xref: /openbmc/linux/drivers/iio/gyro/mpu3050-core.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * MPU3050 gyroscope driver
4  *
5  * Copyright (C) 2016 Linaro Ltd.
6  * Author: Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12  *
13  * TODO: add support for setting up the low pass 3dB frequency.
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 
32 #include "mpu3050.h"
33 
34 #define MPU3050_CHIP_ID		0x68
35 #define MPU3050_CHIP_ID_MASK	0x7E
36 
37 /*
38  * Register map: anything suffixed *_H is a big-endian high byte and always
39  * followed by the corresponding low byte (*_L) even though these are not
40  * explicitly included in the register definitions.
41  */
42 #define MPU3050_CHIP_ID_REG	0x00
43 #define MPU3050_PRODUCT_ID_REG	0x01
44 #define MPU3050_XG_OFFS_TC	0x05
45 #define MPU3050_YG_OFFS_TC	0x08
46 #define MPU3050_ZG_OFFS_TC	0x0B
47 #define MPU3050_X_OFFS_USR_H	0x0C
48 #define MPU3050_Y_OFFS_USR_H	0x0E
49 #define MPU3050_Z_OFFS_USR_H	0x10
50 #define MPU3050_FIFO_EN		0x12
51 #define MPU3050_AUX_VDDIO	0x13
52 #define MPU3050_SLV_ADDR	0x14
53 #define MPU3050_SMPLRT_DIV	0x15
54 #define MPU3050_DLPF_FS_SYNC	0x16
55 #define MPU3050_INT_CFG		0x17
56 #define MPU3050_AUX_ADDR	0x18
57 #define MPU3050_INT_STATUS	0x1A
58 #define MPU3050_TEMP_H		0x1B
59 #define MPU3050_XOUT_H		0x1D
60 #define MPU3050_YOUT_H		0x1F
61 #define MPU3050_ZOUT_H		0x21
62 #define MPU3050_DMP_CFG1	0x35
63 #define MPU3050_DMP_CFG2	0x36
64 #define MPU3050_BANK_SEL	0x37
65 #define MPU3050_MEM_START_ADDR	0x38
66 #define MPU3050_MEM_R_W		0x39
67 #define MPU3050_FIFO_COUNT_H	0x3A
68 #define MPU3050_FIFO_R		0x3C
69 #define MPU3050_USR_CTRL	0x3D
70 #define MPU3050_PWR_MGM		0x3E
71 
72 /* MPU memory bank read options */
73 #define MPU3050_MEM_PRFTCH	BIT(5)
74 #define MPU3050_MEM_USER_BANK	BIT(4)
75 /* Bits 8-11 select memory bank */
76 #define MPU3050_MEM_RAM_BANK_0	0
77 #define MPU3050_MEM_RAM_BANK_1	1
78 #define MPU3050_MEM_RAM_BANK_2	2
79 #define MPU3050_MEM_RAM_BANK_3	3
80 #define MPU3050_MEM_OTP_BANK_0	4
81 
82 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
83 
84 /* Register bits */
85 
86 /* FIFO Enable */
87 #define MPU3050_FIFO_EN_FOOTER		BIT(0)
88 #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
89 #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
90 #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
91 #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
92 #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
93 #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
94 #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
95 
96 /*
97  * Digital Low Pass filter (DLPF)
98  * Full Scale (FS)
99  * and Synchronization
100  */
101 #define MPU3050_EXT_SYNC_NONE		0x00
102 #define MPU3050_EXT_SYNC_TEMP		0x20
103 #define MPU3050_EXT_SYNC_GYROX		0x40
104 #define MPU3050_EXT_SYNC_GYROY		0x60
105 #define MPU3050_EXT_SYNC_GYROZ		0x80
106 #define MPU3050_EXT_SYNC_ACCELX	0xA0
107 #define MPU3050_EXT_SYNC_ACCELY	0xC0
108 #define MPU3050_EXT_SYNC_ACCELZ	0xE0
109 #define MPU3050_EXT_SYNC_MASK		0xE0
110 #define MPU3050_EXT_SYNC_SHIFT		5
111 
112 #define MPU3050_FS_250DPS		0x00
113 #define MPU3050_FS_500DPS		0x08
114 #define MPU3050_FS_1000DPS		0x10
115 #define MPU3050_FS_2000DPS		0x18
116 #define MPU3050_FS_MASK			0x18
117 #define MPU3050_FS_SHIFT		3
118 
119 #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
120 #define MPU3050_DLPF_CFG_188HZ		0x01
121 #define MPU3050_DLPF_CFG_98HZ		0x02
122 #define MPU3050_DLPF_CFG_42HZ		0x03
123 #define MPU3050_DLPF_CFG_20HZ		0x04
124 #define MPU3050_DLPF_CFG_10HZ		0x05
125 #define MPU3050_DLPF_CFG_5HZ		0x06
126 #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
127 #define MPU3050_DLPF_CFG_MASK		0x07
128 #define MPU3050_DLPF_CFG_SHIFT		0
129 
130 /* Interrupt config */
131 #define MPU3050_INT_RAW_RDY_EN		BIT(0)
132 #define MPU3050_INT_DMP_DONE_EN		BIT(1)
133 #define MPU3050_INT_MPU_RDY_EN		BIT(2)
134 #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
135 #define MPU3050_INT_LATCH_EN		BIT(5)
136 #define MPU3050_INT_OPEN		BIT(6)
137 #define MPU3050_INT_ACTL		BIT(7)
138 /* Interrupt status */
139 #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
140 #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
141 #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
142 #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
143 /* USR_CTRL */
144 #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
145 #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
146 #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
147 #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
148 #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
149 /* PWR_MGM */
150 #define MPU3050_PWR_MGM_PLL_X		0x01
151 #define MPU3050_PWR_MGM_PLL_Y		0x02
152 #define MPU3050_PWR_MGM_PLL_Z		0x03
153 #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
154 #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
155 #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
156 #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
157 #define MPU3050_PWR_MGM_SLEEP		BIT(6)
158 #define MPU3050_PWR_MGM_RESET		BIT(7)
159 #define MPU3050_PWR_MGM_MASK		0xff
160 
161 /*
162  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
163  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
164  * in two's complement.
