xref: /openbmc/linux/drivers/infiniband/core/cma.c (revision 76c47183224c86e4011048b80f0e2d0d166f01c2)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/igmp.h>
15 #include <linux/xarray.h>
16 #include <linux/inetdevice.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <net/route.h>
20 
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 #include <net/tcp.h>
24 #include <net/ipv6.h>
25 #include <net/ip_fib.h>
26 #include <net/ip6_route.h>
27 
28 #include <rdma/rdma_cm.h>
29 #include <rdma/rdma_cm_ib.h>
30 #include <rdma/rdma_netlink.h>
31 #include <rdma/ib.h>
32 #include <rdma/ib_cache.h>
33 #include <rdma/ib_cm.h>
34 #include <rdma/ib_sa.h>
35 #include <rdma/iw_cm.h>
36 
37 #include "core_priv.h"
38 #include "cma_priv.h"
39 #include "cma_trace.h"
40 
41 MODULE_AUTHOR("Sean Hefty");
42 MODULE_DESCRIPTION("Generic RDMA CM Agent");
43 MODULE_LICENSE("Dual BSD/GPL");
44 
45 #define CMA_CM_RESPONSE_TIMEOUT 20
46 #define CMA_MAX_CM_RETRIES 15
47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
48 #define CMA_IBOE_PACKET_LIFETIME 18
49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
50 
51 static const char * const cma_events[] = {
52 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
53 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
54 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
55 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
56 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
57 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
58 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
59 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
60 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
61 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
62 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
63 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
64 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
65 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
66 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
67 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
68 };
69 
70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr,
71 			 union ib_gid *mgid);
72 
73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
74 {
75 	size_t index = event;
76 
77 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
78 			cma_events[index] : "unrecognized event";
79 }
80 EXPORT_SYMBOL(rdma_event_msg);
81 
82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
83 						int reason)
84 {
85 	if (rdma_ib_or_roce(id->device, id->port_num))
86 		return ibcm_reject_msg(reason);
87 
88 	if (rdma_protocol_iwarp(id->device, id->port_num))
89 		return iwcm_reject_msg(reason);
90 
91 	WARN_ON_ONCE(1);
92 	return "unrecognized transport";
93 }
94 EXPORT_SYMBOL(rdma_reject_msg);
95 
96 /**
97  * rdma_is_consumer_reject - return true if the consumer rejected the connect
98  *                           request.
99  * @id: Communication identifier that received the REJECT event.
100  * @reason: Value returned in the REJECT event status field.
101  */
102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
103 {
104 	if (rdma_ib_or_roce(id->device, id->port_num))
105 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
106 
107 	if (rdma_protocol_iwarp(id->device, id->port_num))
108 		return reason == -ECONNREFUSED;
109 
110 	WARN_ON_ONCE(1);
111 	return false;
112 }
113 
114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
115 				      struct rdma_cm_event *ev, u8 *data_len)
116 {
117 	const void *p;
118 
119 	if (rdma_is_consumer_reject(id, ev->status)) {
120 		*data_len = ev->param.conn.private_data_len;
121 		p = ev->param.conn.private_data;
122 	} else {
123 		*data_len = 0;
124 		p = NULL;
125 	}
126 	return p;
127 }
128 EXPORT_SYMBOL(rdma_consumer_reject_data);
129 
130 /**
131  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
132  * @id: Communication Identifier
133  */
134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
135 {
136 	struct rdma_id_private *id_priv;
137 
138 	id_priv = container_of(id, struct rdma_id_private, id);
139 	if (id->device->node_type == RDMA_NODE_RNIC)
140 		return id_priv->cm_id.iw;
141 	return NULL;
142 }
143 EXPORT_SYMBOL(rdma_iw_cm_id);
144 
145 /**
146  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
147  * @res: rdma resource tracking entry pointer
148  */
149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
150 {
151 	struct rdma_id_private *id_priv =
152 		container_of(res, struct rdma_id_private, res);
153 
154 	return &id_priv->id;
155 }
156 EXPORT_SYMBOL(rdma_res_to_id);
157 
158 static int cma_add_one(struct ib_device *device);
159 static void cma_remove_one(struct ib_device *device, void *client_data);
160 
161 static struct ib_client cma_client = {
162 	.name   = "cma",
163 	.add    = cma_add_one,
164 	.remove = cma_remove_one
165 };
166 
167 static struct ib_sa_client sa_client;
168 static LIST_HEAD(dev_list);
169 static LIST_HEAD(listen_any_list);
170 static DEFINE_MUTEX(lock);
171 static struct workqueue_struct *cma_wq;
172 static unsigned int cma_pernet_id;
173 
174 struct cma_pernet {
175 	struct xarray tcp_ps;
176 	struct xarray udp_ps;
177 	struct xarray ipoib_ps;
178 	struct xarray ib_ps;
179 };
180 
181 static struct cma_pernet *cma_pernet(struct net *net)
182 {
183 	return net_generic(net, cma_pernet_id);
184 }
185 
186 static
187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
188 {
189 	struct cma_pernet *pernet = cma_pernet(net);
190 
191 	switch (ps) {
192 	case RDMA_PS_TCP:
193 		return &pernet->tcp_ps;
194 	case RDMA_PS_UDP:
195 		return &pernet->udp_ps;
196 	case RDMA_PS_IPOIB:
197 		return &pernet->ipoib_ps;
198 	case RDMA_PS_IB:
199 		return &pernet->ib_ps;
200 	default:
201 		return NULL;
202 	}
203 }
204 
205 struct cma_device {
206 	struct list_head	list;
207 	struct ib_device	*device;
208 	struct completion	comp;
209 	refcount_t refcount;
210 	struct list_head	id_list;
211 	enum ib_gid_type	*default_gid_type;
212 	u8			*default_roce_tos;
213 };
214 
215 struct rdma_bind_list {
216 	enum rdma_ucm_port_space ps;
217 	struct hlist_head	owners;
218 	unsigned short		port;
219 };
220 
221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
222 			struct rdma_bind_list *bind_list, int snum)
223 {
224 	struct xarray *xa = cma_pernet_xa(net, ps);
225 
226 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
227 }
228 
229 static struct rdma_bind_list *cma_ps_find(struct net *net,
230 					  enum rdma_ucm_port_space ps, int snum)
231 {
232 	struct xarray *xa = cma_pernet_xa(net, ps);
233 
234 	return xa_load(xa, snum);
235 }
236 
237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
238 			  int snum)
239 {
240 	struct xarray *xa = cma_pernet_xa(net, ps);
241 
242 	xa_erase(xa, snum);
243 }
244 
245 enum {
246 	CMA_OPTION_AFONLY,
247 };
248 
249 void cma_dev_get(struct cma_device *cma_dev)
250 {
251 	refcount_inc(&cma_dev->refcount);
252 }
253 
254 void cma_dev_put(struct cma_device *cma_dev)
255 {
256 	if (refcount_dec_and_test(&cma_dev->refcount))
257 		complete(&cma_dev->comp);
258 }
259 
260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
261 					     void		*cookie)
262 {
263 	struct cma_device *cma_dev;
264 	struct cma_device *found_cma_dev = NULL;
265 
266 	mutex_lock(&lock);
267 
268 	list_for_each_entry(cma_dev, &dev_list, list)
269 		if (filter(cma_dev->device, cookie)) {
270 			found_cma_dev = cma_dev;
271 			break;
272 		}
273 
274 	if (found_cma_dev)
275 		cma_dev_get(found_cma_dev);
276 	mutex_unlock(&lock);
277 	return found_cma_dev;
278 }
279 
280 int cma_get_default_gid_type(struct cma_device *cma_dev,
281 			     u32 port)
282 {
283 	if (!rdma_is_port_valid(cma_dev->device, port))
284 		return -EINVAL;
285 
286 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
287 }
288 
289 int cma_set_default_gid_type(struct cma_device *cma_dev,
290 			     u32 port,
291 			     enum ib_gid_type default_gid_type)
292 {
293 	unsigned long supported_gids;
294 
295 	if (!rdma_is_port_valid(cma_dev->device, port))
296 		return -EINVAL;
297 
298 	if (default_gid_type == IB_GID_TYPE_IB &&
299 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
300 		default_gid_type = IB_GID_TYPE_ROCE;
301 
302 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
303 
304 	if (!(supported_gids & 1 << default_gid_type))
305 		return -EINVAL;
306 
307 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
308 		default_gid_type;
309 
310 	return 0;
311 }
312 
313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
314 {
315 	if (!rdma_is_port_valid(cma_dev->device, port))
316 		return -EINVAL;
317 
318 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
319 }
320 
321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
322 			     u8 default_roce_tos)
323 {
324 	if (!rdma_is_port_valid(cma_dev->device, port))
325 		return -EINVAL;
326 
327 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
328 		 default_roce_tos;
329 
330 	return 0;
331 }
332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
333 {
334 	return cma_dev->device;
335 }
336 
337 /*
338  * Device removal can occur at anytime, so we need extra handling to
339  * serialize notifying the user of device removal with other callbacks.
340  * We do this by disabling removal notification while a callback is in process,
341  * and reporting it after the callback completes.
342  */
343 
344 struct cma_multicast {
345 	struct rdma_id_private *id_priv;
346 	union {
347 		struct ib_sa_multicast *sa_mc;
348 		struct {
349 			struct work_struct work;
350 			struct rdma_cm_event event;
351 		} iboe_join;
352 	};
353 	struct list_head	list;
354 	void			*context;
355 	struct sockaddr_storage	addr;
356 	u8			join_state;
357 };
358 
359 struct cma_work {
360 	struct work_struct	work;
361 	struct rdma_id_private	*id;
362 	enum rdma_cm_state	old_state;
363 	enum rdma_cm_state	new_state;
364 	struct rdma_cm_event	event;
365 };
366 
367 union cma_ip_addr {
368 	struct in6_addr ip6;
369 	struct {
370 		__be32 pad[3];
371 		__be32 addr;
372 	} ip4;
373 };
374 
375 struct cma_hdr {
376 	u8 cma_version;
377 	u8 ip_version;	/* IP version: 7:4 */
378 	__be16 port;
379 	union cma_ip_addr src_addr;
380 	union cma_ip_addr dst_addr;
381 };
382 
383 #define CMA_VERSION 0x00
384 
385 struct cma_req_info {
386 	struct sockaddr_storage listen_addr_storage;
387 	struct sockaddr_storage src_addr_storage;
388 	struct ib_device *device;
389 	union ib_gid local_gid;
390 	__be64 service_id;
391 	int port;
392 	bool has_gid;
393 	u16 pkey;
394 };
395 
396 static int cma_comp_exch(struct rdma_id_private *id_priv,
397 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
398 {
399 	unsigned long flags;
400 	int ret;
401 
402 	/*
403 	 * The FSM uses a funny double locking where state is protected by both
404 	 * the handler_mutex and the spinlock. State is not allowed to change
405 	 * to/from a handler_mutex protected value without also holding
406 	 * handler_mutex.
407 	 */
408 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
409 		lockdep_assert_held(&id_priv->handler_mutex);
410 
411 	spin_lock_irqsave(&id_priv->lock, flags);
412 	if ((ret = (id_priv->state == comp)))
413 		id_priv->state = exch;
414 	spin_unlock_irqrestore(&id_priv->lock, flags);
415 	return ret;
416 }
417 
418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
419 {
420 	return hdr->ip_version >> 4;
421 }
422 
423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
424 {
425 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
426 }
427 
428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
429 {
430 	struct in_device *in_dev = NULL;
431 
432 	if (ndev) {
433 		rtnl_lock();
434 		in_dev = __in_dev_get_rtnl(ndev);
435 		if (in_dev) {
436 			if (join)
437 				ip_mc_inc_group(in_dev,
438 						*(__be32 *)(mgid->raw + 12));
439 			else
440 				ip_mc_dec_group(in_dev,
441 						*(__be32 *)(mgid->raw + 12));
442 		}
443 		rtnl_unlock();
444 	}
445 	return (in_dev) ? 0 : -ENODEV;
446 }
447 
448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
449 			       struct cma_device *cma_dev)
450 {
451 	cma_dev_get(cma_dev);
452 	id_priv->cma_dev = cma_dev;
453 	id_priv->id.device = cma_dev->device;
454 	id_priv->id.route.addr.dev_addr.transport =
455 		rdma_node_get_transport(cma_dev->device->node_type);
456 	list_add_tail(&id_priv->list, &cma_dev->id_list);
457 
458 	trace_cm_id_attach(id_priv, cma_dev->device);
459 }
460 
461 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
462 			      struct cma_device *cma_dev)
463 {
464 	_cma_attach_to_dev(id_priv, cma_dev);
465 	id_priv->gid_type =
466 		cma_dev->default_gid_type[id_priv->id.port_num -
467 					  rdma_start_port(cma_dev->device)];
468 }
469 
470 static void cma_release_dev(struct rdma_id_private *id_priv)
471 {
472 	mutex_lock(&lock);
473 	list_del(&id_priv->list);
474 	cma_dev_put(id_priv->cma_dev);
475 	id_priv->cma_dev = NULL;
476 	id_priv->id.device = NULL;
477 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
478 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
479 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
480 	}
481 	mutex_unlock(&lock);
482 }
483 
484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
485 {
486 	return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
487 }
488 
489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
490 {
491 	return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
492 }
493 
494 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
495 {
496 	return id_priv->id.route.addr.src_addr.ss_family;
497 }
498 
499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
500 {
501 	struct ib_sa_mcmember_rec rec;
502 	int ret = 0;
503 
504 	if (id_priv->qkey) {
505 		if (qkey && id_priv->qkey != qkey)
506 			return -EINVAL;
507 		return 0;
508 	}
509 
510 	if (qkey) {
511 		id_priv->qkey = qkey;
512 		return 0;
513 	}
514 
515 	switch (id_priv->id.ps) {
516 	case RDMA_PS_UDP:
517 	case RDMA_PS_IB:
518 		id_priv->qkey = RDMA_UDP_QKEY;
519 		break;
520 	case RDMA_PS_IPOIB:
521 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
522 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
523 					     id_priv->id.port_num, &rec.mgid,
524 					     &rec);
525 		if (!ret)
526 			id_priv->qkey = be32_to_cpu(rec.qkey);
527 		break;
528 	default:
529 		break;
530 	}
531 	return ret;
532 }
533 
534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
535 {
536 	dev_addr->dev_type = ARPHRD_INFINIBAND;
537 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
538 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
539 }
540 
541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
542 {
543 	int ret;
544 
545 	if (addr->sa_family != AF_IB) {
546 		ret = rdma_translate_ip(addr, dev_addr);
547 	} else {
548 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
549 		ret = 0;
550 	}
551 
552 	return ret;
553 }
554 
555 static const struct ib_gid_attr *
556 cma_validate_port(struct ib_device *device, u32 port,
557 		  enum ib_gid_type gid_type,
558 		  union ib_gid *gid,
559 		  struct rdma_id_private *id_priv)
560 {
561 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
562 	int bound_if_index = dev_addr->bound_dev_if;
563 	const struct ib_gid_attr *sgid_attr;
564 	int dev_type = dev_addr->dev_type;
565 	struct net_device *ndev = NULL;
566 
567 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
568 		return ERR_PTR(-ENODEV);
569 
570 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
571 		return ERR_PTR(-ENODEV);
572 
573 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
574 		return ERR_PTR(-ENODEV);
575 
576 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
577 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
578 		if (!ndev)
579 			return ERR_PTR(-ENODEV);
580 	} else {
581 		gid_type = IB_GID_TYPE_IB;
582 	}
583 
584 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
585 	if (ndev)
586 		dev_put(ndev);
587 	return sgid_attr;
588 }
589 
590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
591 			       const struct ib_gid_attr *sgid_attr)
592 {
593 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
594 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
595 }
596 
597 /**
598  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
599  * based on source ip address.
600  * @id_priv:	cm_id which should be bound to cma device
601  *
602  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
603  * based on source IP address. It returns 0 on success or error code otherwise.
604  * It is applicable to active and passive side cm_id.
605  */
606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
607 {
608 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
609 	const struct ib_gid_attr *sgid_attr;
610 	union ib_gid gid, iboe_gid, *gidp;
611 	struct cma_device *cma_dev;
612 	enum ib_gid_type gid_type;
613 	int ret = -ENODEV;
614 	u32 port;
615 
616 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
617 	    id_priv->id.ps == RDMA_PS_IPOIB)
618 		return -EINVAL;
619 
620 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
621 		    &iboe_gid);
622 
623 	memcpy(&gid, dev_addr->src_dev_addr +
624 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
625 
626 	mutex_lock(&lock);
627 	list_for_each_entry(cma_dev, &dev_list, list) {
628 		rdma_for_each_port (cma_dev->device, port) {
629 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
630 			       &iboe_gid : &gid;
631 			gid_type = cma_dev->default_gid_type[port - 1];
632 			sgid_attr = cma_validate_port(cma_dev->device, port,
633 						      gid_type, gidp, id_priv);
634 			if (!IS_ERR(sgid_attr)) {
635 				id_priv->id.port_num = port;
636 				cma_bind_sgid_attr(id_priv, sgid_attr);
637 				cma_attach_to_dev(id_priv, cma_dev);
638 				ret = 0;
639 				goto out;
640 			}
641 		}
642 	}
643 out:
644 	mutex_unlock(&lock);
645 	return ret;
646 }
647 
648 /**
649  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
650  * @id_priv:		cm id to bind to cma device
651  * @listen_id_priv:	listener cm id to match against
652  * @req:		Pointer to req structure containaining incoming
653  *			request information
654  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
655  * rdma device matches for listen_id and incoming request. It also verifies
656  * that a GID table entry is present for the source address.
657  * Returns 0 on success, or returns error code otherwise.
658  */
659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
660 			      const struct rdma_id_private *listen_id_priv,
661 			      struct cma_req_info *req)
662 {
663 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
664 	const struct ib_gid_attr *sgid_attr;
665 	enum ib_gid_type gid_type;
666 	union ib_gid gid;
667 
668 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
669 	    id_priv->id.ps == RDMA_PS_IPOIB)
670 		return -EINVAL;
671 
672 	if (rdma_protocol_roce(req->device, req->port))
673 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
674 			    &gid);
675 	else
676 		memcpy(&gid, dev_addr->src_dev_addr +
677 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
678 
679 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
680 	sgid_attr = cma_validate_port(req->device, req->port,
681 				      gid_type, &gid, id_priv);
682 	if (IS_ERR(sgid_attr))
683 		return PTR_ERR(sgid_attr);
684 
685 	id_priv->id.port_num = req->port;
686 	cma_bind_sgid_attr(id_priv, sgid_attr);
687 	/* Need to acquire lock to protect against reader
688 	 * of cma_dev->id_list such as cma_netdev_callback() and
689 	 * cma_process_remove().
