1c41aa3ceSMax Schwarz /* 2c41aa3ceSMax Schwarz * Driver for I2C adapter in Rockchip RK3xxx SoC 3c41aa3ceSMax Schwarz * 4c41aa3ceSMax Schwarz * Max Schwarz <max.schwarz@online.de> 5c41aa3ceSMax Schwarz * based on the patches by Rockchip Inc. 6c41aa3ceSMax Schwarz * 7c41aa3ceSMax Schwarz * This program is free software; you can redistribute it and/or modify 8c41aa3ceSMax Schwarz * it under the terms of the GNU General Public License version 2 as 9c41aa3ceSMax Schwarz * published by the Free Software Foundation. 10c41aa3ceSMax Schwarz */ 11c41aa3ceSMax Schwarz 12c41aa3ceSMax Schwarz #include <linux/kernel.h> 13c41aa3ceSMax Schwarz #include <linux/module.h> 14c41aa3ceSMax Schwarz #include <linux/i2c.h> 15c41aa3ceSMax Schwarz #include <linux/interrupt.h> 16c41aa3ceSMax Schwarz #include <linux/errno.h> 17c41aa3ceSMax Schwarz #include <linux/err.h> 18c41aa3ceSMax Schwarz #include <linux/platform_device.h> 19c41aa3ceSMax Schwarz #include <linux/io.h> 20c41aa3ceSMax Schwarz #include <linux/of_address.h> 21c41aa3ceSMax Schwarz #include <linux/of_irq.h> 22c41aa3ceSMax Schwarz #include <linux/spinlock.h> 23c41aa3ceSMax Schwarz #include <linux/clk.h> 24c41aa3ceSMax Schwarz #include <linux/wait.h> 25c41aa3ceSMax Schwarz #include <linux/mfd/syscon.h> 26c41aa3ceSMax Schwarz #include <linux/regmap.h> 270285f8f5Saddy ke #include <linux/math64.h> 28c41aa3ceSMax Schwarz 29c41aa3ceSMax Schwarz 30c41aa3ceSMax Schwarz /* Register Map */ 31c41aa3ceSMax Schwarz #define REG_CON 0x00 /* control register */ 32c41aa3ceSMax Schwarz #define REG_CLKDIV 0x04 /* clock divisor register */ 33c41aa3ceSMax Schwarz #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */ 34c41aa3ceSMax Schwarz #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */ 35c41aa3ceSMax Schwarz #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */ 36c41aa3ceSMax Schwarz #define REG_MRXCNT 0x14 /* number of bytes to be received */ 37c41aa3ceSMax Schwarz #define REG_IEN 0x18 /* interrupt enable */ 38c41aa3ceSMax Schwarz #define REG_IPD 0x1c /* interrupt pending */ 39c41aa3ceSMax Schwarz #define REG_FCNT 0x20 /* finished count */ 40c41aa3ceSMax Schwarz 41c41aa3ceSMax Schwarz /* Data buffer offsets */ 42c41aa3ceSMax Schwarz #define TXBUFFER_BASE 0x100 43c41aa3ceSMax Schwarz #define RXBUFFER_BASE 0x200 44c41aa3ceSMax Schwarz 45c41aa3ceSMax Schwarz /* REG_CON bits */ 46c41aa3ceSMax Schwarz #define REG_CON_EN BIT(0) 47c41aa3ceSMax Schwarz enum { 48c41aa3ceSMax Schwarz REG_CON_MOD_TX = 0, /* transmit data */ 49c41aa3ceSMax Schwarz REG_CON_MOD_REGISTER_TX, /* select register and restart */ 50c41aa3ceSMax Schwarz REG_CON_MOD_RX, /* receive data */ 51c41aa3ceSMax Schwarz REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes 52c41aa3ceSMax Schwarz * register addr */ 53c41aa3ceSMax Schwarz }; 54c41aa3ceSMax Schwarz #define REG_CON_MOD(mod) ((mod) << 1) 55c41aa3ceSMax Schwarz #define REG_CON_MOD_MASK (BIT(1) | BIT(2)) 56c41aa3ceSMax Schwarz #define REG_CON_START BIT(3) 57c41aa3ceSMax Schwarz #define REG_CON_STOP BIT(4) 58c41aa3ceSMax Schwarz #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ 59c41aa3ceSMax Schwarz #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ 60c41aa3ceSMax Schwarz 61*7e086c3fSDavid Wu #define REG_CON_TUNING_MASK GENMASK(15, 8) 62*7e086c3fSDavid Wu 63*7e086c3fSDavid Wu #define REG_CON_SDA_CFG(cfg) ((cfg) << 8) 64*7e086c3fSDavid Wu #define REG_CON_STA_CFG(cfg) ((cfg) << 12) 65*7e086c3fSDavid Wu #define REG_CON_STO_CFG(cfg) ((cfg) << 14) 66*7e086c3fSDavid Wu 67c41aa3ceSMax Schwarz /* REG_MRXADDR bits */ 68c41aa3ceSMax Schwarz #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ 69c41aa3ceSMax Schwarz 70c41aa3ceSMax Schwarz /* REG_IEN/REG_IPD bits */ 71c41aa3ceSMax Schwarz #define REG_INT_BTF BIT(0) /* a byte was transmitted */ 72c41aa3ceSMax Schwarz #define REG_INT_BRF BIT(1) /* a byte was received */ 73c41aa3ceSMax Schwarz #define REG_INT_MBTF BIT(2) /* master data transmit finished */ 74c41aa3ceSMax Schwarz #define REG_INT_MBRF BIT(3) /* master data receive finished */ 75c41aa3ceSMax Schwarz #define REG_INT_START BIT(4) /* START condition generated */ 76c41aa3ceSMax Schwarz #define REG_INT_STOP BIT(5) /* STOP condition generated */ 77c41aa3ceSMax Schwarz #define REG_INT_NAKRCV BIT(6) /* NACK received */ 78c41aa3ceSMax Schwarz #define REG_INT_ALL 0x7f 79c41aa3ceSMax Schwarz 80c41aa3ceSMax Schwarz /* Constants */ 814489750fSDoug Anderson #define WAIT_TIMEOUT 1000 /* ms */ 82c41aa3ceSMax Schwarz #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */ 83c41aa3ceSMax Schwarz 84e26747bfSDavid Wu /** 85b58fd3beSDavid Wu * struct i2c_spec_values: 86*7e086c3fSDavid Wu * @min_hold_start_ns: min hold time (repeated) START condition 87b58fd3beSDavid Wu * @min_low_ns: