xref: /openbmc/linux/drivers/iio/accel/bmc150-accel-core.c (revision 077e5f4f5528777ab72f4dc336569207504dc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
4  * Copyright (c) 2014, Intel Corporation.
5  */
6 
7 #include <linux/module.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/acpi.h>
13 #include <linux/of_irq.h>
14 #include <linux/pm.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include "bmc150-accel.h"
27 
28 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
29 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
30 
31 #define BMC150_ACCEL_REG_CHIP_ID		0x00
32 
33 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
34 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
35 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
36 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
37 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
38 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
39 
40 #define BMC150_ACCEL_REG_PMU_LPW		0x11
41 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
42 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
43 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
44 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
45 
46 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
47 
48 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
49 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
50 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
51 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
52 
53 /* Default BW: 125Hz */
54 #define BMC150_ACCEL_REG_PMU_BW		0x10
55 #define BMC150_ACCEL_DEF_BW			125
56 
57 #define BMC150_ACCEL_REG_RESET			0x14
58 #define BMC150_ACCEL_RESET_VAL			0xB6
59 
60 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
61 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE	BIT(2)
62 
63 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
64 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA	BIT(0)
65 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM	BIT(1)
66 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL	BIT(2)
67 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL	BIT(5)
68 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM	BIT(6)
69 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA	BIT(7)
70 
71 #define BMC150_ACCEL_REG_INT_MAP_2		0x1B
72 #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE	BIT(2)
73 
74 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
75 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
76 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
77 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
78 
79 #define BMC150_ACCEL_REG_INT_EN_0		0x16
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
82 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
83 
84 #define BMC150_ACCEL_REG_INT_EN_1		0x17
85 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
86 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
87 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
88 
89 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
90 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
91 #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL	BIT(2)
92 
93 #define BMC150_ACCEL_REG_INT_5			0x27
94 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
95 
96 #define BMC150_ACCEL_REG_INT_6			0x28
97 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
98 
99 /* Slope duration in terms of number of samples */
100 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101 /* in terms of multiples of g's/LSB, based on range */
102 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 
104 #define BMC150_ACCEL_REG_XOUT_L		0x02
105 
106 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
107 
108 /* Sleep Duration values */
109 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
110 #define BMC150_ACCEL_SLEEP_1_MS		0x06
111 #define BMC150_ACCEL_SLEEP_2_MS		0x07
112 #define BMC150_ACCEL_SLEEP_4_MS		0x08
113 #define BMC150_ACCEL_SLEEP_6_MS		0x09
114 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
115 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
116 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
117 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
118 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
119 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
120 
121 #define BMC150_ACCEL_REG_TEMP			0x08
122 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 
124 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
125 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
126 
127 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
128 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
129 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
130 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
131 #define BMC150_ACCEL_FIFO_LENGTH		32
132 
133 enum bmc150_accel_axis {
134 	AXIS_X,
135 	AXIS_Y,
136 	AXIS_Z,
137 	AXIS_MAX,
138 };
139 
140 enum bmc150_power_modes {
141 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
142 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
143 	BMC150_ACCEL_SLEEP_MODE_LPM,
144 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
145 };
146 
147 struct bmc150_scale_info {
148 	int scale;
149 	u8 reg_range;
150 };
151 
152 struct bmc150_accel_chip_info {
153 	const char *name;
154 	u8 chip_id;
155 	const struct iio_chan_spec *channels;
156 	int num_channels;
157 	const struct bmc150_scale_info scale_table[4];
158 };
159 
160 static const struct {
161 	int val;
162 	int val2;
163 	u8 bw_bits;
164 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
165 				     {31, 260000, 0x09},
166 				     {62, 500000, 0x0A},
167 				     {125, 0, 0x0B},
168 				     {250, 0, 0x0C},
169 				     {500, 0, 0x0D},
170 				     {1000, 0, 0x0E},
171 				     {2000, 0, 0x0F} };
172 
173 static __maybe_unused const struct {
174 	int bw_bits;
175 	int msec;
176 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
177 				     {0x09, 32},
178 				     {0x0A, 16},
179 				     {0x0B, 8},
180 				     {0x0C, 4},
181 				     {0x0D, 2},
182 				     {0x0E, 1},
183 				     {0x0F, 1} };
184 
185 static const struct {
186 	int sleep_dur;
187 	u8 reg_value;
188 } bmc150_accel_sleep_value_table[] = { {0, 0},
189 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
190 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
191 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
192 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
193 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
194 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
195 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
196 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
197 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
198 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
199 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
200 
201 const struct regmap_config bmc150_regmap_conf = {
202 	.reg_bits = 8,
203 	.val_bits = 8,
204 	.max_register = 0x3f,
205 };
206 EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, IIO_BMC150);
207 
208 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
209 				 enum bmc150_power_modes mode,
210 				 int dur_us)
211 {
212 	struct device *dev = regmap_get_device(data->regmap);
213 	int i;
214 	int ret;
215 	u8 lpw_bits;
216 	int dur_val = -1;
217 
218 	if (dur_us > 0) {
219 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
220 									 ++i) {
221 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
222 									dur_us)
223 				dur_val =
224 				bmc150_accel_sleep_value_table[i].reg_value;
225 		}
226 	} else {
227 		dur_val = 0;
228 	}
229 
230 	if (dur_val < 0)
231 		return -EINVAL;
232 
233 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
234 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
235 
236 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
237 
238 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
239 	if (ret < 0) {
240 		dev_err(dev, "Error writing reg_pmu_lpw\n");
241 		return ret;
242 	}
243 
244 	return 0;
245 }
246 
247 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
248 			       int val2)
249 {
250 	int i;
251 	int ret;
252 
253 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
254 		if (bmc150_accel_samp_freq_table[i].val == val &&
255 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
256 			ret = regmap_write(data->regmap,
257 				BMC150_ACCEL_REG_PMU_BW,
258 				bmc150_accel_samp_freq_table[i].bw_bits);
259 			if (ret < 0)
260 				return ret;
261 
262 			data->bw_bits =
263 				bmc150_accel_samp_freq_table[i].bw_bits;
264 			return 0;
265 		}
266 	}
267 
268 	return -EINVAL;
269 }
270 
271 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
272 {
273 	struct device *dev = regmap_get_device(data->regmap);
274 	int ret;
275 
276 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
277 					data->slope_thres);
278 	if (ret < 0) {
279 		dev_err(dev, "Error writing reg_int_6\n");
280 		return ret;
281 	}
282 
283 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
284 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
285 	if (ret < 0) {
286 		dev_err(dev, "Error updating reg_int_5\n");
287 		return ret;
288 	}
289 
290 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
291 
292 	return ret;
293 }
294 
295 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
296 					 bool state)
297 {
298 	if (state)
299 		return bmc150_accel_update_slope(t->data);
300 
301 	return 0;
302 }
303 
304 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
305 			       int *val2)
306 {
307 	int i;
308 
309 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
310 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
311 			*val = bmc150_accel_samp_freq_table[i].val;
312 			*val2 = bmc150_accel_samp_freq_table[i].val2;
313 			return IIO_VAL_INT_PLUS_MICRO;
314 		}
315 	}
316 
317 	return -EINVAL;
318 }
319 
320 #ifdef CONFIG_PM
321 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
326 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
327 			return bmc150_accel_sample_upd_time[i].msec;
328 	}
329 
330 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
331 }
332 
333 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
334 {
335 	struct device *dev = regmap_get_device(data->regmap);
336 	int ret;
337 
338 	if (on) {
339 		ret = pm_runtime_resume_and_get(dev);
340 	} else {
341 		pm_runtime_mark_last_busy(dev);
342 		ret = pm_runtime_put_autosuspend(dev);
343 	}
344 
345 	if (ret < 0) {
346 		dev_err(dev,
347 			"Failed: %s for %d\n", __func__, on);
348 		return ret;
349 	}
350 
351 	return 0;
352 }
353 #else
354 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
355 {
356 	return 0;
357 }
358 #endif
359 
360 #ifdef CONFIG_ACPI
361 /*
362  * Support for getting accelerometer information from BOSC0200 ACPI nodes.