690 	 */
691 	mutex_lock(&lock);
692 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
693 	mutex_unlock(&lock);
694 	rdma_restrack_add(&id_priv->res);
695 	return 0;
696 }
697 
698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
699 			      const struct rdma_id_private *listen_id_priv)
700 {
701 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
702 	const struct ib_gid_attr *sgid_attr;
703 	struct cma_device *cma_dev;
704 	enum ib_gid_type gid_type;
705 	int ret = -ENODEV;
706 	union ib_gid gid;
707 	u32 port;
708 
709 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
710 	    id_priv->id.ps == RDMA_PS_IPOIB)
711 		return -EINVAL;
712 
713 	memcpy(&gid, dev_addr->src_dev_addr +
714 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
715 
716 	mutex_lock(&lock);
717 
718 	cma_dev = listen_id_priv->cma_dev;
719 	port = listen_id_priv->id.port_num;
720 	gid_type = listen_id_priv->gid_type;
721 	sgid_attr = cma_validate_port(cma_dev->device, port,
722 				      gid_type, &gid, id_priv);
723 	if (!IS_ERR(sgid_attr)) {
724 		id_priv->id.port_num = port;
725 		cma_bind_sgid_attr(id_priv, sgid_attr);
726 		ret = 0;
727 		goto out;
728 	}
729 
730 	list_for_each_entry(cma_dev, &dev_list, list) {
731 		rdma_for_each_port (cma_dev->device, port) {
732 			if (listen_id_priv->cma_dev == cma_dev &&
733 			    listen_id_priv->id.port_num == port)
734 				continue;
735 
736 			gid_type = cma_dev->default_gid_type[port - 1];
737 			sgid_attr = cma_validate_port(cma_dev->device, port,
738 						      gid_type, &gid, id_priv);
739 			if (!IS_ERR(sgid_attr)) {
740 				id_priv->id.port_num = port;
741 				cma_bind_sgid_attr(id_priv, sgid_attr);
742 				ret = 0;
743 				goto out;
744 			}
745 		}
746 	}
747 
748 out:
749 	if (!ret) {
750 		cma_attach_to_dev(id_priv, cma_dev);
751 		rdma_restrack_add(&id_priv->res);
752 	}
753 
754 	mutex_unlock(&lock);
755 	return ret;
756 }
757 
758 /*
759  * Select the source IB device and address to reach the destination IB address.
760  */
761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
762 {
763 	struct cma_device *cma_dev, *cur_dev;
764 	struct sockaddr_ib *addr;
765 	union ib_gid gid, sgid, *dgid;
766 	unsigned int p;
767 	u16 pkey, index;
768 	enum ib_port_state port_state;
769 	int i;
770 
771 	cma_dev = NULL;
772 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
773 	dgid = (union ib_gid *) &addr->sib_addr;
774 	pkey = ntohs(addr->sib_pkey);
775 
776 	mutex_lock(&lock);
777 	list_for_each_entry(cur_dev, &dev_list, list) {
778 		rdma_for_each_port (cur_dev->device, p) {
779 			if (!rdma_cap_af_ib(cur_dev->device, p))
780 				continue;
781 
782 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
783 				continue;
784 
785 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
786 				continue;
787 			for (i = 0; !rdma_query_gid(cur_dev->device,
788 						    p, i, &gid);
789 			     i++) {
790 				if (!memcmp(&gid, dgid, sizeof(gid))) {
791 					cma_dev = cur_dev;
792 					sgid = gid;
793 					id_priv->id.port_num = p;
794 					goto found;
795 				}
796 
797 				if (!cma_dev && (gid.global.subnet_prefix ==
798 				    dgid->global.subnet_prefix) &&
799 				    port_state == IB_PORT_ACTIVE) {
800 					cma_dev = cur_dev;
801 					sgid = gid;
802 					id_priv->id.port_num = p;
803 					goto found;
804 				}
805 			}
806 		}
807 	}
808 	mutex_unlock(&lock);
809 	return -ENODEV;
810 
811 found:
812 	cma_attach_to_dev(id_priv, cma_dev);
813 	rdma_restrack_add(&id_priv->res);
814 	mutex_unlock(&lock);
815 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
816 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
817 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
818 	return 0;
819 }
820 
821 static void cma_id_get(struct rdma_id_private *id_priv)
822 {
823 	refcount_inc(&id_priv->refcount);
824 }
825 
826 static void cma_id_put(struct rdma_id_private *id_priv)
827 {
828 	if (refcount_dec_and_test(&id_priv->refcount))
829 		complete(&id_priv->comp);
830 }
831 
832 static struct rdma_id_private *
833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
834 		 void *context, enum rdma_ucm_port_space ps,
835 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
836 {
837 	struct rdma_id_private *id_priv;
838 
839 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
840 	if (!id_priv)
841 		return ERR_PTR(-ENOMEM);
842 
843 	id_priv->state = RDMA_CM_IDLE;
844 	id_priv->id.context = context;
845 	id_priv->id.event_handler = event_handler;
846 	id_priv->id.ps = ps;
847 	id_priv->id.qp_type = qp_type;
848 	id_priv->tos_set = false;
849 	id_priv->timeout_set = false;
850 	id_priv->min_rnr_timer_set = false;
851 	id_priv->gid_type = IB_GID_TYPE_IB;
852 	spin_lock_init(&id_priv->lock);
853 	mutex_init(&id_priv->qp_mutex);
854 	init_completion(&id_priv->comp);
855 	refcount_set(&id_priv->refcount, 1);
856 	mutex_init(&id_priv->handler_mutex);
857 	INIT_LIST_HEAD(&id_priv->listen_list);
858 	INIT_LIST_HEAD(&id_priv->mc_list);
859 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
860 	id_priv->id.route.addr.dev_addr.net = get_net(net);
861 	id_priv->seq_num &= 0x00ffffff;
862 
863 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
864 	if (parent)
865 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
866 
867 	return id_priv;
868 }
869 
870 struct rdma_cm_id *
871 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
872 			void *context, enum rdma_ucm_port_space ps,
873 			enum ib_qp_type qp_type, const char *caller)
874 {
875 	struct rdma_id_private *ret;
876 
877 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
878 	if (IS_ERR(ret))
879 		return ERR_CAST(ret);
880 
881 	rdma_restrack_set_name(&ret->res, caller);
882 	return &ret->id;
883 }
884 EXPORT_SYMBOL(__rdma_create_kernel_id);
885 
886 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
887 				       void *context,
888 				       enum rdma_ucm_port_space ps,
889 				       enum ib_qp_type qp_type)
890 {
891 	struct rdma_id_private *ret;
892 
893 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
894 			       ps, qp_type, NULL);
895 	if (IS_ERR(ret))
896 		return ERR_CAST(ret);
897 
898 	rdma_restrack_set_name(&ret->res, NULL);
899 	return &ret->id;
900 }
901 EXPORT_SYMBOL(rdma_create_user_id);
902 
903 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
904 {
905 	struct ib_qp_attr qp_attr;
906 	int qp_attr_mask, ret;
907 
908 	qp_attr.qp_state = IB_QPS_INIT;
909 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
910 	if (ret)
911 		return ret;
912 
913 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
914 	if (ret)
915 		return ret;
916 
917 	qp_attr.qp_state = IB_QPS_RTR;
918 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
919 	if (ret)
920 		return ret;
921 
922 	qp_attr.qp_state = IB_QPS_RTS;
923 	qp_attr.sq_psn = 0;
924 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
925 
926 	return ret;
927 }
928 
929 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
930 {
931 	struct ib_qp_attr qp_attr;
932 	int qp_attr_mask, ret;
933 
934 	qp_attr.qp_state = IB_QPS_INIT;
935 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
936 	if (ret)
937 		return ret;
938 
939 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
940 }
941 
942 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
943 		   struct ib_qp_init_attr *qp_init_attr)
944 {
945 	struct rdma_id_private *id_priv;
946 	struct ib_qp *qp;
947 	int ret;
948 
949 	id_priv = container_of(id, struct rdma_id_private, id);
950 	if (id->device != pd->device) {
951 		ret = -EINVAL;
952 		goto out_err;
953 	}
954 
955 	qp_init_attr->port_num = id->port_num;
956 	qp = ib_create_qp(pd, qp_init_attr);
957 	if (IS_ERR(qp)) {
958 		ret = PTR_ERR(qp);
959 		goto out_err;
960 	}
961 
962 	if (id->qp_type == IB_QPT_UD)
963 		ret = cma_init_ud_qp(id_priv, qp);
964 	else
965 		ret = cma_init_conn_qp(id_priv, qp);
966 	if (ret)
967 		goto out_destroy;
968 
969 	id->qp = qp;
970 	id_priv->qp_num = qp->qp_num;
971 	id_priv->srq = (qp->srq != NULL);
972 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
973 	return 0;
974 out_destroy:
975 	ib_destroy_qp(qp);
976 out_err:
977 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
978 	return ret;
979 }
980 EXPORT_SYMBOL(rdma_create_qp);
981 
982 void rdma_destroy_qp(struct rdma_cm_id *id)
983 {
984 	struct rdma_id_private *id_priv;
985 
986 	id_priv = container_of(id, struct rdma_id_private, id);
987 	trace_cm_qp_destroy(id_priv);
988 	mutex_lock(&id_priv->qp_mutex);
989 	ib_destroy_qp(id_priv->id.qp);
990 	id_priv->id.qp = NULL;
991 	mutex_unlock(&id_priv->qp_mutex);
992 }
993 EXPORT_SYMBOL(rdma_destroy_qp);
994 
995 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
996 			     struct rdma_conn_param *conn_param)
997 {
998 	struct ib_qp_attr qp_attr;
999 	int qp_attr_mask, ret;
1000 
1001 	mutex_lock(&id_priv->qp_mutex);
1002 	if (!id_priv->id.qp) {
1003 		ret = 0;
1004 		goto out;
1005 	}
1006 
1007 	/* Need to update QP attributes from default values. */
1008 	qp_attr.qp_state = IB_QPS_INIT;
1009 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1010 	if (ret)
1011 		goto out;
1012 
1013 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1014 	if (ret)
1015 		goto out;
1016 
1017 	qp_attr.qp_state = IB_QPS_RTR;
1018 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1019 	if (ret)
1020 		goto out;
1021 
1022 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1023 
1024 	if (conn_param)
1025 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1026 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1027 out:
1028 	mutex_unlock(&id_priv->qp_mutex);
1029 	return ret;
1030 }
1031 
1032 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1033 			     struct rdma_conn_param *conn_param)
1034 {
1035 	struct ib_qp_attr qp_attr;
1036 	int qp_attr_mask, ret;
1037 
1038 	mutex_lock(&id_priv->qp_mutex);
1039 	if (!id_priv->id.qp) {
1040 		ret = 0;
1041 		goto out;
1042 	}
1043 
1044 	qp_attr.qp_state = IB_QPS_RTS;
1045 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1046 	if (ret)
1047 		goto out;
1048 
1049 	if (conn_param)
1050 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1051 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1052 out:
1053 	mutex_unlock(&id_priv->qp_mutex);
1054 	return ret;
1055 }
1056 
1057 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1058 {
1059 	struct ib_qp_attr qp_attr;
1060 	int ret;
1061 
1062 	mutex_lock(&id_priv->qp_mutex);
1063 	if (!id_priv->id.qp) {
1064 		ret = 0;
1065 		goto out;
1066 	}
1067 
1068 	qp_attr.qp_state = IB_QPS_ERR;
1069 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1070 out:
1071 	mutex_unlock(&id_priv->qp_mutex);
1072 	return ret;
1073 }
1074 
1075 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1076 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1077 {
1078 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1079 	int ret;
1080 	u16 pkey;
1081 
1082 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1083 		pkey = 0xffff;
1084 	else
1085 		pkey = ib_addr_get_pkey(dev_addr);
1086 
1087 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1088 				  pkey, &qp_attr->pkey_index);
1089 	if (ret)
1090 		return ret;
1091 
1092 	qp_attr->port_num = id_priv->id.port_num;
1093 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1094 
1095 	if (id_priv->id.qp_type == IB_QPT_UD) {
1096 		ret = cma_set_qkey(id_priv, 0);
1097 		if (ret)
1098 			return ret;
1099 
1100 		qp_attr->qkey = id_priv->qkey;
1101 		*qp_attr_mask |= IB_QP_QKEY;
1102 	} else {
1103 		qp_attr->qp_access_flags = 0;
1104 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1105 	}
1106 	return 0;
1107 }
1108 
1109 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1110 		       int *qp_attr_mask)
1111 {
1112 	struct rdma_id_private *id_priv;
1113 	int ret = 0;
1114 
1115 	id_priv = container_of(id, struct rdma_id_private, id);
1116 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1117 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1118 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1119 		else
1120 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1121 						 qp_attr_mask);
1122 
1123 		if (qp_attr->qp_state == IB_QPS_RTR)
1124 			qp_attr->rq_psn = id_priv->seq_num;
1125 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1126 		if (!id_priv->cm_id.iw) {
1127 			qp_attr->qp_access_flags = 0;
1128 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1129 		} else
1130 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1131 						 qp_attr_mask);
1132 		qp_attr->port_num = id_priv->id.port_num;
1133 		*qp_attr_mask |= IB_QP_PORT;
1134 	} else {
1135 		ret = -ENOSYS;
1136 	}
1137 
1138 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1139 		qp_attr->timeout = id_priv->timeout;
1140 
1141 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1142 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1143 
1144 	return ret;
1145 }
1146 EXPORT_SYMBOL(rdma_init_qp_attr);
1147 
1148 static inline bool cma_zero_addr(const struct sockaddr *addr)
1149 {
1150 	switch (addr->sa_family) {
1151 	case AF_INET:
1152 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1153 	case AF_INET6:
1154 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1155 	case AF_IB:
1156 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1157 	default:
1158 		return false;
1159 	}
1160 }
1161 
1162 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1163 {
1164 	switch (addr->sa_family) {
1165 	case AF_INET:
1166 		return ipv4_is_loopback(
1167 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1168 	case AF_INET6:
1169 		return ipv6_addr_loopback(
1170 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1171 	case AF_IB:
1172 		return ib_addr_loopback(
1173 			&((struct sockaddr_ib *)addr)->sib_addr);
1174 	default:
1175 		return false;
1176 	}
1177 }
1178 
1179 static inline bool cma_any_addr(const struct sockaddr *addr)
1180 {
1181 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1182 }
1183 
1184 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1185 {
1186 	if (src->sa_family != dst->sa_family)
1187 		return -1;
1188 
1189 	switch (src->sa_family) {
1190 	case AF_INET:
1191 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1192 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1193 	case AF_INET6: {
1194 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1195 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1196 		bool link_local;
1197 
1198 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1199 					  &dst_addr6->sin6_addr))
1200 			return 1;
1201 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1202 			     IPV6_ADDR_LINKLOCAL;
1203 		/* Link local must match their scope_ids */
1204 		return link_local ? (src_addr6->sin6_scope_id !=
1205 				     dst_addr6->sin6_scope_id) :
1206 				    0;
1207 	}
1208 
1209 	default:
1210 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1211 				   &((struct sockaddr_ib *) dst)->sib_addr);
1212 	}
1213 }
1214 
1215 static __be16 cma_port(const struct sockaddr *addr)
1216 {
1217 	struct sockaddr_ib *sib;
1218 
1219 	switch (addr->sa_family) {
1220 	case AF_INET:
1221 		return ((struct sockaddr_in *) addr)->sin_port;
1222 	case AF_INET6:
1223 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1224 	case AF_IB:
1225 		sib = (struct sockaddr_ib *) addr;
1226 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1227 				    be64_to_cpu(sib->sib_sid_mask)));
1228 	default:
1229 		return 0;
1230 	}
1231 }
1232 
1233 static inline int cma_any_port(const struct sockaddr *addr)
1234 {
1235 	return !cma_port(addr);
1236 }
1237 
1238 static void cma_save_ib_info(struct sockaddr *src_addr,
1239 			     struct sockaddr *dst_addr,
1240 			     const struct rdma_cm_id *listen_id,
1241 			     const struct sa_path_rec *path)
1242 {
1243 	struct sockaddr_ib *listen_ib, *ib;
1244 
1245 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1246 	if (src_addr) {
1247 		ib = (struct sockaddr_ib *)src_addr;
1248 		ib->sib_family = AF_IB;
1249 		if (path) {
1250 			ib->sib_pkey = path->pkey;
1251 			ib->sib_flowinfo = path->flow_label;
1252 			memcpy(&ib->sib_addr, &path->sgid, 16);
1253 			ib->sib_sid = path->service_id;
1254 			ib->sib_scope_id = 0;
1255 		} else {
1256 			ib->sib_pkey = listen_ib->sib_pkey;
1257 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1258 			ib->sib_addr = listen_ib->sib_addr;
1259 			ib->sib_sid = listen_ib->sib_sid;
1260 			ib->sib_scope_id = listen_ib->sib_scope_id;
1261 		}
1262 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1263 	}
1264 	if (dst_addr) {
1265 		ib = (struct sockaddr_ib *)dst_addr;
1266 		ib->sib_family = AF_IB;
1267 		if (path) {
1268 			ib->sib_pkey = path->pkey;
1269 			ib->sib_flowinfo = path->flow_label;
1270 			memcpy(&ib->sib_addr, &path->dgid, 16);
1271 		}
1272 	}
1273 }
1274 
1275 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1276 			      struct sockaddr_in *dst_addr,
1277 			      struct cma_hdr *hdr,
1278 			      __be16 local_port)
1279 {
1280 	if (src_addr) {
1281 		*src_addr = (struct sockaddr_in) {
1282 			.sin_family = AF_INET,
1283 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1284 			.sin_port = local_port,
1285 		};
1286 	}
1287 
1288 	if (dst_addr) {
1289 		*dst_addr = (struct sockaddr_in) {
1290 			.sin_family = AF_INET,
1291 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1292 			.sin_port = hdr->port,
1293 		};
1294 	}
1295 }
1296 
1297 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1298 			      struct sockaddr_in6 *dst_addr,
1299 			      struct cma_hdr *hdr,
1300 			      __be16 local_port)
1301 {
1302 	if (src_addr) {
1303 		*src_addr = (struct sockaddr_in6) {
1304 			.sin6_family = AF_INET6,
1305 			.sin6_addr = hdr->dst_addr.ip6,
1306 			.sin6_port = local_port,
1307 		};
1308 	}
1309 
1310 	if (dst_addr) {
1311 		*dst_addr = (struct sockaddr_in6) {
1312 			.sin6_family = AF_INET6,
1313 			.sin6_addr = hdr->src_addr.ip6,
1314 			.sin6_port = hdr->port,
1315 		};
1316 	}
1317 }
1318 
1319 static u16 cma_port_from_service_id(__be64 service_id)
1320 {
1321 	return (u16)be64_to_cpu(service_id);
1322 }
1323 
1324 static int cma_save_ip_info(struct sockaddr *src_addr,
1325 			    struct sockaddr *dst_addr,
1326 			    const struct ib_cm_event *ib_event,
