xref: /openbmc/linux/drivers/iio/adc/aspeed_adc.c (revision 6614a3c3164a5df2b54abb0b3559f51041cf705b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aspeed AST2400/2500/2600 ADC
4  *
5  * Copyright (C) 2017 Google, Inc.
6  * Copyright (C) 2021 Aspeed Technology Inc.
7  *
8  * ADC clock formula:
9  * Ast2400/Ast2500:
10  * clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
11  * Ast2600:
12  * clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/reset.h>
25 #include <linux/spinlock.h>
26 #include <linux/types.h>
27 #include <linux/bitfield.h>
28 #include <linux/regmap.h>
29 #include <linux/mfd/syscon.h>
30 
31 #include <linux/iio/iio.h>
32 #include <linux/iio/driver.h>
33 #include <linux/iopoll.h>
34 
35 #define ASPEED_RESOLUTION_BITS		10
36 #define ASPEED_CLOCKS_PER_SAMPLE	12
37 
38 #define ASPEED_REG_ENGINE_CONTROL	0x00
39 #define ASPEED_REG_INTERRUPT_CONTROL	0x04
40 #define ASPEED_REG_VGA_DETECT_CONTROL	0x08
41 #define ASPEED_REG_CLOCK_CONTROL	0x0C
42 #define ASPEED_REG_COMPENSATION_TRIM	0xC4
43 /*
44  * The register offset between 0xC8~0xCC can be read and won't affect the
45  * hardware logic in each version of ADC.
46  */
47 #define ASPEED_REG_MAX			0xD0
48 
49 #define ASPEED_ADC_ENGINE_ENABLE		BIT(0)
50 #define ASPEED_ADC_OP_MODE			GENMASK(3, 1)
51 #define ASPEED_ADC_OP_MODE_PWR_DOWN		0
52 #define ASPEED_ADC_OP_MODE_STANDBY		1
53 #define ASPEED_ADC_OP_MODE_NORMAL		7
54 #define ASPEED_ADC_CTRL_COMPENSATION		BIT(4)
55 #define ASPEED_ADC_AUTO_COMPENSATION		BIT(5)
56 /*
57  * Bit 6 determines not only the reference voltage range but also the dividing
58  * circuit for battery sensing.
59  */
60 #define ASPEED_ADC_REF_VOLTAGE			GENMASK(7, 6)
61 #define ASPEED_ADC_REF_VOLTAGE_2500mV		0
62 #define ASPEED_ADC_REF_VOLTAGE_1200mV		1
63 #define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH		2
64 #define ASPEED_ADC_REF_VOLTAGE_EXT_LOW		3
65 #define ASPEED_ADC_BAT_SENSING_DIV		BIT(6)
66 #define ASPEED_ADC_BAT_SENSING_DIV_2_3		0
67 #define ASPEED_ADC_BAT_SENSING_DIV_1_3		1
68 #define ASPEED_ADC_CTRL_INIT_RDY		BIT(8)
69 #define ASPEED_ADC_CH7_MODE			BIT(12)
70 #define ASPEED_ADC_CH7_NORMAL			0
71 #define ASPEED_ADC_CH7_BAT			1
72 #define ASPEED_ADC_BAT_SENSING_ENABLE		BIT(13)
73 #define ASPEED_ADC_CTRL_CHANNEL			GENMASK(31, 16)
74 #define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch)	FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
75 
76 #define ASPEED_ADC_INIT_POLLING_TIME	500
77 #define ASPEED_ADC_INIT_TIMEOUT		500000
78 /*
79  * When the sampling rate is too high, the ADC may not have enough charging
80  * time, resulting in a low voltage value. Thus, the default uses a slow
81  * sampling rate for most use cases.