363  *
364  * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
365  * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
366  * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
367  * contains the mount-matrix for the sensor in the display and ROMK contains
368  * the mount-matrix for the sensor in the base. On devices using a single
369  * sensor there is a ROTM ACPI object which contains the mount-matrix.
370  *
371  * Here is an incomplete list of devices known to use 1 of these setups:
372  *
373  * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
374  * Lenovo Thinkpad Yoga 11e 3th gen
375  * Lenovo Thinkpad Yoga 11e 4th gen
376  *
377  * Tablets using a single accelerometer using ROTM for the mount-matrix:
378  * Chuwi Hi8 Pro (CWI513)
379  * Chuwi Vi8 Plus (CWI519)
380  * Chuwi Hi13
381  * Irbis TW90
382  * Jumper EZpad mini 3
383  * Onda V80 plus
384  * Predia Basic Tablet
385  */
386 static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
387 						   struct iio_mount_matrix *orientation)
388 {
389 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
390 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
391 	struct acpi_device *adev = ACPI_COMPANION(dev);
392 	char *name, *alt_name, *label, *str;
393 	union acpi_object *obj, *elements;
394 	acpi_status status;
395 	int i, j, val[3];
396 
397 	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
398 		alt_name = "ROMK";
399 		label = "accel-base";
400 	} else {
401 		alt_name = "ROMS";
402 		label = "accel-display";
403 	}
404 
405 	if (acpi_has_method(adev->handle, "ROTM")) {
406 		name = "ROTM";
407 	} else if (acpi_has_method(adev->handle, alt_name)) {
408 		name = alt_name;
409 		indio_dev->label = label;
410 	} else {
411 		return false;
412 	}
413 
414 	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
415 	if (ACPI_FAILURE(status)) {
416 		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
417 		return false;
418 	}
419 
420 	obj = buffer.pointer;
421 	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
422 		goto unknown_format;
423 
424 	elements = obj->package.elements;
425 	for (i = 0; i < 3; i++) {
426 		if (elements[i].type != ACPI_TYPE_STRING)
427 			goto unknown_format;
428 
429 		str = elements[i].string.pointer;
430 		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
431 			goto unknown_format;
432 
433 		for (j = 0; j < 3; j++) {
434 			switch (val[j]) {
435 			case -1: str = "-1"; break;
436 			case 0:  str = "0";  break;
437 			case 1:  str = "1";  break;
438 			default: goto unknown_format;
439 			}
440 			orientation->rotation[i * 3 + j] = str;
441 		}
442 	}
443 
444 	kfree(buffer.pointer);
445 	return true;
446 
447 unknown_format:
448 	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
449 	kfree(buffer.pointer);
450 	return false;
451 }
452 
453 static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
454 						   struct iio_mount_matrix *orientation)
455 {
456 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
457 
458 	if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
459 		indio_dev->label = "accel-base";
460 	else
461 		indio_dev->label = "accel-display";
462 
463 	return false; /* DUAL250E fwnodes have no mount matrix info */
464 }
465 
466 static bool bmc150_apply_acpi_orientation(struct device *dev,
467 					  struct iio_mount_matrix *orientation)
468 {
469 	struct acpi_device *adev = ACPI_COMPANION(dev);
470 
471 	if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
472 		return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);
473 
474 	if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
475 		return bmc150_apply_dual250e_acpi_orientation(dev, orientation);
476 
477 	return false;
478 }
479 #else
480 static bool bmc150_apply_acpi_orientation(struct device *dev,
481 					  struct iio_mount_matrix *orientation)
482 {
483 	return false;
484 }
485 #endif
486 
487 struct bmc150_accel_interrupt_info {
488 	u8 map_reg;
489 	u8 map_bitmask;
490 	u8 en_reg;
491 	u8 en_bitmask;
492 };
493 
494 static const struct bmc150_accel_interrupt_info
495 bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = {
496 	{ /* data ready interrupt */
497 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
498 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA,
499 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
500 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
501 	},
502 	{  /* motion interrupt */
503 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
504 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE,
505 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
506 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
507 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
508 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
509 	},
510 	{ /* fifo watermark interrupt */
511 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
512 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM,
513 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
514 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
515 	},
516 };
517 
518 static const struct bmc150_accel_interrupt_info
519 bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = {
520 	{ /* data ready interrupt */
521 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
522 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA,
523 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
524 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
525 	},
526 	{  /* motion interrupt */
527 		.map_reg = BMC150_ACCEL_REG_INT_MAP_2,
528 		.map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE,
529 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
530 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
531 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
532 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
533 	},
534 	{ /* fifo watermark interrupt */
535 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
536 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM,
537 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
538 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
539 	},
540 };
541 
542 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
543 					  struct bmc150_accel_data *data, int irq)
544 {
545 	const struct bmc150_accel_interrupt_info *irq_info = NULL;
546 	struct device *dev = regmap_get_device(data->regmap);
547 	int i;
548 
549 	/*
550 	 * For now we map all interrupts to the same output pin.
551 	 * However, some boards may have just INT2 (and not INT1) connected,
552 	 * so we try to detect which IRQ it is based on the interrupt-names.