165  */
166 static unsigned int mpu3050_fs_precision[] = {
167 	IIO_DEGREE_TO_RAD(250),
168 	IIO_DEGREE_TO_RAD(500),
169 	IIO_DEGREE_TO_RAD(1000),
170 	IIO_DEGREE_TO_RAD(2000)
171 };
172 
173 /*
174  * Regulator names
175  */
176 static const char mpu3050_reg_vdd[] = "vdd";
177 static const char mpu3050_reg_vlogic[] = "vlogic";
178 
179 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
180 {
181 	unsigned int freq;
182 
183 	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
184 		freq = 8000;
185 	else
186 		freq = 1000;
187 	freq /= (mpu3050->divisor + 1);
188 
189 	return freq;
190 }
191 
192 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
193 {
194 	__be16 raw_val[3];
195 	int ret;
196 	int i;
197 
198 	/* Reset */
199 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
200 				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
201 	if (ret)
202 		return ret;
203 
204 	/* Turn on the Z-axis PLL */
205 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
206 				 MPU3050_PWR_MGM_CLKSEL_MASK,
207 				 MPU3050_PWR_MGM_PLL_Z);
208 	if (ret)
209 		return ret;
210 
211 	/* Write calibration offset registers */
212 	for (i = 0; i < 3; i++)
213 		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
214 
215 	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
216 				sizeof(raw_val));
217 	if (ret)
218 		return ret;
219 
220 	/* Set low pass filter (sample rate), sync and full scale */
221 	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
222 			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
223 			   mpu3050->fullscale << MPU3050_FS_SHIFT |
224 			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
225 	if (ret)
226 		return ret;
227 
228 	/* Set up sampling frequency */
229 	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
230 	if (ret)
231 		return ret;
232 
233 	/*
234 	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
235 	 * according to the data sheet, then wait for the next sample
236 	 * at this frequency T = 1000/f ms.
237 	 */
238 	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
239 
240 	return 0;
241 }
242 
243 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
244 {
245 	int ret;
246 	u8 divisor;
247 	enum mpu3050_lpf lpf;
248 
249 	lpf = mpu3050->lpf;
250 	divisor = mpu3050->divisor;
251 
252 	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
253 	mpu3050->divisor = 0; /* Divide by 1 */
254 	ret = mpu3050_start_sampling(mpu3050);
255 
256 	mpu3050->lpf = lpf;
257 	mpu3050->divisor = divisor;
258 
259 	return ret;
260 }
261 
262 static int mpu3050_read_raw(struct iio_dev *indio_dev,
263 			    struct iio_chan_spec const *chan,
264 			    int *val, int *val2,
265 			    long mask)
266 {
267 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
268 	int ret;
269 	__be16 raw_val;
270 
271 	switch (mask) {
272 	case IIO_CHAN_INFO_OFFSET:
273 		switch (chan->type) {
274 		case IIO_TEMP:
275 			/* The temperature scaling is (x+23000)/280 Celsius */
276 			*val = 23000;
277 			return IIO_VAL_INT;
278 		default:
279 			return -EINVAL;
280 		}
281 	case IIO_CHAN_INFO_CALIBBIAS:
282 		switch (chan->type) {
283 		case IIO_ANGL_VEL:
284 			*val = mpu3050->calibration[chan->scan_index-1];
285 			return IIO_VAL_INT;
286 		default:
287 			return -EINVAL;
288 		}
289 	case IIO_CHAN_INFO_SAMP_FREQ:
290 		*val = mpu3050_get_freq(mpu3050);
291 		return IIO_VAL_INT;
292 	case IIO_CHAN_INFO_SCALE:
293 		switch (chan->type) {
294 		case IIO_TEMP:
295 			/* Millidegrees, see about temperature scaling above */
296 			*val = 1000;
297 			*val2 = 280;
298 			return IIO_VAL_FRACTIONAL;
299 		case IIO_ANGL_VEL:
300 			/*
301 			 * Convert to the corresponding full scale in
302 			 * radians. All 16 bits are used with sign to
303 			 * span the available scale: to account for the one
304 			 * missing value if we multiply by 1/S16_MAX, instead
305 			 * multiply with 2/U16_MAX.
