1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <net/arp.h> 41 #include <net/neighbour.h> 42 #include <net/route.h> 43 #include <net/netevent.h> 44 #include <net/ipv6_stubs.h> 45 #include <net/ip6_route.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/ib_sa.h> 49 #include <rdma/ib.h> 50 #include <rdma/rdma_netlink.h> 51 #include <net/netlink.h> 52 53 #include "core_priv.h" 54 55 struct addr_req { 56 struct list_head list; 57 struct sockaddr_storage src_addr; 58 struct sockaddr_storage dst_addr; 59 struct rdma_dev_addr *addr; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 struct delayed_work work; 65 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ 66 int status; 67 u32 seq; 68 }; 69 70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 71 72 static DEFINE_SPINLOCK(lock); 73 static LIST_HEAD(req_list); 74 static struct workqueue_struct *addr_wq; 75 76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 77 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 78 .len = sizeof(struct rdma_nla_ls_gid), 79 .validation_type = NLA_VALIDATE_MIN, 80 .min = sizeof(struct rdma_nla_ls_gid)}, 81 }; 82 83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 84 { 85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 86 int ret; 87 88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 89 return false; 90 91 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 92 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 93 if (ret) 94 return false; 95 96 return true; 97 } 98 99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 100 { 101 const struct nlattr *head, *curr; 102 union ib_gid gid; 103 struct addr_req *req; 104 int len, rem; 105 int found = 0; 106 107 head = (const struct nlattr *)nlmsg_data(nlh); 108 len = nlmsg_len(nlh); 109 110 nla_for_each_attr(curr, head, len, rem) { 111 if (curr->nla_type == LS_NLA_TYPE_DGID) 112 memcpy(&gid, nla_data(curr), nla_len(curr)); 113 } 114 115 spin_lock_bh(&lock); 116 list_for_each_entry(req, &req_list, list) { 117 if (nlh->nlmsg_seq != req->seq) 118 continue; 119 /* We set the DGID part, the rest was set earlier */ 120 rdma_addr_set_dgid(req->addr, &gid); 121 req->status = 0; 122 found = 1; 123 break; 124 } 125 spin_unlock_bh(&lock); 126 127 if (!found) 128 pr_info("Couldn't find request waiting for DGID: %pI6\n", 129 &gid); 130 } 131 132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 133 struct nlmsghdr *nlh, 134 struct netlink_ext_ack *extack) 135 { 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk)) 138 return -EPERM; 139 140 if (ib_nl_is_good_ip_resp(nlh)) 141 ib_nl_process_good_ip_rsep(nlh); 142 143 return 0; 144 } 145 146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 147 const void *daddr, 148 u32 seq, u16 family) 149 { 150 struct sk_buff *skb = NULL; 151 struct nlmsghdr *nlh; 152 struct rdma_ls_ip_resolve_header *header; 153 void *data; 154 size_t size; 155 int attrtype; 156 int len; 157 158 if (family == AF_INET) { 159 size = sizeof(struct in_addr); 160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 161 } else { 162 size = sizeof(struct in6_addr); 163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 164 } 165 166 len = nla_total_size(sizeof(size)); 167 len += NLMSG_ALIGN(sizeof(*header)); 168 169 skb = nlmsg_new(len, GFP_KERNEL); 170 if (!skb) 171 return -ENOMEM; 172 173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 175 if (!data) { 176 nlmsg_free(skb); 177 return -ENODATA; 178 } 179 180 /* Construct the family header first */ 181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 182 header->ifindex = dev_addr->bound_dev_if; 183 nla_put(skb, attrtype, size, daddr); 184 185 /* Repair the nlmsg header length */ 186 nlmsg_end(skb, nlh); 187 rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL); 188 189 /* Make the request retry, so when we get the response from userspace 190 * we will have something. 