sidr_req_rcvd.service_id)) 2169 goto err; 2170 2171 if (net_dev) { 2172 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2173 } else { 2174 if (!cma_any_addr(cma_src_addr(id_priv))) { 2175 ret = cma_translate_addr(cma_src_addr(id_priv), 2176 &id->route.addr.dev_addr); 2177 if (ret) 2178 goto err; 2179 } 2180 } 2181 2182 id_priv->state = RDMA_CM_CONNECT; 2183 return id_priv; 2184 err: 2185 rdma_destroy_id(id); 2186 return NULL; 2187 } 2188 2189 static void cma_set_req_event_data(struct rdma_cm_event *event, 2190 const struct ib_cm_req_event_param *req_data, 2191 void *private_data, int offset) 2192 { 2193 event->param.conn.private_data = private_data + offset; 2194 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2195 event->param.conn.responder_resources = req_data->responder_resources; 2196 event->param.conn.initiator_depth = req_data->initiator_depth; 2197 event->param.conn.flow_control = req_data->flow_control; 2198 event->param.conn.retry_count = req_data->retry_count; 2199 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2200 event->param.conn.srq = req_data->srq; 2201 event->param.conn.qp_num = req_data->remote_qpn; 2202 2203 event->ece.vendor_id = req_data->ece.vendor_id; 2204 event->ece.attr_mod = req_data->ece.attr_mod; 2205 } 2206 2207 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2208 const struct ib_cm_event *ib_event) 2209 { 2210 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2211 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2212 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2213 (id->qp_type == IB_QPT_UD)) || 2214 (!id->qp_type)); 2215 } 2216 2217 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2218 const struct ib_cm_event *ib_event) 2219 { 2220 struct rdma_id_private *listen_id, *conn_id = NULL; 2221 struct rdma_cm_event event = {}; 2222 struct cma_req_info req = {}; 2223 struct net_device *net_dev; 2224 u8 offset; 2225 int ret; 2226 2227 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2228 if (IS_ERR(listen_id)) 2229 return PTR_ERR(listen_id); 2230 2231 trace_cm_req_handler(listen_id, ib_event->event); 2232 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2233 ret = -EINVAL; 2234 goto net_dev_put; 2235 } 2236 2237 mutex_lock(&listen_id->handler_mutex); 2238 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2239 ret = -ECONNABORTED; 2240 goto err_unlock; 2241 } 2242 2243 offset = cma_user_data_offset(listen_id); 2244 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2245 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2246 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2247 event.param.ud.private_data = ib_event->private_data + offset; 2248 event.param.ud.private_data_len = 2249 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2250 } else { 2251 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2252 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2253 ib_event->private_data, offset); 2254 } 2255 if (!conn_id) { 2256 ret = -ENOMEM; 2257 goto err_unlock; 2258 } 2259 2260 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2261 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2262 if (ret) { 2263 destroy_id_handler_unlock(conn_id); 2264 goto err_unlock; 2265 } 2266 2267 conn_id->cm_id.ib = cm_id; 2268 cm_id->context = conn_id; 2269 cm_id->cm_handler = cma_ib_handler; 2270 2271 ret = cma_cm_event_handler(conn_id, &event); 2272 if (ret) { 2273 /* Destroy the CM ID by returning a non-zero value. */ 2274 conn_id->cm_id.ib = NULL; 2275 mutex_unlock(&listen_id->handler_mutex); 2276 destroy_id_handler_unlock(conn_id); 2277 goto net_dev_put; 2278 } 2279 2280 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2281 conn_id->id.qp_type != IB_QPT_UD) { 2282 trace_cm_send_mra(cm_id->context); 2283 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2284 } 2285 mutex_unlock(&conn_id->handler_mutex); 2286 2287 err_unlock: 2288 mutex_unlock(&listen_id->handler_mutex); 2289 2290 net_dev_put: 2291 if (net_dev) 2292 dev_put(net_dev); 2293 2294 return ret; 2295 } 2296 2297 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2298 { 2299 if (addr->sa_family == AF_IB) 2300 return ((struct sockaddr_ib *) addr)->sib_sid; 2301 2302 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2303 } 2304 EXPORT_SYMBOL(rdma_get_service_id); 2305 2306 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2307 union ib_gid *dgid) 2308 { 2309 struct rdma_addr *addr = &cm_id->route.addr; 2310 2311 if (!cm_id->device) { 2312 if (sgid) 2313 memset(sgid, 0, sizeof(*sgid)); 2314 if (dgid) 2315 memset(dgid, 0, sizeof(*dgid)); 2316 return; 2317 } 2318 2319 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2320 if (sgid) 2321 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2322 if (dgid) 2323 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2324 } else { 2325 if (sgid) 2326 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2327 if (dgid) 2328 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2329 } 2330 } 2331 EXPORT_SYMBOL(rdma_read_gids); 2332 2333 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2334 { 2335 struct rdma_id_private *id_priv = iw_id->context; 2336 struct rdma_cm_event event = {}; 2337 int ret = 0; 2338 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2339 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2340 2341 mutex_lock(&id_priv->handler_mutex); 2342 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2343 goto out; 2344 2345 switch (iw_event->event) { 2346 case IW_CM_EVENT_CLOSE: 2347 event.event = RDMA_CM_EVENT_DISCONNECTED; 2348 break; 2349 case IW_CM_EVENT_CONNECT_REPLY: 2350 memcpy(cma_src_addr(id_priv), laddr, 2351 rdma_addr_size(laddr)); 2352 memcpy(cma_dst_addr(id_priv), raddr, 2353 rdma_addr_size(raddr)); 2354 switch (iw_event->status) { 2355 case 0: 2356 event.event = RDMA_CM_EVENT_ESTABLISHED; 2357 event.param.conn.initiator_depth = iw_event->ird; 2358 event.param.conn.responder_resources = iw_event->ord; 2359 break; 2360 case -ECONNRESET: 2361 case -ECONNREFUSED: 2362 event.event = RDMA_CM_EVENT_REJECTED; 2363 break; 2364 case -ETIMEDOUT: 2365 event.event = RDMA_CM_EVENT_UNREACHABLE; 2366 break; 2367 default: 2368 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2369 break; 2370 } 2371 break; 2372 case IW_CM_EVENT_ESTABLISHED: 2373 event.event = RDMA_CM_EVENT_ESTABLISHED; 2374 event.param.conn.initiator_depth = iw_event->ird; 2375 event.param.conn.responder_resources = iw_event->ord; 2376 break; 2377 default: 2378 goto out; 2379 } 2380 2381 event.status = iw_event->status; 2382 event.param.conn.private_data = iw_event->private_data; 2383 event.param.conn.private_data_len = iw_event->private_data_len; 2384 ret = cma_cm_event_handler(id_priv, &event); 2385 if (ret) { 2386 /* Destroy the CM ID by returning a non-zero value. */ 2387 id_priv->cm_id.iw = NULL; 2388 destroy_id_handler_unlock(id_priv); 2389 return ret; 2390 } 2391 2392 out: 2393 mutex_unlock(&id_priv->handler_mutex); 2394 return ret; 2395 } 2396 2397 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2398 struct iw_cm_event *iw_event) 2399 { 2400 struct rdma_id_private *listen_id, *conn_id; 2401 struct rdma_cm_event event = {}; 2402 int ret = -ECONNABORTED; 2403 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2404 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2405 2406 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2407 event.param.conn.private_data = iw_event->private_data; 2408 event.param.conn.private_data_len = iw_event->private_data_len; 2409 event.param.conn.initiator_depth = iw_event->ird; 2410 event.param.conn.responder_resources = iw_event->ord; 2411 2412 listen_id = cm_id->context; 2413 2414 mutex_lock(&listen_id->handler_mutex); 2415 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2416 goto out; 2417 2418 /* Create a new RDMA id for the new IW CM ID */ 2419 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2420 listen_id->id.event_handler, 2421 listen_id->id.context, RDMA_PS_TCP, 2422 IB_QPT_RC, listen_id); 2423 if (IS_ERR(conn_id)) { 2424 ret = -ENOMEM; 2425 goto out; 2426 } 2427 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2428 conn_id->state = RDMA_CM_CONNECT; 2429 2430 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2431 if (ret) { 2432 mutex_unlock(&listen_id->handler_mutex); 2433 destroy_id_handler_unlock(conn_id); 2434 return ret; 2435 } 2436 2437 ret = cma_iw_acquire_dev(conn_id, listen_id); 2438 if (ret) { 2439 mutex_unlock(&listen_id->handler_mutex); 2440 destroy_id_handler_unlock(conn_id); 2441 return ret; 2442 } 2443 2444 conn_id->cm_id.iw = cm_id; 2445 cm_id->context = conn_id; 2446 cm_id->cm_handler = cma_iw_handler; 2447 2448 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2449 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2450 2451 ret = cma_cm_event_handler(conn_id, &event); 2452 if (ret) { 2453 /* User wants to destroy the CM ID */ 2454 conn_id->cm_id.iw = NULL; 2455 mutex_unlock(&listen_id->handler_mutex); 2456 destroy_id_handler_unlock(conn_id); 2457 return ret; 2458 } 2459 2460 mutex_unlock(&conn_id->handler_mutex); 2461 2462 out: 2463 mutex_unlock(&listen_id->handler_mutex); 2464 return ret; 2465 } 2466 2467 static int cma_ib_listen(struct rdma_id_private *id_priv) 2468 { 2469 struct sockaddr *addr; 2470 struct ib_cm_id *id; 2471 __be64 svc_id; 2472 2473 addr = cma_src_addr(id_priv); 2474 svc_id = rdma_get_service_id(&id_priv->id, addr); 2475 id = ib_cm_insert_listen(id_priv->id.device, 2476 cma_ib_req_handler, svc_id); 2477 if (IS_ERR(id)) 2478 return PTR_ERR(id); 2479 id_priv->cm_id.ib = id; 2480 2481 return 0; 2482 } 2483 2484 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2485 { 2486 int ret; 2487 struct iw_cm_id *id; 2488 2489 id = iw_create_cm_id(id_priv->id.device, 2490 iw_conn_req_handler, 2491 id_priv); 2492 if (IS_ERR(id)) 2493 return PTR_ERR(id); 2494 2495 mutex_lock(&id_priv->qp_mutex); 2496 id->tos = id_priv->tos; 2497 id->tos_set = id_priv->tos_set; 2498 mutex_unlock(&id_priv->qp_mutex); 2499 id->afonly = id_priv->afonly; 2500 id_priv->cm_id.iw = id; 2501 2502 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2503 rdma_addr_size(cma_src_addr(id_priv))); 2504 2505 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2506 2507 if (ret) { 2508 iw_destroy_cm_id(id_priv->cm_id.iw); 2509 id_priv->cm_id.iw = NULL; 2510 } 2511 2512 return ret; 2513 } 2514 2515 static int cma_listen_handler(struct rdma_cm_id *id, 2516 struct rdma_cm_event *event) 2517 { 2518 struct rdma_id_private *id_priv = id->context; 2519 2520 /* Listening IDs are always destroyed on removal */ 2521 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2522 return -1; 2523 2524 id->context = id_priv->id.context; 2525 id->event_handler = id_priv->id.event_handler; 2526 trace_cm_event_handler(id_priv, event); 2527 return id_priv->id.event_handler(id, event); 2528 } 2529 2530 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2531 struct cma_device *cma_dev, 2532 struct rdma_id_private **to_destroy) 2533 { 2534 struct rdma_id_private *dev_id_priv; 2535 struct net *net = id_priv->id.route.addr.dev_addr.net; 2536 int ret; 2537 2538 