1327 			    __be64 service_id)
1328 {
1329 	struct cma_hdr *hdr;
1330 	__be16 port;
1331 
1332 	hdr = ib_event->private_data;
1333 	if (hdr->cma_version != CMA_VERSION)
1334 		return -EINVAL;
1335 
1336 	port = htons(cma_port_from_service_id(service_id));
1337 
1338 	switch (cma_get_ip_ver(hdr)) {
1339 	case 4:
1340 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1341 				  (struct sockaddr_in *)dst_addr, hdr, port);
1342 		break;
1343 	case 6:
1344 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1345 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1346 		break;
1347 	default:
1348 		return -EAFNOSUPPORT;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static int cma_save_net_info(struct sockaddr *src_addr,
1355 			     struct sockaddr *dst_addr,
1356 			     const struct rdma_cm_id *listen_id,
1357 			     const struct ib_cm_event *ib_event,
1358 			     sa_family_t sa_family, __be64 service_id)
1359 {
1360 	if (sa_family == AF_IB) {
1361 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1362 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1363 					 ib_event->param.req_rcvd.primary_path);
1364 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1365 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1366 		return 0;
1367 	}
1368 
1369 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1370 }
1371 
1372 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1373 			     struct cma_req_info *req)
1374 {
1375 	const struct ib_cm_req_event_param *req_param =
1376 		&ib_event->param.req_rcvd;
1377 	const struct ib_cm_sidr_req_event_param *sidr_param =
1378 		&ib_event->param.sidr_req_rcvd;
1379 
1380 	switch (ib_event->event) {
1381 	case IB_CM_REQ_RECEIVED:
1382 		req->device	= req_param->listen_id->device;
1383 		req->port	= req_param->port;
1384 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1385 		       sizeof(req->local_gid));
1386 		req->has_gid	= true;
1387 		req->service_id = req_param->primary_path->service_id;
1388 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1389 		if (req->pkey != req_param->bth_pkey)
1390 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1391 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1392 					    req_param->bth_pkey, req->pkey);
1393 		break;
1394 	case IB_CM_SIDR_REQ_RECEIVED:
1395 		req->device	= sidr_param->listen_id->device;
1396 		req->port	= sidr_param->port;
1397 		req->has_gid	= false;
1398 		req->service_id	= sidr_param->service_id;
1399 		req->pkey	= sidr_param->pkey;
1400 		if (req->pkey != sidr_param->bth_pkey)
1401 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1402 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1403 					    sidr_param->bth_pkey, req->pkey);
1404 		break;
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1413 				  const struct sockaddr_in *dst_addr,
1414 				  const struct sockaddr_in *src_addr)
1415 {
1416 	__be32 daddr = dst_addr->sin_addr.s_addr,
1417 	       saddr = src_addr->sin_addr.s_addr;
1418 	struct fib_result res;
1419 	struct flowi4 fl4;
1420 	int err;
1421 	bool ret;
1422 
1423 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1424 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1425 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1426 	    ipv4_is_loopback(saddr))
1427 		return false;
1428 
1429 	memset(&fl4, 0, sizeof(fl4));
1430 	fl4.flowi4_iif = net_dev->ifindex;
1431 	fl4.daddr = daddr;
1432 	fl4.saddr = saddr;
1433 
1434 	rcu_read_lock();
1435 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1436 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1437 	rcu_read_unlock();
1438 
1439 	return ret;
1440 }
1441 
1442 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1443 				  const struct sockaddr_in6 *dst_addr,
1444 				  const struct sockaddr_in6 *src_addr)
1445 {
1446 #if IS_ENABLED(CONFIG_IPV6)
1447 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1448 			   IPV6_ADDR_LINKLOCAL;
1449 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1450 					 &src_addr->sin6_addr, net_dev->ifindex,
1451 					 NULL, strict);
1452 	bool ret;
1453 
1454 	if (!rt)
1455 		return false;
1456 
1457 	ret = rt->rt6i_idev->dev == net_dev;
1458 	ip6_rt_put(rt);
1459 
1460 	return ret;
1461 #else
1462 	return false;
1463 #endif
1464 }
1465 
1466 static bool validate_net_dev(struct net_device *net_dev,
1467 			     const struct sockaddr *daddr,
1468 			     const struct sockaddr *saddr)
1469 {
1470 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1471 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1472 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1473 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1474 
1475 	switch (daddr->sa_family) {
1476 	case AF_INET:
1477 		return saddr->sa_family == AF_INET &&
1478 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1479 
1480 	case AF_INET6:
1481 		return saddr->sa_family == AF_INET6 &&
1482 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1483 
1484 	default:
1485 		return false;
1486 	}
1487 }
1488 
1489 static struct net_device *
1490 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1491 {
1492 	const struct ib_gid_attr *sgid_attr = NULL;
1493 	struct net_device *ndev;
1494 
1495 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1496 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1497 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1498 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1499 
1500 	if (!sgid_attr)
1501 		return NULL;
1502 
1503 	rcu_read_lock();
1504 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1505 	if (IS_ERR(ndev))
1506 		ndev = NULL;
1507 	else
1508 		dev_hold(ndev);
1509 	rcu_read_unlock();
1510 	return ndev;
1511 }
1512 
1513 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1514 					  struct cma_req_info *req)
1515 {
1516 	struct sockaddr *listen_addr =
1517 			(struct sockaddr *)&req->listen_addr_storage;
1518 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1519 	struct net_device *net_dev;
1520 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1521 	int err;
1522 
1523 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1524 			       req->service_id);
1525 	if (err)
1526 		return ERR_PTR(err);
1527 
1528 	if (rdma_protocol_roce(req->device, req->port))
1529 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1530 	else
1531 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1532 						   req->pkey,
1533 						   gid, listen_addr);
1534 	if (!net_dev)
1535 		return ERR_PTR(-ENODEV);
1536 
1537 	return net_dev;
1538 }
1539 
1540 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1541 {
1542 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1543 }
1544 
1545 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1546 				   const struct cma_hdr *hdr)
1547 {
1548 	struct sockaddr *addr = cma_src_addr(id_priv);
1549 	__be32 ip4_addr;
1550 	struct in6_addr ip6_addr;
1551 
1552 	if (cma_any_addr(addr) && !id_priv->afonly)
1553 		return true;
1554 
1555 	switch (addr->sa_family) {
1556 	case AF_INET:
1557 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1558 		if (cma_get_ip_ver(hdr) != 4)
1559 			return false;
1560 		if (!cma_any_addr(addr) &&
1561 		    hdr->dst_addr.ip4.addr != ip4_addr)
1562 			return false;
1563 		break;
1564 	case AF_INET6:
1565 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1566 		if (cma_get_ip_ver(hdr) != 6)
1567 			return false;
1568 		if (!cma_any_addr(addr) &&
1569 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1570 			return false;
1571 		break;
1572 	case AF_IB:
1573 		return true;
1574 	default:
1575 		return false;
1576 	}
1577 
1578 	return true;
1579 }
1580 
1581 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1582 {
1583 	struct ib_device *device = id->device;
1584 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1585 
1586 	return rdma_protocol_roce(device, port_num);
1587 }
1588 
1589 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1590 {
1591 	const struct sockaddr *daddr =
1592 			(const struct sockaddr *)&req->listen_addr_storage;
1593 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1594 
1595 	/* Returns true if the req is for IPv6 link local */
1596 	return (daddr->sa_family == AF_INET6 &&
1597 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1598 }
1599 
1600 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1601 			      const struct net_device *net_dev,
1602 			      const struct cma_req_info *req)
1603 {
1604 	const struct rdma_addr *addr = &id->route.addr;
1605 
1606 	if (!net_dev)
1607 		/* This request is an AF_IB request */
1608 		return (!id->port_num || id->port_num == req->port) &&
1609 		       (addr->src_addr.ss_family == AF_IB);
1610 
1611 	/*
1612 	 * If the request is not for IPv6 link local, allow matching
1613 	 * request to any netdevice of the one or multiport rdma device.
1614 	 */
1615 	if (!cma_is_req_ipv6_ll(req))
1616 		return true;
1617 	/*
1618 	 * Net namespaces must match, and if the listner is listening
1619 	 * on a specific netdevice than netdevice must match as well.
1620 	 */
1621 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1622 	    (!!addr->dev_addr.bound_dev_if ==
1623 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1624 		return true;
1625 	else
1626 		return false;
1627 }
1628 
1629 static struct rdma_id_private *cma_find_listener(
1630 		const struct rdma_bind_list *bind_list,
1631 		const struct ib_cm_id *cm_id,
1632 		const struct ib_cm_event *ib_event,
1633 		const struct cma_req_info *req,
1634 		const struct net_device *net_dev)
1635 {
1636 	struct rdma_id_private *id_priv, *id_priv_dev;
1637 
1638 	lockdep_assert_held(&lock);
1639 
1640 	if (!bind_list)
1641 		return ERR_PTR(-EINVAL);
1642 
1643 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1644 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1645 			if (id_priv->id.device == cm_id->device &&
1646 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1647 				return id_priv;
1648 			list_for_each_entry(id_priv_dev,
1649 					    &id_priv->listen_list,
1650 					    listen_list) {
1651 				if (id_priv_dev->id.device == cm_id->device &&
1652 				    cma_match_net_dev(&id_priv_dev->id,
1653 						      net_dev, req))
1654 					return id_priv_dev;
1655 			}
1656 		}
1657 	}
1658 
1659 	return ERR_PTR(-EINVAL);
1660 }
1661 
1662 static struct rdma_id_private *
1663 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1664 		     const struct ib_cm_event *ib_event,
1665 		     struct cma_req_info *req,
1666 		     struct net_device **net_dev)
1667 {
1668 	struct rdma_bind_list *bind_list;
1669 	struct rdma_id_private *id_priv;
1670 	int err;
1671 
1672 	err = cma_save_req_info(ib_event, req);
1673 	if (err)
1674 		return ERR_PTR(err);
1675 
1676 	*net_dev = cma_get_net_dev(ib_event, req);
1677 	if (IS_ERR(*net_dev)) {
1678 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1679 			/* Assuming the protocol is AF_IB */
1680 			*net_dev = NULL;
1681 		} else {
1682 			return ERR_CAST(*net_dev);
1683 		}
1684 	}
1685 
1686 	mutex_lock(&lock);
1687 	/*
1688 	 * Net namespace might be getting deleted while route lookup,
1689 	 * cm_id lookup is in progress. Therefore, perform netdevice
1690 	 * validation, cm_id lookup under rcu lock.
1691 	 * RCU lock along with netdevice state check, synchronizes with
1692 	 * netdevice migrating to different net namespace and also avoids
1693 	 * case where net namespace doesn't get deleted while lookup is in
1694 	 * progress.
1695 	 * If the device state is not IFF_UP, its properties such as ifindex
1696 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1697 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1698 	 * ongoing operations on net device after device is closed using
1699 	 * synchronize_net().
1700 	 */
1701 	rcu_read_lock();
1702 	if (*net_dev) {
1703 		/*
1704 		 * If netdevice is down, it is likely that it is administratively
1705 		 * down or it might be migrating to different namespace.
1706 		 * In that case avoid further processing, as the net namespace
1707 		 * or ifindex may change.
1708 		 */
1709 		if (((*net_dev)->flags & IFF_UP) == 0) {
1710 			id_priv = ERR_PTR(-EHOSTUNREACH);
1711 			goto err;
1712 		}
1713 
1714 		if (!validate_net_dev(*net_dev,
1715 				 (struct sockaddr *)&req->listen_addr_storage,
1716 				 (struct sockaddr *)&req->src_addr_storage)) {
1717 			id_priv = ERR_PTR(-EHOSTUNREACH);
1718 			goto err;
1719 		}
1720 	}
1721 
1722 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1723 				rdma_ps_from_service_id(req->service_id),
1724 				cma_port_from_service_id(req->service_id));
1725 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1726 err:
1727 	rcu_read_unlock();
1728 	mutex_unlock(&lock);
1729 	if (IS_ERR(id_priv) && *net_dev) {
1730 		dev_put(*net_dev);
1731 		*net_dev = NULL;
1732 	}
1733 	return id_priv;
1734 }
1735 
1736 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1737 {
1738 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1739 }
1740 
1741 static void cma_cancel_route(struct rdma_id_private *id_priv)
1742 {
1743 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1744 		if (id_priv->query)
1745 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1746 	}
1747 }
1748 
1749 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1750 {
1751 	struct rdma_id_private *dev_id_priv;
1752 
1753 	lockdep_assert_held(&lock);
1754 
1755 	/*
1756 	 * Remove from listen_any_list to prevent added devices from spawning
1757 	 * additional listen requests.
1758 	 */
1759 	list_del(&id_priv->list);
1760 
1761 	while (!list_empty(&id_priv->listen_list)) {
1762 		dev_id_priv = list_entry(id_priv->listen_list.next,
1763 					 struct rdma_id_private, listen_list);
1764 		/* sync with device removal to avoid duplicate destruction */
1765 		list_del_init(&dev_id_priv->list);
1766 		list_del(&dev_id_priv->listen_list);
1767 		mutex_unlock(&lock);
1768 
1769 		rdma_destroy_id(&dev_id_priv->id);
1770 		mutex_lock(&lock);
1771 	}
1772 }
1773 
1774 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1775 {
1776 	mutex_lock(&lock);
1777 	_cma_cancel_listens(id_priv);
1778 	mutex_unlock(&lock);
1779 }
1780 
1781 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1782 				 enum rdma_cm_state state)
1783 {
1784 	switch (state) {
1785 	case RDMA_CM_ADDR_QUERY:
1786 		/*
1787 		 * We can avoid doing the rdma_addr_cancel() based on state,
1788 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1789 		 * Notice that the addr_handler work could still be exiting
1790 		 * outside this state, however due to the interaction with the
1791 		 * handler_mutex the work is guaranteed not to touch id_priv
1792 		 * during exit.
1793 		 */
1794 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1795 		break;
1796 	case RDMA_CM_ROUTE_QUERY:
1797 		cma_cancel_route(id_priv);
1798 		break;
1799 	case RDMA_CM_LISTEN:
1800 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1801 			cma_cancel_listens(id_priv);
1802 		break;
1803 	default:
1804 		break;
1805 	}
1806 }
1807 
1808 static void cma_release_port(struct rdma_id_private *id_priv)
1809 {
1810 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1811 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1812 
1813 	if (!bind_list)
1814 		return;
1815 
1816 	mutex_lock(&lock);
1817 	hlist_del(&id_priv->node);
1818 	if (hlist_empty(&bind_list->owners)) {
1819 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1820 		kfree(bind_list);
1821 	}
1822 	mutex_unlock(&lock);
1823 }
1824 
1825 static void destroy_mc(struct rdma_id_private *id_priv,
1826 		       struct cma_multicast *mc)
1827 {
1828 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1829 
1830 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1831 		ib_sa_free_multicast(mc->sa_mc);
1832 
1833 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1834 		struct rdma_dev_addr *dev_addr =
1835 			&id_priv->id.route.addr.dev_addr;
1836 		struct net_device *ndev = NULL;
1837 
1838 		if (dev_addr->bound_dev_if)
1839 			ndev = dev_get_by_index(dev_addr->net,
1840 						dev_addr->bound_dev_if);
1841 		if (ndev) {
1842 			union ib_gid mgid;
1843 
1844 			cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr,
1845 				     &mgid);
1846 
1847 			if (!send_only)
1848 				cma_igmp_send(ndev, &mgid, false);
1849 
1850 			dev_put(ndev);
1851 		}
1852 
1853 		cancel_work_sync(&mc->iboe_join.work);
1854 	}
1855 	kfree(mc);
1856 }
1857 
1858 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1859 {
1860 	struct cma_multicast *mc;
1861 
1862 	while (!list_empty(&id_priv->mc_list)) {
1863 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1864 				      list);
1865 		list_del(&mc->list);
1866 		destroy_mc(id_priv, mc);
1867 	}
1868 }
1869 
1870 static void _destroy_id(struct rdma_id_private *id_priv,
1871 			enum rdma_cm_state state)
1872 {
1873 	cma_cancel_operation(id_priv, state);
1874 
1875 	rdma_restrack_del(&id_priv->res);
1876 	if (id_priv->cma_dev) {
1877 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
1878 			if (id_priv->cm_id.ib)
1879 				ib_destroy_cm_id(id_priv->cm_id.ib);
1880 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
1881 			if (id_priv->cm_id.iw)
1882 				iw_destroy_cm_id(id_priv->cm_id.iw);
1883 		}
1884 		cma_leave_mc_groups(id_priv);
1885 		cma_release_dev(id_priv);
1886 	}
1887 
1888 	cma_release_port(id_priv);
1889 	cma_id_put(id_priv);
1890 	wait_for_completion(&id_priv->comp);
1891 
1892 	if (id_priv->internal_id)
1893 		cma_id_put(id_priv->id.context);
1894 
1895 	kfree(id_priv->id.route.path_rec);
1896 
1897 	put_net(id_priv->id.route.addr.dev_addr.net);
1898 	kfree(id_priv);
1899 }
1900 
1901 /*
1902  * destroy an ID from within the handler_mutex. This ensures that no other
1903  * handlers can start running concurrently.
1904  */
1905 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
1906 	__releases(&idprv->handler_mutex)
1907 {
1908 	enum rdma_cm_state state;
1909 	unsigned long flags;
1910 
1911 	trace_cm_id_destroy(id_priv);
1912 
1913 	/*
1914 	 * Setting the state to destroyed under the handler mutex provides a
1915 	 * fence against calling handler callbacks. If this is invoked due to
1916 	 * the failure of a handler callback then it guarentees that no future
1917 	 * handlers will be called.