82  */
83 #define ASPEED_ADC_DEF_SAMPLING_RATE	65000
84 
85 struct aspeed_adc_trim_locate {
86 	const unsigned int offset;
87 	const unsigned int field;
88 };
89 
90 struct aspeed_adc_model_data {
91 	const char *model_name;
92 	unsigned int min_sampling_rate;	// Hz
93 	unsigned int max_sampling_rate;	// Hz
94 	unsigned int vref_fixed_mv;
95 	bool wait_init_sequence;
96 	bool need_prescaler;
97 	bool bat_sense_sup;
98 	u8 scaler_bit_width;
99 	unsigned int num_channels;
100 	const struct aspeed_adc_trim_locate *trim_locate;
101 };
102 
103 struct adc_gain {
104 	u8 mult;
105 	u8 div;
106 };
107 
108 struct aspeed_adc_data {
109 	struct device		*dev;
110 	const struct aspeed_adc_model_data *model_data;
111 	struct regulator	*regulator;
112 	void __iomem		*base;
113 	spinlock_t		clk_lock;
114 	struct clk_hw		*fixed_div_clk;
115 	struct clk_hw		*clk_prescaler;
116 	struct clk_hw		*clk_scaler;
117 	struct reset_control	*rst;
118 	int			vref_mv;
119 	u32			sample_period_ns;
120 	int			cv;
121 	bool			battery_sensing;
122 	struct adc_gain		battery_mode_gain;
123 };
124 
125 #define ASPEED_CHAN(_idx, _data_reg_addr) {			\
126 	.type = IIO_VOLTAGE,					\
127 	.indexed = 1,						\
128 	.channel = (_idx),					\
129 	.address = (_data_reg_addr),				\
130 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
131 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
132 				BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
133 				BIT(IIO_CHAN_INFO_OFFSET),	\
134 }
135 
136 static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
137 	ASPEED_CHAN(0, 0x10),
138 	ASPEED_CHAN(1, 0x12),
139 	ASPEED_CHAN(2, 0x14),
140 	ASPEED_CHAN(3, 0x16),
141 	ASPEED_CHAN(4, 0x18),
142 	ASPEED_CHAN(5, 0x1A),
143 	ASPEED_CHAN(6, 0x1C),
144 	ASPEED_CHAN(7, 0x1E),
145 	ASPEED_CHAN(8, 0x20),
146 	ASPEED_CHAN(9, 0x22),
147 	ASPEED_CHAN(10, 0x24),
148 	ASPEED_CHAN(11, 0x26),
149 	ASPEED_CHAN(12, 0x28),
150 	ASPEED_CHAN(13, 0x2A),
151 	ASPEED_CHAN(14, 0x2C),
152 	ASPEED_CHAN(15, 0x2E),
153 };
154 
155 #define ASPEED_BAT_CHAN(_idx, _data_reg_addr) {					\
156 		.type = IIO_VOLTAGE,						\
157 		.indexed = 1,							\
158 		.channel = (_idx),						\
159 		.address = (_data_reg_addr),					\
160 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
161 				      BIT(IIO_CHAN_INFO_OFFSET),		\
162 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
163 					    BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
164 }
165 static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
166 	ASPEED_CHAN(0, 0x10),
167 	ASPEED_CHAN(1, 0x12),
168 	ASPEED_CHAN(2, 0x14),
169 	ASPEED_CHAN(3, 0x16),
170 	ASPEED_CHAN(4, 0x18),
171 	ASPEED_CHAN(5, 0x1A),
172 	ASPEED_CHAN(6, 0x1C),
173 	ASPEED_BAT_CHAN(7, 0x1E),
174 };
175 
176 static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
177 {
178 	struct device_node *syscon;
179 	struct regmap *scu;
180 	u32 scu_otp, trimming_val;
181 	struct aspeed_adc_data *data = iio_priv(indio_dev);
182 
183 	syscon = of_find_node_by_name(NULL, "syscon");
184 	if (syscon == NULL) {
185 		dev_warn(data->dev, "Couldn't find syscon node\n");
186 		return -EOPNOTSUPP;
187 	}
188 	scu = syscon_node_to_regmap(syscon);
189 	of_node_put(syscon);
190 	if (IS_ERR(scu)) {
191 		dev_warn(data->dev, "Failed to get syscon regmap\n");
192 		return -EOPNOTSUPP;
193 	}
194 	if (data->model_data->trim_locate) {
195 		if (regmap_read(scu, data->model_data->trim_locate->offset,
196 				&scu_otp)) {
197 			dev_warn(data->dev,
198 				 "Failed to get adc trimming data\n");
199 			trimming_val = 0x8;
200 		} else {
201 			trimming_val =
202 				((scu_otp) &