lockdep_assert_held(&lock); 2539 2540 *to_destroy = NULL; 2541 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2542 return 0; 2543 2544 dev_id_priv = 2545 __rdma_create_id(net, cma_listen_handler, id_priv, 2546 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2547 if (IS_ERR(dev_id_priv)) 2548 return PTR_ERR(dev_id_priv); 2549 2550 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2551 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2552 rdma_addr_size(cma_src_addr(id_priv))); 2553 2554 _cma_attach_to_dev(dev_id_priv, cma_dev); 2555 rdma_restrack_add(&dev_id_priv->res); 2556 cma_id_get(id_priv); 2557 dev_id_priv->internal_id = 1; 2558 dev_id_priv->afonly = id_priv->afonly; 2559 mutex_lock(&id_priv->qp_mutex); 2560 dev_id_priv->tos_set = id_priv->tos_set; 2561 dev_id_priv->tos = id_priv->tos; 2562 mutex_unlock(&id_priv->qp_mutex); 2563 2564 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2565 if (ret) 2566 goto err_listen; 2567 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2568 return 0; 2569 err_listen: 2570 /* Caller must destroy this after releasing lock */ 2571 *to_destroy = dev_id_priv; 2572 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2573 return ret; 2574 } 2575 2576 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2577 { 2578 struct rdma_id_private *to_destroy; 2579 struct cma_device *cma_dev; 2580 int ret; 2581 2582 mutex_lock(&lock); 2583 list_add_tail(&id_priv->list, &listen_any_list); 2584 list_for_each_entry(cma_dev, &dev_list, list) { 2585 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2586 if (ret) { 2587 /* Prevent racing with cma_process_remove() */ 2588 if (to_destroy) 2589 list_del_init(&to_destroy->list); 2590 goto err_listen; 2591 } 2592 } 2593 mutex_unlock(&lock); 2594 return 0; 2595 2596 err_listen: 2597 _cma_cancel_listens(id_priv); 2598 mutex_unlock(&lock); 2599 if (to_destroy) 2600 rdma_destroy_id(&to_destroy->id); 2601 return ret; 2602 } 2603 2604 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2605 { 2606 struct rdma_id_private *id_priv; 2607 2608 id_priv = container_of(id, struct rdma_id_private, id); 2609 mutex_lock(&id_priv->qp_mutex); 2610 id_priv->tos = (u8) tos; 2611 id_priv->tos_set = true; 2612 mutex_unlock(&id_priv->qp_mutex); 2613 } 2614 EXPORT_SYMBOL(rdma_set_service_type); 2615 2616 /** 2617 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2618 * with a connection identifier. 2619 * @id: Communication identifier to associated with service type. 2620 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2621 * 2622 * This function should be called before rdma_connect() on active side, 2623 * and on passive side before rdma_accept(). It is applicable to primary 2624 * path only. The timeout will affect the local side of the QP, it is not 2625 * negotiated with remote side and zero disables the timer. In case it is 2626 * set before rdma_resolve_route, the value will also be used to determine 2627 * PacketLifeTime for RoCE. 2628 * 2629 * Return: 0 for success 2630 */ 2631 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2632 { 2633 struct rdma_id_private *id_priv; 2634 2635 if (id->qp_type != IB_QPT_RC) 2636 return -EINVAL; 2637 2638 id_priv = container_of(id, struct rdma_id_private, id); 2639 mutex_lock(&id_priv->qp_mutex); 2640 id_priv->timeout = timeout; 2641 id_priv->timeout_set = true; 2642 mutex_unlock(&id_priv->qp_mutex); 2643 2644 return 0; 2645 } 2646 EXPORT_SYMBOL(rdma_set_ack_timeout); 2647 2648 /** 2649 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2650 * QP associated with a connection identifier. 2651 * @id: Communication identifier to associated with service type. 2652 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2653 * Timer Field" in the IBTA specification. 2654 * 2655 * This function should be called before rdma_connect() on active 2656 * side, and on passive side before rdma_accept(). The timer value 2657 * will be associated with the local QP. When it receives a send it is 2658 * not read to handle, typically if the receive queue is empty, an RNR 2659 * Retry NAK is returned to the requester with the min_rnr_timer 2660 * encoded. The requester will then wait at least the time specified 2661 * in the NAK before retrying. The default is zero, which translates 2662 * to a minimum RNR Timer value of 655 ms. 2663 * 2664 * Return: 0 for success 2665 */ 2666 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2667 { 2668 struct rdma_id_private *id_priv; 2669 2670 /* It is a five-bit value */ 2671 if (min_rnr_timer & 0xe0) 2672 return -EINVAL; 2673 2674 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2675 return -EINVAL; 2676 2677 id_priv = container_of(id, struct rdma_id_private, id); 2678 mutex_lock(&id_priv->qp_mutex); 2679 id_priv->min_rnr_timer = min_rnr_timer; 2680 id_priv->min_rnr_timer_set = true; 2681 mutex_unlock(&id_priv->qp_mutex); 2682 2683 return 0; 2684 } 2685 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2686 2687 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2688 void *context) 2689 { 2690 struct cma_work *work = context; 2691 struct rdma_route *route; 2692 2693 route = &work->id->id.route; 2694 2695 if (!status) { 2696 route->num_paths = 1; 2697 *route->path_rec = *path_rec; 2698 } else { 2699 work->old_state = RDMA_CM_ROUTE_QUERY; 2700 work->new_state = RDMA_CM_ADDR_RESOLVED; 2701 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2702 work->event.status = status; 2703 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2704 status); 2705 } 2706 2707 queue_work(cma_wq, &work->work); 2708 } 2709 2710 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2711 unsigned long timeout_ms, struct cma_work *work) 2712 { 2713 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2714 struct sa_path_rec path_rec; 2715 ib_sa_comp_mask comp_mask; 2716 struct sockaddr_in6 *sin6; 2717 struct sockaddr_ib *sib; 2718 2719 memset(&path_rec, 0, sizeof path_rec); 2720 2721 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2722 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2723 else 2724 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2725 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2726 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2727 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2728 path_rec.numb_path = 1; 2729 path_rec.reversible = 1; 2730 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2731 cma_dst_addr(id_priv)); 2732 2733 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2734 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2735 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2736 2737 switch (cma_family(id_priv)) { 2738 case AF_INET: 2739 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2740 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2741 break; 2742 case AF_INET6: 2743 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2744 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2745 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2746 break; 2747 case AF_IB: 2748 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2749 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2750 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2751 break; 2752 } 2753 2754 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2755 id_priv->id.port_num, &path_rec, 2756 comp_mask, timeout_ms, 2757 GFP_KERNEL, cma_query_handler, 2758 work, &id_priv->query); 2759 2760 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2761 } 2762 2763 static void cma_iboe_join_work_handler(struct work_struct *work) 2764 { 2765 struct cma_multicast *mc = 2766 container_of(work, struct cma_multicast, iboe_join.work); 2767 struct rdma_cm_event *event = &mc->iboe_join.event; 2768 struct rdma_id_private *id_priv = mc->id_priv; 2769 int ret; 2770 2771 mutex_lock(&id_priv->handler_mutex); 2772 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2773 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2774 goto out_unlock; 2775 2776 ret = cma_cm_event_handler(id_priv, event); 2777 WARN_ON(ret); 2778 2779 out_unlock: 2780 mutex_unlock(&id_priv->handler_mutex); 2781 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2782 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2783 } 2784 2785 static void cma_work_handler(struct work_struct *_work) 2786 { 2787 struct cma_work *work = container_of(_work, struct cma_work, work); 2788 struct rdma_id_private *id_priv = work->id; 2789 2790 mutex_lock(&id_priv->handler_mutex); 2791 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2792 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2793 goto out_unlock; 2794 if (work->old_state != 0 || work->new_state != 0) { 2795 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2796 goto out_unlock; 2797 } 2798 2799 if (cma_cm_event_handler(id_priv, &work->event)) { 2800 cma_id_put(id_priv); 2801 destroy_id_handler_unlock(id_priv); 2802 goto out_free; 2803 } 2804 2805 out_unlock: 2806 mutex_unlock(&id_priv->handler_mutex); 2807 cma_id_put(id_priv); 2808 out_free: 2809 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2810 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2811 kfree(work); 2812 } 2813 2814 static void cma_init_resolve_route_work(struct cma_work *work, 2815 struct rdma_id_private *id_priv) 2816 { 2817 work->id = id_priv; 2818 INIT_WORK(&work->work, cma_work_handler); 2819 work->old_state = RDMA_CM_ROUTE_QUERY; 2820 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2821 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2822 } 2823 2824 static void enqueue_resolve_addr_work(struct cma_work *work, 2825 struct rdma_id_private *id_priv) 2826 { 2827 /* Balances with cma_id_put() in cma_work_handler */ 2828 cma_id_get(id_priv); 2829 2830 work->id = id_priv; 2831 INIT_WORK(&work->work, cma_work_handler); 2832 work->old_state = RDMA_CM_ADDR_QUERY; 2833 work->new_state = RDMA_CM_ADDR_RESOLVED; 2834 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2835 2836 queue_work(cma_wq, &work->work); 2837 } 2838 2839 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2840 unsigned long timeout_ms) 2841 { 2842 struct rdma_route *route = &id_priv->id.route; 2843 struct cma_work *work; 2844 int ret; 2845 2846 work = kzalloc(sizeof *work, GFP_KERNEL); 2847 if (!work) 2848 return -ENOMEM; 2849 2850 cma_init_resolve_route_work(work, id_priv); 2851 2852 if (!route->path_rec) 2853 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2854 if (!route->path_rec) { 2855 ret = -ENOMEM; 2856 goto err1; 2857 } 2858 2859 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2860 if (ret) 2861 goto err2; 2862 2863 return 0; 2864 err2: 2865 kfree(route->path_rec); 2866 route->path_rec = NULL; 2867 err1: 2868 kfree(work); 2869 return ret; 2870 } 2871 2872 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2873 unsigned long supported_gids, 2874 enum ib_gid_type default_gid) 2875 { 2876 if ((network_type == RDMA_NETWORK_IPV4 || 2877 network_type == RDMA_NETWORK_IPV6) && 2878 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2879 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2880 2881 return default_gid; 2882 } 2883 2884 /* 2885 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2886 * path record type based on GID type. 2887 * It also sets up other L2 fields which includes destination mac address 2888 * netdev ifindex, of the path record. 