min LOW period of the SCL clock 88b58fd3beSDavid Wu * @min_high_ns: min HIGH period of the SCL cloc 89b58fd3beSDavid Wu * @min_setup_start_ns: min set-up time for a repeated START conditio 90b58fd3beSDavid Wu * @max_data_hold_ns: max data hold time 91*7e086c3fSDavid Wu * @min_data_setup_ns: min data set-up time 92*7e086c3fSDavid Wu * @min_setup_stop_ns: min set-up time for STOP condition 93*7e086c3fSDavid Wu * @min_hold_buffer_ns: min bus free time between a STOP and 94*7e086c3fSDavid Wu * START condition 95b58fd3beSDavid Wu */ 96b58fd3beSDavid Wu struct i2c_spec_values { 97*7e086c3fSDavid Wu unsigned long min_hold_start_ns; 98b58fd3beSDavid Wu unsigned long min_low_ns; 99b58fd3beSDavid Wu unsigned long min_high_ns; 100b58fd3beSDavid Wu unsigned long min_setup_start_ns; 101b58fd3beSDavid Wu unsigned long max_data_hold_ns; 102*7e086c3fSDavid Wu unsigned long min_data_setup_ns; 103*7e086c3fSDavid Wu unsigned long min_setup_stop_ns; 104*7e086c3fSDavid Wu unsigned long min_hold_buffer_ns; 105b58fd3beSDavid Wu }; 106b58fd3beSDavid Wu 107b58fd3beSDavid Wu static const struct i2c_spec_values standard_mode_spec = { 108*7e086c3fSDavid Wu .min_hold_start_ns = 4000, 109b58fd3beSDavid Wu .min_low_ns = 4700, 110b58fd3beSDavid Wu .min_high_ns = 4000, 111b58fd3beSDavid Wu .min_setup_start_ns = 4700, 112b58fd3beSDavid Wu .max_data_hold_ns = 3450, 113*7e086c3fSDavid Wu .min_data_setup_ns = 250, 114*7e086c3fSDavid Wu .min_setup_stop_ns = 4000, 115*7e086c3fSDavid Wu .min_hold_buffer_ns = 4700, 116b58fd3beSDavid Wu }; 117b58fd3beSDavid Wu 118b58fd3beSDavid Wu static const struct i2c_spec_values fast_mode_spec = { 119*7e086c3fSDavid Wu .min_hold_start_ns = 600, 120b58fd3beSDavid Wu .min_low_ns = 1300, 121b58fd3beSDavid Wu .min_high_ns = 600, 122b58fd3beSDavid Wu .min_setup_start_ns = 600, 123b58fd3beSDavid Wu .max_data_hold_ns = 900, 124*7e086c3fSDavid Wu .min_data_setup_ns = 100, 125*7e086c3fSDavid Wu .min_setup_stop_ns = 600, 126*7e086c3fSDavid Wu .min_hold_buffer_ns = 1300, 127b58fd3beSDavid Wu }; 128b58fd3beSDavid Wu 129b58fd3beSDavid Wu /** 130e26747bfSDavid Wu * struct rk3x_i2c_calced_timings: 131e26747bfSDavid Wu * @div_low: Divider output for low 132e26747bfSDavid Wu * @div_high: Divider output for high 133*7e086c3fSDavid Wu * @tuning: Used to adjust setup/hold data time, 134*7e086c3fSDavid Wu * setup/hold start time and setup stop time for 135*7e086c3fSDavid Wu * v1's calc_timings, the tuning should all be 0 136*7e086c3fSDavid Wu * for old hardware anyone using v0's calc_timings. 137e26747bfSDavid Wu */ 138e26747bfSDavid Wu struct rk3x_i2c_calced_timings { 139e26747bfSDavid Wu unsigned long div_low; 140e26747bfSDavid Wu unsigned long div_high; 141*7e086c3fSDavid Wu unsigned int tuning; 142e26747bfSDavid Wu }; 143e26747bfSDavid Wu 144c41aa3ceSMax Schwarz enum rk3x_i2c_state { 145c41aa3ceSMax Schwarz STATE_IDLE, 146c41aa3ceSMax Schwarz STATE_START, 147c41aa3ceSMax Schwarz STATE_READ, 148c41aa3ceSMax Schwarz STATE_WRITE, 149c41aa3ceSMax Schwarz STATE_STOP 150c41aa3ceSMax Schwarz }; 151c41aa3ceSMax Schwarz 152c41aa3ceSMax Schwarz /** 153c41aa3ceSMax Schwarz * @grf_offset: offset inside the grf regmap for setting the i2c type 154*7e086c3fSDavid Wu * @calc_timings: Callback function for i2c timing information calculated 155c41aa3ceSMax Schwarz */ 156c41aa3ceSMax Schwarz struct rk3x_i2c_soc_data { 157c41aa3ceSMax Schwarz int grf_offset; 158*7e086c3fSDavid Wu int (*calc_timings)(unsigned long, struct i2c_timings *, 159*7e086c3fSDavid Wu struct rk3x_i2c_calced_timings *); 160c41aa3ceSMax Schwarz }; 161c41aa3ceSMax Schwarz 1620a6ad2f9SDavid Wu /** 1630a6ad2f9SDavid Wu * struct rk3x_i2c - private data of the controller 1640a6ad2f9SDavid Wu * @adap: corresponding I2C adapter 1650a6ad2f9SDavid Wu * @dev: device for this controller 1660a6ad2f9SDavid Wu * @soc_data: related soc data struct 1670a6ad2f9SDavid Wu * @regs: virtual memory area 168*7e086c3fSDavid Wu * @clk: function clk for rk3399 or function & Bus clks for others 169*7e086c3fSDavid Wu * @pclk: Bus clk for rk3399 1700a6ad2f9SDavid Wu * @clk_rate_nb: i2c clk rate change notify 1710a6ad2f9SDavid Wu * @t: I2C known timing information 1720a6ad2f9SDavid Wu * @lock: spinlock for the i2c bus 1730a6ad2f9SDavid Wu * @wait: the waitqueue to wait for i2c transfer 1740a6ad2f9SDavid Wu * @busy: the condition for the event to wait for 1750a6ad2f9SDavid Wu * @msg: current i2c message 1760a6ad2f9SDavid Wu * @addr: addr of i2c slave device 1770a6ad2f9SDavid Wu * @mode: mode of i2c transfer 1780a6ad2f9SDavid Wu * @is_last_msg: flag determines whether it is the last msg in this transfer 1790a6ad2f9SDavid Wu * @state: state of i2c transfer 1800a6ad2f9SDavid Wu * @processed: byte length which