191 */ 192 return -ENODATA; 193 } 194 195 int rdma_addr_size(const struct sockaddr *addr) 196 { 197 switch (addr->sa_family) { 198 case AF_INET: 199 return sizeof(struct sockaddr_in); 200 case AF_INET6: 201 return sizeof(struct sockaddr_in6); 202 case AF_IB: 203 return sizeof(struct sockaddr_ib); 204 default: 205 return 0; 206 } 207 } 208 EXPORT_SYMBOL(rdma_addr_size); 209 210 int rdma_addr_size_in6(struct sockaddr_in6 *addr) 211 { 212 int ret = rdma_addr_size((struct sockaddr *) addr); 213 214 return ret <= sizeof(*addr) ? ret : 0; 215 } 216 EXPORT_SYMBOL(rdma_addr_size_in6); 217 218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) 219 { 220 int ret = rdma_addr_size((struct sockaddr *) addr); 221 222 return ret <= sizeof(*addr) ? ret : 0; 223 } 224 EXPORT_SYMBOL(rdma_addr_size_kss); 225 226 /** 227 * rdma_copy_src_l2_addr - Copy netdevice source addresses 228 * @dev_addr: Destination address pointer where to copy the addresses 229 * @dev: Netdevice whose source addresses to copy 230 * 231 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. 232 * This includes unicast address, broadcast address, device type and 233 * interface index. 234 */ 235 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, 236 const struct net_device *dev) 237 { 238 dev_addr->dev_type = dev->type; 239 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 240 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 241 dev_addr->bound_dev_if = dev->ifindex; 242 } 243 EXPORT_SYMBOL(rdma_copy_src_l2_addr); 244 245 static struct net_device * 246 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) 247 { 248 struct net_device *dev = NULL; 249 int ret = -EADDRNOTAVAIL; 250 251 switch (src_in->sa_family) { 252 case AF_INET: 253 dev = __ip_dev_find(net, 254 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, 255 false); 256 if (dev) 257 ret = 0; 258 break; 259 #if IS_ENABLED(CONFIG_IPV6) 260 case AF_INET6: 261 for_each_netdev_rcu(net, dev) { 262 if (ipv6_chk_addr(net, 263 &((const struct sockaddr_in6 *)src_in)->sin6_addr, 264 dev, 1)) { 265 ret = 0; 266 break; 267 } 268 } 269 break; 270 #endif 271 } 272 if (!ret && dev && is_vlan_dev(dev)) 273 dev = vlan_dev_real_dev(dev); 274 return ret ? ERR_PTR(ret) : dev; 275 } 276 277 int rdma_translate_ip(const struct sockaddr *addr, 278 struct rdma_dev_addr *dev_addr) 279 { 280 struct net_device *dev; 281 282 if (dev_addr->bound_dev_if) { 283 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 284 if (!dev) 285 return -ENODEV; 286 rdma_copy_src_l2_addr(dev_addr, dev); 287 dev_put(dev); 288 return 0; 289 } 290 291 rcu_read_lock(); 292 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); 293 if (!IS_ERR(dev)) 294 rdma_copy_src_l2_addr(dev_addr, dev); 295 rcu_read_unlock(); 296 return PTR_ERR_OR_ZERO(dev); 297 } 298 EXPORT_SYMBOL(rdma_translate_ip); 299 300 static void set_timeout(struct addr_req *req, unsigned long time) 301 { 302 unsigned long delay; 303 304 delay = time - jiffies; 305 if ((long)delay < 0) 306 delay = 0; 307 308 mod_delayed_work(addr_wq, &req->work, delay); 309 } 310 311 static void queue_req(struct addr_req *req) 312 { 313 spin_lock_bh(&lock); 314 list_add_tail(&req->list, &req_list); 315 set_timeout(req, req->timeout); 316 spin_unlock_bh(&lock); 317 } 318 319 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, 320 const void *daddr, u32 seq, u16 family) 321 { 322 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) 323 return -EADDRNOTAVAIL; 324 325 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 326 } 327 328 static int dst_fetch_ha(const struct dst_entry *dst, 329 struct rdma_dev_addr *dev_addr, 330 const void *daddr) 331 { 332 struct neighbour *n; 333 int ret = 0; 334 335 n = dst_neigh_lookup(dst, daddr); 336 if (!n) 337 return -ENODATA; 338 339 if (!