2889 * It returns the netdev of the bound interface for this path record entry. 2890 */ 2891 static struct net_device * 2892 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2893 { 2894 struct rdma_route *route = &id_priv->id.route; 2895 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2896 struct rdma_addr *addr = &route->addr; 2897 unsigned long supported_gids; 2898 struct net_device *ndev; 2899 2900 if (!addr->dev_addr.bound_dev_if) 2901 return NULL; 2902 2903 ndev = dev_get_by_index(addr->dev_addr.net, 2904 addr->dev_addr.bound_dev_if); 2905 if (!ndev) 2906 return NULL; 2907 2908 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2909 id_priv->id.port_num); 2910 gid_type = cma_route_gid_type(addr->dev_addr.network, 2911 supported_gids, 2912 id_priv->gid_type); 2913 /* Use the hint from IP Stack to select GID Type */ 2914 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2915 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2916 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2917 2918 route->path_rec->roce.route_resolved = true; 2919 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2920 return ndev; 2921 } 2922 2923 int rdma_set_ib_path(struct rdma_cm_id *id, 2924 struct sa_path_rec *path_rec) 2925 { 2926 struct rdma_id_private *id_priv; 2927 struct net_device *ndev; 2928 int ret; 2929 2930 id_priv = container_of(id, struct rdma_id_private, id); 2931 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2932 RDMA_CM_ROUTE_RESOLVED)) 2933 return -EINVAL; 2934 2935 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2936 GFP_KERNEL); 2937 if (!id->route.path_rec) { 2938 ret = -ENOMEM; 2939 goto err; 2940 } 2941 2942 if (rdma_protocol_roce(id->device, id->port_num)) { 2943 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2944 if (!ndev) { 2945 ret = -ENODEV; 2946 goto err_free; 2947 } 2948 dev_put(ndev); 2949 } 2950 2951 id->route.num_paths = 1; 2952 return 0; 2953 2954 err_free: 2955 kfree(id->route.path_rec); 2956 id->route.path_rec = NULL; 2957 err: 2958 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2959 return ret; 2960 } 2961 EXPORT_SYMBOL(rdma_set_ib_path); 2962 2963 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2964 { 2965 struct cma_work *work; 2966 2967 work = kzalloc(sizeof *work, GFP_KERNEL); 2968 if (!work) 2969 return -ENOMEM; 2970 2971 cma_init_resolve_route_work(work, id_priv); 2972 queue_work(cma_wq, &work->work); 2973 return 0; 2974 } 2975 2976 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2977 { 2978 struct net_device *dev; 2979 2980 dev = vlan_dev_real_dev(vlan_ndev); 2981 if (dev->num_tc) 2982 return netdev_get_prio_tc_map(dev, prio); 2983 2984 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2985 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2986 } 2987 2988 struct iboe_prio_tc_map { 2989 int input_prio; 2990 int output_tc; 2991 bool found; 2992 }; 2993 2994 static int get_lower_vlan_dev_tc(struct net_device *dev, 2995 struct netdev_nested_priv *priv) 2996 { 2997 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2998 2999 if (is_vlan_dev(dev)) 3000 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3001 else if (dev->num_tc) 3002 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3003 else 3004 map->output_tc = 0; 3005 /* We are interested only in first level VLAN device, so always 3006 * return 1 to stop iterating over next level devices. 3007 */ 3008 map->found = true; 3009 return 1; 3010 } 3011 3012 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3013 { 3014 struct iboe_prio_tc_map prio_tc_map = {}; 3015 int prio = rt_tos2priority(tos); 3016 struct netdev_nested_priv priv; 3017 3018 /* If VLAN device, get it directly from the VLAN netdev */ 3019 if (is_vlan_dev(ndev)) 3020 return get_vlan_ndev_tc(ndev, prio); 3021 3022 prio_tc_map.input_prio = prio; 3023 priv.data = (void *)&prio_tc_map; 3024 rcu_read_lock(); 3025 netdev_walk_all_lower_dev_rcu(ndev, 3026 get_lower_vlan_dev_tc, 3027 &priv); 3028 rcu_read_unlock(); 3029 /* If map is found from lower device, use it; Otherwise 3030 * continue with the current netdevice to get priority to tc map. 3031 */ 3032 if (prio_tc_map.found) 3033 return prio_tc_map.output_tc; 3034 else if (ndev->num_tc) 3035 return netdev_get_prio_tc_map(ndev, prio); 3036 else 3037 return 0; 3038 } 3039 3040 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3041 { 3042 struct sockaddr_in6 *addr6; 3043 u16 dport, sport; 3044 u32 hash, fl; 3045 3046 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3047 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3048 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3049 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3050 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3051 hash = (u32)sport * 31 + dport; 3052 fl = hash & IB_GRH_FLOWLABEL_MASK; 3053 } 3054 3055 return cpu_to_be32(fl); 3056 } 3057 3058 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3059 { 3060 struct rdma_route *route = &id_priv->id.route; 3061 struct rdma_addr *addr = &route->addr; 3062 struct cma_work *work; 3063 int ret; 3064 struct net_device *ndev; 3065 3066 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3067 rdma_start_port(id_priv->cma_dev->device)]; 3068 u8 tos; 3069 3070 mutex_lock(&id_priv->qp_mutex); 3071 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3072 mutex_unlock(&id_priv->qp_mutex); 3073 3074 work = kzalloc(sizeof *work, GFP_KERNEL); 3075 if (!work) 3076 return -ENOMEM; 3077 3078 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3079 if (!route->path_rec) { 3080 ret = -ENOMEM; 3081 goto err1; 3082 } 3083 3084 route->num_paths = 1; 3085 3086 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3087 if (!ndev) { 3088 ret = -ENODEV; 3089 goto err2; 3090 } 3091 3092 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3093 &route->path_rec->sgid); 3094 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3095 &route->path_rec->dgid); 3096 3097 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3098 /* TODO: get the hoplimit from the inet/inet6 device */ 3099 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3100 else 3101 route->path_rec->hop_limit = 1; 3102 route->path_rec->reversible = 1; 3103 route->path_rec->pkey = cpu_to_be16(0xffff); 3104 route->path_rec->mtu_selector = IB_SA_EQ; 3105 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3106 route->path_rec->traffic_class = tos; 3107 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3108 route->path_rec->rate_selector = IB_SA_EQ; 3109 route->path_rec->rate = iboe_get_rate(ndev); 3110 dev_put(ndev); 3111 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3112 /* In case ACK timeout is set, use this value to calculate 3113 * PacketLifeTime. As per IBTA 12.7.34, 3114 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3115 * Assuming a negligible local ACK delay, we can use 3116 * PacketLifeTime = local ACK timeout/2 3117 * as a reasonable approximation for RoCE networks. 3118 */ 3119 mutex_lock(&id_priv->qp_mutex); 3120 if (id_priv->timeout_set && id_priv->timeout) 3121 route->path_rec->packet_life_time = id_priv->timeout - 1; 3122 else 3123 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3124 mutex_unlock(&id_priv->qp_mutex); 3125 3126 if (!route->path_rec->mtu) { 3127 ret = -EINVAL; 3128 goto err2; 3129 } 3130 3131 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3132 id_priv->id.port_num)) 3133 route->path_rec->flow_label = 3134 cma_get_roce_udp_flow_label(id_priv); 3135 3136 cma_init_resolve_route_work(work, id_priv); 3137 queue_work(cma_wq, &work->work); 3138 3139 return 0; 3140 3141 err2: 3142 kfree(route->path_rec); 3143 route->path_rec = NULL; 3144 route->num_paths = 0; 3145 err1: 3146 kfree(work); 3147 return ret; 3148 } 3149 3150 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3151 { 3152 struct rdma_id_private *id_priv; 3153 int ret; 3154 3155 if (!timeout_ms) 3156 return -EINVAL; 3157 3158 id_priv = container_of(id, struct rdma_id_private, id); 3159 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3160 return -EINVAL; 3161 3162 cma_id_get(id_priv); 3163 if (rdma_cap_ib_sa(id->device, id->port_num)) 3164 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3165 else if (rdma_protocol_roce(id->device, id->port_num)) 3166 ret = cma_resolve_iboe_route(id_priv); 3167 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3168 ret = cma_resolve_iw_route(id_priv); 3169 else 3170 ret = -ENOSYS; 3171 3172 if (ret) 3173 goto err; 3174 3175 return 0; 3176 err: 3177 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3178 cma_id_put(id_priv); 3179 return ret; 3180 } 3181 EXPORT_SYMBOL(rdma_resolve_route); 3182 3183 static void cma_set_loopback(struct sockaddr *addr) 3184 { 3185 switch (addr->sa_family) { 3186 case AF_INET: 3187 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3188 break; 3189 case AF_INET6: 3190 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3191 0, 0, 0, htonl(1)); 3192 break; 3193 default: 3194 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3195 0, 0, 0, htonl(1)); 3196 break; 3197 } 3198 } 3199 3200 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3201 { 3202 struct cma_device *cma_dev, *cur_dev; 3203 union ib_gid gid; 3204 enum ib_port_state port_state; 3205 unsigned int p; 3206 u16 pkey; 3207 int ret; 3208 3209 cma_dev = NULL; 3210 mutex_lock(&lock); 3211 list_for_each_entry(cur_dev, &dev_list, list) { 3212 if (cma_family(id_priv) == AF_IB && 3213 !rdma_cap_ib_cm(cur_dev->device, 1)) 3214 continue; 3215 3216 if (!cma_dev) 3217 cma_dev = cur_dev; 3218 3219 rdma_for_each_port (cur_dev->device, p) { 3220 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3221 port_state == IB_PORT_ACTIVE) { 3222 cma_dev = cur_dev; 3223 goto port_found; 3224 } 3225 } 3226 } 3227 3228 if (!cma_dev) { 3229 ret = -ENODEV; 3230 goto out; 3231 } 3232 3233 p = 1; 3234 3235 port_found: 3236 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3237 if (ret) 3238 goto out; 3239 3240 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3241 if (ret) 3242 goto out; 3243 3244 id_priv->id.route.addr.dev_addr.dev_type = 3245 (rdma_protocol_ib(cma_dev->device, p)) ? 3246 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3247 3248 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3249 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3250 id_priv->id.port_num = p; 3251 cma_attach_to_dev(id_priv, cma_dev); 3252 rdma_restrack_add(&id_priv->res); 3253 cma_set_loopback(cma_src_addr(id_priv)); 3254 out: 3255 mutex_unlock(&lock); 3256 return ret; 3257 } 3258 3259 static void addr_handler(int status, struct sockaddr *src_addr, 3260 struct rdma_dev_addr *dev_addr, void *context) 3261 { 3262 struct rdma_id_private *id_priv = context; 3263 struct rdma_cm_event event = {}; 3264 struct sockaddr *addr; 3265 struct sockaddr_storage old_addr; 3266 3267 mutex_lock(&id_priv->handler_mutex); 3268 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3269 RDMA_CM_ADDR_RESOLVED)) 3270 goto out; 3271 3272 /* 3273 * Store the previous src address, so that if we fail to acquire 3274 * matching rdma device, old address can be restored back, which helps 3275 * to cancel the cma listen operation correctly. 