has been send or received 1810a6ad2f9SDavid Wu * @error: error code for i2c transfer 1820a6ad2f9SDavid Wu */ 183c41aa3ceSMax Schwarz struct rk3x_i2c { 184c41aa3ceSMax Schwarz struct i2c_adapter adap; 185c41aa3ceSMax Schwarz struct device *dev; 186c41aa3ceSMax Schwarz struct rk3x_i2c_soc_data *soc_data; 187c41aa3ceSMax Schwarz 188c41aa3ceSMax Schwarz /* Hardware resources */ 189c41aa3ceSMax Schwarz void __iomem *regs; 190c41aa3ceSMax Schwarz struct clk *clk; 191*7e086c3fSDavid Wu struct clk *pclk; 192249051f4SMax Schwarz struct notifier_block clk_rate_nb; 193c41aa3ceSMax Schwarz 194c41aa3ceSMax Schwarz /* Settings */ 1951ab92956SDavid Wu struct i2c_timings t; 196c41aa3ceSMax Schwarz 197c41aa3ceSMax Schwarz /* Synchronization & notification */ 198c41aa3ceSMax Schwarz spinlock_t lock; 199c41aa3ceSMax Schwarz wait_queue_head_t wait; 200c41aa3ceSMax Schwarz bool busy; 201c41aa3ceSMax Schwarz 202c41aa3ceSMax Schwarz /* Current message */ 203c41aa3ceSMax Schwarz struct i2c_msg *msg; 204c41aa3ceSMax Schwarz u8 addr; 205c41aa3ceSMax Schwarz unsigned int mode; 206c41aa3ceSMax Schwarz bool is_last_msg; 207c41aa3ceSMax Schwarz 208c41aa3ceSMax Schwarz /* I2C state machine */ 209c41aa3ceSMax Schwarz enum rk3x_i2c_state state; 2100a6ad2f9SDavid Wu unsigned int processed; 211c41aa3ceSMax Schwarz int error; 212c41aa3ceSMax Schwarz }; 213c41aa3ceSMax Schwarz 214c41aa3ceSMax Schwarz static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, 215c41aa3ceSMax Schwarz unsigned int offset) 216c41aa3ceSMax Schwarz { 217c41aa3ceSMax Schwarz writel(value, i2c->regs + offset); 218c41aa3ceSMax Schwarz } 219c41aa3ceSMax Schwarz 220c41aa3ceSMax Schwarz static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) 221c41aa3ceSMax Schwarz { 222c41aa3ceSMax Schwarz return readl(i2c->regs + offset); 223c41aa3ceSMax Schwarz } 224c41aa3ceSMax Schwarz 225c41aa3ceSMax Schwarz /* Reset all interrupt pending bits */ 226c41aa3ceSMax Schwarz static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) 227c41aa3ceSMax Schwarz { 228c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_ALL, REG_IPD); 229c41aa3ceSMax Schwarz } 230c41aa3ceSMax Schwarz 231c41aa3ceSMax Schwarz /** 232c41aa3ceSMax Schwarz * Generate a START condition, which triggers a REG_INT_START interrupt. 233c41aa3ceSMax Schwarz */ 234c41aa3ceSMax Schwarz static void rk3x_i2c_start(struct rk3x_i2c *i2c) 235c41aa3ceSMax Schwarz { 236*7e086c3fSDavid Wu u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; 237c41aa3ceSMax Schwarz 238c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_START, REG_IEN); 239c41aa3ceSMax Schwarz 240c41aa3ceSMax Schwarz /* enable adapter with correct mode, send START condition */ 241*7e086c3fSDavid Wu val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; 242c41aa3ceSMax Schwarz 243c41aa3ceSMax Schwarz /* if we want to react to NACK, set ACTACK bit */ 244c41aa3ceSMax Schwarz if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) 245c41aa3ceSMax Schwarz val |= REG_CON_ACTACK; 246c41aa3ceSMax Schwarz 247c41aa3ceSMax Schwarz i2c_writel(i2c, val, REG_CON); 248c41aa3ceSMax Schwarz } 249c41aa3ceSMax Schwarz 250c41aa3ceSMax Schwarz /** 251c41aa3ceSMax Schwarz * Generate a STOP condition, which triggers a REG_INT_STOP interrupt. 252c41aa3ceSMax Schwarz * 253c41aa3ceSMax Schwarz * @error: Error code to return in rk3x_i2c_xfer 254c41aa3ceSMax Schwarz */ 255c41aa3ceSMax Schwarz static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) 256c41aa3ceSMax Schwarz { 257c41aa3ceSMax Schwarz unsigned int ctrl; 258c41aa3ceSMax Schwarz 259c41aa3ceSMax Schwarz i2c->processed = 0; 260c41aa3ceSMax Schwarz i2c->msg = NULL; 261c41aa3ceSMax Schwarz i2c->error = error; 262c41aa3ceSMax Schwarz 263c41aa3ceSMax Schwarz if (i2c->is_last_msg) { 264c41aa3ceSMax Schwarz /* Enable stop interrupt */ 265c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_STOP, REG_IEN); 266c41aa3ceSMax Schwarz 267c41aa3ceSMax Schwarz i2c->state = STATE_STOP; 268c41aa3ceSMax Schwarz 269c41aa3ceSMax Schwarz ctrl = i2c_readl(i2c, REG_CON); 270c41aa3ceSMax Schwarz ctrl |= REG_CON_STOP; 271c41aa3ceSMax Schwarz i2c_writel(i2c, ctrl, REG_CON); 272c41aa3ceSMax Schwarz } else { 273c41aa3ceSMax Schwarz /* Signal rk3x_i2c_xfer to start the next message. */ 274c41aa3ceSMax Schwarz i2c->busy = false; 275c41aa3ceSMax Schwarz i2c->state = STATE_IDLE; 276c41aa3ceSMax Schwarz 277c41aa3ceSMax Schwarz /* 278c41aa3ceSMax Schwarz * The HW is actually not capable of REPEATED START. But we can 279c41aa3ceSMax Schwarz * get the intended effect by resetting its internal state 280c41aa3ceSMax Schwarz * and issuing an ordinary START. 