1918 	 */
1919 	lockdep_assert_held(&id_priv->handler_mutex);
1920 	spin_lock_irqsave(&id_priv->lock, flags);
1921 	state = id_priv->state;
1922 	id_priv->state = RDMA_CM_DESTROYING;
1923 	spin_unlock_irqrestore(&id_priv->lock, flags);
1924 	mutex_unlock(&id_priv->handler_mutex);
1925 	_destroy_id(id_priv, state);
1926 }
1927 
1928 void rdma_destroy_id(struct rdma_cm_id *id)
1929 {
1930 	struct rdma_id_private *id_priv =
1931 		container_of(id, struct rdma_id_private, id);
1932 
1933 	mutex_lock(&id_priv->handler_mutex);
1934 	destroy_id_handler_unlock(id_priv);
1935 }
1936 EXPORT_SYMBOL(rdma_destroy_id);
1937 
1938 static int cma_rep_recv(struct rdma_id_private *id_priv)
1939 {
1940 	int ret;
1941 
1942 	ret = cma_modify_qp_rtr(id_priv, NULL);
1943 	if (ret)
1944 		goto reject;
1945 
1946 	ret = cma_modify_qp_rts(id_priv, NULL);
1947 	if (ret)
1948 		goto reject;
1949 
1950 	trace_cm_send_rtu(id_priv);
1951 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
1952 	if (ret)
1953 		goto reject;
1954 
1955 	return 0;
1956 reject:
1957 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
1958 	cma_modify_qp_err(id_priv);
1959 	trace_cm_send_rej(id_priv);
1960 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
1961 		       NULL, 0, NULL, 0);
1962 	return ret;
1963 }
1964 
1965 static void cma_set_rep_event_data(struct rdma_cm_event *event,
1966 				   const struct ib_cm_rep_event_param *rep_data,
1967 				   void *private_data)
1968 {
1969 	event->param.conn.private_data = private_data;
1970 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
1971 	event->param.conn.responder_resources = rep_data->responder_resources;
1972 	event->param.conn.initiator_depth = rep_data->initiator_depth;
1973 	event->param.conn.flow_control = rep_data->flow_control;
1974 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
1975 	event->param.conn.srq = rep_data->srq;
1976 	event->param.conn.qp_num = rep_data->remote_qpn;
1977 
1978 	event->ece.vendor_id = rep_data->ece.vendor_id;
1979 	event->ece.attr_mod = rep_data->ece.attr_mod;
1980 }
1981 
1982 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
1983 				struct rdma_cm_event *event)
1984 {
1985 	int ret;
1986 
1987 	lockdep_assert_held(&id_priv->handler_mutex);
1988 
1989 	trace_cm_event_handler(id_priv, event);
1990 	ret = id_priv->id.event_handler(&id_priv->id, event);
1991 	trace_cm_event_done(id_priv, event, ret);
1992 	return ret;
1993 }
1994 
1995 static int cma_ib_handler(struct ib_cm_id *cm_id,
1996 			  const struct ib_cm_event *ib_event)
1997 {
1998 	struct rdma_id_private *id_priv = cm_id->context;
1999 	struct rdma_cm_event event = {};
2000 	enum rdma_cm_state state;
2001 	int ret;
2002 
2003 	mutex_lock(&id_priv->handler_mutex);
2004 	state = READ_ONCE(id_priv->state);
2005 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2006 	     state != RDMA_CM_CONNECT) ||
2007 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2008 	     state != RDMA_CM_DISCONNECT))
2009 		goto out;
2010 
2011 	switch (ib_event->event) {
2012 	case IB_CM_REQ_ERROR:
2013 	case IB_CM_REP_ERROR:
2014 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2015 		event.status = -ETIMEDOUT;
2016 		break;
2017 	case IB_CM_REP_RECEIVED:
2018 		if (state == RDMA_CM_CONNECT &&
2019 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2020 			trace_cm_send_mra(id_priv);
2021 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2022 		}
2023 		if (id_priv->id.qp) {
2024 			event.status = cma_rep_recv(id_priv);
2025 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2026 						     RDMA_CM_EVENT_ESTABLISHED;
2027 		} else {
2028 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2029 		}
2030 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2031 				       ib_event->private_data);
2032 		break;
2033 	case IB_CM_RTU_RECEIVED:
2034 	case IB_CM_USER_ESTABLISHED:
2035 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2036 		break;
2037 	case IB_CM_DREQ_ERROR:
2038 		event.status = -ETIMEDOUT;
2039 		fallthrough;
2040 	case IB_CM_DREQ_RECEIVED:
2041 	case IB_CM_DREP_RECEIVED:
2042 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2043 				   RDMA_CM_DISCONNECT))
2044 			goto out;
2045 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2046 		break;
2047 	case IB_CM_TIMEWAIT_EXIT:
2048 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2049 		break;
2050 	case IB_CM_MRA_RECEIVED:
2051 		/* ignore event */
2052 		goto out;
2053 	case IB_CM_REJ_RECEIVED:
2054 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2055 										ib_event->param.rej_rcvd.reason));
2056 		cma_modify_qp_err(id_priv);
2057 		event.status = ib_event->param.rej_rcvd.reason;
2058 		event.event = RDMA_CM_EVENT_REJECTED;
2059 		event.param.conn.private_data = ib_event->private_data;
2060 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2061 		break;
2062 	default:
2063 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2064 		       ib_event->event);
2065 		goto out;
2066 	}
2067 
2068 	ret = cma_cm_event_handler(id_priv, &event);
2069 	if (ret) {
2070 		/* Destroy the CM ID by returning a non-zero value. */
2071 		id_priv->cm_id.ib = NULL;
2072 		destroy_id_handler_unlock(id_priv);
2073 		return ret;
2074 	}
2075 out:
2076 	mutex_unlock(&id_priv->handler_mutex);
2077 	return 0;
2078 }
2079 
2080 static struct rdma_id_private *
2081 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2082 		   const struct ib_cm_event *ib_event,
2083 		   struct net_device *net_dev)
2084 {
2085 	struct rdma_id_private *listen_id_priv;
2086 	struct rdma_id_private *id_priv;
2087 	struct rdma_cm_id *id;
2088 	struct rdma_route *rt;
2089 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2090 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2091 	const __be64 service_id =
2092 		ib_event->param.req_rcvd.primary_path->service_id;
2093 	int ret;
2094 
2095 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2096 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2097 				   listen_id->event_handler, listen_id->context,
2098 				   listen_id->ps,
2099 				   ib_event->param.req_rcvd.qp_type,
2100 				   listen_id_priv);
2101 	if (IS_ERR(id_priv))
2102 		return NULL;
2103 
2104 	id = &id_priv->id;
2105 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2106 			      (struct sockaddr *)&id->route.addr.dst_addr,
2107 			      listen_id, ib_event, ss_family, service_id))
2108 		goto err;
2109 
2110 	rt = &id->route;
2111 	rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2112 	rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2113 				     GFP_KERNEL);
2114 	if (!rt->path_rec)
2115 		goto err;
2116 
2117 	rt->path_rec[0] = *path;
2118 	if (rt->num_paths == 2)
2119 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2120 
2121 	if (net_dev) {
2122 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2123 	} else {
2124 		if (!cma_protocol_roce(listen_id) &&
2125 		    cma_any_addr(cma_src_addr(id_priv))) {
2126 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2127 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2128 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2129 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2130 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2131 			if (ret)
2132 				goto err;
2133 		}
2134 	}
2135 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2136 
2137 	id_priv->state = RDMA_CM_CONNECT;
2138 	return id_priv;
2139 
2140 err:
2141 	rdma_destroy_id(id);
2142 	return NULL;
2143 }
2144 
2145 static struct rdma_id_private *
2146 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2147 		  const struct ib_cm_event *ib_event,
2148 		  struct net_device *net_dev)
2149 {
2150 	const struct rdma_id_private *listen_id_priv;
2151 	struct rdma_id_private *id_priv;
2152 	struct rdma_cm_id *id;
2153 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2154 	struct net *net = listen_id->route.addr.dev_addr.net;
2155 	int ret;
2156 
2157 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2158 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2159 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2160 				   listen_id_priv);
2161 	if (IS_ERR(id_priv))
2162 		return NULL;
2163 
2164 	id = &id_priv->id;
2165 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2166 			      (struct sockaddr *)&id->route.addr.dst_addr,
2167 			      listen_id, ib_event, ss_family,
2168 			      ib_event->param.sidr_req_rcvd.service_id))
2169 		goto err;
2170 
2171 	if (net_dev) {
2172 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2173 	} else {
2174 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2175 			ret = cma_translate_addr(cma_src_addr(id_priv),
2176 						 &id->route.addr.dev_addr);
2177 			if (ret)
2178 				goto err;
2179 		}
2180 	}
2181 
2182 	id_priv->state = RDMA_CM_CONNECT;
2183 	return id_priv;
2184 err:
2185 	rdma_destroy_id(id);
2186 	return NULL;
2187 }
2188 
2189 static void cma_set_req_event_data(struct rdma_cm_event *event,
2190 				   const struct ib_cm_req_event_param *req_data,
2191 				   void *private_data, int offset)
2192 {
2193 	event->param.conn.private_data = private_data + offset;
2194 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2195 	event->param.conn.responder_resources = req_data->responder_resources;
2196 	event->param.conn.initiator_depth = req_data->initiator_depth;
2197 	event->param.conn.flow_control = req_data->flow_control;
2198 	event->param.conn.retry_count = req_data->retry_count;
2199 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2200 	event->param.conn.srq = req_data->srq;
2201 	event->param.conn.qp_num = req_data->remote_qpn;
2202 
2203 	event->ece.vendor_id = req_data->ece.vendor_id;
2204 	event->ece.attr_mod = req_data->ece.attr_mod;
2205 }
2206 
2207 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2208 				    const struct ib_cm_event *ib_event)
2209 {
2210 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2211 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2212 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2213 		 (id->qp_type == IB_QPT_UD)) ||
2214 		(!id->qp_type));
2215 }
2216 
2217 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2218 			      const struct ib_cm_event *ib_event)
2219 {
2220 	struct rdma_id_private *listen_id, *conn_id = NULL;
2221 	struct rdma_cm_event event = {};
2222 	struct cma_req_info req = {};
2223 	struct net_device *net_dev;
2224 	u8 offset;
2225 	int ret;
2226 
2227 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2228 	if (IS_ERR(listen_id))
2229 		return PTR_ERR(listen_id);
2230 
2231 	trace_cm_req_handler(listen_id, ib_event->event);
2232 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2233 		ret = -EINVAL;
2234 		goto net_dev_put;
2235 	}
2236 
2237 	mutex_lock(&listen_id->handler_mutex);
2238 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2239 		ret = -ECONNABORTED;
2240 		goto err_unlock;
2241 	}
2242 
2243 	offset = cma_user_data_offset(listen_id);
2244 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2245 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2246 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2247 		event.param.ud.private_data = ib_event->private_data + offset;
2248 		event.param.ud.private_data_len =
2249 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2250 	} else {
2251 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2252 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2253 				       ib_event->private_data, offset);
2254 	}
2255 	if (!conn_id) {
2256 		ret = -ENOMEM;
2257 		goto err_unlock;
2258 	}
2259 
2260 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2261 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2262 	if (ret) {
2263 		destroy_id_handler_unlock(conn_id);
2264 		goto err_unlock;
2265 	}
2266 
2267 	conn_id->cm_id.ib = cm_id;
2268 	cm_id->context = conn_id;
2269 	cm_id->cm_handler = cma_ib_handler;
2270 
2271 	ret = cma_cm_event_handler(conn_id, &event);
2272 	if (ret) {
2273 		/* Destroy the CM ID by returning a non-zero value. */
2274 		conn_id->cm_id.ib = NULL;
2275 		mutex_unlock(&listen_id->handler_mutex);
2276 		destroy_id_handler_unlock(conn_id);
2277 		goto net_dev_put;
2278 	}
2279 
2280 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2281 	    conn_id->id.qp_type != IB_QPT_UD) {
2282 		trace_cm_send_mra(cm_id->context);
2283 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2284 	}
2285 	mutex_unlock(&conn_id->handler_mutex);
2286 
2287 err_unlock:
2288 	mutex_unlock(&listen_id->handler_mutex);
2289 
2290 net_dev_put:
2291 	if (net_dev)
2292 		dev_put(net_dev);
2293 
2294 	return ret;
2295 }
2296 
2297 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2298 {
2299 	if (addr->sa_family == AF_IB)
2300 		return ((struct sockaddr_ib *) addr)->sib_sid;
2301 
2302 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2303 }
2304 EXPORT_SYMBOL(rdma_get_service_id);
2305 
2306 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2307 		    union ib_gid *dgid)
2308 {
2309 	struct rdma_addr *addr = &cm_id->route.addr;
2310 
2311 	if (!cm_id->device) {
2312 		if (sgid)
2313 			memset(sgid, 0, sizeof(*sgid));
2314 		if (dgid)
2315 			memset(dgid, 0, sizeof(*dgid));
2316 		return;
2317 	}
2318 
2319 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2320 		if (sgid)
2321 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2322 		if (dgid)
2323 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2324 	} else {
2325 		if (sgid)
2326 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2327 		if (dgid)
2328 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2329 	}
2330 }
2331 EXPORT_SYMBOL(rdma_read_gids);
2332 
2333 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2334 {
2335 	struct rdma_id_private *id_priv = iw_id->context;
2336 	struct rdma_cm_event event = {};
2337 	int ret = 0;
2338 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2339 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2340 
2341 	mutex_lock(&id_priv->handler_mutex);
2342 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2343 		goto out;
2344 
2345 	switch (iw_event->event) {
2346 	case IW_CM_EVENT_CLOSE:
2347 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2348 		break;
2349 	case IW_CM_EVENT_CONNECT_REPLY:
2350 		memcpy(cma_src_addr(id_priv), laddr,
2351 		       rdma_addr_size(laddr));
2352 		memcpy(cma_dst_addr(id_priv), raddr,
2353 		       rdma_addr_size(raddr));
2354 		switch (iw_event->status) {
2355 		case 0:
2356 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2357 			event.param.conn.initiator_depth = iw_event->ird;
2358 			event.param.conn.responder_resources = iw_event->ord;
2359 			break;
2360 		case -ECONNRESET:
2361 		case -ECONNREFUSED:
2362 			event.event = RDMA_CM_EVENT_REJECTED;
2363 			break;
2364 		case -ETIMEDOUT:
2365 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2366 			break;
2367 		default:
2368 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2369 			break;
2370 		}
2371 		break;
2372 	case IW_CM_EVENT_ESTABLISHED:
2373 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2374 		event.param.conn.initiator_depth = iw_event->ird;
2375 		event.param.conn.responder_resources = iw_event->ord;
2376 		break;
2377 	default:
2378 		goto out;
2379 	}
2380 
2381 	event.status = iw_event->status;
2382 	event.param.conn.private_data = iw_event->private_data;
2383 	event.param.conn.private_data_len = iw_event->private_data_len;
2384 	ret = cma_cm_event_handler(id_priv, &event);
2385 	if (ret) {
2386 		/* Destroy the CM ID by returning a non-zero value. */
2387 		id_priv->cm_id.iw = NULL;
2388 		destroy_id_handler_unlock(id_priv);
2389 		return ret;
2390 	}
2391 
2392 out:
2393 	mutex_unlock(&id_priv->handler_mutex);
2394 	return ret;
2395 }
2396 
2397 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2398 			       struct iw_cm_event *iw_event)
2399 {
2400 	struct rdma_id_private *listen_id, *conn_id;
2401 	struct rdma_cm_event event = {};
2402 	int ret = -ECONNABORTED;
2403 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2404 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2405 
2406 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2407 	event.param.conn.private_data = iw_event->private_data;
2408 	event.param.conn.private_data_len = iw_event->private_data_len;
2409 	event.param.conn.initiator_depth = iw_event->ird;
2410 	event.param.conn.responder_resources = iw_event->ord;
2411 
2412 	listen_id = cm_id->context;
2413 
2414 	mutex_lock(&listen_id->handler_mutex);
2415 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2416 		goto out;
2417 
2418 	/* Create a new RDMA id for the new IW CM ID */
2419 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2420 				   listen_id->id.event_handler,
2421 				   listen_id->id.context, RDMA_PS_TCP,
2422 				   IB_QPT_RC, listen_id);
2423 	if (IS_ERR(conn_id)) {
2424 		ret = -ENOMEM;
2425 		goto out;
2426 	}
2427 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2428 	conn_id->state = RDMA_CM_CONNECT;
2429 
2430 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2431 	if (ret) {
2432 		mutex_unlock(&listen_id->handler_mutex);
2433 		destroy_id_handler_unlock(conn_id);
2434 		return ret;
2435 	}
2436 
2437 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2438 	if (ret) {
2439 		mutex_unlock(&listen_id->handler_mutex);
2440 		destroy_id_handler_unlock(conn_id);
2441 		return ret;
2442 	}
2443 
2444 	conn_id->cm_id.iw = cm_id;
2445 	cm_id->context = conn_id;
2446 	cm_id->cm_handler = cma_iw_handler;
2447 
2448 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2449 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2450 
2451 	ret = cma_cm_event_handler(conn_id, &event);
2452 	if (ret) {
2453 		/* User wants to destroy the CM ID */
2454 		conn_id->cm_id.iw = NULL;
2455 		mutex_unlock(&listen_id->handler_mutex);
2456 		destroy_id_handler_unlock(conn_id);
2457 		return ret;
2458 	}
2459 
2460 	mutex_unlock(&conn_id->handler_mutex);
2461 
2462 out:
2463 	mutex_unlock(&listen_id->handler_mutex);
2464 	return ret;
2465 }
2466 
2467 static int cma_ib_listen(struct rdma_id_private *id_priv)
2468 {
2469 	struct sockaddr *addr;
2470 	struct ib_cm_id	*id;
2471 	__be64 svc_id;
2472 
2473 	addr = cma_src_addr(id_priv);
2474 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2475 	id = ib_cm_insert_listen(id_priv->id.device,
2476 				 cma_ib_req_handler, svc_id);
2477 	if (IS_ERR(id))
2478 		return PTR_ERR(id);
2479 	id_priv->cm_id.ib = id;
2480 
2481 	return 0;
2482 }
2483 
2484 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2485 {
2486 	int ret;
2487 	struct iw_cm_id	*id;
2488 
2489 	id = iw_create_cm_id(id_priv->id.device,
2490 			     iw_conn_req_handler,
2491 			     id_priv);
2492 	if (IS_ERR(id))
2493 		return PTR_ERR(id);
2494 
2495 	mutex_lock(&id_priv->qp_mutex);
2496 	id->tos = id_priv->tos;
2497 	id->tos_set = id_priv->tos_set;
2498 	mutex_unlock(&id_priv->qp_mutex);
2499 	id->afonly = id_priv->afonly;
2500 	id_priv->cm_id.iw = id;
2501 
2502 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2503 	       rdma_addr_size(cma_src_addr(id_priv)));
2504 
2505 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2506 
2507 	if (ret) {
2508 		iw_destroy_cm_id(id_priv->cm_id.iw);
2509 		id_priv->cm_id.iw = NULL;
2510 	}
2511 
2512 	return ret;
2513 }
2514 
2515 static int cma_listen_handler(struct rdma_cm_id *id,
2516 			      struct rdma_cm_event *event)
2517 {
2518 	struct rdma_id_private *id_priv = id->context;
2519 
2520 	/* Listening IDs are always destroyed on removal */
2521 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2522 		return -1;
2523 
2524 	id->context = id_priv->id.context;
2525 	id->event_handler = id_priv->id.event_handler;
2526 	trace_cm_event_handler(id_priv, event);
2527 	return id_priv->id.event_handler(id, event);
2528 }
2529 
2530 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2531 			     struct cma_device *cma_dev,
2532 			     struct rdma_id_private **to_destroy)
2533 {
2534 	struct rdma_id_private *dev_id_priv;
2535 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2536 	int ret;
2537 
2538 	lockdep_assert_held(&lock);
2539 
2540 	*to_destroy = NULL;
2541 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2542 		return 0;
2543 
2544 	dev_id_priv =
2545 		__rdma_create_id(net, cma_listen_handler, id_priv,
2546 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2547 	if (IS_ERR(dev_id_priv))
2548 		return PTR_ERR(dev_id_priv);
2549 
2550 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2551 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2552 	       rdma_addr_size(cma_src_addr(id_priv)));
2553 
2554 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2555 	rdma_restrack_add(&dev_id_priv->res);
2556 	cma_id_get(id_priv);
2557 	dev_id_priv->internal_id = 1;
2558 	dev_id_priv->afonly = id_priv->afonly;
2559 	mutex_lock(&id_priv->qp_mutex);
2560 	dev_id_priv->tos_set = id_priv->tos_set;
2561 	dev_id_priv->tos = id_priv->tos;
2562 	mutex_unlock(&id_priv->qp_mutex);
2563 
2564 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2565 	if (ret)
2566 		goto err_listen;
2567 	list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
2568 	return 0;
2569 err_listen:
2570 	/* Caller must destroy this after releasing lock */
2571 	*to_destroy = dev_id_priv;
2572 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2573 	return ret;
2574 }
2575 
2576 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2577 {
2578 	struct rdma_id_private *to_destroy;
2579 	struct cma_device *cma_dev;
2580 	int ret;
2581 
2582 	mutex_lock(&lock);
2583 	list_add_tail(&id_priv->list, &listen_any_list);
2584 	list_for_each_entry(cma_dev, &dev_list, list) {
2585 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2586 		if (ret) {
2587 			/* Prevent racing with cma_process_remove() */
2588 			if (to_destroy)
2589 				list_del_init(&to_destroy->list);
2590 			goto err_listen;
2591 		}
2592 	}
2593 	mutex_unlock(&lock);
2594 	return 0;
2595 
2596 err_listen:
2597 	_cma_cancel_listens(id_priv);
2598 	mutex_unlock(&lock);
2599 	if (to_destroy)
2600 		rdma_destroy_id(&to_destroy->id);
2601 	return ret;
2602 }
2603 
2604 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2605 {
2606 	struct rdma_id_private *id_priv;
2607 
2608 	id_priv = container_of(id, struct rdma_id_private, id);
2609 	mutex_lock(&id_priv->qp_mutex);
2610 	id_priv->tos = (u8) tos;
2611 	id_priv->tos_set = true;
2612 	mutex_unlock(&id_priv->qp_mutex);
2613 }
2614 EXPORT_SYMBOL(rdma_set_service_type);
2615 
2616 /**
2617  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2618  *                          with a connection identifier.
2619  * @id: Communication identifier to associated with service type.