3276 */ 3277 addr = cma_src_addr(id_priv); 3278 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3279 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3280 if (!status && !id_priv->cma_dev) { 3281 status = cma_acquire_dev_by_src_ip(id_priv); 3282 if (status) 3283 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3284 status); 3285 rdma_restrack_add(&id_priv->res); 3286 } else if (status) { 3287 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3288 } 3289 3290 if (status) { 3291 memcpy(addr, &old_addr, 3292 rdma_addr_size((struct sockaddr *)&old_addr)); 3293 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3294 RDMA_CM_ADDR_BOUND)) 3295 goto out; 3296 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3297 event.status = status; 3298 } else 3299 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3300 3301 if (cma_cm_event_handler(id_priv, &event)) { 3302 destroy_id_handler_unlock(id_priv); 3303 return; 3304 } 3305 out: 3306 mutex_unlock(&id_priv->handler_mutex); 3307 } 3308 3309 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3310 { 3311 struct cma_work *work; 3312 union ib_gid gid; 3313 int ret; 3314 3315 work = kzalloc(sizeof *work, GFP_KERNEL); 3316 if (!work) 3317 return -ENOMEM; 3318 3319 if (!id_priv->cma_dev) { 3320 ret = cma_bind_loopback(id_priv); 3321 if (ret) 3322 goto err; 3323 } 3324 3325 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3326 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3327 3328 enqueue_resolve_addr_work(work, id_priv); 3329 return 0; 3330 err: 3331 kfree(work); 3332 return ret; 3333 } 3334 3335 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3336 { 3337 struct cma_work *work; 3338 int ret; 3339 3340 work = kzalloc(sizeof *work, GFP_KERNEL); 3341 if (!work) 3342 return -ENOMEM; 3343 3344 if (!id_priv->cma_dev) { 3345 ret = cma_resolve_ib_dev(id_priv); 3346 if (ret) 3347 goto err; 3348 } 3349 3350 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3351 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3352 3353 enqueue_resolve_addr_work(work, id_priv); 3354 return 0; 3355 err: 3356 kfree(work); 3357 return ret; 3358 } 3359 3360 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3361 const struct sockaddr *dst_addr) 3362 { 3363 if (!src_addr || !src_addr->sa_family) { 3364 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3365 src_addr->sa_family = dst_addr->sa_family; 3366 if (IS_ENABLED(CONFIG_IPV6) && 3367 dst_addr->sa_family == AF_INET6) { 3368 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3369 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3370 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3371 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3372 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3373 } else if (dst_addr->sa_family == AF_IB) { 3374 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3375 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3376 } 3377 } 3378 return rdma_bind_addr(id, src_addr); 3379 } 3380 3381 /* 3382 * If required, resolve the source address for bind and leave the id_priv in 3383 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3384 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3385 * ignored. 3386 */ 3387 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3388 struct sockaddr *src_addr, 3389 const struct sockaddr *dst_addr) 3390 { 3391 int ret; 3392 3393 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3394 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3395 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3396 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3397 if (ret) 3398 goto err_dst; 3399 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3400 RDMA_CM_ADDR_QUERY))) { 3401 ret = -EINVAL; 3402 goto err_dst; 3403 } 3404 } 3405 3406 if (cma_family(id_priv) != dst_addr->sa_family) { 3407 ret = -EINVAL; 3408 goto err_state; 3409 } 3410 return 0; 3411 3412 err_state: 3413 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3414 err_dst: 3415 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3416 return ret; 3417 } 3418 3419 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3420 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3421 { 3422 struct rdma_id_private *id_priv = 3423 container_of(id, struct rdma_id_private, id); 3424 int ret; 3425 3426 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3427 if (ret) 3428 return ret; 3429 3430 if (cma_any_addr(dst_addr)) { 3431 ret = cma_resolve_loopback(id_priv); 3432 } else { 3433 if (dst_addr->sa_family == AF_IB) { 3434 ret = cma_resolve_ib_addr(id_priv); 3435 } else { 3436 /* 3437 * The FSM can return back to RDMA_CM_ADDR_BOUND after 3438 * rdma_resolve_ip() is called, eg through the error 3439 * path in addr_handler(). If this happens the existing 3440 * request must be canceled before issuing a new one. 3441 * Since canceling a request is a bit slow and this 3442 * oddball path is rare, keep track once a request has 3443 * been issued. The track turns out to be a permanent 3444 * state since this is the only cancel as it is 3445 * immediately before rdma_resolve_ip(). 3446 */ 3447 if (id_priv->used_resolve_ip) 3448 rdma_addr_cancel(&id->route.addr.dev_addr); 3449 else 3450 id_priv->used_resolve_ip = 1; 3451 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3452 &id->route.addr.dev_addr, 3453 timeout_ms, addr_handler, 3454 false, id_priv); 3455 } 3456 } 3457 if (ret) 3458 goto err; 3459 3460 return 0; 3461 err: 3462 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3463 return ret; 3464 } 3465 EXPORT_SYMBOL(rdma_resolve_addr); 3466 3467 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3468 { 3469 struct rdma_id_private *id_priv; 3470 unsigned long flags; 3471 int ret; 3472 3473 id_priv = container_of(id, struct rdma_id_private, id); 3474 spin_lock_irqsave(&id_priv->lock, flags); 3475 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3476 id_priv->state == RDMA_CM_IDLE) { 3477 id_priv->reuseaddr = reuse; 3478 ret = 0; 3479 } else { 3480 ret = -EINVAL; 3481 } 3482 spin_unlock_irqrestore(&id_priv->lock, flags); 3483 return ret; 3484 } 3485 EXPORT_SYMBOL(rdma_set_reuseaddr); 3486 3487 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3488 { 3489 struct rdma_id_private *id_priv; 3490 unsigned long flags; 3491 int ret; 3492 3493 id_priv = container_of(id, struct rdma_id_private, id); 3494 spin_lock_irqsave(&id_priv->lock, flags); 3495 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3496 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3497 id_priv->afonly = afonly; 3498 ret = 0; 3499 } else { 3500 ret = -EINVAL; 3501 } 3502 spin_unlock_irqrestore(&id_priv->lock, flags); 3503 return ret; 3504 } 3505 EXPORT_SYMBOL(rdma_set_afonly); 3506 3507 static void cma_bind_port(struct rdma_bind_list *bind_list, 3508 struct rdma_id_private *id_priv) 3509 { 3510 struct sockaddr *addr; 3511 struct sockaddr_ib *sib; 3512 u64 sid, mask; 3513 __be16 port; 3514 3515 lockdep_assert_held(&lock); 3516 3517 addr = cma_src_addr(id_priv); 3518 port = htons(bind_list->port); 3519 3520 switch (addr->sa_family) { 3521 case AF_INET: 3522 ((struct sockaddr_in *) addr)->sin_port = port; 3523 break; 3524 case AF_INET6: 3525 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3526 break; 3527 case AF_IB: 3528 sib = (struct sockaddr_ib *) addr; 3529 sid = be64_to_cpu(sib->sib_sid); 3530 mask = be64_to_cpu(sib->sib_sid_mask); 3531 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3532 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3533 break; 3534 } 3535 id_priv->bind_list = bind_list; 3536 hlist_add_head(&id_priv->node, &bind_list->owners); 3537 } 3538 3539 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3540 struct rdma_id_private *id_priv, unsigned short snum) 3541 { 3542 struct rdma_bind_list *bind_list; 3543 int ret; 3544 3545 lockdep_assert_held(&lock); 3546 3547 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3548 if (!bind_list) 3549 return -ENOMEM; 3550 3551 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3552 snum); 3553 if (ret < 0) 3554 goto err; 3555 3556 bind_list->ps = ps; 3557 bind_list->port = snum; 3558 cma_bind_port(bind_list, id_priv); 3559 return 0; 3560 err: 3561 kfree(bind_list); 3562 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3563 } 3564 3565 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3566 struct rdma_id_private *id_priv) 3567 { 3568 struct rdma_id_private *cur_id; 3569 struct sockaddr *daddr = cma_dst_addr(id_priv); 3570 struct sockaddr *saddr = cma_src_addr(id_priv); 3571 __be16 dport = cma_port(daddr); 3572 3573 lockdep_assert_held(&lock); 3574 3575 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3576 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3577 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3578 __be16 cur_dport = cma_port(cur_daddr); 3579 3580 if (id_priv == cur_id) 3581 continue; 3582 3583 /* different dest port -> unique */ 3584 if (!cma_any_port(daddr) && 3585 !cma_any_port(cur_daddr) && 3586 (dport != cur_dport)) 3587 continue; 3588 3589 /* different src address -> unique */ 3590 if (!cma_any_addr(saddr) && 3591 !cma_any_addr(cur_saddr) && 3592 cma_addr_cmp(saddr, cur_saddr)) 3593 continue; 3594 3595 /* different dst address -> unique */ 3596 if (!cma_any_addr(daddr) && 3597 !cma_any_addr(cur_daddr) && 3598 cma_addr_cmp(daddr, cur_daddr)) 3599 continue; 3600 3601 return -EADDRNOTAVAIL; 3602 } 3603 return 0; 3604 } 3605 3606 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3607 struct rdma_id_private *id_priv) 3608 { 3609 static unsigned int last_used_port; 3610 int low, high, remaining; 3611 unsigned int rover; 3612 struct net *net = id_priv->id.route.addr.dev_addr.net; 3613 3614 lockdep_assert_held(&lock); 3615 3616 inet_get_local_port_range(net, &low, &high); 3617 remaining = (high - low) + 1; 3618 rover = prandom_u32() % remaining + low; 3619 retry: 3620 if (last_used_port != rover) { 3621 struct rdma_bind_list *bind_list; 3622 int ret; 3623 3624 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3625 3626 if (!bind_list) { 3627 ret = cma_alloc_port(ps, id_priv, rover); 3628 } else { 3629 ret = cma_port_is_unique(bind_list, id_priv); 3630 if (!ret) 3631 cma_bind_port(bind_list, id_priv); 3632 } 3633 /* 3634 * Remember previously used port number in order to avoid 3635 * re-using same port immediately after it is closed. 3636 */ 3637 if (!ret) 3638 last_used_port = rover; 3639 if (ret != -EADDRNOTAVAIL) 3640 return ret; 3641 } 3642 if (--remaining) { 3643 rover++; 3644 if ((rover < low) || (rover > high)) 3645 rover = low; 3646 goto retry; 3647 } 3648 return -EADDRNOTAVAIL; 3649 } 3650 3651 /* 3652 * Check that the requested port is available. This is called when trying to 3653 * bind to a specific port, or when trying to listen on a bound port. In 3654 * the latter case, the provided id_priv may already be on the bind_list, but 3655 * we still need to check that it's okay to start listening. 