(n->nud_state & NUD_VALID)) { 340 neigh_event_send(n, NULL); 341 ret = -ENODATA; 342 } else { 343 neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev); 344 } 345 346 neigh_release(n); 347 348 return ret; 349 } 350 351 static bool has_gateway(const struct dst_entry *dst, sa_family_t family) 352 { 353 struct rtable *rt; 354 struct rt6_info *rt6; 355 356 if (family == AF_INET) { 357 rt = container_of(dst, struct rtable, dst); 358 return rt->rt_uses_gateway; 359 } 360 361 rt6 = container_of(dst, struct rt6_info, dst); 362 return rt6->rt6i_flags & RTF_GATEWAY; 363 } 364 365 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 366 const struct sockaddr *dst_in, u32 seq) 367 { 368 const struct sockaddr_in *dst_in4 = 369 (const struct sockaddr_in *)dst_in; 370 const struct sockaddr_in6 *dst_in6 = 371 (const struct sockaddr_in6 *)dst_in; 372 const void *daddr = (dst_in->sa_family == AF_INET) ? 373 (const void *)&dst_in4->sin_addr.s_addr : 374 (const void *)&dst_in6->sin6_addr; 375 sa_family_t family = dst_in->sa_family; 376 377 might_sleep(); 378 379 /* If we have a gateway in IB mode then it must be an IB network */ 380 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) 381 return ib_nl_fetch_ha(dev_addr, daddr, seq, family); 382 else 383 return dst_fetch_ha(dst, dev_addr, daddr); 384 } 385 386 static int addr4_resolve(struct sockaddr *src_sock, 387 const struct sockaddr *dst_sock, 388 struct rdma_dev_addr *addr, 389 struct rtable **prt) 390 { 391 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; 392 const struct sockaddr_in *dst_in = 393 (const struct sockaddr_in *)dst_sock; 394 395 __be32 src_ip = src_in->sin_addr.s_addr; 396 __be32 dst_ip = dst_in->sin_addr.s_addr; 397 struct rtable *rt; 398 struct flowi4 fl4; 399 int ret; 400 401 memset(&fl4, 0, sizeof(fl4)); 402 fl4.daddr = dst_ip; 403 fl4.saddr = src_ip; 404 fl4.flowi4_oif = addr->bound_dev_if; 405 rt = ip_route_output_key(addr->net, &fl4); 406 ret = PTR_ERR_OR_ZERO(rt); 407 if (ret) 408 return ret; 409 410 src_in->sin_addr.s_addr = fl4.saddr; 411 412 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 413 414 *prt = rt; 415 return 0; 416 } 417 418 #if IS_ENABLED(CONFIG_IPV6) 419 static int addr6_resolve(struct sockaddr *src_sock, 420 const struct sockaddr *dst_sock, 421 struct rdma_dev_addr *addr, 422 struct dst_entry **pdst) 423 { 424 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; 425 const struct sockaddr_in6 *dst_in = 426 (const struct sockaddr_in6 *)dst_sock; 427 struct flowi6 fl6; 428 struct dst_entry *dst; 429 430 memset(&fl6, 0, sizeof fl6); 431 fl6.daddr = dst_in->sin6_addr; 432 fl6.saddr = src_in->sin6_addr; 433 fl6.flowi6_oif = addr->bound_dev_if; 434 435 dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL); 436 if (IS_ERR(dst)) 437 return PTR_ERR(dst); 438 439 if (ipv6_addr_any(&src_in->sin6_addr)) 440 src_in->sin6_addr = fl6.saddr; 441 442 addr->hoplimit = ip6_dst_hoplimit(dst); 443 444 *pdst = dst; 445 return 0; 446 } 447 #else 448 static int addr6_resolve(struct sockaddr *src_sock, 449 const struct sockaddr *dst_sock, 450 struct rdma_dev_addr *addr, 451 struct dst_entry **pdst) 452 { 453 return -EADDRNOTAVAIL; 454 } 455 #endif 456 457 static int addr_resolve_neigh(const struct dst_entry *dst, 458 const struct sockaddr *dst_in, 459 struct rdma_dev_addr *addr, 460 unsigned int ndev_flags, 461 u32 seq) 462 { 463 int ret = 0; 464 465 if (ndev_flags & IFF_LOOPBACK) { 466 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); 467 } else { 468 if (!