2620  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2621  *
2622  * This function should be called before rdma_connect() on active side,
2623  * and on passive side before rdma_accept(). It is applicable to primary
2624  * path only. The timeout will affect the local side of the QP, it is not
2625  * negotiated with remote side and zero disables the timer. In case it is
2626  * set before rdma_resolve_route, the value will also be used to determine
2627  * PacketLifeTime for RoCE.
2628  *
2629  * Return: 0 for success
2630  */
2631 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2632 {
2633 	struct rdma_id_private *id_priv;
2634 
2635 	if (id->qp_type != IB_QPT_RC)
2636 		return -EINVAL;
2637 
2638 	id_priv = container_of(id, struct rdma_id_private, id);
2639 	mutex_lock(&id_priv->qp_mutex);
2640 	id_priv->timeout = timeout;
2641 	id_priv->timeout_set = true;
2642 	mutex_unlock(&id_priv->qp_mutex);
2643 
2644 	return 0;
2645 }
2646 EXPORT_SYMBOL(rdma_set_ack_timeout);
2647 
2648 /**
2649  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2650  *			      QP associated with a connection identifier.
2651  * @id: Communication identifier to associated with service type.
2652  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2653  *		   Timer Field" in the IBTA specification.
2654  *
2655  * This function should be called before rdma_connect() on active
2656  * side, and on passive side before rdma_accept(). The timer value
2657  * will be associated with the local QP. When it receives a send it is
2658  * not read to handle, typically if the receive queue is empty, an RNR
2659  * Retry NAK is returned to the requester with the min_rnr_timer
2660  * encoded. The requester will then wait at least the time specified
2661  * in the NAK before retrying. The default is zero, which translates
2662  * to a minimum RNR Timer value of 655 ms.
2663  *
2664  * Return: 0 for success
2665  */
2666 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2667 {
2668 	struct rdma_id_private *id_priv;
2669 
2670 	/* It is a five-bit value */
2671 	if (min_rnr_timer & 0xe0)
2672 		return -EINVAL;
2673 
2674 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2675 		return -EINVAL;
2676 
2677 	id_priv = container_of(id, struct rdma_id_private, id);
2678 	mutex_lock(&id_priv->qp_mutex);
2679 	id_priv->min_rnr_timer = min_rnr_timer;
2680 	id_priv->min_rnr_timer_set = true;
2681 	mutex_unlock(&id_priv->qp_mutex);
2682 
2683 	return 0;
2684 }
2685 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2686 
2687 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2688 			      void *context)
2689 {
2690 	struct cma_work *work = context;
2691 	struct rdma_route *route;
2692 
2693 	route = &work->id->id.route;
2694 
2695 	if (!status) {
2696 		route->num_paths = 1;
2697 		*route->path_rec = *path_rec;
2698 	} else {
2699 		work->old_state = RDMA_CM_ROUTE_QUERY;
2700 		work->new_state = RDMA_CM_ADDR_RESOLVED;
2701 		work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2702 		work->event.status = status;
2703 		pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2704 				     status);
2705 	}
2706 
2707 	queue_work(cma_wq, &work->work);
2708 }
2709 
2710 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2711 			      unsigned long timeout_ms, struct cma_work *work)
2712 {
2713 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2714 	struct sa_path_rec path_rec;
2715 	ib_sa_comp_mask comp_mask;
2716 	struct sockaddr_in6 *sin6;
2717 	struct sockaddr_ib *sib;
2718 
2719 	memset(&path_rec, 0, sizeof path_rec);
2720 
2721 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2722 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2723 	else
2724 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2725 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2726 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2727 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2728 	path_rec.numb_path = 1;
2729 	path_rec.reversible = 1;
2730 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2731 						  cma_dst_addr(id_priv));
2732 
2733 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2734 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2735 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2736 
2737 	switch (cma_family(id_priv)) {
2738 	case AF_INET:
2739 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2740 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2741 		break;
2742 	case AF_INET6:
2743 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2744 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2745 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2746 		break;
2747 	case AF_IB:
2748 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2749 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2750 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2751 		break;
2752 	}
2753 
2754 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2755 					       id_priv->id.port_num, &path_rec,
2756 					       comp_mask, timeout_ms,
2757 					       GFP_KERNEL, cma_query_handler,
2758 					       work, &id_priv->query);
2759 
2760 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2761 }
2762 
2763 static void cma_iboe_join_work_handler(struct work_struct *work)
2764 {
2765 	struct cma_multicast *mc =
2766 		container_of(work, struct cma_multicast, iboe_join.work);
2767 	struct rdma_cm_event *event = &mc->iboe_join.event;
2768 	struct rdma_id_private *id_priv = mc->id_priv;
2769 	int ret;
2770 
2771 	mutex_lock(&id_priv->handler_mutex);
2772 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2773 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2774 		goto out_unlock;
2775 
2776 	ret = cma_cm_event_handler(id_priv, event);
2777 	WARN_ON(ret);
2778 
2779 out_unlock:
2780 	mutex_unlock(&id_priv->handler_mutex);
2781 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2782 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2783 }
2784 
2785 static void cma_work_handler(struct work_struct *_work)
2786 {
2787 	struct cma_work *work = container_of(_work, struct cma_work, work);
2788 	struct rdma_id_private *id_priv = work->id;
2789 
2790 	mutex_lock(&id_priv->handler_mutex);
2791 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2792 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2793 		goto out_unlock;
2794 	if (work->old_state != 0 || work->new_state != 0) {
2795 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2796 			goto out_unlock;
2797 	}
2798 
2799 	if (cma_cm_event_handler(id_priv, &work->event)) {
2800 		cma_id_put(id_priv);
2801 		destroy_id_handler_unlock(id_priv);
2802 		goto out_free;
2803 	}
2804 
2805 out_unlock:
2806 	mutex_unlock(&id_priv->handler_mutex);
2807 	cma_id_put(id_priv);
2808 out_free:
2809 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2810 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2811 	kfree(work);
2812 }
2813 
2814 static void cma_init_resolve_route_work(struct cma_work *work,
2815 					struct rdma_id_private *id_priv)
2816 {
2817 	work->id = id_priv;
2818 	INIT_WORK(&work->work, cma_work_handler);
2819 	work->old_state = RDMA_CM_ROUTE_QUERY;
2820 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
2821 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2822 }
2823 
2824 static void enqueue_resolve_addr_work(struct cma_work *work,
2825 				      struct rdma_id_private *id_priv)
2826 {
2827 	/* Balances with cma_id_put() in cma_work_handler */
2828 	cma_id_get(id_priv);
2829 
2830 	work->id = id_priv;
2831 	INIT_WORK(&work->work, cma_work_handler);
2832 	work->old_state = RDMA_CM_ADDR_QUERY;
2833 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2834 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2835 
2836 	queue_work(cma_wq, &work->work);
2837 }
2838 
2839 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2840 				unsigned long timeout_ms)
2841 {
2842 	struct rdma_route *route = &id_priv->id.route;
2843 	struct cma_work *work;
2844 	int ret;
2845 
2846 	work = kzalloc(sizeof *work, GFP_KERNEL);
2847 	if (!work)
2848 		return -ENOMEM;
2849 
2850 	cma_init_resolve_route_work(work, id_priv);
2851 
2852 	if (!route->path_rec)
2853 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2854 	if (!route->path_rec) {
2855 		ret = -ENOMEM;
2856 		goto err1;
2857 	}
2858 
2859 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
2860 	if (ret)
2861 		goto err2;
2862 
2863 	return 0;
2864 err2:
2865 	kfree(route->path_rec);
2866 	route->path_rec = NULL;
2867 err1:
2868 	kfree(work);
2869 	return ret;
2870 }
2871 
2872 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
2873 					   unsigned long supported_gids,
2874 					   enum ib_gid_type default_gid)
2875 {
2876 	if ((network_type == RDMA_NETWORK_IPV4 ||
2877 	     network_type == RDMA_NETWORK_IPV6) &&
2878 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
2879 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
2880 
2881 	return default_gid;
2882 }
2883 
2884 /*
2885  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
2886  * path record type based on GID type.
2887  * It also sets up other L2 fields which includes destination mac address
2888  * netdev ifindex, of the path record.
2889  * It returns the netdev of the bound interface for this path record entry.
2890  */
2891 static struct net_device *
2892 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
2893 {
2894 	struct rdma_route *route = &id_priv->id.route;
2895 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
2896 	struct rdma_addr *addr = &route->addr;
2897 	unsigned long supported_gids;
2898 	struct net_device *ndev;
2899 
2900 	if (!addr->dev_addr.bound_dev_if)
2901 		return NULL;
2902 
2903 	ndev = dev_get_by_index(addr->dev_addr.net,
2904 				addr->dev_addr.bound_dev_if);
2905 	if (!ndev)
2906 		return NULL;
2907 
2908 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
2909 						    id_priv->id.port_num);
2910 	gid_type = cma_route_gid_type(addr->dev_addr.network,
2911 				      supported_gids,
2912 				      id_priv->gid_type);
2913 	/* Use the hint from IP Stack to select GID Type */
2914 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
2915 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
2916 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
2917 
2918 	route->path_rec->roce.route_resolved = true;
2919 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
2920 	return ndev;
2921 }
2922 
2923 int rdma_set_ib_path(struct rdma_cm_id *id,
2924 		     struct sa_path_rec *path_rec)
2925 {
2926 	struct rdma_id_private *id_priv;
2927 	struct net_device *ndev;
2928 	int ret;
2929 
2930 	id_priv = container_of(id, struct rdma_id_private, id);
2931 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
2932 			   RDMA_CM_ROUTE_RESOLVED))
2933 		return -EINVAL;
2934 
2935 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
2936 				     GFP_KERNEL);
2937 	if (!id->route.path_rec) {
2938 		ret = -ENOMEM;
2939 		goto err;
2940 	}
2941 
2942 	if (rdma_protocol_roce(id->device, id->port_num)) {
2943 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2944 		if (!ndev) {
2945 			ret = -ENODEV;
2946 			goto err_free;
2947 		}
2948 		dev_put(ndev);
2949 	}
2950 
2951 	id->route.num_paths = 1;
2952 	return 0;
2953 
2954 err_free:
2955 	kfree(id->route.path_rec);
2956 	id->route.path_rec = NULL;
2957 err:
2958 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL(rdma_set_ib_path);
2962 
2963 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
2964 {
2965 	struct cma_work *work;
2966 
2967 	work = kzalloc(sizeof *work, GFP_KERNEL);
2968 	if (!work)
2969 		return -ENOMEM;
2970 
2971 	cma_init_resolve_route_work(work, id_priv);
2972 	queue_work(cma_wq, &work->work);
2973 	return 0;
2974 }
2975 
2976 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
2977 {
2978 	struct net_device *dev;
2979 
2980 	dev = vlan_dev_real_dev(vlan_ndev);
2981 	if (dev->num_tc)
2982 		return netdev_get_prio_tc_map(dev, prio);
2983 
2984 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
2985 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2986 }
2987 
2988 struct iboe_prio_tc_map {
2989 	int input_prio;
2990 	int output_tc;
2991 	bool found;
2992 };
2993 
2994 static int get_lower_vlan_dev_tc(struct net_device *dev,
2995 				 struct netdev_nested_priv *priv)
2996 {
2997 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
2998 
2999 	if (is_vlan_dev(dev))
3000 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3001 	else if (dev->num_tc)
3002 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3003 	else
3004 		map->output_tc = 0;
3005 	/* We are interested only in first level VLAN device, so always
3006 	 * return 1 to stop iterating over next level devices.
3007 	 */
3008 	map->found = true;
3009 	return 1;
3010 }
3011 
3012 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3013 {
3014 	struct iboe_prio_tc_map prio_tc_map = {};
3015 	int prio = rt_tos2priority(tos);
3016 	struct netdev_nested_priv priv;
3017 
3018 	/* If VLAN device, get it directly from the VLAN netdev */
3019 	if (is_vlan_dev(ndev))
3020 		return get_vlan_ndev_tc(ndev, prio);
3021 
3022 	prio_tc_map.input_prio = prio;
3023 	priv.data = (void *)&prio_tc_map;
3024 	rcu_read_lock();
3025 	netdev_walk_all_lower_dev_rcu(ndev,
3026 				      get_lower_vlan_dev_tc,
3027 				      &priv);
3028 	rcu_read_unlock();
3029 	/* If map is found from lower device, use it; Otherwise
3030 	 * continue with the current netdevice to get priority to tc map.
3031 	 */
3032 	if (prio_tc_map.found)
3033 		return prio_tc_map.output_tc;
3034 	else if (ndev->num_tc)
3035 		return netdev_get_prio_tc_map(ndev, prio);
3036 	else
3037 		return 0;
3038 }
3039 
3040 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3041 {
3042 	struct sockaddr_in6 *addr6;
3043 	u16 dport, sport;
3044 	u32 hash, fl;
3045 
3046 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3047 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3048 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3049 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3050 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3051 		hash = (u32)sport * 31 + dport;
3052 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3053 	}
3054 
3055 	return cpu_to_be32(fl);
3056 }
3057 
3058 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3059 {
3060 	struct rdma_route *route = &id_priv->id.route;
3061 	struct rdma_addr *addr = &route->addr;
3062 	struct cma_work *work;
3063 	int ret;
3064 	struct net_device *ndev;
3065 
3066 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3067 					rdma_start_port(id_priv->cma_dev->device)];
3068 	u8 tos;
3069 
3070 	mutex_lock(&id_priv->qp_mutex);
3071 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3072 	mutex_unlock(&id_priv->qp_mutex);
3073 
3074 	work = kzalloc(sizeof *work, GFP_KERNEL);
3075 	if (!work)
3076 		return -ENOMEM;
3077 
3078 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3079 	if (!route->path_rec) {
3080 		ret = -ENOMEM;
3081 		goto err1;
3082 	}
3083 
3084 	route->num_paths = 1;
3085 
3086 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3087 	if (!ndev) {
3088 		ret = -ENODEV;
3089 		goto err2;
3090 	}
3091 
3092 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3093 		    &route->path_rec->sgid);
3094 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3095 		    &route->path_rec->dgid);
3096 
3097 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3098 		/* TODO: get the hoplimit from the inet/inet6 device */
3099 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3100 	else
3101 		route->path_rec->hop_limit = 1;
3102 	route->path_rec->reversible = 1;
3103 	route->path_rec->pkey = cpu_to_be16(0xffff);
3104 	route->path_rec->mtu_selector = IB_SA_EQ;
3105 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3106 	route->path_rec->traffic_class = tos;
3107 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3108 	route->path_rec->rate_selector = IB_SA_EQ;
3109 	route->path_rec->rate = iboe_get_rate(ndev);
3110 	dev_put(ndev);
3111 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3112 	/* In case ACK timeout is set, use this value to calculate
3113 	 * PacketLifeTime.  As per IBTA 12.7.34,
3114 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3115 	 * Assuming a negligible local ACK delay, we can use
3116 	 * PacketLifeTime = local ACK timeout/2
3117 	 * as a reasonable approximation for RoCE networks.
3118 	 */
3119 	mutex_lock(&id_priv->qp_mutex);
3120 	if (id_priv->timeout_set && id_priv->timeout)
3121 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3122 	else
3123 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3124 	mutex_unlock(&id_priv->qp_mutex);
3125 
3126 	if (!route->path_rec->mtu) {
3127 		ret = -EINVAL;
3128 		goto err2;
3129 	}
3130 
3131 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3132 					 id_priv->id.port_num))
3133 		route->path_rec->flow_label =
3134 			cma_get_roce_udp_flow_label(id_priv);
3135 
3136 	cma_init_resolve_route_work(work, id_priv);
3137 	queue_work(cma_wq, &work->work);
3138 
3139 	return 0;
3140 
3141 err2:
3142 	kfree(route->path_rec);
3143 	route->path_rec = NULL;
3144 	route->num_paths = 0;
3145 err1:
3146 	kfree(work);
3147 	return ret;
3148 }
3149 
3150 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3151 {
3152 	struct rdma_id_private *id_priv;
3153 	int ret;
3154 
3155 	if (!timeout_ms)
3156 		return -EINVAL;
3157 
3158 	id_priv = container_of(id, struct rdma_id_private, id);
3159 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3160 		return -EINVAL;
3161 
3162 	cma_id_get(id_priv);
3163 	if (rdma_cap_ib_sa(id->device, id->port_num))
3164 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3165 	else if (rdma_protocol_roce(id->device, id->port_num))
3166 		ret = cma_resolve_iboe_route(id_priv);
3167 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3168 		ret = cma_resolve_iw_route(id_priv);
3169 	else
3170 		ret = -ENOSYS;
3171 
3172 	if (ret)
3173 		goto err;
3174 
3175 	return 0;
3176 err:
3177 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3178 	cma_id_put(id_priv);
3179 	return ret;
3180 }
3181 EXPORT_SYMBOL(rdma_resolve_route);
3182 
3183 static void cma_set_loopback(struct sockaddr *addr)
3184 {
3185 	switch (addr->sa_family) {
3186 	case AF_INET:
3187 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3188 		break;
3189 	case AF_INET6:
3190 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3191 			      0, 0, 0, htonl(1));
3192 		break;
3193 	default:
3194 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3195 			    0, 0, 0, htonl(1));
3196 		break;
3197 	}
3198 }
3199 
3200 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3201 {
3202 	struct cma_device *cma_dev, *cur_dev;
3203 	union ib_gid gid;
3204 	enum ib_port_state port_state;
3205 	unsigned int p;
3206 	u16 pkey;
3207 	int ret;
3208 
3209 	cma_dev = NULL;
3210 	mutex_lock(&lock);
3211 	list_for_each_entry(cur_dev, &dev_list, list) {
3212 		if (cma_family(id_priv) == AF_IB &&
3213 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3214 			continue;
3215 
3216 		if (!cma_dev)
3217 			cma_dev = cur_dev;
3218 
3219 		rdma_for_each_port (cur_dev->device, p) {
3220 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3221 			    port_state == IB_PORT_ACTIVE) {
3222 				cma_dev = cur_dev;
3223 				goto port_found;
3224 			}
3225 		}
3226 	}
3227 
3228 	if (!cma_dev) {
3229 		ret = -ENODEV;
3230 		goto out;
3231 	}
3232 
3233 	p = 1;
3234 
3235 port_found:
3236 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3237 	if (ret)
3238 		goto out;
3239 
3240 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3241 	if (ret)
3242 		goto out;
3243 
3244 	id_priv->id.route.addr.dev_addr.dev_type =
3245 		(rdma_protocol_ib(cma_dev->device, p)) ?
3246 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3247 
3248 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3249 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3250 	id_priv->id.port_num = p;
3251 	cma_attach_to_dev(id_priv, cma_dev);
3252 	rdma_restrack_add(&id_priv->res);
3253 	cma_set_loopback(cma_src_addr(id_priv));
3254 out:
3255 	mutex_unlock(&lock);
3256 	return ret;
3257 }
3258 
3259 static void addr_handler(int status, struct sockaddr *src_addr,
3260 			 struct rdma_dev_addr *dev_addr, void *context)
3261 {
3262 	struct rdma_id_private *id_priv = context;
3263 	struct rdma_cm_event event = {};
3264 	struct sockaddr *addr;
3265 	struct sockaddr_storage old_addr;
3266 
3267 	mutex_lock(&id_priv->handler_mutex);
3268 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3269 			   RDMA_CM_ADDR_RESOLVED))
3270 		goto out;
3271 
3272 	/*
3273 	 * Store the previous src address, so that if we fail to acquire
3274 	 * matching rdma device, old address can be restored back, which helps
3275 	 * to cancel the cma listen operation correctly.