3656 */ 3657 static int cma_check_port(struct rdma_bind_list *bind_list, 3658 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3659 { 3660 struct rdma_id_private *cur_id; 3661 struct sockaddr *addr, *cur_addr; 3662 3663 lockdep_assert_held(&lock); 3664 3665 addr = cma_src_addr(id_priv); 3666 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3667 if (id_priv == cur_id) 3668 continue; 3669 3670 if (reuseaddr && cur_id->reuseaddr) 3671 continue; 3672 3673 cur_addr = cma_src_addr(cur_id); 3674 if (id_priv->afonly && cur_id->afonly && 3675 (addr->sa_family != cur_addr->sa_family)) 3676 continue; 3677 3678 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3679 return -EADDRNOTAVAIL; 3680 3681 if (!cma_addr_cmp(addr, cur_addr)) 3682 return -EADDRINUSE; 3683 } 3684 return 0; 3685 } 3686 3687 static int cma_use_port(enum rdma_ucm_port_space ps, 3688 struct rdma_id_private *id_priv) 3689 { 3690 struct rdma_bind_list *bind_list; 3691 unsigned short snum; 3692 int ret; 3693 3694 lockdep_assert_held(&lock); 3695 3696 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3697 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3698 return -EACCES; 3699 3700 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3701 if (!bind_list) { 3702 ret = cma_alloc_port(ps, id_priv, snum); 3703 } else { 3704 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3705 if (!ret) 3706 cma_bind_port(bind_list, id_priv); 3707 } 3708 return ret; 3709 } 3710 3711 static enum rdma_ucm_port_space 3712 cma_select_inet_ps(struct rdma_id_private *id_priv) 3713 { 3714 switch (id_priv->id.ps) { 3715 case RDMA_PS_TCP: 3716 case RDMA_PS_UDP: 3717 case RDMA_PS_IPOIB: 3718 case RDMA_PS_IB: 3719 return id_priv->id.ps; 3720 default: 3721 3722 return 0; 3723 } 3724 } 3725 3726 static enum rdma_ucm_port_space 3727 cma_select_ib_ps(struct rdma_id_private *id_priv) 3728 { 3729 enum rdma_ucm_port_space ps = 0; 3730 struct sockaddr_ib *sib; 3731 u64 sid_ps, mask, sid; 3732 3733 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3734 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3735 sid = be64_to_cpu(sib->sib_sid) & mask; 3736 3737 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3738 sid_ps = RDMA_IB_IP_PS_IB; 3739 ps = RDMA_PS_IB; 3740 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3741 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3742 sid_ps = RDMA_IB_IP_PS_TCP; 3743 ps = RDMA_PS_TCP; 3744 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3745 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3746 sid_ps = RDMA_IB_IP_PS_UDP; 3747 ps = RDMA_PS_UDP; 3748 } 3749 3750 if (ps) { 3751 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3752 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3753 be64_to_cpu(sib->sib_sid_mask)); 3754 } 3755 return ps; 3756 } 3757 3758 static int cma_get_port(struct rdma_id_private *id_priv) 3759 { 3760 enum rdma_ucm_port_space ps; 3761 int ret; 3762 3763 if (cma_family(id_priv) != AF_IB) 3764 ps = cma_select_inet_ps(id_priv); 3765 else 3766 ps = cma_select_ib_ps(id_priv); 3767 if (!ps) 3768 return -EPROTONOSUPPORT; 3769 3770 mutex_lock(&lock); 3771 if (cma_any_port(cma_src_addr(id_priv))) 3772 ret = cma_alloc_any_port(ps, id_priv); 3773 else 3774 ret = cma_use_port(ps, id_priv); 3775 mutex_unlock(&lock); 3776 3777 return ret; 3778 } 3779 3780 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3781 struct sockaddr *addr) 3782 { 3783 #if IS_ENABLED(CONFIG_IPV6) 3784 struct sockaddr_in6 *sin6; 3785 3786 if (addr->sa_family != AF_INET6) 3787 return 0; 3788 3789 sin6 = (struct sockaddr_in6 *) addr; 3790 3791 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3792 return 0; 3793 3794 if (!sin6->sin6_scope_id) 3795 return -EINVAL; 3796 3797 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3798 #endif 3799 return 0; 3800 } 3801 3802 int rdma_listen(struct rdma_cm_id *id, int backlog) 3803 { 3804 struct rdma_id_private *id_priv = 3805 container_of(id, struct rdma_id_private, id); 3806 int ret; 3807 3808 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3809 struct sockaddr_in any_in = { 3810 .sin_family = AF_INET, 3811 .sin_addr.s_addr = htonl(INADDR_ANY), 3812 }; 3813 3814 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3815 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3816 if (ret) 3817 return ret; 3818 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3819 RDMA_CM_LISTEN))) 3820 return -EINVAL; 3821 } 3822 3823 /* 3824 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3825 * any more, and has to be unique in the bind list. 3826 */ 3827 if (id_priv->reuseaddr) { 3828 mutex_lock(&lock); 3829 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3830 if (!ret) 3831 id_priv->reuseaddr = 0; 3832 mutex_unlock(&lock); 3833 if (ret) 3834 goto err; 3835 } 3836 3837 id_priv->backlog = backlog; 3838 if (id_priv->cma_dev) { 3839 if (rdma_cap_ib_cm(id->device, 1)) { 3840 ret = cma_ib_listen(id_priv); 3841 if (ret) 3842 goto err; 3843 } else if (rdma_cap_iw_cm(id->device, 1)) { 3844 ret = cma_iw_listen(id_priv, backlog); 3845 if (ret) 3846 goto err; 3847 } else { 3848 ret = -ENOSYS; 3849 goto err; 3850 } 3851 } else { 3852 ret = cma_listen_on_all(id_priv); 3853 if (ret) 3854 goto err; 3855 } 3856 3857 return 0; 3858 err: 3859 id_priv->backlog = 0; 3860 /* 3861 * All the failure paths that lead here will not allow the req_handler's 3862 * to have run. 3863 */ 3864 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3865 return ret; 3866 } 3867 EXPORT_SYMBOL(rdma_listen); 3868 3869 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3870 { 3871 struct rdma_id_private *id_priv; 3872 int ret; 3873 struct sockaddr *daddr; 3874 3875 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3876 addr->sa_family != AF_IB) 3877 return -EAFNOSUPPORT; 3878 3879 id_priv = container_of(id, struct rdma_id_private, id); 3880 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3881 return -EINVAL; 3882 3883 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3884 if (ret) 3885 goto err1; 3886 3887 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3888 if (!cma_any_addr(addr)) { 3889 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3890 if (ret) 3891 goto err1; 3892 3893 ret = cma_acquire_dev_by_src_ip(id_priv); 3894 if (ret) 3895 goto err1; 3896 } 3897 3898 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3899 if (addr->sa_family == AF_INET) 3900 id_priv->afonly = 1; 3901 #if IS_ENABLED(CONFIG_IPV6) 3902 else if (addr->sa_family == AF_INET6) { 3903 struct net *net = id_priv->id.route.addr.dev_addr.net; 3904 3905 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3906 } 3907 #endif 3908 } 3909 daddr = cma_dst_addr(id_priv); 3910 daddr->sa_family = addr->sa_family; 3911 3912 ret = cma_get_port(id_priv); 3913 if (ret) 3914 goto err2; 3915 3916 if (!cma_any_addr(addr)) 3917 rdma_restrack_add(&id_priv->res); 3918 return 0; 3919 err2: 3920 if (id_priv->cma_dev) 3921 cma_release_dev(id_priv); 3922 err1: 3923 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3924 return ret; 3925 } 3926 EXPORT_SYMBOL(rdma_bind_addr); 3927 3928 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3929 { 3930 struct cma_hdr *cma_hdr; 3931 3932 cma_hdr = hdr; 3933 cma_hdr->cma_version = CMA_VERSION; 3934 if (cma_family(id_priv) == AF_INET) { 3935 struct sockaddr_in *src4, *dst4; 3936 3937 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3938 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3939 3940 cma_set_ip_ver(cma_hdr, 4); 3941 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3942 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3943 cma_hdr->port = src4->sin_port; 3944 } else if (cma_family(id_priv) == AF_INET6) { 3945 struct sockaddr_in6 *src6, *dst6; 3946 3947 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3948 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3949 3950 cma_set_ip_ver(cma_hdr, 6); 3951 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3952 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3953 cma_hdr->port = src6->sin6_port; 3954 } 3955 return 0; 3956 } 3957 3958 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3959 const struct ib_cm_event *ib_event) 3960 { 3961 struct rdma_id_private *id_priv = cm_id->context; 3962 struct rdma_cm_event event = {}; 3963 const struct ib_cm_sidr_rep_event_param *rep = 3964 &ib_event->param.sidr_rep_rcvd; 3965 int ret; 3966 3967 mutex_lock(&id_priv->handler_mutex); 3968 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3969 goto out; 3970 3971 switch (ib_event->event) { 3972 case IB_CM_SIDR_REQ_ERROR: 3973 event.event = RDMA_CM_EVENT_UNREACHABLE; 3974 event.status = -ETIMEDOUT; 3975 break; 3976 case IB_CM_SIDR_REP_RECEIVED: 3977 event.param.ud.private_data = ib_event->private_data; 3978 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3979 if (rep->status != IB_SIDR_SUCCESS) { 3980 event.event = RDMA_CM_EVENT_UNREACHABLE; 3981 event.status = ib_event->param.sidr_rep_rcvd.status; 3982 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3983 event.status); 3984 break; 3985 } 3986 ret = cma_set_qkey(id_priv, rep->qkey); 3987 if (ret) { 3988 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3989 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3990 event.status = ret; 3991 break; 3992 } 3993 ib_init_ah_attr_from_path(id_priv->id.device, 3994 id_priv->id.port_num, 3995 id_priv->id.route.path_rec, 3996 &event.param.ud.ah_attr, 3997 rep->sgid_attr); 3998 event.param.ud.qp_num = rep->qpn; 3999 event.param.ud.qkey = rep->qkey; 4000 event.event = RDMA_CM_EVENT_ESTABLISHED; 4001 event.status = 0; 4002 break; 4003 default: 4004 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4005 ib_event->event); 4006 goto out; 4007 } 4008 4009 ret = cma_cm_event_handler(id_priv, &event); 4010 4011 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4012 if (ret) { 4013 /* Destroy the CM ID by returning a non-zero value. */ 4014 id_priv->cm_id.ib = NULL; 4015 destroy_id_handler_unlock(id_priv); 4016 return ret; 4017 } 4018 out: 4019 mutex_unlock(&id_priv->handler_mutex); 4020 return 0; 4021 } 4022 4023 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4024 struct rdma_conn_param *conn_param) 4025 { 4026 struct ib_cm_sidr_req_param req; 4027 struct ib_cm_id *id; 4028 void *private_data; 4029 u8 offset; 4030 int ret; 4031 4032 memset(&req, 0, sizeof req); 4033 offset = cma_user_data_offset(id_priv); 4034 req.private_data_len = offset + conn_param->private_data_len; 4035 if (req.private_data_len < conn_param->private_data_len) 4036 return -EINVAL; 4037 4038 if (req.private_data_len) { 4039 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4040 if (!private_data) 4041 return -ENOMEM; 4042 } else { 4043 private_data = NULL; 4044 } 4045 4046 if (conn_param->private_data && conn_param->private_data_len) 4047 memcpy(private_data + offset, conn_param->private_data, 4048 conn_param->private_data_len); 4049 4050 if (private_data) { 4051 