306 			 */
307 			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
308 			*val2 = U16_MAX;
309 			return IIO_VAL_FRACTIONAL;
310 		default:
311 			return -EINVAL;
312 		}
313 	case IIO_CHAN_INFO_RAW:
314 		/* Resume device */
315 		pm_runtime_get_sync(mpu3050->dev);
316 		mutex_lock(&mpu3050->lock);
317 
318 		ret = mpu3050_set_8khz_samplerate(mpu3050);
319 		if (ret)
320 			goto out_read_raw_unlock;
321 
322 		switch (chan->type) {
323 		case IIO_TEMP:
324 			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
325 					       &raw_val, sizeof(raw_val));
326 			if (ret) {
327 				dev_err(mpu3050->dev,
328 					"error reading temperature\n");
329 				goto out_read_raw_unlock;
330 			}
331 
332 			*val = be16_to_cpu(raw_val);
333 			ret = IIO_VAL_INT;
334 
335 			goto out_read_raw_unlock;
336 		case IIO_ANGL_VEL:
337 			ret = regmap_bulk_read(mpu3050->map,
338 				       MPU3050_AXIS_REGS(chan->scan_index-1),
339 				       &raw_val,
340 				       sizeof(raw_val));
341 			if (ret) {
342 				dev_err(mpu3050->dev,
343 					"error reading axis data\n");
344 				goto out_read_raw_unlock;
345 			}
346 
347 			*val = be16_to_cpu(raw_val);
348 			ret = IIO_VAL_INT;
349 
350 			goto out_read_raw_unlock;
351 		default:
352 			ret = -EINVAL;
353 			goto out_read_raw_unlock;
354 		}
355 	default:
356 		break;
357 	}
358 
359 	return -EINVAL;
360 
361 out_read_raw_unlock:
362 	mutex_unlock(&mpu3050->lock);
363 	pm_runtime_mark_last_busy(mpu3050->dev);
364 	pm_runtime_put_autosuspend(mpu3050->dev);
365 
366 	return ret;
367 }
368 
369 static int mpu3050_write_raw(struct iio_dev *indio_dev,
370 			     const struct iio_chan_spec *chan,
371 			     int val, int val2, long mask)
372 {
373 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
374 	/*
375 	 * Couldn't figure out a way to precalculate these at compile time.
376 	 */
377 	unsigned int fs250 =
378 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
379 				  U16_MAX);
380 	unsigned int fs500 =
381 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
382 				  U16_MAX);
383 	unsigned int fs1000 =
384 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
385 				  U16_MAX);
386 	unsigned int fs2000 =
387 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
388 				  U16_MAX);
389 
390 	switch (mask) {
391 	case IIO_CHAN_INFO_CALIBBIAS:
392 		if (chan->type != IIO_ANGL_VEL)
393 			return -EINVAL;
394 		mpu3050->calibration[chan->scan_index-1] = val;
395 		return 0;
396 	case IIO_CHAN_INFO_SAMP_FREQ:
397 		/*
398 		 * The max samplerate is 8000 Hz, the minimum
399 		 * 1000 / 256 ~= 4 Hz
400 		 */
401 		if (val < 4 || val > 8000)
402 			return -EINVAL;
403 
404 		/*
405 		 * Above 1000 Hz we must turn off the digital low pass filter
406 		 * so we get a base frequency of 8kHz to the divider
407 		 */
408 		if (val > 1000) {
409 			mpu3050->lpf = LPF_256_HZ_NOLPF;
410 			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
411 			return 0;
412 		}
413 
414 		mpu3050->lpf = LPF_188_HZ;
415 		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
416 		return 0;
417 	case IIO_CHAN_INFO_SCALE:
418 		if (chan->type != IIO_ANGL_VEL)
419 			return -EINVAL;
420 		/*
421 		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
422 		 * which means we need to round to the closest radians
423 		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
424 		 * rad/s. The scale is then for the 16 bits used to cover
425 		 * it 2/(2^16) of that.
426 		 */
427 
428 		/* Just too large, set the max range */
429 		if (val != 0) {
430 			mpu3050->fullscale = FS_2000_DPS;
431 			return 0;
432 		}
433 
434 		/*
435 		 * Now we're dealing with fractions below zero in millirad/s
436 		 * do some integer interpolation and match with the closest
437 		 * fullscale in the table.
438 		 */
439 		if (val2 <= fs250 ||
440 		    val2 < ((fs500 + fs250) / 2))
441 			mpu3050->fullscale = FS_250_DPS;
442 		else if (val2 <= fs500 ||
443 			 val2 < ((fs1000 + fs500) / 2))
444 			mpu3050->fullscale = FS_500_DPS;
445 		else if (val2 <= fs1000 ||
446 			 val2 < ((fs2000 + fs1000) / 2))
447 			mpu3050->fullscale = FS_1000_DPS;
448 		else
449 			/* Catch-all */
450 			mpu3050->fullscale = FS_2000_DPS;
451 		return 0;
452 	default:
453 		break;
454 	}
455 
456 	return -EINVAL;
457 }
458 
459 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
460 {
461 	const struct iio_poll_func *pf = p;
462 	struct iio_dev *indio_dev = pf->indio_dev;
463 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
464 	int ret;
465 	/*
466 	 * Temperature 1*16 bits
467 	 * Three axes 3*16 bits
468 	 * Timestamp 64 bits (4*16 bits)
469 	 * Sum total 8*16 bits
470 	 */
471 	__be16 hw_values[8];
472 	s64 timestamp;
473 	unsigned int datums_from_fifo = 0;
474 
475 	/*
476 	 * If we're using the hardware trigger, get the precise timestamp from
477 	 * the top half of the threaded IRQ handler. Otherwise get the
478 	 * timestamp here so it will be close in time to the actual values
479 	 * read from the registers.