3276 	 */
3277 	addr = cma_src_addr(id_priv);
3278 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3279 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3280 	if (!status && !id_priv->cma_dev) {
3281 		status = cma_acquire_dev_by_src_ip(id_priv);
3282 		if (status)
3283 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3284 					     status);
3285 		rdma_restrack_add(&id_priv->res);
3286 	} else if (status) {
3287 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3288 	}
3289 
3290 	if (status) {
3291 		memcpy(addr, &old_addr,
3292 		       rdma_addr_size((struct sockaddr *)&old_addr));
3293 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3294 				   RDMA_CM_ADDR_BOUND))
3295 			goto out;
3296 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3297 		event.status = status;
3298 	} else
3299 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3300 
3301 	if (cma_cm_event_handler(id_priv, &event)) {
3302 		destroy_id_handler_unlock(id_priv);
3303 		return;
3304 	}
3305 out:
3306 	mutex_unlock(&id_priv->handler_mutex);
3307 }
3308 
3309 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3310 {
3311 	struct cma_work *work;
3312 	union ib_gid gid;
3313 	int ret;
3314 
3315 	work = kzalloc(sizeof *work, GFP_KERNEL);
3316 	if (!work)
3317 		return -ENOMEM;
3318 
3319 	if (!id_priv->cma_dev) {
3320 		ret = cma_bind_loopback(id_priv);
3321 		if (ret)
3322 			goto err;
3323 	}
3324 
3325 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3326 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3327 
3328 	enqueue_resolve_addr_work(work, id_priv);
3329 	return 0;
3330 err:
3331 	kfree(work);
3332 	return ret;
3333 }
3334 
3335 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3336 {
3337 	struct cma_work *work;
3338 	int ret;
3339 
3340 	work = kzalloc(sizeof *work, GFP_KERNEL);
3341 	if (!work)
3342 		return -ENOMEM;
3343 
3344 	if (!id_priv->cma_dev) {
3345 		ret = cma_resolve_ib_dev(id_priv);
3346 		if (ret)
3347 			goto err;
3348 	}
3349 
3350 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3351 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3352 
3353 	enqueue_resolve_addr_work(work, id_priv);
3354 	return 0;
3355 err:
3356 	kfree(work);
3357 	return ret;
3358 }
3359 
3360 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3361 			 const struct sockaddr *dst_addr)
3362 {
3363 	if (!src_addr || !src_addr->sa_family) {
3364 		src_addr = (struct sockaddr *) &id->route.addr.src_addr;
3365 		src_addr->sa_family = dst_addr->sa_family;
3366 		if (IS_ENABLED(CONFIG_IPV6) &&
3367 		    dst_addr->sa_family == AF_INET6) {
3368 			struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr;
3369 			struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr;
3370 			src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3371 			if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3372 				id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id;
3373 		} else if (dst_addr->sa_family == AF_IB) {
3374 			((struct sockaddr_ib *) src_addr)->sib_pkey =
3375 				((struct sockaddr_ib *) dst_addr)->sib_pkey;
3376 		}
3377 	}
3378 	return rdma_bind_addr(id, src_addr);
3379 }
3380 
3381 /*
3382  * If required, resolve the source address for bind and leave the id_priv in
3383  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3384  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3385  * ignored.
3386  */
3387 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3388 			       struct sockaddr *src_addr,
3389 			       const struct sockaddr *dst_addr)
3390 {
3391 	int ret;
3392 
3393 	memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3394 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3395 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3396 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3397 		if (ret)
3398 			goto err_dst;
3399 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3400 					   RDMA_CM_ADDR_QUERY))) {
3401 			ret = -EINVAL;
3402 			goto err_dst;
3403 		}
3404 	}
3405 
3406 	if (cma_family(id_priv) != dst_addr->sa_family) {
3407 		ret = -EINVAL;
3408 		goto err_state;
3409 	}
3410 	return 0;
3411 
3412 err_state:
3413 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3414 err_dst:
3415 	memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3416 	return ret;
3417 }
3418 
3419 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3420 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
3421 {
3422 	struct rdma_id_private *id_priv =
3423 		container_of(id, struct rdma_id_private, id);
3424 	int ret;
3425 
3426 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3427 	if (ret)
3428 		return ret;
3429 
3430 	if (cma_any_addr(dst_addr)) {
3431 		ret = cma_resolve_loopback(id_priv);
3432 	} else {
3433 		if (dst_addr->sa_family == AF_IB) {
3434 			ret = cma_resolve_ib_addr(id_priv);
3435 		} else {
3436 			/*
3437 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
3438 			 * rdma_resolve_ip() is called, eg through the error
3439 			 * path in addr_handler(). If this happens the existing
3440 			 * request must be canceled before issuing a new one.
3441 			 * Since canceling a request is a bit slow and this
3442 			 * oddball path is rare, keep track once a request has
3443 			 * been issued. The track turns out to be a permanent
3444 			 * state since this is the only cancel as it is
3445 			 * immediately before rdma_resolve_ip().
3446 			 */
3447 			if (id_priv->used_resolve_ip)
3448 				rdma_addr_cancel(&id->route.addr.dev_addr);
3449 			else
3450 				id_priv->used_resolve_ip = 1;
3451 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3452 					      &id->route.addr.dev_addr,
3453 					      timeout_ms, addr_handler,
3454 					      false, id_priv);
3455 		}
3456 	}
3457 	if (ret)
3458 		goto err;
3459 
3460 	return 0;
3461 err:
3462 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3463 	return ret;
3464 }
3465 EXPORT_SYMBOL(rdma_resolve_addr);
3466 
3467 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3468 {
3469 	struct rdma_id_private *id_priv;
3470 	unsigned long flags;
3471 	int ret;
3472 
3473 	id_priv = container_of(id, struct rdma_id_private, id);
3474 	spin_lock_irqsave(&id_priv->lock, flags);
3475 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3476 	    id_priv->state == RDMA_CM_IDLE) {
3477 		id_priv->reuseaddr = reuse;
3478 		ret = 0;
3479 	} else {
3480 		ret = -EINVAL;
3481 	}
3482 	spin_unlock_irqrestore(&id_priv->lock, flags);
3483 	return ret;
3484 }
3485 EXPORT_SYMBOL(rdma_set_reuseaddr);
3486 
3487 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3488 {
3489 	struct rdma_id_private *id_priv;
3490 	unsigned long flags;
3491 	int ret;
3492 
3493 	id_priv = container_of(id, struct rdma_id_private, id);
3494 	spin_lock_irqsave(&id_priv->lock, flags);
3495 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3496 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3497 		id_priv->afonly = afonly;
3498 		ret = 0;
3499 	} else {
3500 		ret = -EINVAL;
3501 	}
3502 	spin_unlock_irqrestore(&id_priv->lock, flags);
3503 	return ret;
3504 }
3505 EXPORT_SYMBOL(rdma_set_afonly);
3506 
3507 static void cma_bind_port(struct rdma_bind_list *bind_list,
3508 			  struct rdma_id_private *id_priv)
3509 {
3510 	struct sockaddr *addr;
3511 	struct sockaddr_ib *sib;
3512 	u64 sid, mask;
3513 	__be16 port;
3514 
3515 	lockdep_assert_held(&lock);
3516 
3517 	addr = cma_src_addr(id_priv);
3518 	port = htons(bind_list->port);
3519 
3520 	switch (addr->sa_family) {
3521 	case AF_INET:
3522 		((struct sockaddr_in *) addr)->sin_port = port;
3523 		break;
3524 	case AF_INET6:
3525 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3526 		break;
3527 	case AF_IB:
3528 		sib = (struct sockaddr_ib *) addr;
3529 		sid = be64_to_cpu(sib->sib_sid);
3530 		mask = be64_to_cpu(sib->sib_sid_mask);
3531 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3532 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3533 		break;
3534 	}
3535 	id_priv->bind_list = bind_list;
3536 	hlist_add_head(&id_priv->node, &bind_list->owners);
3537 }
3538 
3539 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3540 			  struct rdma_id_private *id_priv, unsigned short snum)
3541 {
3542 	struct rdma_bind_list *bind_list;
3543 	int ret;
3544 
3545 	lockdep_assert_held(&lock);
3546 
3547 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3548 	if (!bind_list)
3549 		return -ENOMEM;
3550 
3551 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3552 			   snum);
3553 	if (ret < 0)
3554 		goto err;
3555 
3556 	bind_list->ps = ps;
3557 	bind_list->port = snum;
3558 	cma_bind_port(bind_list, id_priv);
3559 	return 0;
3560 err:
3561 	kfree(bind_list);
3562 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3563 }
3564 
3565 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3566 			      struct rdma_id_private *id_priv)
3567 {
3568 	struct rdma_id_private *cur_id;
3569 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3570 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3571 	__be16 dport = cma_port(daddr);
3572 
3573 	lockdep_assert_held(&lock);
3574 
3575 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3576 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3577 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3578 		__be16 cur_dport = cma_port(cur_daddr);
3579 
3580 		if (id_priv == cur_id)
3581 			continue;
3582 
3583 		/* different dest port -> unique */
3584 		if (!cma_any_port(daddr) &&
3585 		    !cma_any_port(cur_daddr) &&
3586 		    (dport != cur_dport))
3587 			continue;
3588 
3589 		/* different src address -> unique */
3590 		if (!cma_any_addr(saddr) &&
3591 		    !cma_any_addr(cur_saddr) &&
3592 		    cma_addr_cmp(saddr, cur_saddr))
3593 			continue;
3594 
3595 		/* different dst address -> unique */
3596 		if (!cma_any_addr(daddr) &&
3597 		    !cma_any_addr(cur_daddr) &&
3598 		    cma_addr_cmp(daddr, cur_daddr))
3599 			continue;
3600 
3601 		return -EADDRNOTAVAIL;
3602 	}
3603 	return 0;
3604 }
3605 
3606 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3607 			      struct rdma_id_private *id_priv)
3608 {
3609 	static unsigned int last_used_port;
3610 	int low, high, remaining;
3611 	unsigned int rover;
3612 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3613 
3614 	lockdep_assert_held(&lock);
3615 
3616 	inet_get_local_port_range(net, &low, &high);
3617 	remaining = (high - low) + 1;
3618 	rover = prandom_u32() % remaining + low;
3619 retry:
3620 	if (last_used_port != rover) {
3621 		struct rdma_bind_list *bind_list;
3622 		int ret;
3623 
3624 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3625 
3626 		if (!bind_list) {
3627 			ret = cma_alloc_port(ps, id_priv, rover);
3628 		} else {
3629 			ret = cma_port_is_unique(bind_list, id_priv);
3630 			if (!ret)
3631 				cma_bind_port(bind_list, id_priv);
3632 		}
3633 		/*
3634 		 * Remember previously used port number in order to avoid
3635 		 * re-using same port immediately after it is closed.
3636 		 */
3637 		if (!ret)
3638 			last_used_port = rover;
3639 		if (ret != -EADDRNOTAVAIL)
3640 			return ret;
3641 	}
3642 	if (--remaining) {
3643 		rover++;
3644 		if ((rover < low) || (rover > high))
3645 			rover = low;
3646 		goto retry;
3647 	}
3648 	return -EADDRNOTAVAIL;
3649 }
3650 
3651 /*
3652  * Check that the requested port is available.  This is called when trying to
3653  * bind to a specific port, or when trying to listen on a bound port.  In
3654  * the latter case, the provided id_priv may already be on the bind_list, but
3655  * we still need to check that it's okay to start listening.
3656  */
3657 static int cma_check_port(struct rdma_bind_list *bind_list,
3658 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3659 {
3660 	struct rdma_id_private *cur_id;
3661 	struct sockaddr *addr, *cur_addr;
3662 
3663 	lockdep_assert_held(&lock);
3664 
3665 	addr = cma_src_addr(id_priv);
3666 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3667 		if (id_priv == cur_id)
3668 			continue;
3669 
3670 		if (reuseaddr && cur_id->reuseaddr)
3671 			continue;
3672 
3673 		cur_addr = cma_src_addr(cur_id);
3674 		if (id_priv->afonly && cur_id->afonly &&
3675 		    (addr->sa_family != cur_addr->sa_family))
3676 			continue;
3677 
3678 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3679 			return -EADDRNOTAVAIL;
3680 
3681 		if (!cma_addr_cmp(addr, cur_addr))
3682 			return -EADDRINUSE;
3683 	}
3684 	return 0;
3685 }
3686 
3687 static int cma_use_port(enum rdma_ucm_port_space ps,
3688 			struct rdma_id_private *id_priv)
3689 {
3690 	struct rdma_bind_list *bind_list;
3691 	unsigned short snum;
3692 	int ret;
3693 
3694 	lockdep_assert_held(&lock);
3695 
3696 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3697 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3698 		return -EACCES;
3699 
3700 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3701 	if (!bind_list) {
3702 		ret = cma_alloc_port(ps, id_priv, snum);
3703 	} else {
3704 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3705 		if (!ret)
3706 			cma_bind_port(bind_list, id_priv);
3707 	}
3708 	return ret;
3709 }
3710 
3711 static enum rdma_ucm_port_space
3712 cma_select_inet_ps(struct rdma_id_private *id_priv)
3713 {
3714 	switch (id_priv->id.ps) {
3715 	case RDMA_PS_TCP:
3716 	case RDMA_PS_UDP:
3717 	case RDMA_PS_IPOIB:
3718 	case RDMA_PS_IB:
3719 		return id_priv->id.ps;
3720 	default:
3721 
3722 		return 0;
3723 	}
3724 }
3725 
3726 static enum rdma_ucm_port_space
3727 cma_select_ib_ps(struct rdma_id_private *id_priv)
3728 {
3729 	enum rdma_ucm_port_space ps = 0;
3730 	struct sockaddr_ib *sib;
3731 	u64 sid_ps, mask, sid;
3732 
3733 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3734 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3735 	sid = be64_to_cpu(sib->sib_sid) & mask;
3736 
3737 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3738 		sid_ps = RDMA_IB_IP_PS_IB;
3739 		ps = RDMA_PS_IB;
3740 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3741 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3742 		sid_ps = RDMA_IB_IP_PS_TCP;
3743 		ps = RDMA_PS_TCP;
3744 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3745 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3746 		sid_ps = RDMA_IB_IP_PS_UDP;
3747 		ps = RDMA_PS_UDP;
3748 	}
3749 
3750 	if (ps) {
3751 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3752 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3753 						be64_to_cpu(sib->sib_sid_mask));
3754 	}
3755 	return ps;
3756 }
3757 
3758 static int cma_get_port(struct rdma_id_private *id_priv)
3759 {
3760 	enum rdma_ucm_port_space ps;
3761 	int ret;
3762 
3763 	if (cma_family(id_priv) != AF_IB)
3764 		ps = cma_select_inet_ps(id_priv);
3765 	else
3766 		ps = cma_select_ib_ps(id_priv);
3767 	if (!ps)
3768 		return -EPROTONOSUPPORT;
3769 
3770 	mutex_lock(&lock);
3771 	if (cma_any_port(cma_src_addr(id_priv)))
3772 		ret = cma_alloc_any_port(ps, id_priv);
3773 	else
3774 		ret = cma_use_port(ps, id_priv);
3775 	mutex_unlock(&lock);
3776 
3777 	return ret;
3778 }
3779 
3780 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3781 			       struct sockaddr *addr)
3782 {
3783 #if IS_ENABLED(CONFIG_IPV6)
3784 	struct sockaddr_in6 *sin6;
3785 
3786 	if (addr->sa_family != AF_INET6)
3787 		return 0;
3788 
3789 	sin6 = (struct sockaddr_in6 *) addr;
3790 
3791 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3792 		return 0;
3793 
3794 	if (!sin6->sin6_scope_id)
3795 			return -EINVAL;
3796 
3797 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3798 #endif
3799 	return 0;
3800 }
3801 
3802 int rdma_listen(struct rdma_cm_id *id, int backlog)
3803 {
3804 	struct rdma_id_private *id_priv =
3805 		container_of(id, struct rdma_id_private, id);
3806 	int ret;
3807 
3808 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3809 		struct sockaddr_in any_in = {
3810 			.sin_family = AF_INET,
3811 			.sin_addr.s_addr = htonl(INADDR_ANY),
3812 		};
3813 
3814 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3815 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3816 		if (ret)
3817 			return ret;
3818 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3819 					   RDMA_CM_LISTEN)))
3820 			return -EINVAL;
3821 	}
3822 
3823 	/*
3824 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3825 	 * any more, and has to be unique in the bind list.
3826 	 */
3827 	if (id_priv->reuseaddr) {
3828 		mutex_lock(&lock);
3829 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3830 		if (!ret)
3831 			id_priv->reuseaddr = 0;
3832 		mutex_unlock(&lock);
3833 		if (ret)
3834 			goto err;
3835 	}
3836 
3837 	id_priv->backlog = backlog;
3838 	if (id_priv->cma_dev) {
3839 		if (rdma_cap_ib_cm(id->device, 1)) {
3840 			ret = cma_ib_listen(id_priv);
3841 			if (ret)
3842 				goto err;
3843 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3844 			ret = cma_iw_listen(id_priv, backlog);
3845 			if (ret)
3846 				goto err;
3847 		} else {
3848 			ret = -ENOSYS;
3849 			goto err;
3850 		}
3851 	} else {
3852 		ret = cma_listen_on_all(id_priv);
3853 		if (ret)
3854 			goto err;
3855 	}
3856 
3857 	return 0;
3858 err:
3859 	id_priv->backlog = 0;
3860 	/*
3861 	 * All the failure paths that lead here will not allow the req_handler's
3862 	 * to have run.