553 	 * Without interrupt-names, we assume the irq belongs to INT1.
554 	 */
555 	irq_info = bmc150_accel_interrupts_int1;
556 	if (data->type == BOSCH_BMC156 ||
557 	    irq == of_irq_get_byname(dev->of_node, "INT2"))
558 		irq_info = bmc150_accel_interrupts_int2;
559 
560 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
561 		data->interrupts[i].info = &irq_info[i];
562 }
563 
564 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
565 				      bool state)
566 {
567 	struct device *dev = regmap_get_device(data->regmap);
568 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
569 	const struct bmc150_accel_interrupt_info *info = intr->info;
570 	int ret;
571 
572 	if (state) {
573 		if (atomic_inc_return(&intr->users) > 1)
574 			return 0;
575 	} else {
576 		if (atomic_dec_return(&intr->users) > 0)
577 			return 0;
578 	}
579 
580 	/*
581 	 * We will expect the enable and disable to do operation in reverse
582 	 * order. This will happen here anyway, as our resume operation uses
583 	 * sync mode runtime pm calls. The suspend operation will be delayed
584 	 * by autosuspend delay.
585 	 * So the disable operation will still happen in reverse order of
586 	 * enable operation. When runtime pm is disabled the mode is always on,
587 	 * so sequence doesn't matter.
588 	 */
589 	ret = bmc150_accel_set_power_state(data, state);
590 	if (ret < 0)
591 		return ret;
592 
593 	/* map the interrupt to the appropriate pins */
594 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
595 				 (state ? info->map_bitmask : 0));
596 	if (ret < 0) {
597 		dev_err(dev, "Error updating reg_int_map\n");
598 		goto out_fix_power_state;
599 	}
600 
601 	/* enable/disable the interrupt */
602 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
603 				 (state ? info->en_bitmask : 0));
604 	if (ret < 0) {
605 		dev_err(dev, "Error updating reg_int_en\n");
606 		goto out_fix_power_state;
607 	}
608 
609 	return 0;
610 
611 out_fix_power_state:
612 	bmc150_accel_set_power_state(data, false);
613 	return ret;
614 }
615 
616 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
617 {
618 	struct device *dev = regmap_get_device(data->regmap);
619 	int ret, i;
620 
621 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
622 		if (data->chip_info->scale_table[i].scale == val) {
623 			ret = regmap_write(data->regmap,
624 				     BMC150_ACCEL_REG_PMU_RANGE,
625 				     data->chip_info->scale_table[i].reg_range);
626 			if (ret < 0) {
627 				dev_err(dev, "Error writing pmu_range\n");
628 				return ret;
629 			}
630 
631 			data->range = data->chip_info->scale_table[i].reg_range;
632 			return 0;
633 		}
634 	}
635 
636 	return -EINVAL;
637 }
638 
639 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
640 {
641 	struct device *dev = regmap_get_device(data->regmap);
642 	int ret;
643 	unsigned int value;
644 
645 	mutex_lock(&data->mutex);
646 
647 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
648 	if (ret < 0) {
649 		dev_err(dev, "Error reading reg_temp\n");
650 		mutex_unlock(&data->mutex);
651 		return ret;
652 	}
653 	*val = sign_extend32(value, 7);
654 
655 	mutex_unlock(&data->mutex);
656 
657 	return IIO_VAL_INT;
658 }
659 
660 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
661 				 struct iio_chan_spec const *chan,
662 				 int *val)
663 {
664 	struct device *dev = regmap_get_device(data->regmap);
665 	int ret;
666 	int axis = chan->scan_index;
667 	__le16 raw_val;
668 
669 	mutex_lock(&data->mutex);
670 	ret = bmc150_accel_set_power_state(data, true);
671 	if (ret < 0) {
672 		mutex_unlock(&data->mutex);
673 		return ret;
674 	}
675 
676 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
677 			       &raw_val, sizeof(raw_val));
678 	if (ret < 0) {
679 		dev_err(dev, "Error reading axis %d\n", axis);
680 		bmc150_accel_set_power_state(data, false);
681 		mutex_unlock(&data->mutex);
682 		return ret;
683 	}
684 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
685 			     chan->scan_type.realbits - 1);
686 	ret = bmc150_accel_set_power_state(data, false);
687 	mutex_unlock(&data->mutex);
688 	if (ret < 0)
689 		return ret;
690 
691 	return IIO_VAL_INT;
692 }
693 
694 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
695 				 struct iio_chan_spec const *chan,
696 				 int *val, int *val2, long mask)
697 {
698 	struct bmc150_accel_data *data = iio_priv(indio_dev);
699 	int ret;
700 
701 	switch (mask) {
702 	case IIO_CHAN_INFO_RAW:
703 		switch (chan->type) {
704 		case IIO_TEMP:
705 			return bmc150_accel_get_temp(data, val);
706 		case IIO_ACCEL:
707 			if (iio_buffer_enabled(indio_dev))
708 				return -EBUSY;
709 			else
710 				return bmc150_accel_get_axis(data, chan, val);
711 		default:
712 			return -EINVAL;
713 		}
714 	case IIO_CHAN_INFO_OFFSET:
715 		if (chan->type == IIO_TEMP) {
716 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
717 			return IIO_VAL_INT;
718 		} else {
719 			return -EINVAL;
720 		}
721 	case IIO_CHAN_INFO_SCALE:
722 		*val = 0;
723 		switch (chan->type) {
724 		case IIO_TEMP:
725 			*val2 = 500000;
726 			return IIO_VAL_INT_PLUS_MICRO;
727 		case IIO_ACCEL:
728 		{
729 			int i;
730 			const struct bmc150_scale_info *si;
731 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
732 
733 			for (i = 0; i < st_size; ++i) {
734 				si = &data->chip_info->scale_table[i];
735 				if (si->reg_range == data->range) {
736 					*val2 = si->scale;
737 					return IIO_VAL_INT_PLUS_MICRO;
738 				}
739 			}
740 			return -EINVAL;
741 		}
742 		default:
743 			return -EINVAL;
744 		}
745 	case IIO_CHAN_INFO_SAMP_FREQ:
746 		mutex_lock(&data->mutex);
747 		ret = bmc150_accel_get_bw(data, val, val2);
748 		mutex_unlock(&data->mutex);
749 		return ret;
750 	default:
751 		return -EINVAL;
752 	}
753 }
754 
755 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
756 				  struct iio_chan_spec const *chan,
757 				  int val, int val2, long mask)
758 {
759 	struct bmc150_accel_data *data = iio_priv(indio_dev);
760 	int ret;
761 
762 	switch (mask) {
763 	case IIO_CHAN_INFO_SAMP_FREQ:
764 		mutex_lock(&data->mutex);
765 		ret = bmc150_accel_set_bw(data, val, val2);
766 		mutex_unlock(&data->mutex);
767 		break;
768 	case IIO_CHAN_INFO_SCALE:
769 		if (val)
770 			return -EINVAL;
771 
772 		mutex_lock(&data->mutex);
773 		ret = bmc150_accel_set_scale(data, val2);
774 		mutex_unlock(&data->mutex);
775 		return ret;
776 	default:
777 		ret = -EINVAL;
778 	}
779 
780 	return ret;
781 }