480 	 */
481 	if (iio_trigger_using_own(indio_dev))
482 		timestamp = mpu3050->hw_timestamp;
483 	else
484 		timestamp = iio_get_time_ns(indio_dev);
485 
486 	mutex_lock(&mpu3050->lock);
487 
488 	/* Using the hardware IRQ trigger? Check the buffer then. */
489 	if (mpu3050->hw_irq_trigger) {
490 		__be16 raw_fifocnt;
491 		u16 fifocnt;
492 		/* X, Y, Z + temperature */
493 		unsigned int bytes_per_datum = 8;
494 		bool fifo_overflow = false;
495 
496 		ret = regmap_bulk_read(mpu3050->map,
497 				       MPU3050_FIFO_COUNT_H,
498 				       &raw_fifocnt,
499 				       sizeof(raw_fifocnt));
500 		if (ret)
501 			goto out_trigger_unlock;
502 		fifocnt = be16_to_cpu(raw_fifocnt);
503 
504 		if (fifocnt == 512) {
505 			dev_info(mpu3050->dev,
506 				 "FIFO overflow! Emptying and resetting FIFO\n");
507 			fifo_overflow = true;
508 			/* Reset and enable the FIFO */
509 			ret = regmap_update_bits(mpu3050->map,
510 						 MPU3050_USR_CTRL,
511 						 MPU3050_USR_CTRL_FIFO_EN |
512 						 MPU3050_USR_CTRL_FIFO_RST,
513 						 MPU3050_USR_CTRL_FIFO_EN |
514 						 MPU3050_USR_CTRL_FIFO_RST);
515 			if (ret) {
516 				dev_info(mpu3050->dev, "error resetting FIFO\n");
517 				goto out_trigger_unlock;
518 			}
519 			mpu3050->pending_fifo_footer = false;
520 		}
521 
522 		if (fifocnt)
523 			dev_dbg(mpu3050->dev,
524 				"%d bytes in the FIFO\n",
525 				fifocnt);
526 
527 		while (!fifo_overflow && fifocnt > bytes_per_datum) {
528 			unsigned int toread;
529 			unsigned int offset;
530 			__be16 fifo_values[5];
531 
532 			/*
533 			 * If there is a FIFO footer in the pipe, first clear
534 			 * that out. This follows the complex algorithm in the
535 			 * datasheet that states that you may never leave the
536 			 * FIFO empty after the first reading: you have to
537 			 * always leave two footer bytes in it. The footer is
538 			 * in practice just two zero bytes.
539 			 */
540 			if (mpu3050->pending_fifo_footer) {
541 				toread = bytes_per_datum + 2;
542 				offset = 0;
543 			} else {
544 				toread = bytes_per_datum;
545 				offset = 1;
546 				/* Put in some dummy value */
547 				fifo_values[0] = cpu_to_be16(0xAAAA);
548 			}
549 
550 			ret = regmap_bulk_read(mpu3050->map,
551 					       MPU3050_FIFO_R,
552 					       &fifo_values[offset],
553 					       toread);
554 
555 			dev_dbg(mpu3050->dev,
556 				"%04x %04x %04x %04x %04x\n",
557 				fifo_values[0],
558 				fifo_values[1],
559 				fifo_values[2],
560 				fifo_values[3],
561 				fifo_values[4]);
562 
563 			/* Index past the footer (fifo_values[0]) and push */
564 			iio_push_to_buffers_with_timestamp(indio_dev,
565 							   &fifo_values[1],
566 							   timestamp);
567 
568 			fifocnt -= toread;
569 			datums_from_fifo++;
570 			mpu3050->pending_fifo_footer = true;
571 
572 			/*
573 			 * If we're emptying the FIFO, just make sure to
574 			 * check if something new appeared.
575 			 */
576 			if (fifocnt < bytes_per_datum) {
577 				ret = regmap_bulk_read(mpu3050->map,
578 						       MPU3050_FIFO_COUNT_H,
579 						       &raw_fifocnt,
580 						       sizeof(raw_fifocnt));
581 				if (ret)
582 					goto out_trigger_unlock;
583 				fifocnt = be16_to_cpu(raw_fifocnt);
584 			}
585 
586 			if (fifocnt < bytes_per_datum)
587 				dev_dbg(mpu3050->dev,
588 					"%d bytes left in the FIFO\n",
589 					fifocnt);
590 
591 			/*
592 			 * At this point, the timestamp that triggered the
593 			 * hardware interrupt is no longer valid for what
594 			 * we are reading (the interrupt likely fired for
595 			 * the value on the top of the FIFO), so set the
596 			 * timestamp to zero and let userspace deal with it.
597 			 */
598 			timestamp = 0;
599 		}
600 	}
601 
602 	/*
603 	 * If we picked some datums from the FIFO that's enough, else
604 	 * fall through and just read from the current value registers.
605 	 * This happens in two cases:
606 	 *
607 	 * - We are using some other trigger (external, like an HRTimer)
608 	 *   than the sensor's own sample generator. In this case the
609 	 *   sensor is just set to the max sampling frequency and we give
610 	 *   the trigger a copy of the latest value every time we get here.
611 	 *
612 	 * - The hardware trigger is active but unused and we actually use
613 	 *   another trigger which calls here with a frequency higher
614 	 *   than what the device provides data. We will then just read
615 	 *   duplicate values directly from the hardware registers.