281c41aa3ceSMax Schwarz */ 282*7e086c3fSDavid Wu ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; 283*7e086c3fSDavid Wu i2c_writel(i2c, ctrl, REG_CON); 284c41aa3ceSMax Schwarz 285c41aa3ceSMax Schwarz /* signal that we are finished with the current msg */ 286c41aa3ceSMax Schwarz wake_up(&i2c->wait); 287c41aa3ceSMax Schwarz } 288c41aa3ceSMax Schwarz } 289c41aa3ceSMax Schwarz 290c41aa3ceSMax Schwarz /** 291c41aa3ceSMax Schwarz * Setup a read according to i2c->msg 292c41aa3ceSMax Schwarz */ 293c41aa3ceSMax Schwarz static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) 294c41aa3ceSMax Schwarz { 295c41aa3ceSMax Schwarz unsigned int len = i2c->msg->len - i2c->processed; 296c41aa3ceSMax Schwarz u32 con; 297c41aa3ceSMax Schwarz 298c41aa3ceSMax Schwarz con = i2c_readl(i2c, REG_CON); 299c41aa3ceSMax Schwarz 300c41aa3ceSMax Schwarz /* 301c41aa3ceSMax Schwarz * The hw can read up to 32 bytes at a time. If we need more than one 302c41aa3ceSMax Schwarz * chunk, send an ACK after the last byte of the current chunk. 303c41aa3ceSMax Schwarz */ 30429209338SDoug Anderson if (len > 32) { 305c41aa3ceSMax Schwarz len = 32; 306c41aa3ceSMax Schwarz con &= ~REG_CON_LASTACK; 307c41aa3ceSMax Schwarz } else { 308c41aa3ceSMax Schwarz con |= REG_CON_LASTACK; 309c41aa3ceSMax Schwarz } 310c41aa3ceSMax Schwarz 311c41aa3ceSMax Schwarz /* make sure we are in plain RX mode if we read a second chunk */ 312c41aa3ceSMax Schwarz if (i2c->processed != 0) { 313c41aa3ceSMax Schwarz con &= ~REG_CON_MOD_MASK; 314c41aa3ceSMax Schwarz con |= REG_CON_MOD(REG_CON_MOD_RX); 315c41aa3ceSMax Schwarz } 316c41aa3ceSMax Schwarz 317c41aa3ceSMax Schwarz i2c_writel(i2c, con, REG_CON); 318c41aa3ceSMax Schwarz i2c_writel(i2c, len, REG_MRXCNT); 319c41aa3ceSMax Schwarz } 320c41aa3ceSMax Schwarz 321c41aa3ceSMax Schwarz /** 322c41aa3ceSMax Schwarz * Fill the transmit buffer with data from i2c->msg 323c41aa3ceSMax Schwarz */ 324c41aa3ceSMax Schwarz static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) 325c41aa3ceSMax Schwarz { 326c41aa3ceSMax Schwarz unsigned int i, j; 327c41aa3ceSMax Schwarz u32 cnt = 0; 328c41aa3ceSMax Schwarz u32 val; 329c41aa3ceSMax Schwarz u8 byte; 330c41aa3ceSMax Schwarz 331c41aa3ceSMax Schwarz for (i = 0; i < 8; ++i) { 332c41aa3ceSMax Schwarz val = 0; 333c41aa3ceSMax Schwarz for (j = 0; j < 4; ++j) { 334cf27020dSAlexandru M Stan if ((i2c->processed == i2c->msg->len) && (cnt != 0)) 335c41aa3ceSMax Schwarz break; 336c41aa3ceSMax Schwarz 337c41aa3ceSMax Schwarz if (i2c->processed == 0 && cnt == 0) 338c41aa3ceSMax Schwarz byte = (i2c->addr & 0x7f) << 1; 339c41aa3ceSMax Schwarz else 340c41aa3ceSMax Schwarz byte = i2c->msg->buf[i2c->processed++]; 341c41aa3ceSMax Schwarz 342c41aa3ceSMax Schwarz val |= byte << (j * 8); 343c41aa3ceSMax Schwarz cnt++; 344c41aa3ceSMax Schwarz } 345c41aa3ceSMax Schwarz 346c41aa3ceSMax Schwarz i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); 347c41aa3ceSMax Schwarz 348c41aa3ceSMax Schwarz if (i2c->processed == i2c->msg->len) 349c41aa3ceSMax Schwarz break; 350c41aa3ceSMax Schwarz } 351c41aa3ceSMax Schwarz 352c41aa3ceSMax Schwarz i2c_writel(i2c, cnt, REG_MTXCNT); 353c41aa3ceSMax Schwarz } 354c41aa3ceSMax Schwarz 355c41aa3ceSMax Schwarz 356c41aa3ceSMax Schwarz /* IRQ handlers for individual states */ 357c41aa3ceSMax Schwarz 358c41aa3ceSMax Schwarz static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) 359c41aa3ceSMax Schwarz { 360c41aa3ceSMax Schwarz if (!(ipd & REG_INT_START)) { 361c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -EIO); 362c41aa3ceSMax Schwarz dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); 363c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 364c41aa3ceSMax Schwarz return; 365c41aa3ceSMax Schwarz } 366c41aa3ceSMax Schwarz 367c41aa3ceSMax Schwarz /* ack interrupt */ 368c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_START, REG_IPD); 369c41aa3ceSMax Schwarz 370c41aa3ceSMax Schwarz /* disable start bit */ 371c41aa3ceSMax Schwarz i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); 372c41aa3ceSMax Schwarz 373c41aa3ceSMax Schwarz /* enable appropriate interrupts and transition */ 374c41aa3ceSMax Schwarz if (i2c->mode == REG_CON_MOD_TX) { 375c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); 376c41aa3ceSMax Schwarz i2c->state = STATE_WRITE; 377c41aa3ceSMax Schwarz rk3x_i2c_fill_transmit_buf(i2c); 378c41aa3ceSMax Schwarz } else { 379c41aa3ceSMax Schwarz /* in any other case, we are going to be reading. */ 380c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); 381c41aa3ceSMax Schwarz i2c->state = STATE_READ; 382c41aa3ceSMax Schwarz rk3x_i2c_prepare_read(i2c); 383c41aa3ceSMax Schwarz } 384c41aa3ceSMax Schwarz } 385c41aa3ceSMax Schwarz 386c41aa3ceSMax Schwarz static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) 387c41aa3ceSMax Schwarz { 388c41aa3ceSMax Schwarz if (!