782 
783 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
784 				   const struct iio_chan_spec *chan,
785 				   enum iio_event_type type,
786 				   enum iio_event_direction dir,
787 				   enum iio_event_info info,
788 				   int *val, int *val2)
789 {
790 	struct bmc150_accel_data *data = iio_priv(indio_dev);
791 
792 	*val2 = 0;
793 	switch (info) {
794 	case IIO_EV_INFO_VALUE:
795 		*val = data->slope_thres;
796 		break;
797 	case IIO_EV_INFO_PERIOD:
798 		*val = data->slope_dur;
799 		break;
800 	default:
801 		return -EINVAL;
802 	}
803 
804 	return IIO_VAL_INT;
805 }
806 
807 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
808 				    const struct iio_chan_spec *chan,
809 				    enum iio_event_type type,
810 				    enum iio_event_direction dir,
811 				    enum iio_event_info info,
812 				    int val, int val2)
813 {
814 	struct bmc150_accel_data *data = iio_priv(indio_dev);
815 
816 	if (data->ev_enable_state)
817 		return -EBUSY;
818 
819 	switch (info) {
820 	case IIO_EV_INFO_VALUE:
821 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
822 		break;
823 	case IIO_EV_INFO_PERIOD:
824 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
825 		break;
826 	default:
827 		return -EINVAL;
828 	}
829 
830 	return 0;
831 }
832 
833 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
834 					  const struct iio_chan_spec *chan,
835 					  enum iio_event_type type,
836 					  enum iio_event_direction dir)
837 {
838 	struct bmc150_accel_data *data = iio_priv(indio_dev);
839 
840 	return data->ev_enable_state;
841 }
842 
843 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
844 					   const struct iio_chan_spec *chan,
845 					   enum iio_event_type type,
846 					   enum iio_event_direction dir,
847 					   int state)
848 {
849 	struct bmc150_accel_data *data = iio_priv(indio_dev);
850 	int ret;
851 
852 	if (state == data->ev_enable_state)
853 		return 0;
854 
855 	mutex_lock(&data->mutex);
856 
857 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
858 					 state);
859 	if (ret < 0) {
860 		mutex_unlock(&data->mutex);
861 		return ret;
862 	}
863 
864 	data->ev_enable_state = state;
865 	mutex_unlock(&data->mutex);
866 
867 	return 0;
868 }
869 
870 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
871 					 struct iio_trigger *trig)
872 {
873 	struct bmc150_accel_data *data = iio_priv(indio_dev);
874 	int i;
875 
876 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
877 		if (data->triggers[i].indio_trig == trig)
878 			return 0;
879 	}
880 
881 	return -EINVAL;
882 }
883 
884 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
885 					       struct device_attribute *attr,
886 					       char *buf)
887 {
888 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
889 	struct bmc150_accel_data *data = iio_priv(indio_dev);
890 	int wm;
891 
892 	mutex_lock(&data->mutex);
893 	wm = data->watermark;
894 	mutex_unlock(&data->mutex);
895 
896 	return sprintf(buf, "%d\n", wm);
897 }
898 
899 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
900 					   struct device_attribute *attr,
901 					   char *buf)
902 {
903 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
904 	struct bmc150_accel_data *data = iio_priv(indio_dev);
905 	bool state;
906 
907 	mutex_lock(&data->mutex);
908 	state = data->fifo_mode;
909 	mutex_unlock(&data->mutex);
910 
911 	return sprintf(buf, "%d\n", state);
912 }
913 
914 static const struct iio_mount_matrix *
915 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
916 				const struct iio_chan_spec *chan)
917 {
918 	struct bmc150_accel_data *data = iio_priv(indio_dev);
919 
920 	return &data->orientation;
921 }
922 
923 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
924 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
925 	{ }
926 };
927 
928 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1");
929 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max,
930 			     __stringify(BMC150_ACCEL_FIFO_LENGTH));
931 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
932 		       bmc150_accel_get_fifo_state, NULL, 0);
933 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
934 		       bmc150_accel_get_fifo_watermark, NULL, 0);
935 
936 static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = {
937 	&iio_dev_attr_hwfifo_watermark_min,
938 	&iio_dev_attr_hwfifo_watermark_max,
939 	&iio_dev_attr_hwfifo_watermark,
940 	&iio_dev_attr_hwfifo_enabled,
941 	NULL,
942 };
943 
944 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
945 {
946 	struct bmc150_accel_data *data = iio_priv(indio_dev);
947 
948 	if (val > BMC150_ACCEL_FIFO_LENGTH)
949 		val = BMC150_ACCEL_FIFO_LENGTH;
950 
951 	mutex_lock(&data->mutex);
952 	data->watermark = val;
953 	mutex_unlock(&data->mutex);
954 
955 	return 0;
956 }
957 
958 /*
959  * We must read at least one full frame in one burst, otherwise the rest of the
960  * frame data is discarded.
961  */
962 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
963 				      char *buffer, int samples)
964 {
965 	struct device *dev = regmap_get_device(data->regmap);
966 	int sample_length = 3 * 2;
967 	int ret;
968 	int total_length = samples * sample_length;
969 
970 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
971 			      buffer, total_length);
972 	if (ret)
973 		dev_err(dev,
974 			"Error transferring data from fifo: %d\n", ret);
975 
976 	return ret;
977 }
978 
979 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
980 				     unsigned samples, bool irq)
981 {
982 	struct bmc150_accel_data *data = iio_priv(indio_dev);
983 	struct device *dev = regmap_get_device(data->regmap);
984 	int ret, i;
985 	u8 count;
986 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
987 	int64_t tstamp;
988 	uint64_t sample_period;
989 	unsigned int val;
990 
991 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
992 	if (ret < 0) {
993 		dev_err(dev, "Error reading reg_fifo_status\n");
994 		return ret;
995 	}
996 
997 	count = val & 0x7F;
998 
999 	if (!count)
1000 		return 0;
1001 
1002 	/*
1003 	 * If we getting called from IRQ handler we know the stored timestamp is
1004 	 * fairly accurate for the last stored sample. Otherwise, if we are
1005 	 * called as a result of a read operation from userspace and hence
1006 	 * before the watermark interrupt was triggered, take a timestamp
1007 	 * now. We can fall anywhere in between two samples so the error in this
1008 	 * case is at most one sample period.