203 				 (data->model_data->trim_locate->field)) >>
204 				__ffs(data->model_data->trim_locate->field);
205 		}
206 		dev_dbg(data->dev,
207 			"trimming val = %d, offset = %08x, fields = %08x\n",
208 			trimming_val, data->model_data->trim_locate->offset,
209 			data->model_data->trim_locate->field);
210 		writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
211 	}
212 	return 0;
213 }
214 
215 static int aspeed_adc_compensation(struct iio_dev *indio_dev)
216 {
217 	struct aspeed_adc_data *data = iio_priv(indio_dev);
218 	u32 index, adc_raw = 0;
219 	u32 adc_engine_control_reg_val;
220 
221 	adc_engine_control_reg_val =
222 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
223 	adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
224 	adc_engine_control_reg_val |=
225 		(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
226 		 ASPEED_ADC_ENGINE_ENABLE);
227 	/*
228 	 * Enable compensating sensing:
229 	 * After that, the input voltage of ADC will force to half of the reference
230 	 * voltage. So the expected reading raw data will become half of the max
231 	 * value. We can get compensating value = 0x200 - ADC read raw value.
232 	 * It is recommended to average at least 10 samples to get a final CV.
233 	 */
234 	writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
235 		       ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
236 	       data->base + ASPEED_REG_ENGINE_CONTROL);
237 	/*
238 	 * After enable compensating sensing mode need to wait some time for ADC stable
239 	 * Experiment result is 1ms.
240 	 */
241 	mdelay(1);
242 
243 	for (index = 0; index < 16; index++) {
244 		/*
245 		 * Waiting for the sampling period ensures that the value acquired
246 		 * is fresh each time.
247 		 */
248 		ndelay(data->sample_period_ns);
249 		adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
250 	}
251 	adc_raw >>= 4;
252 	data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
253 	writel(adc_engine_control_reg_val,
254 	       data->base + ASPEED_REG_ENGINE_CONTROL);
255 	dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
256 
257 	return 0;
258 }
259 
260 static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
261 {
262 	struct aspeed_adc_data *data = iio_priv(indio_dev);
263 
264 	if (rate < data->model_data->min_sampling_rate ||
265 	    rate > data->model_data->max_sampling_rate)
266 		return -EINVAL;
267 	/* Each sampling needs 12 clocks to convert.*/
268 	clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
269 	rate = clk_get_rate(data->clk_scaler->clk);
270 	data->sample_period_ns = DIV_ROUND_UP_ULL(
271 		(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
272 	dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
273 		data->sample_period_ns);
274 
275 	return 0;
276 }
277 
278 static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
279 			       struct iio_chan_spec const *chan,
280 			       int *val, int *val2, long mask)
281 {
282 	struct aspeed_adc_data *data = iio_priv(indio_dev);
283 	u32 adc_engine_control_reg_val;
284 
285 	switch (mask) {
286 	case IIO_CHAN_INFO_RAW:
287 		if (data->battery_sensing && chan->channel == 7) {
288 			adc_engine_control_reg_val =
289 				readl(data->base + ASPEED_REG_ENGINE_CONTROL);
290 			writel(adc_engine_control_reg_val |
291 				       FIELD_PREP(ASPEED_ADC_CH7_MODE,
292 						  ASPEED_ADC_CH7_BAT) |
293 				       ASPEED_ADC_BAT_SENSING_ENABLE,
294 			       data->base + ASPEED_REG_ENGINE_CONTROL);
295 			/*
296 			 * After enable battery sensing mode need to wait some time for adc stable
297 			 * Experiment result is 1ms.