ret = cma_format_hdr(private_data, id_priv); 4052 if (ret) 4053 goto out; 4054 req.private_data = private_data; 4055 } 4056 4057 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4058 id_priv); 4059 if (IS_ERR(id)) { 4060 ret = PTR_ERR(id); 4061 goto out; 4062 } 4063 id_priv->cm_id.ib = id; 4064 4065 req.path = id_priv->id.route.path_rec; 4066 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4067 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4068 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4069 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4070 4071 trace_cm_send_sidr_req(id_priv); 4072 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4073 if (ret) { 4074 ib_destroy_cm_id(id_priv->cm_id.ib); 4075 id_priv->cm_id.ib = NULL; 4076 } 4077 out: 4078 kfree(private_data); 4079 return ret; 4080 } 4081 4082 static int cma_connect_ib(struct rdma_id_private *id_priv, 4083 struct rdma_conn_param *conn_param) 4084 { 4085 struct ib_cm_req_param req; 4086 struct rdma_route *route; 4087 void *private_data; 4088 struct ib_cm_id *id; 4089 u8 offset; 4090 int ret; 4091 4092 memset(&req, 0, sizeof req); 4093 offset = cma_user_data_offset(id_priv); 4094 req.private_data_len = offset + conn_param->private_data_len; 4095 if (req.private_data_len < conn_param->private_data_len) 4096 return -EINVAL; 4097 4098 if (req.private_data_len) { 4099 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4100 if (!private_data) 4101 return -ENOMEM; 4102 } else { 4103 private_data = NULL; 4104 } 4105 4106 if (conn_param->private_data && conn_param->private_data_len) 4107 memcpy(private_data + offset, conn_param->private_data, 4108 conn_param->private_data_len); 4109 4110 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4111 if (IS_ERR(id)) { 4112 ret = PTR_ERR(id); 4113 goto out; 4114 } 4115 id_priv->cm_id.ib = id; 4116 4117 route = &id_priv->id.route; 4118 if (private_data) { 4119 ret = cma_format_hdr(private_data, id_priv); 4120 if (ret) 4121 goto out; 4122 req.private_data = private_data; 4123 } 4124 4125 req.primary_path = &route->path_rec[0]; 4126 if (route->num_paths == 2) 4127 req.alternate_path = &route->path_rec[1]; 4128 4129 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4130 /* Alternate path SGID attribute currently unsupported */ 4131 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4132 req.qp_num = id_priv->qp_num; 4133 req.qp_type = id_priv->id.qp_type; 4134 req.starting_psn = id_priv->seq_num; 4135 req.responder_resources = conn_param->responder_resources; 4136 req.initiator_depth = conn_param->initiator_depth; 4137 req.flow_control = conn_param->flow_control; 4138 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4139 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4140 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4141 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4142 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4143 req.srq = id_priv->srq ? 1 : 0; 4144 req.ece.vendor_id = id_priv->ece.vendor_id; 4145 req.ece.attr_mod = id_priv->ece.attr_mod; 4146 4147 trace_cm_send_req(id_priv); 4148 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4149 out: 4150 if (ret && !IS_ERR(id)) { 4151 ib_destroy_cm_id(id); 4152 id_priv->cm_id.ib = NULL; 4153 } 4154 4155 kfree(private_data); 4156 return ret; 4157 } 4158 4159 static int cma_connect_iw(struct rdma_id_private *id_priv, 4160 struct rdma_conn_param *conn_param) 4161 { 4162 struct iw_cm_id *cm_id; 4163 int ret; 4164 struct iw_cm_conn_param iw_param; 4165 4166 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4167 if (IS_ERR(cm_id)) 4168 return PTR_ERR(cm_id); 4169 4170 mutex_lock(&id_priv->qp_mutex); 4171 cm_id->tos = id_priv->tos; 4172 cm_id->tos_set = id_priv->tos_set; 4173 mutex_unlock(&id_priv->qp_mutex); 4174 4175 id_priv->cm_id.iw = cm_id; 4176 4177 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4178 rdma_addr_size(cma_src_addr(id_priv))); 4179 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4180 rdma_addr_size(cma_dst_addr(id_priv))); 4181 4182 ret = cma_modify_qp_rtr(id_priv, conn_param); 4183 if (ret) 4184 goto out; 4185 4186 if (conn_param) { 4187 iw_param.ord = conn_param->initiator_depth; 4188 iw_param.ird = conn_param->responder_resources; 4189 iw_param.private_data = conn_param->private_data; 4190 iw_param.private_data_len = conn_param->private_data_len; 4191 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4192 } else { 4193 memset(&iw_param, 0, sizeof iw_param); 4194 iw_param.qpn = id_priv->qp_num; 4195 } 4196 ret = iw_cm_connect(cm_id, &iw_param); 4197 out: 4198 if (ret) { 4199 iw_destroy_cm_id(cm_id); 4200 id_priv->cm_id.iw = NULL; 4201 } 4202 return ret; 4203 } 4204 4205 /** 4206 * rdma_connect_locked - Initiate an active connection request. 4207 * @id: Connection identifier to connect. 4208 * @conn_param: Connection information used for connected QPs. 4209 * 4210 * Same as rdma_connect() but can only be called from the 4211 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4212 */ 4213 int rdma_connect_locked(struct rdma_cm_id *id, 4214 struct rdma_conn_param *conn_param) 4215 { 4216 struct rdma_id_private *id_priv = 4217 container_of(id, struct rdma_id_private, id); 4218 int ret; 4219 4220 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4221 return -EINVAL; 4222 4223 if (!id->qp) { 4224 id_priv->qp_num = conn_param->qp_num; 4225 id_priv->srq = conn_param->srq; 4226 } 4227 4228 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4229 if (id->qp_type == IB_QPT_UD) 4230 ret = cma_resolve_ib_udp(id_priv, conn_param); 4231 else 4232 ret = cma_connect_ib(id_priv, conn_param); 4233 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4234 ret = cma_connect_iw(id_priv, conn_param); 4235 } else { 4236 ret = -ENOSYS; 4237 } 4238 if (ret) 4239 goto err_state; 4240 return 0; 4241 err_state: 4242 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4243 return ret; 4244 } 4245 EXPORT_SYMBOL(rdma_connect_locked); 4246 4247 /** 4248 * rdma_connect - Initiate an active connection request. 4249 * @id: Connection identifier to connect. 4250 * @conn_param: Connection information used for connected QPs. 4251 * 4252 * Users must have resolved a route for the rdma_cm_id to connect with by having 4253 * called rdma_resolve_route before calling this routine. 4254 * 4255 * This call will either connect to a remote QP or obtain remote QP information 4256 * for unconnected rdma_cm_id's. The actual operation is based on the 4257 * rdma_cm_id's port space. 4258 */ 4259 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4260 { 4261 struct rdma_id_private *id_priv = 4262 container_of(id, struct rdma_id_private, id); 4263 int ret; 4264 4265 mutex_lock(&id_priv->handler_mutex); 4266 ret = rdma_connect_locked(id, conn_param); 4267 mutex_unlock(&id_priv->handler_mutex); 4268 return ret; 4269 } 4270 EXPORT_SYMBOL(rdma_connect); 4271 4272 /** 4273 * rdma_connect_ece - Initiate an active connection request with ECE data. 4274 * @id: Connection identifier to connect. 4275 * @conn_param: Connection information used for connected QPs. 4276 * @ece: ECE parameters 4277 * 4278 * See rdma_connect() explanation. 4279 */ 4280 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4281 struct rdma_ucm_ece *ece) 4282 { 4283 struct rdma_id_private *id_priv = 4284 container_of(id, struct rdma_id_private, id); 4285 4286 id_priv->ece.vendor_id = ece->vendor_id; 4287 id_priv->ece.attr_mod = ece->attr_mod; 4288 4289 return rdma_connect(id, conn_param); 4290 } 4291 EXPORT_SYMBOL(rdma_connect_ece); 4292 4293 static int cma_accept_ib(struct rdma_id_private *id_priv, 4294 struct rdma_conn_param *conn_param) 4295 { 4296 struct ib_cm_rep_param rep; 4297 int ret; 4298 4299 ret = cma_modify_qp_rtr(id_priv, conn_param); 4300 if (ret) 4301 goto out; 4302 4303 ret = cma_modify_qp_rts(id_priv, conn_param); 4304 if (ret) 4305 goto out; 4306 4307 memset(&rep, 0, sizeof rep); 4308 rep.qp_num = id_priv->qp_num; 4309 rep.starting_psn = id_priv->seq_num; 4310 rep.private_data = conn_param->private_data; 4311 rep.private_data_len = conn_param->private_data_len; 4312 rep.responder_resources = conn_param->responder_resources; 4313 rep.initiator_depth = conn_param->initiator_depth; 4314 rep.failover_accepted = 0; 4315 rep.flow_control = conn_param->flow_control; 4316 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4317 rep.srq = id_priv->srq ? 1 : 0; 4318 rep.ece.vendor_id = id_priv->ece.vendor_id; 4319 rep.ece.attr_mod = id_priv->ece.attr_mod; 4320 4321 trace_cm_send_rep(id_priv); 4322 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4323 out: 4324 return ret; 4325 } 4326 4327 static int cma_accept_iw(struct rdma_id_private *id_priv, 4328 struct rdma_conn_param *conn_param) 4329 { 4330 struct iw_cm_conn_param iw_param; 4331 int ret; 4332 4333 if (!conn_param) 4334 return -EINVAL; 4335 4336 ret = cma_modify_qp_rtr(id_priv, conn_param); 4337 if (ret) 4338 return ret; 4339 4340 iw_param.ord = conn_param->initiator_depth; 4341 iw_param.ird = conn_param->responder_resources; 4342 iw_param.private_data = conn_param->private_data; 4343 iw_param.private_data_len = conn_param->private_data_len; 4344 if (id_priv->id.qp) 4345 iw_param.qpn = id_priv->qp_num; 4346 else 4347 iw_param.qpn = conn_param->qp_num; 4348 4349 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4350 } 4351 4352 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4353 enum ib_cm_sidr_status status, u32 qkey, 4354 const void *private_data, int private_data_len) 4355 { 4356 struct ib_cm_sidr_rep_param rep; 4357 int ret; 4358 4359 memset(&rep, 0, sizeof rep); 4360 rep.status = status; 4361 if (status == IB_SIDR_SUCCESS) { 4362 ret = cma_set_qkey(id_priv, qkey); 4363 if (ret) 4364 return ret; 4365 rep.qp_num = id_priv->qp_num; 4366 rep.qkey = id_priv->qkey; 4367 4368 rep.ece.vendor_id = id_priv->ece.vendor_id; 4369 rep.ece.attr_mod = id_priv->ece.attr_mod; 4370 } 4371 4372 rep.private_data = private_data; 4373 rep.private_data_len = private_data_len; 4374 4375 trace_cm_send_sidr_rep(id_priv); 4376 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4377 } 4378 4379 /** 4380 * rdma_accept - Called to accept a connection request or response. 4381 * @id: Connection identifier associated with the request. 4382 * @conn_param: Information needed to establish the connection. This must be 4383 * provided if accepting a connection request. If accepting a connection 4384 * response, this parameter must be NULL. 4385 * 4386 * Typically, this routine is only called by the listener to accept a connection 4387 * request. It must also be called on the active side of a connection if the 4388 * user is performing their own QP transitions. 4389 * 4390 * In the case of error, a reject message is sent to the remote side and the 4391 * state of the qp associated with the id is modified to error, such that any 4392 * previously posted receive buffers would be flushed. 4393 * 4394 * This function is for use by kernel ULPs and must be called from under the 4395 * handler callback. 