1009 	 */
1010 	if (!irq) {
1011 		data->old_timestamp = data->timestamp;
1012 		data->timestamp = iio_get_time_ns(indio_dev);
1013 	}
1014 
1015 	/*
1016 	 * Approximate timestamps for each of the sample based on the sampling
1017 	 * frequency, timestamp for last sample and number of samples.
1018 	 *
1019 	 * Note that we can't use the current bandwidth settings to compute the
1020 	 * sample period because the sample rate varies with the device
1021 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
1022 	 * small variation adds when we store a large number of samples and
1023 	 * creates significant jitter between the last and first samples in
1024 	 * different batches (e.g. 32ms vs 21ms).
1025 	 *
1026 	 * To avoid this issue we compute the actual sample period ourselves
1027 	 * based on the timestamp delta between the last two flush operations.
1028 	 */
1029 	sample_period = (data->timestamp - data->old_timestamp);
1030 	do_div(sample_period, count);
1031 	tstamp = data->timestamp - (count - 1) * sample_period;
1032 
1033 	if (samples && count > samples)
1034 		count = samples;
1035 
1036 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
1037 	if (ret)
1038 		return ret;
1039 
1040 	/*
1041 	 * Ideally we want the IIO core to handle the demux when running in fifo
1042 	 * mode but not when running in triggered buffer mode. Unfortunately
1043 	 * this does not seem to be possible, so stick with driver demux for
1044 	 * now.
1045 	 */
1046 	for (i = 0; i < count; i++) {
1047 		int j, bit;
1048 
1049 		j = 0;
1050 		for_each_set_bit(bit, indio_dev->active_scan_mask,
1051 				 indio_dev->masklength)
1052 			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
1053 			       sizeof(data->scan.channels[0]));
1054 
1055 		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
1056 						   tstamp);
1057 
1058 		tstamp += sample_period;
1059 	}
1060 
1061 	return count;
1062 }
1063 
1064 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
1065 {
1066 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1067 	int ret;
1068 
1069 	mutex_lock(&data->mutex);
1070 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
1071 	mutex_unlock(&data->mutex);
1072 
1073 	return ret;
1074 }
1075 
1076 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1077 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1078 
1079 static struct attribute *bmc150_accel_attributes[] = {
1080 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1081 	NULL,
1082 };
1083 
1084 static const struct attribute_group bmc150_accel_attrs_group = {
1085 	.attrs = bmc150_accel_attributes,
1086 };
1087 
1088 static const struct iio_event_spec bmc150_accel_event = {
1089 		.type = IIO_EV_TYPE_ROC,
1090 		.dir = IIO_EV_DIR_EITHER,
1091 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
1092 				 BIT(IIO_EV_INFO_ENABLE) |
1093 				 BIT(IIO_EV_INFO_PERIOD)
1094 };
1095 
1096 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1097 	.type = IIO_ACCEL,						\
1098 	.modified = 1,							\
1099 	.channel2 = IIO_MOD_##_axis,					\
1100 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
1101 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
1102 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
1103 	.scan_index = AXIS_##_axis,					\
1104 	.scan_type = {							\
1105 		.sign = 's',						\
1106 		.realbits = (bits),					\
1107 		.storagebits = 16,					\
1108 		.shift = 16 - (bits),					\
1109 		.endianness = IIO_LE,					\
1110 	},								\
1111 	.ext_info = bmc150_accel_ext_info,				\
1112 	.event_spec = &bmc150_accel_event,				\
1113 	.num_event_specs = 1						\
1114 }
1115 
1116 #define BMC150_ACCEL_CHANNELS(bits) {					\
1117 	{								\
1118 		.type = IIO_TEMP,					\
1119 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1120 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1121 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1122 		.scan_index = -1,					\
1123 	},								\
1124 	BMC150_ACCEL_CHANNEL(X, bits),					\
1125 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1126 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1127 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1128 }
1129 
1130 static const struct iio_chan_spec bma222e_accel_channels[] =
1131 	BMC150_ACCEL_CHANNELS(8);
1132 static const struct iio_chan_spec bma250e_accel_channels[] =
1133 	BMC150_ACCEL_CHANNELS(10);
1134 static const struct iio_chan_spec bmc150_accel_channels[] =
1135 	BMC150_ACCEL_CHANNELS(12);
1136 static const struct iio_chan_spec bma280_accel_channels[] =
1137 	BMC150_ACCEL_CHANNELS(14);
1138 
1139 /*
1140  * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
1141  * over the amount of bits (see above). The scale table can be calculated using
1142  *     (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
1143  * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
1144  * Multiply 10^6 and round to get the values listed below.