(ndev_flags & IFF_NOARP)) { 469 /* If the device doesn't do ARP internally */ 470 ret = fetch_ha(dst, addr, dst_in, seq); 471 } 472 } 473 return ret; 474 } 475 476 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr, 477 const struct sockaddr *dst_in, 478 const struct dst_entry *dst, 479 const struct net_device *ndev) 480 { 481 int ret = 0; 482 483 if (dst->dev->flags & IFF_LOOPBACK) 484 ret = rdma_translate_ip(dst_in, dev_addr); 485 else 486 rdma_copy_src_l2_addr(dev_addr, dst->dev); 487 488 /* 489 * If there's a gateway and type of device not ARPHRD_INFINIBAND, 490 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the 491 * network type accordingly. 492 */ 493 if (has_gateway(dst, dst_in->sa_family) && 494 ndev->type != ARPHRD_INFINIBAND) 495 dev_addr->network = dst_in->sa_family == AF_INET ? 496 RDMA_NETWORK_IPV4 : 497 RDMA_NETWORK_IPV6; 498 else 499 dev_addr->network = RDMA_NETWORK_IB; 500 501 return ret; 502 } 503 504 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, 505 unsigned int *ndev_flags, 506 const struct sockaddr *dst_in, 507 const struct dst_entry *dst) 508 { 509 struct net_device *ndev = READ_ONCE(dst->dev); 510 511 *ndev_flags = ndev->flags; 512 /* A physical device must be the RDMA device to use */ 513 if (ndev->flags & IFF_LOOPBACK) { 514 /* 515 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or 516 * loopback IP address. So if route is resolved to loopback 517 * interface, translate that to a real ndev based on non 518 * loopback IP address. 519 */ 520 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); 521 if (IS_ERR(ndev)) 522 return -ENODEV; 523 } 524 525 return copy_src_l2_addr(dev_addr, dst_in, dst, ndev); 526 } 527 528 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) 529 { 530 struct net_device *ndev; 531 532 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); 533 if (IS_ERR(ndev)) 534 return PTR_ERR(ndev); 535 536 /* 537 * Since we are holding the rcu, reading net and ifindex 538 * are safe without any additional reference; because 539 * change_net_namespace() in net/core/dev.c does rcu sync 540 * after it changes the state to IFF_DOWN and before 541 * updating netdev fields {net, ifindex}. 542 */ 543 addr->net = dev_net(ndev); 544 addr->bound_dev_if = ndev->ifindex; 545 return 0; 546 } 547 548 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) 549 { 550 addr->net = &init_net; 551 addr->bound_dev_if = 0; 552 } 553 554 static int addr_resolve(struct sockaddr *src_in, 555 const struct sockaddr *dst_in, 556 struct rdma_dev_addr *addr, 557 bool resolve_neigh, 558 bool resolve_by_gid_attr, 559 u32 seq) 560 { 561 struct dst_entry *dst = NULL; 562 unsigned int ndev_flags = 0; 563 struct rtable *rt = NULL; 564 int ret; 565 566 if (!addr->net) { 567 pr_warn_ratelimited("%s: missing namespace\n", __func__); 568 return -EINVAL; 569 } 570 571 rcu_read_lock(); 572 if (resolve_by_gid_attr) { 573 if (!addr->sgid_attr) { 574 rcu_read_unlock(); 575 pr_warn_ratelimited("%s: missing gid_attr\n", __func__); 576 return -EINVAL; 577 } 578 /* 579 * If the request is for a specific gid attribute of the 580 * rdma_dev_addr, derive net from the netdevice of the 581 * GID attribute. 582 */ 583 ret = set_addr_netns_by_gid_rcu(addr); 584 if (ret) { 585 rcu_read_unlock(); 586 return ret; 587 } 588 } 589 if (src_in->sa_family == AF_INET) { 590 ret = addr4_resolve(src_in, dst_in, addr, &rt); 591 dst = &rt->dst; 592 } else { 593 ret = addr6_resolve(src_in, dst_in, addr, &dst); 594 } 595 if (ret) { 596 rcu_read_unlock(); 597 goto done; 598 } 599 ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst); 600 rcu_read_unlock(); 601 602 /* 603 * Resolve neighbor destination address if requested and 604 * only if src addr translation didn't fail. 605 */ 606 if (!ret && resolve_neigh) 607 ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq); 608 609 if (src_in->sa_family == AF_INET) 610 ip_rt_put(rt); 611 else 612 dst_release(dst); 613 done: 614 /* 615 * Clear the addr net to go back to its original state, only if it was 616 * derived from GID attribute in this context. 