616 	 */
617 	if (datums_from_fifo) {
618 		dev_dbg(mpu3050->dev,
619 			"read %d datums from the FIFO\n",
620 			datums_from_fifo);
621 		goto out_trigger_unlock;
622 	}
623 
624 	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
625 			       sizeof(hw_values));
626 	if (ret) {
627 		dev_err(mpu3050->dev,
628 			"error reading axis data\n");
629 		goto out_trigger_unlock;
630 	}
631 
632 	iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
633 
634 out_trigger_unlock:
635 	mutex_unlock(&mpu3050->lock);
636 	iio_trigger_notify_done(indio_dev->trig);
637 
638 	return IRQ_HANDLED;
639 }
640 
641 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
642 {
643 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
644 
645 	pm_runtime_get_sync(mpu3050->dev);
646 
647 	/* Unless we have OUR trigger active, run at full speed */
648 	if (!mpu3050->hw_irq_trigger)
649 		return mpu3050_set_8khz_samplerate(mpu3050);
650 
651 	return 0;
652 }
653 
654 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
655 {
656 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
657 
658 	pm_runtime_mark_last_busy(mpu3050->dev);
659 	pm_runtime_put_autosuspend(mpu3050->dev);
660 
661 	return 0;
662 }
663 
664 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
665 	.preenable = mpu3050_buffer_preenable,
666 	.postdisable = mpu3050_buffer_postdisable,
667 };
668 
669 static const struct iio_mount_matrix *
670 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
671 			 const struct iio_chan_spec *chan)
672 {
673 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
674 
675 	return &mpu3050->orientation;
676 }
677 
678 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
679 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
680 	{ },
681 };
682 
683 #define MPU3050_AXIS_CHANNEL(axis, index)				\
684 	{								\
685 		.type = IIO_ANGL_VEL,					\
686 		.modified = 1,						\
687 		.channel2 = IIO_MOD_##axis,				\
688 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
689 			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
690 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
691 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
692 		.ext_info = mpu3050_ext_info,				\
693 		.scan_index = index,					\
694 		.scan_type = {						\
695 			.sign = 's',					\
696 			.realbits = 16,					\
697 			.storagebits = 16,				\
698 			.endianness = IIO_BE,				\
699 		},							\
700 	}
701 
702 static const struct iio_chan_spec mpu3050_channels[] = {
703 	{
704 		.type = IIO_TEMP,
705 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
706 				      BIT(IIO_CHAN_INFO_SCALE) |
707 				      BIT(IIO_CHAN_INFO_OFFSET),
708 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
709 		.scan_index = 0,
710 		.scan_type = {
711 			.sign = 's',
712 			.realbits = 16,
713 			.storagebits = 16,
714 			.endianness = IIO_BE,
715 		},
716 	},
717 	MPU3050_AXIS_CHANNEL(X, 1),
718 	MPU3050_AXIS_CHANNEL(Y, 2),
719 	MPU3050_AXIS_CHANNEL(Z, 3),
720 	IIO_CHAN_SOFT_TIMESTAMP(4),
721 };
722 
723 /* Four channels apart from timestamp, scan mask = 0x0f */
724 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
725 
726 /*
727  * These are just the hardcoded factors resulting from the more elaborate
728  * calculations done with fractions in the scale raw get/set functions.
729  */
730 static IIO_CONST_ATTR(anglevel_scale_available,
731 		      "0.000122070 "
732 		      "0.000274658 "
733 		      "0.000518798 "
734 		      "0.001068115");
735 
736 static struct attribute *mpu3050_attributes[] = {
737 	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
738 	NULL,
739 };
740 
741 static const struct attribute_group mpu3050_attribute_group = {
742 	.attrs = mpu3050_attributes,
743 };
744 
745 static const struct iio_info mpu3050_info = {
746 	.read_raw = mpu3050_read_raw,
747 	.write_raw = mpu3050_write_raw,
748 	.attrs = &mpu3050_attribute_group,
749 };
750 
751 /**
752  * mpu3050_read_mem() - read MPU-3050 internal memory
753  * @mpu3050: device to read from
754  * @bank: target bank
755  * @addr: target address
756  * @len: number of bytes
757  * @buf: the buffer to store the read bytes in
758  */
759 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
760 			    u8 bank,
761 			    u8 addr,
762 			    u8 len,
763 			    u8 *buf)
764 {
765 	int ret;
766 
767 	ret = regmap_write(mpu3050->map,
768 			   MPU3050_BANK_SEL,
769 			   bank);
770 	if (ret)
771 		return ret;
772 
773 	ret = regmap_write(mpu3050->map,
774 			   MPU3050_MEM_START_ADDR,
775 			   addr);
776 	if (ret)
777 		return ret;
778 
779 	return regmap_bulk_read(mpu3050->map,
780 				MPU3050_MEM_R_W,
781 				buf,
782 				len);
783 }
784 
785 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
786 {
787 	int ret;
788 	__le64 otp_le;
789 	u64 otp;
790 
791 	/* Reset */
792 	ret = regmap_update_bits(mpu3050->map,
793 				 MPU3050_PWR_MGM,
794 				 MPU3050_PWR_MGM_RESET,
795 				 MPU3050_PWR_MGM_RESET);
796 	if (ret)
797 		return ret;
798 
799 	/* Turn on the PLL */