1145  */
1146 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1147 	{
1148 		.name = "BMA222",
1149 		.chip_id = 0x03,
1150 		.channels = bma222e_accel_channels,
1151 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1152 		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
1153 				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1154 				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1155 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1156 	},
1157 	{
1158 		.name = "BMA222E",
1159 		.chip_id = 0xF8,
1160 		.channels = bma222e_accel_channels,
1161 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1162 		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
1163 				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1164 				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1165 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1166 	},
1167 	{
1168 		.name = "BMA250E",
1169 		.chip_id = 0xF9,
1170 		.channels = bma250e_accel_channels,
1171 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1172 		.scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
1173 				 {76614, BMC150_ACCEL_DEF_RANGE_4G},
1174 				 {153229, BMC150_ACCEL_DEF_RANGE_8G},
1175 				 {306458, BMC150_ACCEL_DEF_RANGE_16G} },
1176 	},
1177 	{
1178 		.name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
1179 		.chip_id = 0xFA,
1180 		.channels = bmc150_accel_channels,
1181 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1182 		.scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
1183 				 {19154, BMC150_ACCEL_DEF_RANGE_4G},
1184 				 {38307, BMC150_ACCEL_DEF_RANGE_8G},
1185 				 {76614, BMC150_ACCEL_DEF_RANGE_16G} },
1186 	},
1187 	{
1188 		.name = "BMA280",
1189 		.chip_id = 0xFB,
1190 		.channels = bma280_accel_channels,
1191 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1192 		.scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
1193 				 {4788, BMC150_ACCEL_DEF_RANGE_4G},
1194 				 {9577, BMC150_ACCEL_DEF_RANGE_8G},
1195 				 {19154, BMC150_ACCEL_DEF_RANGE_16G} },
1196 	},
1197 };
1198 
1199 static const struct iio_info bmc150_accel_info = {
1200 	.attrs			= &bmc150_accel_attrs_group,
1201 	.read_raw		= bmc150_accel_read_raw,
1202 	.write_raw		= bmc150_accel_write_raw,
1203 	.read_event_value	= bmc150_accel_read_event,
1204 	.write_event_value	= bmc150_accel_write_event,
1205 	.write_event_config	= bmc150_accel_write_event_config,
1206 	.read_event_config	= bmc150_accel_read_event_config,
1207 };
1208 
1209 static const struct iio_info bmc150_accel_info_fifo = {
1210 	.attrs			= &bmc150_accel_attrs_group,
1211 	.read_raw		= bmc150_accel_read_raw,
1212 	.write_raw		= bmc150_accel_write_raw,
1213 	.read_event_value	= bmc150_accel_read_event,
1214 	.write_event_value	= bmc150_accel_write_event,
1215 	.write_event_config	= bmc150_accel_write_event_config,
1216 	.read_event_config	= bmc150_accel_read_event_config,
1217 	.validate_trigger	= bmc150_accel_validate_trigger,
1218 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1219 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1220 };
1221 
1222 static const unsigned long bmc150_accel_scan_masks[] = {
1223 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1224 					0};
1225 
1226 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1227 {
1228 	struct iio_poll_func *pf = p;
1229 	struct iio_dev *indio_dev = pf->indio_dev;
1230 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1231 	int ret;
1232 
1233 	mutex_lock(&data->mutex);
1234 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1235 			       data->buffer, AXIS_MAX * 2);
1236 	mutex_unlock(&data->mutex);
1237 	if (ret < 0)
1238 		goto err_read;
1239 
1240 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1241 					   pf->timestamp);
1242 err_read:
1243 	iio_trigger_notify_done(indio_dev->trig);
1244 
1245 	return IRQ_HANDLED;
1246 }
1247 
1248 static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1249 {
1250 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1251 	struct bmc150_accel_data *data = t->data;
1252 	struct device *dev = regmap_get_device(data->regmap);
1253 	int ret;
1254 
1255 	/* new data interrupts don't need ack */
1256 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1257 		return;
1258 
1259 	mutex_lock(&data->mutex);
1260 	/* clear any latched interrupt */
1261 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1262 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1263 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1264 	mutex_unlock(&data->mutex);
1265 	if (ret < 0)
1266 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1267 }
1268 
1269 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1270 					  bool state)
1271 {
1272 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1273 	struct bmc150_accel_data *data = t->data;
1274 	int ret;
1275 
1276 	mutex_lock(&data->mutex);
1277 
1278 	if (t->enabled == state) {
1279 		mutex_unlock(&data->mutex);
1280 		return 0;
1281 	}
1282 
1283 	if (t->setup) {
1284 		ret = t->setup(t, state);
1285 		if (ret < 0) {
1286 			mutex_unlock(&data->mutex);
1287 			return ret;
1288 		}
1289 	}
1290 
1291 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1292 	if (ret < 0) {
1293 		mutex_unlock(&data->mutex);
1294 		return ret;
1295 	}
1296 
1297 	t->enabled = state;
1298 
1299 	mutex_unlock(&data->mutex);
1300 
1301 	return ret;
1302 }
1303 
1304 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1305 	.set_trigger_state = bmc150_accel_trigger_set_state,
1306 	.reenable = bmc150_accel_trig_reen,
1307 };
1308 
1309 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1310 {
1311 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1312 	struct device *dev = regmap_get_device(data->regmap);
1313 	int dir;
1314 	int ret;
1315 	unsigned int val;
1316 
1317 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1318 	if (ret < 0) {
1319 		dev_err(dev, "Error reading reg_int_status_2\n");
1320 		return ret;
1321 	}
1322 
1323 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1324 		dir = IIO_EV_DIR_FALLING;
1325 	else
1326 		dir = IIO_EV_DIR_RISING;
1327 
1328 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1329 		iio_push_event(indio_dev,
1330 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1331 						  0,
1332 						  IIO_MOD_X,
1333 						  IIO_EV_TYPE_ROC,
1334 						  dir),
1335 			       data->timestamp);
1336 
1337 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1338 		iio_push_event(indio_dev,
1339 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1340 						  0,
1341 						  IIO_MOD_Y,
1342 						  IIO_EV_TYPE_ROC,
1343 						  dir),
1344 			       data->timestamp);
1345 
1346 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1347 		iio_push_event(indio_dev,
1348 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1349 						  0,
1350 						  IIO_MOD_Z,
1351 						  IIO_EV_TYPE_ROC,
1352 						  dir),
1353 			       data->timestamp);
1354 
1355 	return ret;
1356 }
1357 
1358 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1359 {
1360 	struct iio_dev *indio_dev = private;
1361 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1362 	struct device *dev = regmap_get_device(data->regmap);
1363 	bool ack = false;
1364 	int ret;
1365 
1366 	mutex_lock(&data->mutex);
1367 
1368 	if (data->fifo_mode) {
1369 		ret = __bmc150_accel_fifo_flush(indio_dev,
1370 						BMC150_ACCEL_FIFO_LENGTH, true);
1371 		if (ret > 0)
1372 			ack = true;
1373 	}
1374 
1375 	if (data->ev_enable_state) {
1376 		ret = bmc150_accel_handle_roc_event(indio_dev);
1377 		if (ret > 0)
1378 			ack = true;
1379 	}
1380 
1381 	if (ack) {
1382 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1383 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1384 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1385 		if (ret)
1386 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1387 
1388 		ret = IRQ_HANDLED;
1389 	} else {
1390 		ret = IRQ_NONE;
1391 	}
1392 
1393 	mutex_unlock(&data->mutex);
1394 
1395 	return ret;
1396 }
1397 
1398 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1399 {
1400 	struct iio_dev *indio_dev = private;
1401 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1402 	bool ack = false;
1403 	int i;
1404 
1405 	data->old_timestamp = data->timestamp;
1406 	data->timestamp = iio_get_time_ns(indio_dev);
1407 
1408 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1409 		if (data->triggers[i].enabled) {