(ipd & REG_INT_MBTF)) { 389c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -EIO); 390c41aa3ceSMax Schwarz dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); 391c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 392c41aa3ceSMax Schwarz return; 393c41aa3ceSMax Schwarz } 394c41aa3ceSMax Schwarz 395c41aa3ceSMax Schwarz /* ack interrupt */ 396c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBTF, REG_IPD); 397c41aa3ceSMax Schwarz 398c41aa3ceSMax Schwarz /* are we finished? */ 399c41aa3ceSMax Schwarz if (i2c->processed == i2c->msg->len) 400c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, i2c->error); 401c41aa3ceSMax Schwarz else 402c41aa3ceSMax Schwarz rk3x_i2c_fill_transmit_buf(i2c); 403c41aa3ceSMax Schwarz } 404c41aa3ceSMax Schwarz 405c41aa3ceSMax Schwarz static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) 406c41aa3ceSMax Schwarz { 407c41aa3ceSMax Schwarz unsigned int i; 408c41aa3ceSMax Schwarz unsigned int len = i2c->msg->len - i2c->processed; 409c41aa3ceSMax Schwarz u32 uninitialized_var(val); 410c41aa3ceSMax Schwarz u8 byte; 411c41aa3ceSMax Schwarz 412c41aa3ceSMax Schwarz /* we only care for MBRF here. */ 413c41aa3ceSMax Schwarz if (!(ipd & REG_INT_MBRF)) 414c41aa3ceSMax Schwarz return; 415c41aa3ceSMax Schwarz 416c41aa3ceSMax Schwarz /* ack interrupt */ 417c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBRF, REG_IPD); 418c41aa3ceSMax Schwarz 4195da4309fSaddy ke /* Can only handle a maximum of 32 bytes at a time */ 4205da4309fSaddy ke if (len > 32) 4215da4309fSaddy ke len = 32; 4225da4309fSaddy ke 423c41aa3ceSMax Schwarz /* read the data from receive buffer */ 424c41aa3ceSMax Schwarz for (i = 0; i < len; ++i) { 425c41aa3ceSMax Schwarz if (i % 4 == 0) 426c41aa3ceSMax Schwarz val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); 427c41aa3ceSMax Schwarz 428c41aa3ceSMax Schwarz byte = (val >> ((i % 4) * 8)) & 0xff; 429c41aa3ceSMax Schwarz i2c->msg->buf[i2c->processed++] = byte; 430c41aa3ceSMax Schwarz } 431c41aa3ceSMax Schwarz 432c41aa3ceSMax Schwarz /* are we finished? */ 433c41aa3ceSMax Schwarz if (i2c->processed == i2c->msg->len) 434c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, i2c->error); 435c41aa3ceSMax Schwarz else 436c41aa3ceSMax Schwarz rk3x_i2c_prepare_read(i2c); 437c41aa3ceSMax Schwarz } 438c41aa3ceSMax Schwarz 439c41aa3ceSMax Schwarz static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) 440c41aa3ceSMax Schwarz { 441c41aa3ceSMax Schwarz unsigned int con; 442c41aa3ceSMax Schwarz 443c41aa3ceSMax Schwarz if (!(ipd & REG_INT_STOP)) { 444c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -EIO); 445c41aa3ceSMax Schwarz dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); 446c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 447c41aa3ceSMax Schwarz return; 448c41aa3ceSMax Schwarz } 449c41aa3ceSMax Schwarz 450c41aa3ceSMax Schwarz /* ack interrupt */ 451c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_STOP, REG_IPD); 452c41aa3ceSMax Schwarz 453c41aa3ceSMax Schwarz /* disable STOP bit */ 454c41aa3ceSMax Schwarz con = i2c_readl(i2c, REG_CON); 455c41aa3ceSMax Schwarz con &= ~REG_CON_STOP; 456c41aa3ceSMax Schwarz i2c_writel(i2c, con, REG_CON); 457c41aa3ceSMax Schwarz 458c41aa3ceSMax Schwarz i2c->busy = false; 459c41aa3ceSMax Schwarz i2c->state = STATE_IDLE; 460c41aa3ceSMax Schwarz 461c41aa3ceSMax Schwarz /* signal rk3x_i2c_xfer that we are finished */ 462c41aa3ceSMax Schwarz wake_up(&i2c->wait); 463c41aa3ceSMax Schwarz } 464c41aa3ceSMax Schwarz 465c41aa3ceSMax Schwarz static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) 466c41aa3ceSMax Schwarz { 467c41aa3ceSMax Schwarz struct rk3x_i2c *i2c = dev_id; 468c41aa3ceSMax Schwarz unsigned int ipd; 469c41aa3ceSMax Schwarz 470c41aa3ceSMax Schwarz spin_lock(&i2c->lock); 471c41aa3ceSMax Schwarz 472c41aa3ceSMax Schwarz ipd = i2c_readl(i2c, REG_IPD); 473c41aa3ceSMax Schwarz if (i2c->state == STATE_IDLE) { 474c41aa3ceSMax Schwarz dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); 475c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 476c41aa3ceSMax Schwarz goto out; 477c41aa3ceSMax Schwarz } 478c41aa3ceSMax Schwarz 479c41aa3ceSMax Schwarz dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); 480c41aa3ceSMax Schwarz 481c41aa3ceSMax Schwarz /* Clean interrupt bits we don't care about */ 482c41aa3ceSMax Schwarz ipd &= ~(REG_INT_BRF | REG_INT_BTF); 483c41aa3ceSMax Schwarz 484c41aa3ceSMax Schwarz if (ipd & REG_INT_NAKRCV) { 485c41aa3ceSMax Schwarz /* 486c41aa3ceSMax Schwarz * We got a NACK in the last operation. Depending on whether 487c41aa3ceSMax Schwarz * IGNORE_NAK is set, we have to stop the operation and report 488c41aa3ceSMax Schwarz * an error. 