800 	ret = regmap_update_bits(mpu3050->map,
801 				 MPU3050_PWR_MGM,
802 				 MPU3050_PWR_MGM_CLKSEL_MASK,
803 				 MPU3050_PWR_MGM_PLL_Z);
804 	if (ret)
805 		return ret;
806 
807 	/* Disable IRQs */
808 	ret = regmap_write(mpu3050->map,
809 			   MPU3050_INT_CFG,
810 			   0);
811 	if (ret)
812 		return ret;
813 
814 	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
815 	ret = mpu3050_read_mem(mpu3050,
816 			       (MPU3050_MEM_PRFTCH |
817 				MPU3050_MEM_USER_BANK |
818 				MPU3050_MEM_OTP_BANK_0),
819 			       0,
820 			       sizeof(otp_le),
821 			       (u8 *)&otp_le);
822 	if (ret)
823 		return ret;
824 
825 	/* This is device-unique data so it goes into the entropy pool */
826 	add_device_randomness(&otp_le, sizeof(otp_le));
827 
828 	otp = le64_to_cpu(otp_le);
829 
830 	dev_info(mpu3050->dev,
831 		 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
832 		 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
833 		 /* Die ID, bits 0-12 */
834 		 FIELD_GET(GENMASK_ULL(12, 0), otp),
835 		 /* Wafer ID, bits 13-17 */
836 		 FIELD_GET(GENMASK_ULL(17, 13), otp),
837 		 /* A lot ID, bits 18-33 */
838 		 FIELD_GET(GENMASK_ULL(33, 18), otp),
839 		 /* W lot ID, bits 34-45 */
840 		 FIELD_GET(GENMASK_ULL(45, 34), otp),
841 		 /* WP ID, bits 47-49 */
842 		 FIELD_GET(GENMASK_ULL(49, 47), otp),
843 		 /* rev ID, bits 50-55 */
844 		 FIELD_GET(GENMASK_ULL(55, 50), otp));
845 
846 	return 0;
847 }
848 
849 static int mpu3050_power_up(struct mpu3050 *mpu3050)
850 {
851 	int ret;
852 
853 	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
854 	if (ret) {
855 		dev_err(mpu3050->dev, "cannot enable regulators\n");
856 		return ret;
857 	}
858 	/*
859 	 * 20-100 ms start-up time for register read/write according to
860 	 * the datasheet, be on the safe side and wait 200 ms.
861 	 */
862 	msleep(200);
863 
864 	/* Take device out of sleep mode */
865 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
866 				 MPU3050_PWR_MGM_SLEEP, 0);
867 	if (ret) {
868 		dev_err(mpu3050->dev, "error setting power mode\n");
869 		return ret;
870 	}
871 	usleep_range(10000, 20000);
872 
873 	return 0;
874 }
875 
876 static int mpu3050_power_down(struct mpu3050 *mpu3050)
877 {
878 	int ret;
879 
880 	/*
881 	 * Put MPU-3050 into sleep mode before cutting regulators.
882 	 * This is important, because we may not be the sole user
883 	 * of the regulator so the power may stay on after this, and
884 	 * then we would be wasting power unless we go to sleep mode
885 	 * first.
886 	 */
887 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
888 				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
889 	if (ret)
890 		dev_err(mpu3050->dev, "error putting to sleep\n");
891 
892 	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
893 	if (ret)
894 		dev_err(mpu3050->dev, "error disabling regulators\n");
895 
896 	return 0;
897 }
898 
899 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
900 {
901 	struct iio_trigger *trig = p;
902 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
903 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
904 
905 	if (!mpu3050->hw_irq_trigger)
906 		return IRQ_NONE;
907 
908 	/* Get the time stamp as close in time as possible */
909 	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
910 
911 	return IRQ_WAKE_THREAD;
912 }
913 
914 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
915 {
916 	struct iio_trigger *trig = p;
917 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
918 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
919 	unsigned int val;
920 	int ret;
921 
922 	/* ACK IRQ and check if it was from us */
923 	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
924 	if (ret) {
925 		dev_err(mpu3050->dev, "error reading IRQ status\n");
926 		return IRQ_HANDLED;
927 	}
928 	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
929 		return IRQ_NONE;
930 
931 	iio_trigger_poll_chained(p);
932 
933 	return IRQ_HANDLED;
934 }
935 
936 /**
937  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
938  * @trig: trigger instance
939  * @enable: true if trigger should be enabled, false to disable
940  */
941 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
942 					  bool enable)
943 {
944 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
945 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
946 	unsigned int val;
947 	int ret;
948 
949 	/* Disabling trigger: disable interrupt and return */
950 	if (!enable) {
951 		/* Disable all interrupts */
952 		ret = regmap_write(mpu3050->map,
953 				   MPU3050_INT_CFG,
954 				   0);
955 		if (ret)
956 			dev_err(mpu3050->dev, "error disabling IRQ\n");
957 
958 		/* Clear IRQ flag */
959 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
960 		if (ret)
961 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
962 
963 		/* Disable all things in the FIFO and reset it */
964 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
965 		if (ret)
966 			dev_err(mpu3050->dev, "error disabling FIFO\n");