1410 			iio_trigger_poll(data->triggers[i].indio_trig);
1411 			ack = true;
1412 			break;
1413 		}
1414 	}
1415 
1416 	if (data->ev_enable_state || data->fifo_mode)
1417 		return IRQ_WAKE_THREAD;
1418 
1419 	if (ack)
1420 		return IRQ_HANDLED;
1421 
1422 	return IRQ_NONE;
1423 }
1424 
1425 static const struct {
1426 	int intr;
1427 	const char *name;
1428 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1429 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1430 	{
1431 		.intr = 0,
1432 		.name = "%s-dev%d",
1433 	},
1434 	{
1435 		.intr = 1,
1436 		.name = "%s-any-motion-dev%d",
1437 		.setup = bmc150_accel_any_motion_setup,
1438 	},
1439 };
1440 
1441 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1442 					     int from)
1443 {
1444 	int i;
1445 
1446 	for (i = from; i >= 0; i--) {
1447 		if (data->triggers[i].indio_trig) {
1448 			iio_trigger_unregister(data->triggers[i].indio_trig);
1449 			data->triggers[i].indio_trig = NULL;
1450 		}
1451 	}
1452 }
1453 
1454 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1455 				       struct bmc150_accel_data *data)
1456 {
1457 	struct device *dev = regmap_get_device(data->regmap);
1458 	int i, ret;
1459 
1460 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1461 		struct bmc150_accel_trigger *t = &data->triggers[i];
1462 
1463 		t->indio_trig = devm_iio_trigger_alloc(dev,
1464 						       bmc150_accel_triggers[i].name,
1465 						       indio_dev->name,
1466 						       iio_device_id(indio_dev));
1467 		if (!t->indio_trig) {
1468 			ret = -ENOMEM;
1469 			break;
1470 		}
1471 
1472 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1473 		t->intr = bmc150_accel_triggers[i].intr;
1474 		t->data = data;
1475 		t->setup = bmc150_accel_triggers[i].setup;
1476 		iio_trigger_set_drvdata(t->indio_trig, t);
1477 
1478 		ret = iio_trigger_register(t->indio_trig);
1479 		if (ret)
1480 			break;
1481 	}
1482 
1483 	if (ret)
1484 		bmc150_accel_unregister_triggers(data, i - 1);
1485 
1486 	return ret;
1487 }
1488 
1489 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1490 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1491 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1492 
1493 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1494 {
1495 	struct device *dev = regmap_get_device(data->regmap);
1496 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1497 	int ret;
1498 
1499 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1500 	if (ret < 0) {
1501 		dev_err(dev, "Error writing reg_fifo_config1\n");
1502 		return ret;
1503 	}
1504 
1505 	if (!data->fifo_mode)
1506 		return 0;
1507 
1508 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1509 			   data->watermark);
1510 	if (ret < 0)
1511 		dev_err(dev, "Error writing reg_fifo_config0\n");
1512 
1513 	return ret;
1514 }
1515 
1516 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1517 {
1518 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1519 
1520 	return bmc150_accel_set_power_state(data, true);
1521 }
1522 
1523 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1524 {
1525 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1526 	int ret = 0;
1527 
1528 	if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
1529 		return 0;
1530 
1531 	mutex_lock(&data->mutex);
1532 
1533 	if (!data->watermark)
1534 		goto out;
1535 
1536 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1537 					 true);
1538 	if (ret)
1539 		goto out;
1540 
1541 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1542 
1543 	ret = bmc150_accel_fifo_set_mode(data);
1544 	if (ret) {
1545 		data->fifo_mode = 0;
1546 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1547 					   false);
1548 	}
1549 
1550 out:
1551 	mutex_unlock(&data->mutex);
1552 
1553 	return ret;
1554 }
1555 
1556 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1557 {
1558 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1559 
1560 	if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
1561 		return 0;
1562 
1563 	mutex_lock(&data->mutex);
1564 
1565 	if (!data->fifo_mode)
1566 		goto out;
1567 
1568 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1569 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1570 	data->fifo_mode = 0;
1571 	bmc150_accel_fifo_set_mode(data);
1572 
1573 out:
1574 	mutex_unlock(&data->mutex);
1575 
1576 	return 0;
1577 }
1578 
1579 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1580 {
1581 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1582 
1583 	return bmc150_accel_set_power_state(data, false);
1584 }
1585 
1586 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1587 	.preenable = bmc150_accel_buffer_preenable,
1588 	.postenable = bmc150_accel_buffer_postenable,
1589 	.predisable = bmc150_accel_buffer_predisable,
1590 	.postdisable = bmc150_accel_buffer_postdisable,
1591 };
1592 
1593 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1594 {
1595 	struct device *dev = regmap_get_device(data->regmap);
1596 	int ret, i;
1597 	unsigned int val;
1598 
1599 	/*
1600 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1601 	 * reset is required according to the data sheets of supported chips.
1602 	 */
1603 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1604 		     BMC150_ACCEL_RESET_VAL);
1605 	usleep_range(1800, 2500);
1606 
1607 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1608 	if (ret < 0) {
1609 		dev_err(dev, "Error: Reading chip id\n");
1610 		return ret;
1611 	}
1612 
1613 	dev_dbg(dev, "Chip Id %x\n", val);
1614 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1615 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1616 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1617 			break;
1618 		}
1619 	}
1620 
1621 	if (!data->chip_info) {
1622 		dev_err(dev, "Invalid chip %x\n", val);
1623 		return -ENODEV;
1624 	}
1625 
1626 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1627 	if (ret < 0)
1628 		return ret;
1629 
1630 	/* Set Bandwidth */
1631 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1632 	if (ret < 0)
1633 		return ret;
1634 
1635 	/* Set Default Range */
1636 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1637 			   BMC150_ACCEL_DEF_RANGE_4G);
1638 	if (ret < 0) {
1639 		dev_err(dev, "Error writing reg_pmu_range\n");
1640 		return ret;
1641 	}
1642 
1643 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1644 
1645 	/* Set default slope duration and thresholds */
1646 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1647 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1648 	ret = bmc150_accel_update_slope(data);
1649 	if (ret < 0)
1650 		return ret;
1651 
1652 	/* Set default as latched interrupts */
1653 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1654 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1655 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1656 	if (ret < 0) {
1657 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1658 		return ret;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1665 			    enum bmc150_type type, const char *name,
1666 			    bool block_supported)
1667 {
1668 	const struct iio_dev_attr **fifo_attrs;
1669 	struct bmc150_accel_data *data;
1670 	struct iio_dev *indio_dev;
1671 	int ret;
1672 
1673 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1674 	if (!indio_dev)
1675 		return -ENOMEM;
1676 
1677 	data = iio_priv(indio_dev);
1678 	dev_set_drvdata(dev, indio_dev);
1679 
1680 	data->regmap = regmap;
1681 	data->type = type;
1682 
1683 	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1684 		ret = iio_read_mount_matrix(dev, &data->orientation);
1685 		if (ret)
1686 			return ret;
1687 	}
1688 
1689 	/*
1690 	 * VDD   is the analog and digital domain voltage supply
1691 	 * VDDIO is the digital I/O voltage supply
1692 	 */
1693 	data->regulators[0].supply = "vdd";
1694 	data->regulators[1].supply = "vddio";
1695 	ret = devm_regulator_bulk_get(dev,
1696 				      ARRAY_SIZE(data->regulators),
1697 				      data->regulators);
1698 	if (ret)
1699 		return dev_err_probe(dev, ret, "failed to get regulators\n");
1700 
1701 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1702 				    data->regulators);
1703 	if (ret) {
1704 		dev_err(dev, "failed to enable regulators: %d\n", ret);
1705 		return ret;
1706 	}
1707 	/*
1708 	 * 2ms or 3ms power-on time according to datasheets, let's better
1709 	 * be safe than sorry and set this delay to 5ms.