489c41aa3ceSMax Schwarz */ 490c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); 491c41aa3ceSMax Schwarz 492c41aa3ceSMax Schwarz ipd &= ~REG_INT_NAKRCV; 493c41aa3ceSMax Schwarz 494c41aa3ceSMax Schwarz if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) 495c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -ENXIO); 496c41aa3ceSMax Schwarz } 497c41aa3ceSMax Schwarz 498c41aa3ceSMax Schwarz /* is there anything left to handle? */ 49929209338SDoug Anderson if ((ipd & REG_INT_ALL) == 0) 500c41aa3ceSMax Schwarz goto out; 501c41aa3ceSMax Schwarz 502c41aa3ceSMax Schwarz switch (i2c->state) { 503c41aa3ceSMax Schwarz case STATE_START: 504c41aa3ceSMax Schwarz rk3x_i2c_handle_start(i2c, ipd); 505c41aa3ceSMax Schwarz break; 506c41aa3ceSMax Schwarz case STATE_WRITE: 507c41aa3ceSMax Schwarz rk3x_i2c_handle_write(i2c, ipd); 508c41aa3ceSMax Schwarz break; 509c41aa3ceSMax Schwarz case STATE_READ: 510c41aa3ceSMax Schwarz rk3x_i2c_handle_read(i2c, ipd); 511c41aa3ceSMax Schwarz break; 512c41aa3ceSMax Schwarz case STATE_STOP: 513c41aa3ceSMax Schwarz rk3x_i2c_handle_stop(i2c, ipd); 514c41aa3ceSMax Schwarz break; 515c41aa3ceSMax Schwarz case STATE_IDLE: 516c41aa3ceSMax Schwarz break; 517c41aa3ceSMax Schwarz } 518c41aa3ceSMax Schwarz 519c41aa3ceSMax Schwarz out: 520c41aa3ceSMax Schwarz spin_unlock(&i2c->lock); 521c41aa3ceSMax Schwarz return IRQ_HANDLED; 522c41aa3ceSMax Schwarz } 523c41aa3ceSMax Schwarz 524249051f4SMax Schwarz /** 525b58fd3beSDavid Wu * Get timing values of I2C specification 526b58fd3beSDavid Wu * 527b58fd3beSDavid Wu * @speed: Desired SCL frequency 528b58fd3beSDavid Wu * 529b58fd3beSDavid Wu * Returns: Matched i2c spec values. 530b58fd3beSDavid Wu */ 531b58fd3beSDavid Wu static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed) 532b58fd3beSDavid Wu { 533b58fd3beSDavid Wu if (speed <= 100000) 534b58fd3beSDavid Wu return &standard_mode_spec; 535b58fd3beSDavid Wu else 536b58fd3beSDavid Wu return &fast_mode_spec; 537b58fd3beSDavid Wu } 538b58fd3beSDavid Wu 539b58fd3beSDavid Wu /** 540249051f4SMax Schwarz * Calculate divider values for desired SCL frequency 541249051f4SMax Schwarz * 542249051f4SMax Schwarz * @clk_rate: I2C input clock rate 543e26747bfSDavid Wu * @t: Known I2C timing information 544e26747bfSDavid Wu * @t_calc: Caculated rk3x private timings that would be written into regs 545249051f4SMax Schwarz * 546249051f4SMax Schwarz * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case 547249051f4SMax Schwarz * a best-effort divider value is returned in divs. If the target rate is 548249051f4SMax Schwarz * too high, we silently use the highest possible rate. 549249051f4SMax Schwarz */ 550*7e086c3fSDavid Wu static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, 5511ab92956SDavid Wu struct i2c_timings *t, 552e26747bfSDavid Wu struct rk3x_i2c_calced_timings *t_calc) 5530285f8f5Saddy ke { 5541330e291Saddy ke unsigned long min_low_ns, min_high_ns; 5550285f8f5Saddy ke unsigned long max_low_ns, min_total_ns; 5560285f8f5Saddy ke 557249051f4SMax Schwarz unsigned long clk_rate_khz, scl_rate_khz; 5580285f8f5Saddy ke 5590285f8f5Saddy ke unsigned long min_low_div, min_high_div; 5600285f8f5Saddy ke unsigned long max_low_div; 5610285f8f5Saddy ke 5620285f8f5Saddy ke unsigned long min_div_for_hold, min_total_div; 5630285f8f5Saddy ke unsigned long extra_div, extra_low_div, ideal_low_div; 5640285f8f5Saddy ke 565b58fd3beSDavid Wu unsigned long data_hold_buffer_ns = 50; 566b58fd3beSDavid Wu const struct i2c_spec_values *spec; 567249051f4SMax Schwarz int ret = 0; 568249051f4SMax Schwarz 5690285f8f5Saddy ke /* Only support standard-mode and fast-mode */ 5701ab92956SDavid Wu if (WARN_ON(t->bus_freq_hz > 400000)) 5711ab92956SDavid Wu t->bus_freq_hz = 400000; 5720285f8f5Saddy ke 5730285f8f5Saddy ke /* prevent scl_rate_khz from becoming 0 */ 5741ab92956SDavid Wu if (WARN_ON(t->bus_freq_hz < 1000)) 5751ab92956SDavid Wu t->bus_freq_hz = 1000; 5760285f8f5Saddy ke 5770285f8f5Saddy ke /* 5781330e291Saddy ke * min_low_ns: The minimum number of ns we need to hold low to 5791330e291Saddy ke * meet I2C specification, should include fall time. 5801330e291Saddy ke * min_high_ns: The minimum number of ns we need to hold high to 5811330e291Saddy ke * meet I2C specification, should include rise time. 5821330e291Saddy ke * max_low_ns: The maximum number of ns we can hold low to meet 5831330e291Saddy ke * I2C specification. 