617 */ 618 if (resolve_by_gid_attr) 619 rdma_addr_set_net_defaults(addr); 620 return ret; 621 } 622 623 static void process_one_req(struct work_struct *_work) 624 { 625 struct addr_req *req; 626 struct sockaddr *src_in, *dst_in; 627 628 req = container_of(_work, struct addr_req, work.work); 629 630 if (req->status == -ENODATA) { 631 src_in = (struct sockaddr *)&req->src_addr; 632 dst_in = (struct sockaddr *)&req->dst_addr; 633 req->status = addr_resolve(src_in, dst_in, req->addr, 634 true, req->resolve_by_gid_attr, 635 req->seq); 636 if (req->status && time_after_eq(jiffies, req->timeout)) { 637 req->status = -ETIMEDOUT; 638 } else if (req->status == -ENODATA) { 639 /* requeue the work for retrying again */ 640 spin_lock_bh(&lock); 641 if (!list_empty(&req->list)) 642 set_timeout(req, req->timeout); 643 spin_unlock_bh(&lock); 644 return; 645 } 646 } 647 648 req->callback(req->status, (struct sockaddr *)&req->src_addr, 649 req->addr, req->context); 650 req->callback = NULL; 651 652 spin_lock_bh(&lock); 653 /* 654 * Although the work will normally have been canceled by the workqueue, 655 * it can still be requeued as long as it is on the req_list. 656 */ 657 cancel_delayed_work(&req->work); 658 if (!list_empty(&req->list)) { 659 list_del_init(&req->list); 660 kfree(req); 661 } 662 spin_unlock_bh(&lock); 663 } 664 665 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, 666 struct rdma_dev_addr *addr, unsigned long timeout_ms, 667 void (*callback)(int status, struct sockaddr *src_addr, 668 struct rdma_dev_addr *addr, void *context), 669 bool resolve_by_gid_attr, void *context) 670 { 671 struct sockaddr *src_in, *dst_in; 672 struct addr_req *req; 673 int ret = 0; 674 675 req = kzalloc(sizeof *req, GFP_KERNEL); 676 if (!req) 677 return -ENOMEM; 678 679 src_in = (struct sockaddr *) &req->src_addr; 680 dst_in = (struct sockaddr *) &req->dst_addr; 681 682 if (src_addr) { 683 if (src_addr->sa_family != dst_addr->sa_family) { 684 ret = -EINVAL; 685 goto err; 686 } 687 688 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 689 } else { 690 src_in->sa_family = dst_addr->sa_family; 691 } 692 693 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 694 req->addr = addr; 695 req->callback = callback; 696 req->context = context; 697 req->resolve_by_gid_attr = resolve_by_gid_attr; 698 INIT_DELAYED_WORK(&req->work, process_one_req); 699 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 700 701 req->status = addr_resolve(src_in, dst_in, addr, true, 702 req->resolve_by_gid_attr, req->seq); 703 switch (req->status) { 704 case 0: 705 req->timeout = jiffies; 706 queue_req(req); 707 break; 708 case -ENODATA: 709 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 710 queue_req(req); 711 break; 712 default: 713 ret = req->status; 714 goto err; 715 } 716 return ret; 717 err: 718 kfree(req); 719 return ret; 720 } 721 EXPORT_SYMBOL(rdma_resolve_ip); 722 723 int roce_resolve_route_from_path(struct sa_path_rec *rec, 724 const struct ib_gid_attr *attr) 725 { 726 union { 727 struct sockaddr _sockaddr; 728 struct sockaddr_in _sockaddr_in; 729 struct sockaddr_in6 _sockaddr_in6; 730 } sgid, dgid; 731 struct rdma_dev_addr dev_addr = {}; 732 int ret; 733 734 might_sleep(); 735 736 if (rec->roce.route_resolved) 737 return 0; 738 739 rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid); 740 rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid); 741 742 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) 