1710 	 */
1711 	msleep(5);
1712 
1713 	ret = bmc150_accel_chip_init(data);
1714 	if (ret < 0)
1715 		goto err_disable_regulators;
1716 
1717 	mutex_init(&data->mutex);
1718 
1719 	indio_dev->channels = data->chip_info->channels;
1720 	indio_dev->num_channels = data->chip_info->num_channels;
1721 	indio_dev->name = name ? name : data->chip_info->name;
1722 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1723 	indio_dev->modes = INDIO_DIRECT_MODE;
1724 	indio_dev->info = &bmc150_accel_info;
1725 
1726 	if (block_supported) {
1727 		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1728 		indio_dev->info = &bmc150_accel_info_fifo;
1729 		fifo_attrs = bmc150_accel_fifo_attributes;
1730 	} else {
1731 		fifo_attrs = NULL;
1732 	}
1733 
1734 	ret = iio_triggered_buffer_setup_ext(indio_dev,
1735 					     &iio_pollfunc_store_time,
1736 					     bmc150_accel_trigger_handler,
1737 					     IIO_BUFFER_DIRECTION_IN,
1738 					     &bmc150_accel_buffer_ops,
1739 					     fifo_attrs);
1740 	if (ret < 0) {
1741 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1742 		goto err_disable_regulators;
1743 	}
1744 
1745 	if (irq > 0) {
1746 		ret = devm_request_threaded_irq(dev, irq,
1747 						bmc150_accel_irq_handler,
1748 						bmc150_accel_irq_thread_handler,
1749 						IRQF_TRIGGER_RISING,
1750 						BMC150_ACCEL_IRQ_NAME,
1751 						indio_dev);
1752 		if (ret)
1753 			goto err_buffer_cleanup;
1754 
1755 		/*
1756 		 * Set latched mode interrupt. While certain interrupts are
1757 		 * non-latched regardless of this settings (e.g. new data) we
1758 		 * want to use latch mode when we can to prevent interrupt
1759 		 * flooding.
1760 		 */
1761 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1762 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1763 		if (ret < 0) {
1764 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1765 			goto err_buffer_cleanup;
1766 		}
1767 
1768 		bmc150_accel_interrupts_setup(indio_dev, data, irq);
1769 
1770 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1771 		if (ret)
1772 			goto err_buffer_cleanup;
1773 	}
1774 
1775 	ret = pm_runtime_set_active(dev);
1776 	if (ret)
1777 		goto err_trigger_unregister;
1778 
1779 	pm_runtime_enable(dev);
1780 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1781 	pm_runtime_use_autosuspend(dev);
1782 
1783 	ret = iio_device_register(indio_dev);
1784 	if (ret < 0) {
1785 		dev_err(dev, "Unable to register iio device\n");
1786 		goto err_pm_cleanup;
1787 	}
1788 
1789 	return 0;
1790 
1791 err_pm_cleanup:
1792 	pm_runtime_dont_use_autosuspend(dev);
1793 	pm_runtime_disable(dev);
1794 err_trigger_unregister:
1795 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1796 err_buffer_cleanup:
1797 	iio_triggered_buffer_cleanup(indio_dev);
1798 err_disable_regulators:
1799 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1800 			       data->regulators);
1801 
1802 	return ret;
1803 }
1804 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, IIO_BMC150);
1805 
1806 void bmc150_accel_core_remove(struct device *dev)
1807 {
1808 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1809 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1810 
1811 	iio_device_unregister(indio_dev);
1812 
1813 	pm_runtime_disable(dev);
1814 	pm_runtime_set_suspended(dev);
1815 
1816 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1817 
1818 	iio_triggered_buffer_cleanup(indio_dev);
1819 
1820 	mutex_lock(&data->mutex);
1821 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1822 	mutex_unlock(&data->mutex);
1823 
1824 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1825 			       data->regulators);
1826 }
1827 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, IIO_BMC150);
1828 
1829 #ifdef CONFIG_PM_SLEEP
1830 static int bmc150_accel_suspend(struct device *dev)
1831 {
1832 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1833 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1834 
1835 	mutex_lock(&data->mutex);
1836 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1837 	mutex_unlock(&data->mutex);
1838 
1839 	return 0;
1840 }
1841 
1842 static int bmc150_accel_resume(struct device *dev)
1843 {
1844 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1845 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1846 
1847 	mutex_lock(&data->mutex);
1848 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1849 	bmc150_accel_fifo_set_mode(data);
1850 	mutex_unlock(&data->mutex);
1851 
1852 	if (data->resume_callback)
1853 		data->resume_callback(dev);
1854 
1855 	return 0;
1856 }
1857 #endif
1858 
1859 #ifdef CONFIG_PM
1860 static int bmc150_accel_runtime_suspend(struct device *dev)
1861 {
1862 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1863 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1864 	int ret;
1865 
1866 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1867 	if (ret < 0)
1868 		return -EAGAIN;
1869 
1870 	return 0;
1871 }
1872 
1873 static int bmc150_accel_runtime_resume(struct device *dev)
1874 {
1875 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1876 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1877 	int ret;
1878 	int sleep_val;
1879 
1880 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1881 	if (ret < 0)
1882 		return ret;
1883 	ret = bmc150_accel_fifo_set_mode(data);
1884 	if (ret < 0)
1885 		return ret;
1886 
1887 	sleep_val = bmc150_accel_get_startup_times(data);
1888 	if (sleep_val < 20)
1889 		usleep_range(sleep_val * 1000, 20000);
1890 	else
1891 		msleep_interruptible(sleep_val);
1892 
1893 	return 0;
1894 }
1895 #endif
1896 
1897 const struct dev_pm_ops bmc150_accel_pm_ops = {
1898 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1899 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1900 			   bmc150_accel_runtime_resume, NULL)
1901 };
1902 EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, IIO_BMC150);
1903 
1904 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1907