5840285f8f5Saddy ke * 5851330e291Saddy ke * Note: max_low_ns should be (maximum data hold time * 2 - buffer) 5860285f8f5Saddy ke * This is because the i2c host on Rockchip holds the data line 5870285f8f5Saddy ke * for half the low time. 5880285f8f5Saddy ke */ 589b58fd3beSDavid Wu spec = rk3x_i2c_get_spec(t->bus_freq_hz); 590b58fd3beSDavid Wu min_high_ns = t->scl_rise_ns + spec->min_high_ns; 591387f0de6SDoug Anderson 592387f0de6SDoug Anderson /* 593387f0de6SDoug Anderson * Timings for repeated start: 594387f0de6SDoug Anderson * - controller appears to drop SDA at .875x (7/8) programmed clk high. 595387f0de6SDoug Anderson * - controller appears to keep SCL high for 2x programmed clk high. 596387f0de6SDoug Anderson * 597387f0de6SDoug Anderson * We need to account for those rules in picking our "high" time so 598387f0de6SDoug Anderson * we meet tSU;STA and tHD;STA times. 599387f0de6SDoug Anderson */ 600b58fd3beSDavid Wu min_high_ns = max(min_high_ns, DIV_ROUND_UP( 601b58fd3beSDavid Wu (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875)); 602b58fd3beSDavid Wu min_high_ns = max(min_high_ns, DIV_ROUND_UP( 603b58fd3beSDavid Wu (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + 604b58fd3beSDavid Wu spec->min_high_ns), 2)); 605387f0de6SDoug Anderson 606b58fd3beSDavid Wu min_low_ns = t->scl_fall_ns + spec->min_low_ns; 607b58fd3beSDavid Wu max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns; 6080285f8f5Saddy ke min_total_ns = min_low_ns + min_high_ns; 6090285f8f5Saddy ke 6100285f8f5Saddy ke /* Adjust to avoid overflow */ 611249051f4SMax Schwarz clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); 6121ab92956SDavid Wu scl_rate_khz = t->bus_freq_hz / 1000; 6130285f8f5Saddy ke 6140285f8f5Saddy ke /* 6150285f8f5Saddy ke * We need the total div to be >= this number 6160285f8f5Saddy ke * so we don't clock too fast. 6170285f8f5Saddy ke */ 618249051f4SMax Schwarz min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); 6190285f8f5Saddy ke 6200285f8f5Saddy ke /* These are the min dividers needed for min hold times. */ 621249051f4SMax Schwarz min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); 622249051f4SMax Schwarz min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); 6230285f8f5Saddy ke min_div_for_hold = (min_low_div + min_high_div); 6240285f8f5Saddy ke 6250285f8f5Saddy ke /* 6261330e291Saddy ke * This is the maximum divider so we don't go over the maximum. 6271330e291Saddy ke * We don't round up here (we round down) since this is a maximum. 6280285f8f5Saddy ke */ 629249051f4SMax Schwarz max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); 6300285f8f5Saddy ke 6310285f8f5Saddy ke if (min_low_div > max_low_div) { 6320285f8f5Saddy ke WARN_ONCE(true, 6330285f8f5Saddy ke "Conflicting, min_low_div %lu, max_low_div %lu\n", 6340285f8f5Saddy ke min_low_div, max_low_div); 6350285f8f5Saddy ke max_low_div = min_low_div; 6360285f8f5Saddy ke } 6370285f8f5Saddy ke 6380285f8f5Saddy ke if (min_div_for_hold > min_total_div) { 6390285f8f5Saddy ke /* 6400285f8f5Saddy ke * Time needed to meet hold requirements is important. 6410285f8f5Saddy ke * Just use that. 6420285f8f5Saddy ke */ 643e26747bfSDavid Wu t_calc->div_low = min_low_div; 644e26747bfSDavid Wu t_calc->div_high = min_high_div; 6450285f8f5Saddy ke } else { 6460285f8f5Saddy ke /* 6470285f8f5Saddy ke * We've got to distribute some time among the low and high 6480285f8f5Saddy ke * so we don't run too fast. 6490285f8f5Saddy ke */ 6500285f8f5Saddy ke extra_div = min_total_div - min_div_for_hold; 6510285f8f5Saddy ke 6520285f8f5Saddy ke /* 6530285f8f5Saddy ke * We'll try to split things up perfectly evenly, 6540285f8f5Saddy ke * biasing slightly towards having a higher div 6550285f8f5Saddy ke * for low (spend more time low). 6560285f8f5Saddy ke */ 657249051f4SMax Schwarz ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 6580285f8f5Saddy ke scl_rate_khz * 8 * min_total_ns); 6590285f8f5Saddy ke 6601330e291Saddy ke /* Don't allow it to go over the maximum */ 6610285f8f5Saddy ke if (ideal_low_div > max_low_div) 6620285f8f5Saddy ke ideal_low_div = max_low_div; 6630285f8f5Saddy ke 6640285f8f5Saddy ke /* 6650285f8f5Saddy ke * Handle when the ideal low div is going to take up 6660285f8f5Saddy ke * more than we have. 6670285f8f5Saddy ke */ 6680285f8f5Saddy ke if (ideal_low_div > min_low_div + extra_div) 6690285f8f5Saddy ke ideal_low_div = min_low_div + extra_div; 6700285f8f5Saddy ke 6710285f8f5Saddy ke /* Give low the "ideal" and give high whatever extra is left */ 6720285f8f5Saddy ke extra_low_div = ideal_low_div - min_low_div; 673e26747bfSDavid Wu t_calc->div_low = ideal_low_div; 674e26747bfSDavid Wu t_calc->div_high = min_high_div + (extra_div - extra_low_div); 6750285f8f5Saddy ke } 6760285f8f5Saddy ke 6770285f8f5Saddy ke /* 6780285f8f5Saddy ke * Adjust to the fact that the hardware has an implicit "+1". 6790285f8f5Saddy ke * NOTE: Above calculations always produce div_low > 0 and div_high > 0. 