298 			 */
299 			mdelay(1);
300 			*val = readw(data->base + chan->address);
301 			*val = (*val * data->battery_mode_gain.mult) /
302 			       data->battery_mode_gain.div;
303 			/* Restore control register value */
304 			writel(adc_engine_control_reg_val,
305 			       data->base + ASPEED_REG_ENGINE_CONTROL);
306 		} else
307 			*val = readw(data->base + chan->address);
308 		return IIO_VAL_INT;
309 
310 	case IIO_CHAN_INFO_OFFSET:
311 		if (data->battery_sensing && chan->channel == 7)
312 			*val = (data->cv * data->battery_mode_gain.mult) /
313 			       data->battery_mode_gain.div;
314 		else
315 			*val = data->cv;
316 		return IIO_VAL_INT;
317 
318 	case IIO_CHAN_INFO_SCALE:
319 		*val = data->vref_mv;
320 		*val2 = ASPEED_RESOLUTION_BITS;
321 		return IIO_VAL_FRACTIONAL_LOG2;
322 
323 	case IIO_CHAN_INFO_SAMP_FREQ:
324 		*val = clk_get_rate(data->clk_scaler->clk) /
325 				ASPEED_CLOCKS_PER_SAMPLE;
326 		return IIO_VAL_INT;
327 
328 	default:
329 		return -EINVAL;
330 	}
331 }
332 
333 static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
334 				struct iio_chan_spec const *chan,
335 				int val, int val2, long mask)
336 {
337 	switch (mask) {
338 	case IIO_CHAN_INFO_SAMP_FREQ:
339 		return aspeed_adc_set_sampling_rate(indio_dev, val);
340 
341 	case IIO_CHAN_INFO_SCALE:
342 	case IIO_CHAN_INFO_RAW:
343 		/*
344 		 * Technically, these could be written but the only reasons
345 		 * for doing so seem better handled in userspace.  EPERM is
346 		 * returned to signal this is a policy choice rather than a
347 		 * hardware limitation.
348 		 */
349 		return -EPERM;
350 
351 	default:
352 		return -EINVAL;
353 	}
354 }
355 
356 static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
357 				 unsigned int reg, unsigned int writeval,
358 				 unsigned int *readval)
359 {
360 	struct aspeed_adc_data *data = iio_priv(indio_dev);
361 
362 	if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
363 		return -EINVAL;
364 
365 	*readval = readl(data->base + reg);
366 
367 	return 0;
368 }
369 
370 static const struct iio_info aspeed_adc_iio_info = {
371 	.read_raw = aspeed_adc_read_raw,
372 	.write_raw = aspeed_adc_write_raw,
373 	.debugfs_reg_access = aspeed_adc_reg_access,
374 };
375 
376 static void aspeed_adc_unregister_fixed_divider(void *data)
377 {
378 	struct clk_hw *clk = data;
379 
380 	clk_hw_unregister_fixed_factor(clk);
381 }
382 
383 static void aspeed_adc_reset_assert(void *data)
384 {
385 	struct reset_control *rst = data;
386 
387 	reset_control_assert(rst);
388 }
389 
390 static void aspeed_adc_clk_disable_unprepare(void *data)
391 {
392 	struct clk *clk = data;
393 
394 	clk_disable_unprepare(clk);
395 }
396 
397 static void aspeed_adc_power_down(void *data)
398 {
399 	struct aspeed_adc_data *priv_data = data;
400 
401 	writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
402 	       priv_data->base + ASPEED_REG_ENGINE_CONTROL);
403 }
404 
405 static void aspeed_adc_reg_disable(void *data)
406 {
407 	struct regulator *reg = data;
408 
409 	regulator_disable(reg);
410 }
411 
412 static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
413 {
414 	struct aspeed_adc_data *data = iio_priv(indio_dev);
415 	int ret;
416 	u32 adc_engine_control_reg_val;
417 
418 	if (data->model_data->vref_fixed_mv) {
419 		data->vref_mv = data->model_data->vref_fixed_mv;
420 		return 0;
421 	}
422 	adc_engine_control_reg_val =
423 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
424 	data->regulator = devm_regulator_get_optional(data->dev, "vref");
425 	if (!IS_ERR(data->regulator)) {
426 		ret = regulator_enable(data->regulator);
427 		if (ret)
428 			return ret;
429 		ret = devm_add_action_or_reset(
430 			data->dev, aspeed_adc_reg_disable, data->regulator);
431 		if (ret)
432 			return ret;
433 		data->vref_mv = regulator_get_voltage(data->regulator);