743 return -EINVAL; 744 745 if (!attr || !attr->ndev) 746 return -EINVAL; 747 748 dev_addr.net = &init_net; 749 dev_addr.sgid_attr = attr; 750 751 ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid, 752 &dev_addr, false, true, 0); 753 if (ret) 754 return ret; 755 756 if ((dev_addr.network == RDMA_NETWORK_IPV4 || 757 dev_addr.network == RDMA_NETWORK_IPV6) && 758 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) 759 return -EINVAL; 760 761 rec->roce.route_resolved = true; 762 return 0; 763 } 764 765 /** 766 * rdma_addr_cancel - Cancel resolve ip request 767 * @addr: Pointer to address structure given previously 768 * during rdma_resolve_ip(). 769 * rdma_addr_cancel() is synchronous function which cancels any pending 770 * request if there is any. 771 */ 772 void rdma_addr_cancel(struct rdma_dev_addr *addr) 773 { 774 struct addr_req *req, *temp_req; 775 struct addr_req *found = NULL; 776 777 spin_lock_bh(&lock); 778 list_for_each_entry_safe(req, temp_req, &req_list, list) { 779 if (req->addr == addr) { 780 /* 781 * Removing from the list means we take ownership of 782 * the req 783 */ 784 list_del_init(&req->list); 785 found = req; 786 break; 787 } 788 } 789 spin_unlock_bh(&lock); 790 791 if (!found) 792 return; 793 794 /* 795 * sync canceling the work after removing it from the req_list 796 * guarentees no work is running and none will be started. 797 */ 798 cancel_delayed_work_sync(&found->work); 799 kfree(found); 800 } 801 EXPORT_SYMBOL(rdma_addr_cancel); 802 803 struct resolve_cb_context { 804 struct completion comp; 805 int status; 806 }; 807 808 static void resolve_cb(int status, struct sockaddr *src_addr, 809 struct rdma_dev_addr *addr, void *context) 810 { 811 ((struct resolve_cb_context *)context)->status = status; 812 complete(&((struct resolve_cb_context *)context)->comp); 813 } 814 815 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 816 const union ib_gid *dgid, 817 u8 *dmac, const struct ib_gid_attr *sgid_attr, 818 int *hoplimit) 819 { 820 struct rdma_dev_addr dev_addr; 821 struct resolve_cb_context ctx; 822 union { 823 struct sockaddr_in _sockaddr_in; 824 struct sockaddr_in6 _sockaddr_in6; 825 } sgid_addr, dgid_addr; 826 int ret; 827 828 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid); 829 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid); 830 831 memset(&dev_addr, 0, sizeof(dev_addr)); 832 dev_addr.net = &init_net; 833 dev_addr.sgid_attr = sgid_attr; 834 835 init_completion(&ctx.comp); 836 ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr, 837 (struct sockaddr *)&dgid_addr, &dev_addr, 1000, 838 resolve_cb, true, &ctx); 839 if (ret) 840 return ret; 841 842 wait_for_completion(&ctx.comp); 843 844 ret = ctx.status; 845 if (ret) 846 return ret; 847 848 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 849 *hoplimit = dev_addr.hoplimit; 850 return 0; 851 } 852 853 static int netevent_callback(struct notifier_block *self, unsigned long event, 854 void *ctx) 855 { 856 struct addr_req *req; 857 858 if (event == NETEVENT_NEIGH_UPDATE) { 859 struct neighbour *neigh = ctx; 860 861 if (neigh->nud_state & NUD_VALID) { 862 spin_lock_bh(&lock); 863 list_for_each_entry(req, &req_list, list) 864 set_timeout(req, jiffies); 865 spin_unlock_bh(&lock); 866 } 867 } 868 return 0; 869 } 870 871 static struct notifier_block nb = { 872 .notifier_call = netevent_callback 873 }; 874 875 int addr_init(void) 876 { 877 addr_wq = alloc_ordered_workqueue("ib_addr", 0); 878 if (!addr_wq) 879 return -ENOMEM; 880 881 register_netevent_notifier(&nb); 882 883 return 0; 884 } 885 886 void addr_cleanup(void) 887 { 888 unregister_netevent_notifier(&nb); 889 destroy_workqueue(addr_wq); 890 WARN_ON(!list_empty(&req_list)); 891 } 892