4396 */ 4397 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4398 { 4399 struct rdma_id_private *id_priv = 4400 container_of(id, struct rdma_id_private, id); 4401 int ret; 4402 4403 lockdep_assert_held(&id_priv->handler_mutex); 4404 4405 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4406 return -EINVAL; 4407 4408 if (!id->qp && conn_param) { 4409 id_priv->qp_num = conn_param->qp_num; 4410 id_priv->srq = conn_param->srq; 4411 } 4412 4413 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4414 if (id->qp_type == IB_QPT_UD) { 4415 if (conn_param) 4416 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4417 conn_param->qkey, 4418 conn_param->private_data, 4419 conn_param->private_data_len); 4420 else 4421 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4422 0, NULL, 0); 4423 } else { 4424 if (conn_param) 4425 ret = cma_accept_ib(id_priv, conn_param); 4426 else 4427 ret = cma_rep_recv(id_priv); 4428 } 4429 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4430 ret = cma_accept_iw(id_priv, conn_param); 4431 } else { 4432 ret = -ENOSYS; 4433 } 4434 if (ret) 4435 goto reject; 4436 4437 return 0; 4438 reject: 4439 cma_modify_qp_err(id_priv); 4440 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4441 return ret; 4442 } 4443 EXPORT_SYMBOL(rdma_accept); 4444 4445 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4446 struct rdma_ucm_ece *ece) 4447 { 4448 struct rdma_id_private *id_priv = 4449 container_of(id, struct rdma_id_private, id); 4450 4451 id_priv->ece.vendor_id = ece->vendor_id; 4452 id_priv->ece.attr_mod = ece->attr_mod; 4453 4454 return rdma_accept(id, conn_param); 4455 } 4456 EXPORT_SYMBOL(rdma_accept_ece); 4457 4458 void rdma_lock_handler(struct rdma_cm_id *id) 4459 { 4460 struct rdma_id_private *id_priv = 4461 container_of(id, struct rdma_id_private, id); 4462 4463 mutex_lock(&id_priv->handler_mutex); 4464 } 4465 EXPORT_SYMBOL(rdma_lock_handler); 4466 4467 void rdma_unlock_handler(struct rdma_cm_id *id) 4468 { 4469 struct rdma_id_private *id_priv = 4470 container_of(id, struct rdma_id_private, id); 4471 4472 mutex_unlock(&id_priv->handler_mutex); 4473 } 4474 EXPORT_SYMBOL(rdma_unlock_handler); 4475 4476 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4477 { 4478 struct rdma_id_private *id_priv; 4479 int ret; 4480 4481 id_priv = container_of(id, struct rdma_id_private, id); 4482 if (!id_priv->cm_id.ib) 4483 return -EINVAL; 4484 4485 switch (id->device->node_type) { 4486 case RDMA_NODE_IB_CA: 4487 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4488 break; 4489 default: 4490 ret = 0; 4491 break; 4492 } 4493 return ret; 4494 } 4495 EXPORT_SYMBOL(rdma_notify); 4496 4497 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4498 u8 private_data_len, u8 reason) 4499 { 4500 struct rdma_id_private *id_priv; 4501 int ret; 4502 4503 id_priv = container_of(id, struct rdma_id_private, id); 4504 if (!id_priv->cm_id.ib) 4505 return -EINVAL; 4506 4507 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4508 if (id->qp_type == IB_QPT_UD) { 4509 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4510 private_data, private_data_len); 4511 } else { 4512 trace_cm_send_rej(id_priv); 4513 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4514 private_data, private_data_len); 4515 } 4516 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4517 ret = iw_cm_reject(id_priv->cm_id.iw, 4518 private_data, private_data_len); 4519 } else { 4520 ret = -ENOSYS; 4521 } 4522 4523 return ret; 4524 } 4525 EXPORT_SYMBOL(rdma_reject); 4526 4527 int rdma_disconnect(struct rdma_cm_id *id) 4528 { 4529 struct rdma_id_private *id_priv; 4530 int ret; 4531 4532 id_priv = container_of(id, struct rdma_id_private, id); 4533 if (!id_priv->cm_id.ib) 4534 return -EINVAL; 4535 4536 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4537 ret = cma_modify_qp_err(id_priv); 4538 if (ret) 4539 goto out; 4540 /* Initiate or respond to a disconnect. */ 4541 trace_cm_disconnect(id_priv); 4542 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4543 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4544 trace_cm_sent_drep(id_priv); 4545 } else { 4546 trace_cm_sent_dreq(id_priv); 4547 } 4548 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4549 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4550 } else 4551 ret = -EINVAL; 4552 4553 out: 4554 return ret; 4555 } 4556 EXPORT_SYMBOL(rdma_disconnect); 4557 4558 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4559 struct ib_sa_multicast *multicast, 4560 struct rdma_cm_event *event, 4561 struct cma_multicast *mc) 4562 { 4563 struct rdma_dev_addr *dev_addr; 4564 enum ib_gid_type gid_type; 4565 struct net_device *ndev; 4566 4567 if (!status) 4568 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4569 else 4570 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4571 status); 4572 4573 event->status = status; 4574 event->param.ud.private_data = mc->context; 4575 if (status) { 4576 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4577 return; 4578 } 4579 4580 dev_addr = &id_priv->id.route.addr.dev_addr; 4581 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4582 gid_type = 4583 id_priv->cma_dev 4584 ->default_gid_type[id_priv->id.port_num - 4585 rdma_start_port( 4586 id_priv->cma_dev->device)]; 4587 4588 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4589 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4590 &multicast->rec, ndev, gid_type, 4591 &event->param.ud.ah_attr)) { 4592 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4593 goto out; 4594 } 4595 4596 event->param.ud.qp_num = 0xFFFFFF; 4597 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4598 4599 out: 4600 if (ndev) 4601 dev_put(ndev); 4602 } 4603 4604 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4605 { 4606 struct cma_multicast *mc = multicast->context; 4607 struct rdma_id_private *id_priv = mc->id_priv; 4608 struct rdma_cm_event event = {}; 4609 int ret = 0; 4610 4611 mutex_lock(&id_priv->handler_mutex); 4612 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4613 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4614 goto out; 4615 4616 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4617 ret = cma_cm_event_handler(id_priv, &event); 4618 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4619 WARN_ON(ret); 4620 4621 out: 4622 mutex_unlock(&id_priv->handler_mutex); 4623 return 0; 4624 } 4625 4626 static void cma_set_mgid(struct rdma_id_private *id_priv, 4627 struct sockaddr *addr, union ib_gid *mgid) 4628 { 4629 unsigned char mc_map[MAX_ADDR_LEN]; 4630 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4631 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4632 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4633 4634 if (cma_any_addr(addr)) { 4635 memset(mgid, 0, sizeof *mgid); 4636 } else if ((addr->sa_family == AF_INET6) && 4637 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4638 0xFF10A01B)) { 4639 /* IPv6 address is an SA assigned MGID. */ 4640 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4641 } else if (addr->sa_family == AF_IB) { 4642 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4643 } else if (addr->sa_family == AF_INET6) { 4644 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4645 if (id_priv->id.ps == RDMA_PS_UDP) 4646 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4647 *mgid = *(union ib_gid *) (mc_map + 4); 4648 } else { 4649 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4650 if (id_priv->id.ps == RDMA_PS_UDP) 4651 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4652 *mgid = *(union ib_gid *) (mc_map + 4); 4653 } 4654 } 4655 4656 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4657 struct cma_multicast *mc) 4658 { 4659 struct ib_sa_mcmember_rec rec; 4660 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4661 ib_sa_comp_mask comp_mask; 4662 int ret; 4663 4664 ib_addr_get_mgid(dev_addr, &rec.mgid); 4665 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4666 &rec.mgid, &rec); 4667 if (ret) 4668 return ret; 4669 4670 ret = cma_set_qkey(id_priv, 0); 4671 if (ret) 4672 return ret; 4673 4674 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4675 rec.qkey = cpu_to_be32(id_priv->qkey); 4676 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4677 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4678 rec.join_state = mc->join_state; 4679 4680 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4681 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4682 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4683 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4684 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4685 4686 if (id_priv->id.ps == RDMA_PS_IPOIB) 4687 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4688 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4689 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4690 IB_SA_MCMEMBER_REC_MTU | 4691 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4692 4693 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4694 id_priv->id.port_num, &rec, comp_mask, 4695 GFP_KERNEL, cma_ib_mc_handler, mc); 4696 return PTR_ERR_OR_ZERO(mc->sa_mc); 4697 } 4698 4699 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4700 enum ib_gid_type gid_type) 4701 { 4702 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4703 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4704 4705 if (cma_any_addr(addr)) { 4706 memset(mgid, 0, sizeof *mgid); 4707 } else if (addr->sa_family == AF_INET6) { 4708 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4709 } else { 4710 mgid->raw[0] = 4711 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4712 mgid->raw[1] = 4713 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4714 mgid->raw[2] = 0; 4715 mgid->raw[3] = 0; 4716 mgid->raw[4] = 0; 4717 mgid->raw[5] = 0; 4718 mgid->raw[6] = 0; 4719 mgid->raw[7] = 0; 4720 mgid->raw[8] = 0; 4721 mgid->raw[9] = 0; 4722 mgid->raw[10] = 0xff; 4723 mgid->raw[11] = 0xff; 4724 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4725 } 4726 } 4727 4728 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4729 struct cma_multicast *mc) 4730 { 4731 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4732 int err = 0; 4733 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4734 struct net_device *ndev = NULL; 4735 struct ib_sa_multicast ib; 4736 enum ib_gid_type gid_type; 4737 bool send_only; 4738 4739 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4740 4741 if (cma_zero_addr(addr)) 4742 return -EINVAL; 4743 4744 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4745 rdma_start_port(id_priv->cma_dev->device)]; 4746 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4747 4748 ib.rec.pkey = cpu_to_be16(0xffff); 4749 if (id_priv->id.ps == RDMA_PS_UDP) 4750 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4751 4752 if (dev_addr->bound_dev_if) 4753 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4754 if (!ndev) 4755 return -ENODEV; 4756 4757 ib.rec.rate = iboe_get_rate(ndev); 4758 ib.rec.hop_limit = 1; 4759 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4760 4761 if (addr->sa_family == AF_INET) { 4762 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4763 