434 		/* Conversion from uV to mV */
435 		data->vref_mv /= 1000;
436 		if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
437 			writel(adc_engine_control_reg_val |
438 				FIELD_PREP(
439 					ASPEED_ADC_REF_VOLTAGE,
440 					ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
441 			data->base + ASPEED_REG_ENGINE_CONTROL);
442 		else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
443 			writel(adc_engine_control_reg_val |
444 				FIELD_PREP(
445 					ASPEED_ADC_REF_VOLTAGE,
446 					ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
447 			data->base + ASPEED_REG_ENGINE_CONTROL);
448 		else {
449 			dev_err(data->dev, "Regulator voltage %d not support",
450 				data->vref_mv);
451 			return -EOPNOTSUPP;
452 		}
453 	} else {
454 		if (PTR_ERR(data->regulator) != -ENODEV)
455 			return PTR_ERR(data->regulator);
456 		data->vref_mv = 2500000;
457 		of_property_read_u32(data->dev->of_node,
458 				     "aspeed,int-vref-microvolt",
459 				     &data->vref_mv);
460 		/* Conversion from uV to mV */
461 		data->vref_mv /= 1000;
462 		if (data->vref_mv == 2500)
463 			writel(adc_engine_control_reg_val |
464 				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
465 						ASPEED_ADC_REF_VOLTAGE_2500mV),
466 			data->base + ASPEED_REG_ENGINE_CONTROL);
467 		else if (data->vref_mv == 1200)
468 			writel(adc_engine_control_reg_val |
469 				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
470 						ASPEED_ADC_REF_VOLTAGE_1200mV),
471 			data->base + ASPEED_REG_ENGINE_CONTROL);
472 		else {
473 			dev_err(data->dev, "Voltage %d not support", data->vref_mv);
474 			return -EOPNOTSUPP;
475 		}
476 	}
477 
478 	return 0;
479 }
480 
481 static int aspeed_adc_probe(struct platform_device *pdev)
482 {
483 	struct iio_dev *indio_dev;
484 	struct aspeed_adc_data *data;
485 	int ret;
486 	u32 adc_engine_control_reg_val;
487 	unsigned long scaler_flags = 0;
488 	char clk_name[32], clk_parent_name[32];
489 
490 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
491 	if (!indio_dev)
492 		return -ENOMEM;
493 
494 	data = iio_priv(indio_dev);
495 	data->dev = &pdev->dev;
496 	data->model_data = of_device_get_match_data(&pdev->dev);
497 	platform_set_drvdata(pdev, indio_dev);
498 
499 	data->base = devm_platform_ioremap_resource(pdev, 0);
500 	if (IS_ERR(data->base))
501 		return PTR_ERR(data->base);
502 
503 	/* Register ADC clock prescaler with source specified by device tree. */
504 	spin_lock_init(&data->clk_lock);
505 	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
506 		 of_clk_get_parent_name(pdev->dev.of_node, 0));
507 	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
508 		 data->model_data->model_name);
509 	data->fixed_div_clk = clk_hw_register_fixed_factor(
510 		&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
511 	if (IS_ERR(data->fixed_div_clk))
512 		return PTR_ERR(data->fixed_div_clk);
513 
514 	ret = devm_add_action_or_reset(data->dev,
515 				       aspeed_adc_unregister_fixed_divider,
516 				       data->fixed_div_clk);
517 	if (ret)
518 		return ret;
519 	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
520 
521 	if (data->model_data->need_prescaler) {
522 		snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
523 			 data->model_data->model_name);
524 		data->clk_prescaler = devm_clk_hw_register_divider(
525 			&pdev->dev, clk_name, clk_parent_name, 0,
526 			data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
527 			&data->clk_lock);
528 		if (IS_ERR(data->clk_prescaler))
529 			return PTR_ERR(data->clk_prescaler);
530 		snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
531 			 clk_name);
532 		scaler_flags = CLK_SET_RATE_PARENT;
533 	}
534 	/*
535 	 * Register ADC clock scaler downstream from the prescaler. Allow rate
536 	 * setting to adjust the prescaler as well.