967 
968 		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
969 				   MPU3050_USR_CTRL_FIFO_RST);
970 		if (ret)
971 			dev_err(mpu3050->dev, "error resetting FIFO\n");
972 
973 		pm_runtime_mark_last_busy(mpu3050->dev);
974 		pm_runtime_put_autosuspend(mpu3050->dev);
975 		mpu3050->hw_irq_trigger = false;
976 
977 		return 0;
978 	} else {
979 		/* Else we're enabling the trigger from this point */
980 		pm_runtime_get_sync(mpu3050->dev);
981 		mpu3050->hw_irq_trigger = true;
982 
983 		/* Disable all things in the FIFO */
984 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
985 		if (ret)
986 			return ret;
987 
988 		/* Reset and enable the FIFO */
989 		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
990 					 MPU3050_USR_CTRL_FIFO_EN |
991 					 MPU3050_USR_CTRL_FIFO_RST,
992 					 MPU3050_USR_CTRL_FIFO_EN |
993 					 MPU3050_USR_CTRL_FIFO_RST);
994 		if (ret)
995 			return ret;
996 
997 		mpu3050->pending_fifo_footer = false;
998 
999 		/* Turn on the FIFO for temp+X+Y+Z */
1000 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1001 				   MPU3050_FIFO_EN_TEMP_OUT |
1002 				   MPU3050_FIFO_EN_GYRO_XOUT |
1003 				   MPU3050_FIFO_EN_GYRO_YOUT |
1004 				   MPU3050_FIFO_EN_GYRO_ZOUT |
1005 				   MPU3050_FIFO_EN_FOOTER);
1006 		if (ret)
1007 			return ret;
1008 
1009 		/* Configure the sample engine */
1010 		ret = mpu3050_start_sampling(mpu3050);
1011 		if (ret)
1012 			return ret;
1013 
1014 		/* Clear IRQ flag */
1015 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1016 		if (ret)
1017 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1018 
1019 		/* Give us interrupts whenever there is new data ready */
1020 		val = MPU3050_INT_RAW_RDY_EN;
1021 
1022 		if (mpu3050->irq_actl)
1023 			val |= MPU3050_INT_ACTL;
1024 		if (mpu3050->irq_latch)
1025 			val |= MPU3050_INT_LATCH_EN;
1026 		if (mpu3050->irq_opendrain)
1027 			val |= MPU3050_INT_OPEN;
1028 
1029 		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1030 		if (ret)
1031 			return ret;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1038 	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1039 };
1040 
1041 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1042 {
1043 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1044 	unsigned long irq_trig;
1045 	int ret;
1046 
1047 	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1048 					       "%s-dev%d",
1049 					       indio_dev->name,
1050 					       indio_dev->id);
1051 	if (!mpu3050->trig)
1052 		return -ENOMEM;
1053 
1054 	/* Check if IRQ is open drain */
1055 	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1056 		mpu3050->irq_opendrain = true;
1057 
1058 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1059 	/*
1060 	 * Configure the interrupt generator hardware to supply whatever
1061 	 * the interrupt is configured for, edges low/high level low/high,
1062 	 * we can provide it all.
1063 	 */
1064 	switch (irq_trig) {
1065 	case IRQF_TRIGGER_RISING:
1066 		dev_info(&indio_dev->dev,
1067 			 "pulse interrupts on the rising edge\n");
1068 		break;
1069 	case IRQF_TRIGGER_FALLING:
1070 		mpu3050->irq_actl = true;
1071 		dev_info(&indio_dev->dev,
1072 			 "pulse interrupts on the falling edge\n");
1073 		break;
1074 	case IRQF_TRIGGER_HIGH:
1075 		mpu3050->irq_latch = true;
1076 		dev_info(&indio_dev->dev,
1077 			 "interrupts active high level\n");
1078 		/*
1079 		 * With level IRQs, we mask the IRQ until it is processed,
1080 		 * but with edge IRQs (pulses) we can queue several interrupts
1081 		 * in the top half.
1082 		 */
1083 		irq_trig |= IRQF_ONESHOT;
1084 		break;
1085 	case IRQF_TRIGGER_LOW:
1086 		mpu3050->irq_latch = true;
1087 		mpu3050->irq_actl = true;
1088 		irq_trig |= IRQF_ONESHOT;
1089 		dev_info(&indio_dev->dev,
1090 			 "interrupts active low level\n");
1091 		break;
1092 	default:
1093 		/* This is the most preferred mode, if possible */
1094 		dev_err(&indio_dev->dev,
1095 			"unsupported IRQ trigger specified (%lx), enforce "
1096 			"rising edge\n", irq_trig);
1097 		irq_trig = IRQF_TRIGGER_RISING;
1098 		break;
1099 	}
1100 
1101 	/* An open drain line can be shared with several devices */
1102 	if (mpu3050->irq_opendrain)
1103 		irq_trig |= IRQF_SHARED;
1104 
1105 	ret = request_threaded_irq(irq,
1106 				   mpu3050_irq_handler,
1107 				   mpu3050_irq_thread,
1108 				   irq_trig,
1109 				   mpu3050->trig->name,
1110 				   mpu3050->trig);
1111 	if (ret) {
1112 		dev_err(mpu3050->dev,
1113 			"can't get IRQ %d, error %d\n", irq, ret);
1114 		return ret;
1115 	}
1116 
1117 	mpu3050->irq = irq;
1118 	mpu3050->trig->dev.parent = mpu3050->dev;
1119 	mpu3050->trig->ops = &mpu3050_trigger_ops;
1120 	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1121 
1122 	ret = iio_trigger_register(mpu3050->trig);
1123 	if (ret)
1124 		return ret;
1125 
1126 	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1127 
1128 	return 0;
1129 }
1130 
1131 int mpu3050_common_probe(struct device *dev,