3863 	 */
3864 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3865 	return ret;
3866 }
3867 EXPORT_SYMBOL(rdma_listen);
3868 
3869 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
3870 {
3871 	struct rdma_id_private *id_priv;
3872 	int ret;
3873 	struct sockaddr  *daddr;
3874 
3875 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3876 	    addr->sa_family != AF_IB)
3877 		return -EAFNOSUPPORT;
3878 
3879 	id_priv = container_of(id, struct rdma_id_private, id);
3880 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3881 		return -EINVAL;
3882 
3883 	ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
3884 	if (ret)
3885 		goto err1;
3886 
3887 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3888 	if (!cma_any_addr(addr)) {
3889 		ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
3890 		if (ret)
3891 			goto err1;
3892 
3893 		ret = cma_acquire_dev_by_src_ip(id_priv);
3894 		if (ret)
3895 			goto err1;
3896 	}
3897 
3898 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3899 		if (addr->sa_family == AF_INET)
3900 			id_priv->afonly = 1;
3901 #if IS_ENABLED(CONFIG_IPV6)
3902 		else if (addr->sa_family == AF_INET6) {
3903 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3904 
3905 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3906 		}
3907 #endif
3908 	}
3909 	daddr = cma_dst_addr(id_priv);
3910 	daddr->sa_family = addr->sa_family;
3911 
3912 	ret = cma_get_port(id_priv);
3913 	if (ret)
3914 		goto err2;
3915 
3916 	if (!cma_any_addr(addr))
3917 		rdma_restrack_add(&id_priv->res);
3918 	return 0;
3919 err2:
3920 	if (id_priv->cma_dev)
3921 		cma_release_dev(id_priv);
3922 err1:
3923 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
3924 	return ret;
3925 }
3926 EXPORT_SYMBOL(rdma_bind_addr);
3927 
3928 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
3929 {
3930 	struct cma_hdr *cma_hdr;
3931 
3932 	cma_hdr = hdr;
3933 	cma_hdr->cma_version = CMA_VERSION;
3934 	if (cma_family(id_priv) == AF_INET) {
3935 		struct sockaddr_in *src4, *dst4;
3936 
3937 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
3938 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
3939 
3940 		cma_set_ip_ver(cma_hdr, 4);
3941 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
3942 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
3943 		cma_hdr->port = src4->sin_port;
3944 	} else if (cma_family(id_priv) == AF_INET6) {
3945 		struct sockaddr_in6 *src6, *dst6;
3946 
3947 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
3948 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
3949 
3950 		cma_set_ip_ver(cma_hdr, 6);
3951 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
3952 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
3953 		cma_hdr->port = src6->sin6_port;
3954 	}
3955 	return 0;
3956 }
3957 
3958 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
3959 				const struct ib_cm_event *ib_event)
3960 {
3961 	struct rdma_id_private *id_priv = cm_id->context;
3962 	struct rdma_cm_event event = {};
3963 	const struct ib_cm_sidr_rep_event_param *rep =
3964 				&ib_event->param.sidr_rep_rcvd;
3965 	int ret;
3966 
3967 	mutex_lock(&id_priv->handler_mutex);
3968 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
3969 		goto out;
3970 
3971 	switch (ib_event->event) {
3972 	case IB_CM_SIDR_REQ_ERROR:
3973 		event.event = RDMA_CM_EVENT_UNREACHABLE;
3974 		event.status = -ETIMEDOUT;
3975 		break;
3976 	case IB_CM_SIDR_REP_RECEIVED:
3977 		event.param.ud.private_data = ib_event->private_data;
3978 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
3979 		if (rep->status != IB_SIDR_SUCCESS) {
3980 			event.event = RDMA_CM_EVENT_UNREACHABLE;
3981 			event.status = ib_event->param.sidr_rep_rcvd.status;
3982 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
3983 					     event.status);
3984 			break;
3985 		}
3986 		ret = cma_set_qkey(id_priv, rep->qkey);
3987 		if (ret) {
3988 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
3989 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
3990 			event.status = ret;
3991 			break;
3992 		}
3993 		ib_init_ah_attr_from_path(id_priv->id.device,
3994 					  id_priv->id.port_num,
3995 					  id_priv->id.route.path_rec,
3996 					  &event.param.ud.ah_attr,
3997 					  rep->sgid_attr);
3998 		event.param.ud.qp_num = rep->qpn;
3999 		event.param.ud.qkey = rep->qkey;
4000 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4001 		event.status = 0;
4002 		break;
4003 	default:
4004 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4005 		       ib_event->event);
4006 		goto out;
4007 	}
4008 
4009 	ret = cma_cm_event_handler(id_priv, &event);
4010 
4011 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4012 	if (ret) {
4013 		/* Destroy the CM ID by returning a non-zero value. */
4014 		id_priv->cm_id.ib = NULL;
4015 		destroy_id_handler_unlock(id_priv);
4016 		return ret;
4017 	}
4018 out:
4019 	mutex_unlock(&id_priv->handler_mutex);
4020 	return 0;
4021 }
4022 
4023 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4024 			      struct rdma_conn_param *conn_param)
4025 {
4026 	struct ib_cm_sidr_req_param req;
4027 	struct ib_cm_id	*id;
4028 	void *private_data;
4029 	u8 offset;
4030 	int ret;
4031 
4032 	memset(&req, 0, sizeof req);
4033 	offset = cma_user_data_offset(id_priv);
4034 	req.private_data_len = offset + conn_param->private_data_len;
4035 	if (req.private_data_len < conn_param->private_data_len)
4036 		return -EINVAL;
4037 
4038 	if (req.private_data_len) {
4039 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4040 		if (!private_data)
4041 			return -ENOMEM;
4042 	} else {
4043 		private_data = NULL;
4044 	}
4045 
4046 	if (conn_param->private_data && conn_param->private_data_len)
4047 		memcpy(private_data + offset, conn_param->private_data,
4048 		       conn_param->private_data_len);
4049 
4050 	if (private_data) {
4051 		ret = cma_format_hdr(private_data, id_priv);
4052 		if (ret)
4053 			goto out;
4054 		req.private_data = private_data;
4055 	}
4056 
4057 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4058 			     id_priv);
4059 	if (IS_ERR(id)) {
4060 		ret = PTR_ERR(id);
4061 		goto out;
4062 	}
4063 	id_priv->cm_id.ib = id;
4064 
4065 	req.path = id_priv->id.route.path_rec;
4066 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4067 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4068 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4069 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4070 
4071 	trace_cm_send_sidr_req(id_priv);
4072 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4073 	if (ret) {
4074 		ib_destroy_cm_id(id_priv->cm_id.ib);
4075 		id_priv->cm_id.ib = NULL;
4076 	}
4077 out:
4078 	kfree(private_data);
4079 	return ret;
4080 }
4081 
4082 static int cma_connect_ib(struct rdma_id_private *id_priv,
4083 			  struct rdma_conn_param *conn_param)
4084 {
4085 	struct ib_cm_req_param req;
4086 	struct rdma_route *route;
4087 	void *private_data;
4088 	struct ib_cm_id	*id;
4089 	u8 offset;
4090 	int ret;
4091 
4092 	memset(&req, 0, sizeof req);
4093 	offset = cma_user_data_offset(id_priv);
4094 	req.private_data_len = offset + conn_param->private_data_len;
4095 	if (req.private_data_len < conn_param->private_data_len)
4096 		return -EINVAL;
4097 
4098 	if (req.private_data_len) {
4099 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4100 		if (!private_data)
4101 			return -ENOMEM;
4102 	} else {
4103 		private_data = NULL;
4104 	}
4105 
4106 	if (conn_param->private_data && conn_param->private_data_len)
4107 		memcpy(private_data + offset, conn_param->private_data,
4108 		       conn_param->private_data_len);
4109 
4110 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4111 	if (IS_ERR(id)) {
4112 		ret = PTR_ERR(id);
4113 		goto out;
4114 	}
4115 	id_priv->cm_id.ib = id;
4116 
4117 	route = &id_priv->id.route;
4118 	if (private_data) {
4119 		ret = cma_format_hdr(private_data, id_priv);
4120 		if (ret)
4121 			goto out;
4122 		req.private_data = private_data;
4123 	}
4124 
4125 	req.primary_path = &route->path_rec[0];
4126 	if (route->num_paths == 2)
4127 		req.alternate_path = &route->path_rec[1];
4128 
4129 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4130 	/* Alternate path SGID attribute currently unsupported */
4131 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4132 	req.qp_num = id_priv->qp_num;
4133 	req.qp_type = id_priv->id.qp_type;
4134 	req.starting_psn = id_priv->seq_num;
4135 	req.responder_resources = conn_param->responder_resources;
4136 	req.initiator_depth = conn_param->initiator_depth;
4137 	req.flow_control = conn_param->flow_control;
4138 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4139 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4140 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4141 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4142 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4143 	req.srq = id_priv->srq ? 1 : 0;
4144 	req.ece.vendor_id = id_priv->ece.vendor_id;
4145 	req.ece.attr_mod = id_priv->ece.attr_mod;
4146 
4147 	trace_cm_send_req(id_priv);
4148 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4149 out:
4150 	if (ret && !IS_ERR(id)) {
4151 		ib_destroy_cm_id(id);
4152 		id_priv->cm_id.ib = NULL;
4153 	}
4154 
4155 	kfree(private_data);
4156 	return ret;
4157 }
4158 
4159 static int cma_connect_iw(struct rdma_id_private *id_priv,
4160 			  struct rdma_conn_param *conn_param)
4161 {
4162 	struct iw_cm_id *cm_id;
4163 	int ret;
4164 	struct iw_cm_conn_param iw_param;
4165 
4166 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4167 	if (IS_ERR(cm_id))
4168 		return PTR_ERR(cm_id);
4169 
4170 	mutex_lock(&id_priv->qp_mutex);
4171 	cm_id->tos = id_priv->tos;
4172 	cm_id->tos_set = id_priv->tos_set;
4173 	mutex_unlock(&id_priv->qp_mutex);
4174 
4175 	id_priv->cm_id.iw = cm_id;
4176 
4177 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4178 	       rdma_addr_size(cma_src_addr(id_priv)));
4179 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4180 	       rdma_addr_size(cma_dst_addr(id_priv)));
4181 
4182 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4183 	if (ret)
4184 		goto out;
4185 
4186 	if (conn_param) {
4187 		iw_param.ord = conn_param->initiator_depth;
4188 		iw_param.ird = conn_param->responder_resources;
4189 		iw_param.private_data = conn_param->private_data;
4190 		iw_param.private_data_len = conn_param->private_data_len;
4191 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4192 	} else {
4193 		memset(&iw_param, 0, sizeof iw_param);
4194 		iw_param.qpn = id_priv->qp_num;
4195 	}
4196 	ret = iw_cm_connect(cm_id, &iw_param);
4197 out:
4198 	if (ret) {
4199 		iw_destroy_cm_id(cm_id);
4200 		id_priv->cm_id.iw = NULL;
4201 	}
4202 	return ret;
4203 }
4204 
4205 /**
4206  * rdma_connect_locked - Initiate an active connection request.
4207  * @id: Connection identifier to connect.
4208  * @conn_param: Connection information used for connected QPs.
4209  *
4210  * Same as rdma_connect() but can only be called from the
4211  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4212  */
4213 int rdma_connect_locked(struct rdma_cm_id *id,
4214 			struct rdma_conn_param *conn_param)
4215 {
4216 	struct rdma_id_private *id_priv =
4217 		container_of(id, struct rdma_id_private, id);
4218 	int ret;
4219 
4220 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4221 		return -EINVAL;
4222 
4223 	if (!id->qp) {
4224 		id_priv->qp_num = conn_param->qp_num;
4225 		id_priv->srq = conn_param->srq;
4226 	}
4227 
4228 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4229 		if (id->qp_type == IB_QPT_UD)
4230 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4231 		else
4232 			ret = cma_connect_ib(id_priv, conn_param);
4233 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4234 		ret = cma_connect_iw(id_priv, conn_param);
4235 	} else {
4236 		ret = -ENOSYS;
4237 	}
4238 	if (ret)
4239 		goto err_state;
4240 	return 0;
4241 err_state:
4242 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4243 	return ret;
4244 }
4245 EXPORT_SYMBOL(rdma_connect_locked);
4246 
4247 /**
4248  * rdma_connect - Initiate an active connection request.
4249  * @id: Connection identifier to connect.
4250  * @conn_param: Connection information used for connected QPs.
4251  *
4252  * Users must have resolved a route for the rdma_cm_id to connect with by having
4253  * called rdma_resolve_route before calling this routine.
4254  *
4255  * This call will either connect to a remote QP or obtain remote QP information
4256  * for unconnected rdma_cm_id's.  The actual operation is based on the
4257  * rdma_cm_id's port space.
4258  */
4259 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4260 {
4261 	struct rdma_id_private *id_priv =
4262 		container_of(id, struct rdma_id_private, id);
4263 	int ret;
4264 
4265 	mutex_lock(&id_priv->handler_mutex);
4266 	ret = rdma_connect_locked(id, conn_param);
4267 	mutex_unlock(&id_priv->handler_mutex);
4268 	return ret;
4269 }
4270 EXPORT_SYMBOL(rdma_connect);
4271 
4272 /**
4273  * rdma_connect_ece - Initiate an active connection request with ECE data.
4274  * @id: Connection identifier to connect.
4275  * @conn_param: Connection information used for connected QPs.
4276  * @ece: ECE parameters
4277  *
4278  * See rdma_connect() explanation.
4279  */
4280 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4281 		     struct rdma_ucm_ece *ece)
4282 {
4283 	struct rdma_id_private *id_priv =
4284 		container_of(id, struct rdma_id_private, id);
4285 
4286 	id_priv->ece.vendor_id = ece->vendor_id;
4287 	id_priv->ece.attr_mod = ece->attr_mod;
4288 
4289 	return rdma_connect(id, conn_param);
4290 }
4291 EXPORT_SYMBOL(rdma_connect_ece);
4292 
4293 static int cma_accept_ib(struct rdma_id_private *id_priv,
4294 			 struct rdma_conn_param *conn_param)
4295 {
4296 	struct ib_cm_rep_param rep;
4297 	int ret;
4298 
4299 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4300 	if (ret)
4301 		goto out;
4302 
4303 	ret = cma_modify_qp_rts(id_priv, conn_param);
4304 	if (ret)
4305 		goto out;
4306 
4307 	memset(&rep, 0, sizeof rep);
4308 	rep.qp_num = id_priv->qp_num;
4309 	rep.starting_psn = id_priv->seq_num;
4310 	rep.private_data = conn_param->private_data;
4311 	rep.private_data_len = conn_param->private_data_len;
4312 	rep.responder_resources = conn_param->responder_resources;
4313 	rep.initiator_depth = conn_param->initiator_depth;
4314 	rep.failover_accepted = 0;
4315 	rep.flow_control = conn_param->flow_control;
4316 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4317 	rep.srq = id_priv->srq ? 1 : 0;
4318 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4319 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4320 
4321 	trace_cm_send_rep(id_priv);
4322 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4323 out:
4324 	return ret;
4325 }
4326 
4327 static int cma_accept_iw(struct rdma_id_private *id_priv,
4328 		  struct rdma_conn_param *conn_param)
4329 {
4330 	struct iw_cm_conn_param iw_param;
4331 	int ret;
4332 
4333 	if (!conn_param)
4334 		return -EINVAL;
4335 
4336 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4337 	if (ret)
4338 		return ret;
4339 
4340 	iw_param.ord = conn_param->initiator_depth;
4341 	iw_param.ird = conn_param->responder_resources;
4342 	iw_param.private_data = conn_param->private_data;
4343 	iw_param.private_data_len = conn_param->private_data_len;
4344 	if (id_priv->id.qp)
4345 		iw_param.qpn = id_priv->qp_num;
4346 	else
4347 		iw_param.qpn = conn_param->qp_num;
4348 
4349 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4350 }
4351 
4352 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4353 			     enum ib_cm_sidr_status status, u32 qkey,
4354 			     const void *private_data, int private_data_len)
4355 {
4356 	struct ib_cm_sidr_rep_param rep;
4357 	int ret;
4358 
4359 	memset(&rep, 0, sizeof rep);
4360 	rep.status = status;
4361 	if (status == IB_SIDR_SUCCESS) {
4362 		ret = cma_set_qkey(id_priv, qkey);
4363 		if (ret)
4364 			return ret;
4365 		rep.qp_num = id_priv->qp_num;
4366 		rep.qkey = id_priv->qkey;
4367 
4368 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4369 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4370 	}
4371 
4372 	rep.private_data = private_data;
4373 	rep.private_data_len = private_data_len;
4374 
4375 	trace_cm_send_sidr_rep(id_priv);
4376 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4377 }
4378 
4379 /**
4380  * rdma_accept - Called to accept a connection request or response.
4381  * @id: Connection identifier associated with the request.
4382  * @conn_param: Information needed to establish the connection.  This must be
4383  *   provided if accepting a connection request.  If accepting a connection
4384  *   response, this parameter must be NULL.
4385  *
4386  * Typically, this routine is only called by the listener to accept a connection
4387  * request.  It must also be called on the active side of a connection if the
4388  * user is performing their own QP transitions.
4389  *
4390  * In the case of error, a reject message is sent to the remote side and the
4391  * state of the qp associated with the id is modified to error, such that any
4392  * previously posted receive buffers would be flushed.
4393  *
4394  * This function is for use by kernel ULPs and must be called from under the
4395  * handler callback.