537 	 */
538 	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
539 		 data->model_data->model_name);
540 	data->clk_scaler = devm_clk_hw_register_divider(
541 		&pdev->dev, clk_name, clk_parent_name, scaler_flags,
542 		data->base + ASPEED_REG_CLOCK_CONTROL, 0,
543 		data->model_data->scaler_bit_width,
544 		data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
545 		&data->clk_lock);
546 	if (IS_ERR(data->clk_scaler))
547 		return PTR_ERR(data->clk_scaler);
548 
549 	data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
550 	if (IS_ERR(data->rst)) {
551 		dev_err(&pdev->dev,
552 			"invalid or missing reset controller device tree entry");
553 		return PTR_ERR(data->rst);
554 	}
555 	reset_control_deassert(data->rst);
556 
557 	ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
558 				       data->rst);
559 	if (ret)
560 		return ret;
561 
562 	ret = aspeed_adc_vref_config(indio_dev);
563 	if (ret)
564 		return ret;
565 
566 	if (of_find_property(data->dev->of_node, "aspeed,trim-data-valid",
567 			     NULL)) {
568 		ret = aspeed_adc_set_trim_data(indio_dev);
569 		if (ret)
570 			return ret;
571 	}
572 
573 	if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
574 			     NULL)) {
575 		if (data->model_data->bat_sense_sup) {
576 			data->battery_sensing = 1;
577 			if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
578 			    ASPEED_ADC_BAT_SENSING_DIV) {
579 				data->battery_mode_gain.mult = 3;
580 				data->battery_mode_gain.div = 1;
581 			} else {
582 				data->battery_mode_gain.mult = 3;
583 				data->battery_mode_gain.div = 2;
584 			}
585 		} else
586 			dev_warn(&pdev->dev,
587 				 "Failed to enable battery-sensing mode\n");
588 	}
589 
590 	ret = clk_prepare_enable(data->clk_scaler->clk);
591 	if (ret)
592 		return ret;
593 	ret = devm_add_action_or_reset(data->dev,
594 				       aspeed_adc_clk_disable_unprepare,
595 				       data->clk_scaler->clk);
596 	if (ret)
597 		return ret;
598 	ret = aspeed_adc_set_sampling_rate(indio_dev,
599 					   ASPEED_ADC_DEF_SAMPLING_RATE);
600 	if (ret)
601 		return ret;
602 
603 	adc_engine_control_reg_val =
604 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
605 	adc_engine_control_reg_val |=
606 		FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
607 		ASPEED_ADC_ENGINE_ENABLE;
608 	/* Enable engine in normal mode. */
609 	writel(adc_engine_control_reg_val,
610 	       data->base + ASPEED_REG_ENGINE_CONTROL);
611 
612 	ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
613 					data);
614 	if (ret)
615 		return ret;
616 
617 	if (data->model_data->wait_init_sequence) {
618 		/* Wait for initial sequence complete. */
619 		ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
620 					 adc_engine_control_reg_val,
621 					 adc_engine_control_reg_val &
622 					 ASPEED_ADC_CTRL_INIT_RDY,
623 					 ASPEED_ADC_INIT_POLLING_TIME,
624 					 ASPEED_ADC_INIT_TIMEOUT);
625 		if (ret)
626 			return ret;
627 	}
628 
629 	aspeed_adc_compensation(indio_dev);
630 	/* Start all channels in normal mode. */
631 	adc_engine_control_reg_val =
632 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
633 	adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
634 	writel(adc_engine_control_reg_val,
635 	       data->base + ASPEED_REG_ENGINE_CONTROL);
636 
637 	indio_dev->name = data->model_data->model_name;
638 	indio_dev->info = &aspeed_adc_iio_info;
639 	indio_dev->modes = INDIO_DIRECT_MODE;
640 	indio_dev->channels = data->battery_sensing ?