1132 			 struct regmap *map,
1133 			 int irq,
1134 			 const char *name)
1135 {
1136 	struct iio_dev *indio_dev;
1137 	struct mpu3050 *mpu3050;
1138 	unsigned int val;
1139 	int ret;
1140 
1141 	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1142 	if (!indio_dev)
1143 		return -ENOMEM;
1144 	mpu3050 = iio_priv(indio_dev);
1145 
1146 	mpu3050->dev = dev;
1147 	mpu3050->map = map;
1148 	mutex_init(&mpu3050->lock);
1149 	/* Default fullscale: 2000 degrees per second */
1150 	mpu3050->fullscale = FS_2000_DPS;
1151 	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1152 	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1153 	mpu3050->divisor = 99;
1154 
1155 	/* Read the mounting matrix, if present */
1156 	ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1157 	if (ret)
1158 		return ret;
1159 
1160 	/* Fetch and turn on regulators */
1161 	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1162 	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1163 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1164 				      mpu3050->regs);
1165 	if (ret) {
1166 		dev_err(dev, "Cannot get regulators\n");
1167 		return ret;
1168 	}
1169 
1170 	ret = mpu3050_power_up(mpu3050);
1171 	if (ret)
1172 		return ret;
1173 
1174 	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1175 	if (ret) {
1176 		dev_err(dev, "could not read device ID\n");
1177 		ret = -ENODEV;
1178 
1179 		goto err_power_down;
1180 	}
1181 
1182 	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1183 		dev_err(dev, "unsupported chip id %02x\n",
1184 				(u8)(val & MPU3050_CHIP_ID_MASK));
1185 		ret = -ENODEV;
1186 		goto err_power_down;
1187 	}
1188 
1189 	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1190 	if (ret) {
1191 		dev_err(dev, "could not read device ID\n");
1192 		ret = -ENODEV;
1193 
1194 		goto err_power_down;
1195 	}
1196 	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1197 		 ((val >> 4) & 0xf), (val & 0xf));
1198 
1199 	ret = mpu3050_hw_init(mpu3050);
1200 	if (ret)
1201 		goto err_power_down;
1202 
1203 	indio_dev->channels = mpu3050_channels;
1204 	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1205 	indio_dev->info = &mpu3050_info;
1206 	indio_dev->available_scan_masks = mpu3050_scan_masks;
1207 	indio_dev->modes = INDIO_DIRECT_MODE;
1208 	indio_dev->name = name;
1209 
1210 	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1211 					 mpu3050_trigger_handler,
1212 					 &mpu3050_buffer_setup_ops);
1213 	if (ret) {
1214 		dev_err(dev, "triggered buffer setup failed\n");
1215 		goto err_power_down;
1216 	}
1217 
1218 	ret = iio_device_register(indio_dev);
1219 	if (ret) {
1220 		dev_err(dev, "device register failed\n");
1221 		goto err_cleanup_buffer;
1222 	}
1223 
1224 	dev_set_drvdata(dev, indio_dev);
1225 
1226 	/* Check if we have an assigned IRQ to use as trigger */
1227 	if (irq) {
1228 		ret = mpu3050_trigger_probe(indio_dev, irq);
1229 		if (ret)
1230 			dev_err(dev, "failed to register trigger\n");
1231 	}
1232 
1233 	/* Enable runtime PM */
1234 	pm_runtime_get_noresume(dev);
1235 	pm_runtime_set_active(dev);
1236 	pm_runtime_enable(dev);
1237 	/*
1238 	 * Set autosuspend to two orders of magnitude larger than the
1239 	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1240 	 * i.e. 10 seconds.
1241 	 */
1242 	pm_runtime_set_autosuspend_delay(dev, 10000);
1243 	pm_runtime_use_autosuspend(dev);
1244 	pm_runtime_put(dev);
1245 
1246 	return 0;
1247 
1248 err_cleanup_buffer:
1249 	iio_triggered_buffer_cleanup(indio_dev);
1250 err_power_down:
1251 	mpu3050_power_down(mpu3050);
1252 
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL(mpu3050_common_probe);
1256 
1257 int mpu3050_common_remove(struct device *dev)
1258 {
1259 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1260 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1261 
1262 	pm_runtime_get_sync(dev);
1263 	pm_runtime_put_noidle(dev);
1264 	pm_runtime_disable(dev);
1265 	iio_triggered_buffer_cleanup(indio_dev);
1266 	if (mpu3050->irq)
1267 		free_irq(mpu3050->irq, mpu3050);
1268 	iio_device_unregister(indio_dev);
1269 	mpu3050_power_down(mpu3050);
1270 
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL(mpu3050_common_remove);
1274 
1275 #ifdef CONFIG_PM
1276 static int mpu3050_runtime_suspend(struct device *dev)
1277 {
1278 	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1279 }
1280 
1281 static int mpu3050_runtime_resume(struct device *dev)
1282 {
1283 	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1284 }
1285 #endif /* CONFIG_PM */
1286 
1287 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1288 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1289 				pm_runtime_force_resume)
1290 	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1291 			   mpu3050_runtime_resume, NULL)
1292 };
1293 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1294 
1295 MODULE_AUTHOR("Linus Walleij");
1296 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1297 MODULE_LICENSE("GPL");
1298