4396  */
4397 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4398 {
4399 	struct rdma_id_private *id_priv =
4400 		container_of(id, struct rdma_id_private, id);
4401 	int ret;
4402 
4403 	lockdep_assert_held(&id_priv->handler_mutex);
4404 
4405 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4406 		return -EINVAL;
4407 
4408 	if (!id->qp && conn_param) {
4409 		id_priv->qp_num = conn_param->qp_num;
4410 		id_priv->srq = conn_param->srq;
4411 	}
4412 
4413 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4414 		if (id->qp_type == IB_QPT_UD) {
4415 			if (conn_param)
4416 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4417 							conn_param->qkey,
4418 							conn_param->private_data,
4419 							conn_param->private_data_len);
4420 			else
4421 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4422 							0, NULL, 0);
4423 		} else {
4424 			if (conn_param)
4425 				ret = cma_accept_ib(id_priv, conn_param);
4426 			else
4427 				ret = cma_rep_recv(id_priv);
4428 		}
4429 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4430 		ret = cma_accept_iw(id_priv, conn_param);
4431 	} else {
4432 		ret = -ENOSYS;
4433 	}
4434 	if (ret)
4435 		goto reject;
4436 
4437 	return 0;
4438 reject:
4439 	cma_modify_qp_err(id_priv);
4440 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4441 	return ret;
4442 }
4443 EXPORT_SYMBOL(rdma_accept);
4444 
4445 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4446 		    struct rdma_ucm_ece *ece)
4447 {
4448 	struct rdma_id_private *id_priv =
4449 		container_of(id, struct rdma_id_private, id);
4450 
4451 	id_priv->ece.vendor_id = ece->vendor_id;
4452 	id_priv->ece.attr_mod = ece->attr_mod;
4453 
4454 	return rdma_accept(id, conn_param);
4455 }
4456 EXPORT_SYMBOL(rdma_accept_ece);
4457 
4458 void rdma_lock_handler(struct rdma_cm_id *id)
4459 {
4460 	struct rdma_id_private *id_priv =
4461 		container_of(id, struct rdma_id_private, id);
4462 
4463 	mutex_lock(&id_priv->handler_mutex);
4464 }
4465 EXPORT_SYMBOL(rdma_lock_handler);
4466 
4467 void rdma_unlock_handler(struct rdma_cm_id *id)
4468 {
4469 	struct rdma_id_private *id_priv =
4470 		container_of(id, struct rdma_id_private, id);
4471 
4472 	mutex_unlock(&id_priv->handler_mutex);
4473 }
4474 EXPORT_SYMBOL(rdma_unlock_handler);
4475 
4476 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4477 {
4478 	struct rdma_id_private *id_priv;
4479 	int ret;
4480 
4481 	id_priv = container_of(id, struct rdma_id_private, id);
4482 	if (!id_priv->cm_id.ib)
4483 		return -EINVAL;
4484 
4485 	switch (id->device->node_type) {
4486 	case RDMA_NODE_IB_CA:
4487 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4488 		break;
4489 	default:
4490 		ret = 0;
4491 		break;
4492 	}
4493 	return ret;
4494 }
4495 EXPORT_SYMBOL(rdma_notify);
4496 
4497 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4498 		u8 private_data_len, u8 reason)
4499 {
4500 	struct rdma_id_private *id_priv;
4501 	int ret;
4502 
4503 	id_priv = container_of(id, struct rdma_id_private, id);
4504 	if (!id_priv->cm_id.ib)
4505 		return -EINVAL;
4506 
4507 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4508 		if (id->qp_type == IB_QPT_UD) {
4509 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4510 						private_data, private_data_len);
4511 		} else {
4512 			trace_cm_send_rej(id_priv);
4513 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4514 					     private_data, private_data_len);
4515 		}
4516 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4517 		ret = iw_cm_reject(id_priv->cm_id.iw,
4518 				   private_data, private_data_len);
4519 	} else {
4520 		ret = -ENOSYS;
4521 	}
4522 
4523 	return ret;
4524 }
4525 EXPORT_SYMBOL(rdma_reject);
4526 
4527 int rdma_disconnect(struct rdma_cm_id *id)
4528 {
4529 	struct rdma_id_private *id_priv;
4530 	int ret;
4531 
4532 	id_priv = container_of(id, struct rdma_id_private, id);
4533 	if (!id_priv->cm_id.ib)
4534 		return -EINVAL;
4535 
4536 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4537 		ret = cma_modify_qp_err(id_priv);
4538 		if (ret)
4539 			goto out;
4540 		/* Initiate or respond to a disconnect. */
4541 		trace_cm_disconnect(id_priv);
4542 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4543 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4544 				trace_cm_sent_drep(id_priv);
4545 		} else {
4546 			trace_cm_sent_dreq(id_priv);
4547 		}
4548 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4549 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4550 	} else
4551 		ret = -EINVAL;
4552 
4553 out:
4554 	return ret;
4555 }
4556 EXPORT_SYMBOL(rdma_disconnect);
4557 
4558 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4559 			      struct ib_sa_multicast *multicast,
4560 			      struct rdma_cm_event *event,
4561 			      struct cma_multicast *mc)
4562 {
4563 	struct rdma_dev_addr *dev_addr;
4564 	enum ib_gid_type gid_type;
4565 	struct net_device *ndev;
4566 
4567 	if (!status)
4568 		status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4569 	else
4570 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4571 				     status);
4572 
4573 	event->status = status;
4574 	event->param.ud.private_data = mc->context;
4575 	if (status) {
4576 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4577 		return;
4578 	}
4579 
4580 	dev_addr = &id_priv->id.route.addr.dev_addr;
4581 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4582 	gid_type =
4583 		id_priv->cma_dev
4584 			->default_gid_type[id_priv->id.port_num -
4585 					   rdma_start_port(
4586 						   id_priv->cma_dev->device)];
4587 
4588 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4589 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4590 				     &multicast->rec, ndev, gid_type,
4591 				     &event->param.ud.ah_attr)) {
4592 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4593 		goto out;
4594 	}
4595 
4596 	event->param.ud.qp_num = 0xFFFFFF;
4597 	event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4598 
4599 out:
4600 	if (ndev)
4601 		dev_put(ndev);
4602 }
4603 
4604 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4605 {
4606 	struct cma_multicast *mc = multicast->context;
4607 	struct rdma_id_private *id_priv = mc->id_priv;
4608 	struct rdma_cm_event event = {};
4609 	int ret = 0;
4610 
4611 	mutex_lock(&id_priv->handler_mutex);
4612 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4613 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4614 		goto out;
4615 
4616 	cma_make_mc_event(status, id_priv, multicast, &event, mc);
4617 	ret = cma_cm_event_handler(id_priv, &event);
4618 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4619 	WARN_ON(ret);
4620 
4621 out:
4622 	mutex_unlock(&id_priv->handler_mutex);
4623 	return 0;
4624 }
4625 
4626 static void cma_set_mgid(struct rdma_id_private *id_priv,
4627 			 struct sockaddr *addr, union ib_gid *mgid)
4628 {
4629 	unsigned char mc_map[MAX_ADDR_LEN];
4630 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4631 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4632 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4633 
4634 	if (cma_any_addr(addr)) {
4635 		memset(mgid, 0, sizeof *mgid);
4636 	} else if ((addr->sa_family == AF_INET6) &&
4637 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4638 								 0xFF10A01B)) {
4639 		/* IPv6 address is an SA assigned MGID. */
4640 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4641 	} else if (addr->sa_family == AF_IB) {
4642 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4643 	} else if (addr->sa_family == AF_INET6) {
4644 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4645 		if (id_priv->id.ps == RDMA_PS_UDP)
4646 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4647 		*mgid = *(union ib_gid *) (mc_map + 4);
4648 	} else {
4649 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4650 		if (id_priv->id.ps == RDMA_PS_UDP)
4651 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4652 		*mgid = *(union ib_gid *) (mc_map + 4);
4653 	}
4654 }
4655 
4656 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4657 				 struct cma_multicast *mc)
4658 {
4659 	struct ib_sa_mcmember_rec rec;
4660 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4661 	ib_sa_comp_mask comp_mask;
4662 	int ret;
4663 
4664 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4665 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4666 				     &rec.mgid, &rec);
4667 	if (ret)
4668 		return ret;
4669 
4670 	ret = cma_set_qkey(id_priv, 0);
4671 	if (ret)
4672 		return ret;
4673 
4674 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4675 	rec.qkey = cpu_to_be32(id_priv->qkey);
4676 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4677 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4678 	rec.join_state = mc->join_state;
4679 
4680 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4681 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4682 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4683 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4684 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4685 
4686 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4687 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4688 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4689 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4690 			     IB_SA_MCMEMBER_REC_MTU |
4691 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4692 
4693 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4694 					 id_priv->id.port_num, &rec, comp_mask,
4695 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4696 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4697 }
4698 
4699 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4700 			      enum ib_gid_type gid_type)
4701 {
4702 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4703 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4704 
4705 	if (cma_any_addr(addr)) {
4706 		memset(mgid, 0, sizeof *mgid);
4707 	} else if (addr->sa_family == AF_INET6) {
4708 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4709 	} else {
4710 		mgid->raw[0] =
4711 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4712 		mgid->raw[1] =
4713 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4714 		mgid->raw[2] = 0;
4715 		mgid->raw[3] = 0;
4716 		mgid->raw[4] = 0;
4717 		mgid->raw[5] = 0;
4718 		mgid->raw[6] = 0;
4719 		mgid->raw[7] = 0;
4720 		mgid->raw[8] = 0;
4721 		mgid->raw[9] = 0;
4722 		mgid->raw[10] = 0xff;
4723 		mgid->raw[11] = 0xff;
4724 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4725 	}
4726 }
4727 
4728 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4729 				   struct cma_multicast *mc)
4730 {
4731 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4732 	int err = 0;
4733 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4734 	struct net_device *ndev = NULL;
4735 	struct ib_sa_multicast ib;
4736 	enum ib_gid_type gid_type;
4737 	bool send_only;
4738 
4739 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4740 
4741 	if (cma_zero_addr(addr))
4742 		return -EINVAL;
4743 
4744 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4745 		   rdma_start_port(id_priv->cma_dev->device)];
4746 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4747 
4748 	ib.rec.pkey = cpu_to_be16(0xffff);
4749 	if (id_priv->id.ps == RDMA_PS_UDP)
4750 		ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4751 
4752 	if (dev_addr->bound_dev_if)
4753 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4754 	if (!ndev)
4755 		return -ENODEV;
4756 
4757 	ib.rec.rate = iboe_get_rate(ndev);
4758 	ib.rec.hop_limit = 1;
4759 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4760 
4761 	if (addr->sa_family == AF_INET) {
4762 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4763 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4764 			if (!send_only) {
4765 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4766 						    true);
4767 			}
4768 		}
4769 	} else {
4770 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4771 			err = -ENOTSUPP;
4772 	}
4773 	dev_put(ndev);
4774 	if (err || !ib.rec.mtu)
4775 		return err ?: -EINVAL;
4776 
4777 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4778 		    &ib.rec.port_gid);
4779 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4780 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4781 	queue_work(cma_wq, &mc->iboe_join.work);
4782 	return 0;
4783 }
4784 
4785 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4786 			u8 join_state, void *context)
4787 {
4788 	struct rdma_id_private *id_priv =
4789 		container_of(id, struct rdma_id_private, id);
4790 	struct cma_multicast *mc;
4791 	int ret;
4792 
4793 	/* Not supported for kernel QPs */
4794 	if (WARN_ON(id->qp))
4795 		return -EINVAL;
4796 
4797 	/* ULP is calling this wrong. */
4798 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4799 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4800 		return -EINVAL;
4801 
4802 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4803 	if (!mc)
4804 		return -ENOMEM;
4805 
4806 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
4807 	mc->context = context;
4808 	mc->id_priv = id_priv;
4809 	mc->join_state = join_state;
4810 
4811 	if (rdma_protocol_roce(id->device, id->port_num)) {
4812 		ret = cma_iboe_join_multicast(id_priv, mc);
4813 		if (ret)
4814 			goto out_err;
4815 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4816 		ret = cma_join_ib_multicast(id_priv, mc);
4817 		if (ret)
4818 			goto out_err;
4819 	} else {
4820 		ret = -ENOSYS;
4821 		goto out_err;
4822 	}
4823 
4824 	spin_lock(&id_priv->lock);
4825 	list_add(&mc->list, &id_priv->mc_list);
4826 	spin_unlock(&id_priv->lock);
4827 
4828 	return 0;
4829 out_err:
4830 	kfree(mc);
4831 	return ret;
4832 }
4833 EXPORT_SYMBOL(rdma_join_multicast);
4834 
4835 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4836 {
4837 	struct rdma_id_private *id_priv;
4838 	struct cma_multicast *mc;
4839 
4840 	id_priv = container_of(id, struct rdma_id_private, id);
4841 	spin_lock_irq(&id_priv->lock);
4842 	list_for_each_entry(mc, &id_priv->mc_list, list) {
4843 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4844 			continue;
4845 		list_del(&mc->list);
4846 		spin_unlock_irq(&id_priv->lock);
4847 
4848 		WARN_ON(id_priv->cma_dev->device != id->device);
4849 		destroy_mc(id_priv, mc);
4850 		return;
4851 	}
4852 	spin_unlock_irq(&id_priv->lock);
4853 }
4854 EXPORT_SYMBOL(rdma_leave_multicast);
4855 
4856 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4857 {
4858 	struct rdma_dev_addr *dev_addr;
4859 	struct cma_work *work;
4860 
4861 	dev_addr = &id_priv->id.route.addr.dev_addr;
4862 
4863 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
4864 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
4865 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
4866 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
4867 			ndev->name, &id_priv->id);
4868 		work = kzalloc(sizeof *work, GFP_KERNEL);
4869 		if (!work)
4870 			return -ENOMEM;
4871 
4872 		INIT_WORK(&work->work, cma_work_handler);
4873 		work->id = id_priv;
4874 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
4875 		cma_id_get(id_priv);
4876 		queue_work(cma_wq, &work->work);
4877 	}
4878 
4879 	return 0;
4880 }
4881 
4882 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
4883 			       void *ptr)
4884 {
4885 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
4886 	struct cma_device *cma_dev;
4887 	struct rdma_id_private *id_priv;
4888 	int ret = NOTIFY_DONE;
4889 
4890 	if (event != NETDEV_BONDING_FAILOVER)
4891 		return NOTIFY_DONE;
4892 
4893 	if (!netif_is_bond_master(ndev))
4894 		return NOTIFY_DONE;
4895 
4896 	mutex_lock(&lock);
4897 	list_for_each_entry(cma_dev, &dev_list, list)
4898 		list_for_each_entry(id_priv, &cma_dev->id_list, list) {
4899 			ret = cma_netdev_change(ndev, id_priv);
4900 			if (ret)
4901 				goto out;
4902 		}
4903 
4904 out:
4905 	mutex_unlock(&lock);
4906 	return ret;
4907 }
4908 
4909 static struct notifier_block cma_nb = {
4910 	.notifier_call = cma_netdev_callback
4911 };
4912 
4913 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
4914 {
4915 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
4916 	enum rdma_cm_state state;
4917 	unsigned long flags;
4918 
4919 	mutex_lock(&id_priv->handler_mutex);
4920 	/* Record that we want to remove the device */
4921 	spin_lock_irqsave(&id_priv->lock, flags);
4922 	state = id_priv->state;
4923 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
4924 		spin_unlock_irqrestore(&id_priv->lock, flags);
4925 		mutex_unlock(&id_priv->handler_mutex);
4926 		cma_id_put(id_priv);
4927 		return;
4928 	}
4929 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
4930 	spin_unlock_irqrestore(&id_priv->lock, flags);
4931 
4932 	if (cma_cm_event_handler(id_priv, &event)) {
4933 		/*
4934 		 * At this point the ULP promises it won't call
4935 		 * rdma_destroy_id() concurrently
4936 		 */
4937 		cma_id_put(id_priv);
4938 		mutex_unlock(&id_priv->handler_mutex);
4939 		trace_cm_id_destroy(id_priv);
4940 		_destroy_id(id_priv, state);
4941 		return;
4942 	}
4943 	mutex_unlock(&id_priv->handler_mutex);
4944 
4945 	/*
4946 	 * If this races with destroy then the thread that first assigns state
4947 	 * to a destroying does the cancel.
4948 	 */
4949 	cma_cancel_operation(id_priv, state);
4950 	cma_id_put(id_priv);
4951 }
4952 
4953 static void cma_process_remove(struct cma_device *cma_dev)
4954 {
4955 	mutex_lock(&lock);
4956 	while (!list_empty(&cma_dev->id_list)) {
4957 		struct rdma_id_private *id_priv = list_first_entry(
4958 			&cma_dev->id_list, struct rdma_id_private, list);
4959 
4960 		list_del(&id_priv->listen_list);
4961 		list_del_init(&id_priv->list);
4962 		cma_id_get(id_priv);
4963 		mutex_unlock(&lock);
4964 
4965 		cma_send_device_removal_put(id_priv);
4966 
4967 		mutex_lock(&lock);
4968 	}
4969 	mutex_unlock(&lock);
4970 
4971 	cma_dev_put(cma_dev);
4972 	wait_for_completion(&cma_dev->comp);
4973 }
4974 
4975 static bool cma_supported(struct ib_device *device)
4976 {
4977 	u32 i;
4978 
4979 	rdma_for_each_port(device, i) {
4980 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
4981 			return true;
4982 	}
4983 	return false;
4984 }
4985 
4986 static int cma_add_one(struct ib_device *device)
4987 {
4988 	struct rdma_id_private *to_destroy;
4989 	struct cma_device *cma_dev;
4990 	struct rdma_id_private *id_priv;
4991 	unsigned long supported_gids = 0;
4992 	int ret;
4993 	u32 i;
4994 
4995 	if (!cma_supported(device))
4996 		return -EOPNOTSUPP;
4997 
4998 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
4999 	if (!cma_dev)
5000 		return -ENOMEM;
5001 
5002 	cma_dev->device = device;
5003 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5004 					    sizeof(*cma_dev->default_gid_type),
5005 					    GFP_KERNEL);
5006 	if (!cma_dev->default_gid_type) {
5007 		ret = -ENOMEM;
5008 		goto free_cma_dev;
5009 	}
5010 
5011 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5012 					    sizeof(*cma_dev->default_roce_tos),
5013 					    GFP_KERNEL);
5014 	if (!cma_dev->default_roce_tos) {
5015 		ret = -ENOMEM;
5016 		goto free_gid_type;
5017 	}
5018 
5019 	rdma_for_each_port (device, i) {
5020 		supported_gids = roce_gid_type_mask_support(device, i);
5021 		WARN_ON(!supported_gids);
5022 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5023 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5024 				CMA_PREFERRED_ROCE_GID_TYPE;
5025 		else
5026 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5027 				find_first_bit(&supported_gids, BITS_PER_LONG);
5028 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5029 	}
5030 
5031 	init_completion(&cma_dev->comp);
5032 	refcount_set(&cma_dev->refcount, 1);
5033 	INIT_LIST_HEAD(&cma_dev->id_list);
5034 	ib_set_client_data(device, &cma_client, cma_dev);
5035 
5036 	mutex_lock(&lock);
5037 	list_add_tail(&cma_dev->list, &dev_list);
5038 	list_for_each_entry(id_priv, &listen_any_list, list) {
5039 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5040 		if (ret)
5041 			goto free_listen;
5042 	}
5043 	mutex_unlock(&lock);
5044 
5045 	trace_cm_add_one(device);
5046 	return 0;
5047 
5048 free_listen:
5049 	list_del(&cma_dev->list);
5050 	mutex_unlock(&lock);
5051 
5052 	/* cma_process_remove() will delete to_destroy */
5053 	cma_process_remove(cma_dev);
5054 	kfree(cma_dev->default_roce_tos);
5055 free_gid_type:
5056 	kfree(cma_dev->default_gid_type);
5057 
5058 free_cma_dev:
5059 	kfree(cma_dev);
5060 	return ret;
5061 }
5062 
5063 static void cma_remove_one(struct ib_device *device, void *client_data)
5064 {
5065 	struct cma_device *cma_dev = client_data;
5066 
5067 	trace_cm_remove_one(device);
5068 
5069 	mutex_lock(&lock);
5070 	list_del(&cma_dev->list);
5071 	mutex_unlock(&lock);
5072 
5073 	cma_process_remove(cma_dev);
5074 	kfree(cma_dev->default_roce_tos);
5075 	kfree(cma_dev->default_gid_type);
5076 	kfree(cma_dev);
5077 }
5078 
5079 static int cma_init_net(struct net *net)
5080 {
5081 	struct cma_pernet *pernet = cma_pernet(net);
5082 
5083 	xa_init(&pernet->tcp_ps);
5084 	xa_init(&pernet->udp_ps);
5085 	xa_init(&pernet->ipoib_ps);
5086 	xa_init(&pernet->ib_ps);
5087 
5088 	return 0;
5089 }
5090 
5091 static void cma_exit_net(struct net *net)
5092 {
5093 	struct cma_pernet *pernet = cma_pernet(net);
5094 
5095 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5096 	WARN_ON(!xa_empty(&pernet->udp_ps));
5097 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5098 	WARN_ON(!xa_empty(&pernet->ib_ps));
5099 }
5100 
5101 static struct pernet_operations cma_pernet_operations = {
5102 	.init = cma_init_net,
5103 	.exit = cma_exit_net,
5104 	.id = &cma_pernet_id,
5105 	.size = sizeof(struct cma_pernet),
5106 };
5107 
5108 static int __init cma_init(void)
5109 {
5110 	int ret;
5111 
5112 	/*
5113 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5114 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5115 	 * must never be nested under lock so it can find these without having
5116 	 * to test with bonding.
5117 	 */
5118 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5119 		rtnl_lock();
5120 		mutex_lock(&lock);
5121 		mutex_unlock(&lock);
5122 		rtnl_unlock();
5123 	}
5124 
5125 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5126 	if (!cma_wq)
5127 		return -ENOMEM;
5128 
5129 	ret = register_pernet_subsys(&cma_pernet_operations);
5130 	if (ret)
5131 		goto err_wq;
5132 
5133 	ib_sa_register_client(&sa_client);
5134 	register_netdevice_notifier(&cma_nb);
5135 
5136 	ret = ib_register_client(&cma_client);
5137 	if (ret)
5138 		goto err;
5139 
5140 	ret = cma_configfs_init();
5141 	if (ret)
5142 		goto err_ib;
5143 
5144 	return 0;
5145 
5146 err_ib:
5147 	ib_unregister_client(&cma_client);
5148 err:
5149 	unregister_netdevice_notifier(&cma_nb);
5150 	ib_sa_unregister_client(&sa_client);
5151 	unregister_pernet_subsys(&cma_pernet_operations);
5152 err_wq:
5153 	destroy_workqueue(cma_wq);
5154 	return ret;
5155 }
5156 
5157 static void __exit cma_cleanup(void)
5158 {
5159 	cma_configfs_exit();
5160 	ib_unregister_client(&cma_client);
5161 	unregister_netdevice_notifier(&cma_nb);
5162 	ib_sa_unregister_client(&sa_client);
5163 	unregister_pernet_subsys(&cma_pernet_operations);
5164 	destroy_workqueue(cma_wq);
5165 }
5166 
5167 module_init(cma_init);
5168 module_exit(cma_cleanup);
5169