641 					    aspeed_adc_iio_bat_channels :
642 					    aspeed_adc_iio_channels;
643 	indio_dev->num_channels = data->model_data->num_channels;
644 
645 	ret = devm_iio_device_register(data->dev, indio_dev);
646 	return ret;
647 }
648 
649 static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
650 	.offset = 0x154,
651 	.field = GENMASK(31, 28),
652 };
653 
654 static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
655 	.offset = 0x5d0,
656 	.field = GENMASK(3, 0),
657 };
658 
659 static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
660 	.offset = 0x5d0,
661 	.field = GENMASK(7, 4),
662 };
663 
664 static const struct aspeed_adc_model_data ast2400_model_data = {
665 	.model_name = "ast2400-adc",
666 	.vref_fixed_mv = 2500,
667 	.min_sampling_rate = 10000,
668 	.max_sampling_rate = 500000,
669 	.need_prescaler = true,
670 	.scaler_bit_width = 10,
671 	.num_channels = 16,
672 };
673 
674 static const struct aspeed_adc_model_data ast2500_model_data = {
675 	.model_name = "ast2500-adc",
676 	.vref_fixed_mv = 1800,
677 	.min_sampling_rate = 1,
678 	.max_sampling_rate = 1000000,
679 	.wait_init_sequence = true,
680 	.need_prescaler = true,
681 	.scaler_bit_width = 10,
682 	.num_channels = 16,
683 	.trim_locate = &ast2500_adc_trim,
684 };
685 
686 static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
687 	.model_name = "ast2600-adc0",
688 	.min_sampling_rate = 10000,
689 	.max_sampling_rate = 500000,
690 	.wait_init_sequence = true,
691 	.bat_sense_sup = true,
692 	.scaler_bit_width = 16,
693 	.num_channels = 8,
694 	.trim_locate = &ast2600_adc0_trim,
695 };
696 
697 static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
698 	.model_name = "ast2600-adc1",
699 	.min_sampling_rate = 10000,
700 	.max_sampling_rate = 500000,
701 	.wait_init_sequence = true,
702 	.bat_sense_sup = true,
703 	.scaler_bit_width = 16,
704 	.num_channels = 8,
705 	.trim_locate = &ast2600_adc1_trim,
706 };
707 
708 static const struct of_device_id aspeed_adc_matches[] = {
709 	{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
710 	{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
711 	{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
712 	{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
713 	{},
714 };
715 MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
716 
717 static struct platform_driver aspeed_adc_driver = {
718 	.probe = aspeed_adc_probe,
719 	.driver = {
720 		.name = KBUILD_MODNAME,
721 		.of_match_table = aspeed_adc_matches,
722 	}
723 };
724 
725 module_platform_driver(aspeed_adc_driver);
726 
727 MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
728 MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
729 MODULE_LICENSE("GPL");
730