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4764 if (!send_only) { 4765 err = cma_igmp_send(ndev, &ib.rec.mgid, 4766 true); 4767 } 4768 } 4769 } else { 4770 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4771 err = -ENOTSUPP; 4772 } 4773 dev_put(ndev); 4774 if (err || !ib.rec.mtu) 4775 return err ?: -EINVAL; 4776 4777 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4778 &ib.rec.port_gid); 4779 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4780 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4781 queue_work(cma_wq, &mc->iboe_join.work); 4782 return 0; 4783 } 4784 4785 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4786 u8 join_state, void *context) 4787 { 4788 struct rdma_id_private *id_priv = 4789 container_of(id, struct rdma_id_private, id); 4790 struct cma_multicast *mc; 4791 int ret; 4792 4793 /* Not supported for kernel QPs */ 4794 if (WARN_ON(id->qp)) 4795 return -EINVAL; 4796 4797 /* ULP is calling this wrong. */ 4798 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4799 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4800 return -EINVAL; 4801 4802 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4803 if (!mc) 4804 return -ENOMEM; 4805 4806 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4807 mc->context = context; 4808 mc->id_priv = id_priv; 4809 mc->join_state = join_state; 4810 4811 if (rdma_protocol_roce(id->device, id->port_num)) { 4812 ret = cma_iboe_join_multicast(id_priv, mc); 4813 if (ret) 4814 goto out_err; 4815 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4816 ret = cma_join_ib_multicast(id_priv, mc); 4817 if (ret) 4818 goto out_err; 4819 } else { 4820 ret = -ENOSYS; 4821 goto out_err; 4822 } 4823 4824 spin_lock(&id_priv->lock); 4825 list_add(&mc->list, &id_priv->mc_list); 4826 spin_unlock(&id_priv->lock); 4827 4828 return 0; 4829 out_err: 4830 kfree(mc); 4831 return ret; 4832 } 4833 EXPORT_SYMBOL(rdma_join_multicast); 4834 4835 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4836 { 4837 struct rdma_id_private *id_priv; 4838 struct cma_multicast *mc; 4839 4840 id_priv = container_of(id, struct rdma_id_private, id); 4841 spin_lock_irq(&id_priv->lock); 4842 list_for_each_entry(mc, &id_priv->mc_list, list) { 4843 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4844 continue; 4845 list_del(&mc->list); 4846 spin_unlock_irq(&id_priv->lock); 4847 4848 WARN_ON(id_priv->cma_dev->device != id->device); 4849 destroy_mc(id_priv, mc); 4850 return; 4851 } 4852 spin_unlock_irq(&id_priv->lock); 4853 } 4854 EXPORT_SYMBOL(rdma_leave_multicast); 4855 4856 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4857 { 4858 struct rdma_dev_addr *dev_addr; 4859 struct cma_work *work; 4860 4861 dev_addr = &id_priv->id.route.addr.dev_addr; 4862 4863 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4864 (net_eq(dev_net(ndev), dev_addr->net)) && 4865 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4866 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4867 ndev->name, &id_priv->id); 4868 work = kzalloc(sizeof *work, GFP_KERNEL); 4869 if (!work) 4870 return -ENOMEM; 4871 4872 INIT_WORK(&work->work, cma_work_handler); 4873 work->id = id_priv; 4874 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4875 cma_id_get(id_priv); 4876 queue_work(cma_wq, &work->work); 4877 } 4878 4879 return 0; 4880 } 4881 4882 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4883 void *ptr) 4884 { 4885 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4886 struct cma_device *cma_dev; 4887 struct rdma_id_private *id_priv; 4888 int ret = NOTIFY_DONE; 4889 4890 if (event != NETDEV_BONDING_FAILOVER) 4891 return NOTIFY_DONE; 4892 4893 if (!netif_is_bond_master(ndev)) 4894 return NOTIFY_DONE; 4895 4896 mutex_lock(&lock); 4897 list_for_each_entry(cma_dev, &dev_list, list) 4898 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4899 ret = cma_netdev_change(ndev, id_priv); 4900 if (ret) 4901 goto out; 4902 } 4903 4904 out: 4905 mutex_unlock(&lock); 4906 return ret; 4907 } 4908 4909 static struct notifier_block cma_nb = { 4910 .notifier_call = cma_netdev_callback 4911 }; 4912 4913 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4914 { 4915 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4916 enum rdma_cm_state state; 4917 unsigned long flags; 4918 4919 mutex_lock(&id_priv->handler_mutex); 4920 /* Record that we want to remove the device */ 4921 spin_lock_irqsave(&id_priv->lock, flags); 4922 state = id_priv->state; 4923 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4924 spin_unlock_irqrestore(&id_priv->lock, flags); 4925 mutex_unlock(&id_priv->handler_mutex); 4926 cma_id_put(id_priv); 4927 return; 4928 } 4929 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4930 spin_unlock_irqrestore(&id_priv->lock, flags); 4931 4932 if (cma_cm_event_handler(id_priv, &event)) { 4933 /* 4934 * At this point the ULP promises it won't call 4935 * rdma_destroy_id() concurrently 4936 */ 4937 cma_id_put(id_priv); 4938 mutex_unlock(&id_priv->handler_mutex); 4939 trace_cm_id_destroy(id_priv); 4940 _destroy_id(id_priv, state); 4941 return; 4942 } 4943 mutex_unlock(&id_priv->handler_mutex); 4944 4945 /* 4946 * If this races with destroy then the thread that first assigns state 4947 * to a destroying does the cancel. 4948 */ 4949 cma_cancel_operation(id_priv, state); 4950 cma_id_put(id_priv); 4951 } 4952 4953 static void cma_process_remove(struct cma_device *cma_dev) 4954 { 4955 mutex_lock(&lock); 4956 while (!list_empty(&cma_dev->id_list)) { 4957 struct rdma_id_private *id_priv = list_first_entry( 4958 &cma_dev->id_list, struct rdma_id_private, list); 4959 4960 list_del(&id_priv->listen_list); 4961 list_del_init(&id_priv->list); 4962 cma_id_get(id_priv); 4963 mutex_unlock(&lock); 4964 4965 cma_send_device_removal_put(id_priv); 4966 4967 mutex_lock(&lock); 4968 } 4969 mutex_unlock(&lock); 4970 4971 cma_dev_put(cma_dev); 4972 wait_for_completion(&cma_dev->comp); 4973 } 4974 4975 static bool cma_supported(struct ib_device *device) 4976 { 4977 u32 i; 4978 4979 rdma_for_each_port(device, i) { 4980 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4981 return true; 4982 } 4983 return false; 4984 } 4985 4986 static int cma_add_one(struct ib_device *device) 4987 { 4988 struct rdma_id_private *to_destroy; 4989 struct cma_device *cma_dev; 4990 struct rdma_id_private *id_priv; 4991 unsigned long supported_gids = 0; 4992 int ret; 4993 u32 i; 4994 4995 if (!cma_supported(device)) 4996 return -EOPNOTSUPP; 4997 4998 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 4999 if (!cma_dev) 5000 return -ENOMEM; 5001 5002 cma_dev->device = device; 5003 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5004 sizeof(*cma_dev->default_gid_type), 5005 GFP_KERNEL); 5006 if (!cma_dev->default_gid_type) { 5007 ret = -ENOMEM; 5008 goto free_cma_dev; 5009 } 5010 5011 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5012 sizeof(*cma_dev->default_roce_tos), 5013 GFP_KERNEL); 5014 if (!cma_dev->default_roce_tos) { 5015 ret = -ENOMEM; 5016 goto free_gid_type; 5017 } 5018 5019 rdma_for_each_port (device, i) { 5020 supported_gids = roce_gid_type_mask_support(device, i); 5021 WARN_ON(!supported_gids); 5022 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5023 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5024 CMA_PREFERRED_ROCE_GID_TYPE; 5025 else 5026 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5027 find_first_bit(&supported_gids, BITS_PER_LONG); 5028 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5029 } 5030 5031 init_completion(&cma_dev->comp); 5032 refcount_set(&cma_dev->refcount, 1); 5033 INIT_LIST_HEAD(&cma_dev->id_list); 5034 ib_set_client_data(device, &cma_client, cma_dev); 5035 5036 mutex_lock(&lock); 5037 list_add_tail(&cma_dev->list, &dev_list); 5038 list_for_each_entry(id_priv, &listen_any_list, list) { 5039 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5040 if (ret) 5041 goto free_listen; 5042 } 5043 mutex_unlock(&lock); 5044 5045 trace_cm_add_one(device); 5046 return 0; 5047 5048 free_listen: 5049 list_del(&cma_dev->list); 5050 mutex_unlock(&lock); 5051 5052 /* cma_process_remove() will delete to_destroy */ 5053 cma_process_remove(cma_dev); 5054 kfree(cma_dev->default_roce_tos); 5055 free_gid_type: 5056 kfree(cma_dev->default_gid_type); 5057 5058 free_cma_dev: 5059 kfree(cma_dev); 5060 return ret; 5061 } 5062 5063 static void cma_remove_one(struct ib_device *device, void *client_data) 5064 { 5065 struct cma_device *cma_dev = client_data; 5066 5067 trace_cm_remove_one(device); 5068 5069 mutex_lock(&lock); 5070 list_del(&cma_dev->list); 5071 mutex_unlock(&lock); 5072 5073 cma_process_remove(cma_dev); 5074 kfree(cma_dev->default_roce_tos); 5075 kfree(cma_dev->default_gid_type); 5076 kfree(cma_dev); 5077 } 5078 5079 static int cma_init_net(struct net *net) 5080 { 5081 struct cma_pernet *pernet = cma_pernet(net); 5082 5083 xa_init(&pernet->tcp_ps); 5084 xa_init(&pernet->udp_ps); 5085 xa_init(&pernet->ipoib_ps); 5086 xa_init(&pernet->ib_ps); 5087 5088 return 0; 5089 } 5090 5091 static void cma_exit_net(struct net *net) 5092 { 5093 struct cma_pernet *pernet = cma_pernet(net); 5094 5095 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5096 WARN_ON(!xa_empty(&pernet->udp_ps)); 5097 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5098 WARN_ON(!xa_empty(&pernet->ib_ps)); 5099 } 5100 5101 static struct pernet_operations cma_pernet_operations = { 5102 .init = cma_init_net, 5103 .exit = cma_exit_net, 5104 .id = &cma_pernet_id, 5105 .size = sizeof(struct cma_pernet), 5106 }; 5107 5108 static int __init cma_init(void) 5109 { 5110 int ret; 5111 5112 /* 5113 * There is a rare lock ordering dependency in cma_netdev_callback() 5114 * that only happens when bonding is enabled. Teach lockdep that rtnl 5115 * must never be nested under lock so it can find these without having 5116 * to test with bonding. 5117 */ 5118 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5119 rtnl_lock(); 5120 mutex_lock(&lock); 5121 mutex_unlock(&lock); 5122 rtnl_unlock(); 5123 } 5124 5125 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5126 if (!cma_wq) 5127 return -ENOMEM; 5128 5129 ret = register_pernet_subsys(&cma_pernet_operations); 5130 if (ret) 5131 goto err_wq; 5132 5133 ib_sa_register_client(&sa_client); 5134 register_netdevice_notifier(&cma_nb); 5135 5136 ret = ib_register_client(&cma_client); 5137 if (ret) 5138 goto err; 5139 5140 ret = cma_configfs_init(); 5141 if (ret) 5142 goto err_ib; 5143 5144 return 0; 5145 5146 err_ib: 5147 ib_unregister_client(&cma_client); 5148 err: 5149 unregister_netdevice_notifier(&cma_nb); 5150 ib_sa_unregister_client(&sa_client); 5151 unregister_pernet_subsys(&cma_pernet_operations); 5152 err_wq: 5153 destroy_workqueue(cma_wq); 5154 return ret; 5155 } 5156 5157 static void __exit cma_cleanup(void) 5158 { 5159 cma_configfs_exit(); 5160 ib_unregister_client(&cma_client); 5161 unregister_netdevice_notifier(&cma_nb); 5162 ib_sa_unregister_client(&sa_client); 5163 unregister_pernet_subsys(&cma_pernet_operations); 5164 destroy_workqueue(cma_wq); 5165 } 5166 5167 module_init(cma_init); 5168 module_exit(cma_cleanup); 5169