6800285f8f5Saddy ke */ 681e26747bfSDavid Wu t_calc->div_low--; 682e26747bfSDavid Wu t_calc->div_high--; 6830285f8f5Saddy ke 684249051f4SMax Schwarz /* Maximum divider supported by hw is 0xffff */ 685e26747bfSDavid Wu if (t_calc->div_low > 0xffff) { 686e26747bfSDavid Wu t_calc->div_low = 0xffff; 687249051f4SMax Schwarz ret = -EINVAL; 6880285f8f5Saddy ke } 6890285f8f5Saddy ke 690e26747bfSDavid Wu if (t_calc->div_high > 0xffff) { 691e26747bfSDavid Wu t_calc->div_high = 0xffff; 692249051f4SMax Schwarz ret = -EINVAL; 693249051f4SMax Schwarz } 694249051f4SMax Schwarz 695249051f4SMax Schwarz return ret; 696249051f4SMax Schwarz } 697249051f4SMax Schwarz 698*7e086c3fSDavid Wu /** 699*7e086c3fSDavid Wu * Calculate timing values for desired SCL frequency 700*7e086c3fSDavid Wu * 701*7e086c3fSDavid Wu * @clk_rate: I2C input clock rate 702*7e086c3fSDavid Wu * @t: Known I2C timing information 703*7e086c3fSDavid Wu * @t_calc: Caculated rk3x private timings that would be written into regs 704*7e086c3fSDavid Wu * 705*7e086c3fSDavid Wu * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case 706*7e086c3fSDavid Wu * a best-effort divider value is returned in divs. If the target rate is 707*7e086c3fSDavid Wu * too high, we silently use the highest possible rate. 708*7e086c3fSDavid Wu * The following formulas are v1's method to calculate timings. 709*7e086c3fSDavid Wu * 710*7e086c3fSDavid Wu * l = divl + 1; 711*7e086c3fSDavid Wu * h = divh + 1; 712*7e086c3fSDavid Wu * s = sda_update_config + 1; 713*7e086c3fSDavid Wu * u = start_setup_config + 1; 714*7e086c3fSDavid Wu * p = stop_setup_config + 1; 715*7e086c3fSDavid Wu * T = Tclk_i2c; 716*7e086c3fSDavid Wu * 717*7e086c3fSDavid Wu * tHigh = 8 * h * T; 718*7e086c3fSDavid Wu * tLow = 8 * l * T; 719*7e086c3fSDavid Wu * 720*7e086c3fSDavid Wu * tHD;sda = (l * s + 1) * T; 721*7e086c3fSDavid Wu * tSU;sda = [(8 - s) * l + 1] * T; 722*7e086c3fSDavid Wu * tI2C = 8 * (l + h) * T; 723*7e086c3fSDavid Wu * 724*7e086c3fSDavid Wu * tSU;sta = (8h * u + 1) * T; 725*7e086c3fSDavid Wu * tHD;sta = [8h * (u + 1) - 1] * T; 726*7e086c3fSDavid Wu * tSU;sto = (8h * p + 1) * T; 727*7e086c3fSDavid Wu */ 728*7e086c3fSDavid Wu static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, 729*7e086c3fSDavid Wu struct i2c_timings *t, 730*7e086c3fSDavid Wu struct rk3x_i2c_calced_timings *t_calc) 731*7e086c3fSDavid Wu { 732*7e086c3fSDavid Wu unsigned long min_low_ns, min_high_ns, min_total_ns; 733*7e086c3fSDavid Wu unsigned long min_setup_start_ns, min_setup_data_ns; 734*7e086c3fSDavid Wu unsigned long min_setup_stop_ns, max_hold_data_ns; 735*7e086c3fSDavid Wu 736*7e086c3fSDavid Wu unsigned long clk_rate_khz, scl_rate_khz; 737*7e086c3fSDavid Wu 738*7e086c3fSDavid Wu unsigned long min_low_div, min_high_div; 739*7e086c3fSDavid Wu 740*7e086c3fSDavid Wu unsigned long min_div_for_hold, min_total_div; 741*7e086c3fSDavid Wu unsigned long extra_div, extra_low_div; 742*7e086c3fSDavid Wu unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg; 743*7e086c3fSDavid Wu 744*7e086c3fSDavid Wu const struct i2c_spec_values *spec; 745*7e086c3fSDavid Wu int ret = 0; 746*7e086c3fSDavid Wu 747*7e086c3fSDavid Wu /* Support standard-mode and fast-mode */ 748*7e086c3fSDavid Wu if (WARN_ON(t->bus_freq_hz > 400000)) 749*7e086c3fSDavid Wu t->bus_freq_hz = 400000; 750*7e086c3fSDavid Wu 751*7e086c3fSDavid Wu /* prevent scl_rate_khz from becoming 0 */ 752*7e086c3fSDavid Wu if (WARN_ON(t->bus_freq_hz < 1000)) 753*7e086c3fSDavid Wu t->bus_freq_hz = 1000; 754*7e086c3fSDavid Wu 755*7e086c3fSDavid Wu /* 756*7e086c3fSDavid Wu * min_low_ns: The minimum number of ns we need to hold low to 757*7e086c3fSDavid Wu * meet I2C specification, should include fall time. 758*7e086c3fSDavid Wu * min_high_ns: The minimum number of ns we need to hold high to 759*7e086c3fSDavid Wu * meet I2C specification, should include rise time. 760*7e086c3fSDavid Wu */ 761*7e086c3fSDavid Wu spec = rk3x_i2c_get_spec(t->bus_freq_hz); 762*7e086c3fSDavid Wu 763*7e086c3fSDavid Wu /* calculate min-divh and min-divl */ 764*7e086c3fSDavid Wu clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); 765*7e086c3fSDavid Wu scl_rate_khz = t->bus_freq_hz / 1000; 766*7e086c3fSDavid Wu min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); 767*7e086c3fSDavid Wu 768*7e086c3fSDavid Wu min_high_ns = t->scl_rise_ns + spec->min_high_ns; 769*7e086c3fSDavid Wu min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); 770*7e086c3fSDavid Wu 771*7e086c3fSDavid Wu min_low_ns = t->scl_fall_ns + spec->min_low_ns; 772*7e086c3fSDavid Wu min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); 773*7e086c3fSDavid Wu 774*7e086c3fSDavid Wu /* 775*7e086c3fSDavid Wu * Final divh and divl must be greater than 0, otherwise the 776*7e086c3fSDavid Wu * hardware would not output the i2c clk. 777*7e086c3fSDavid Wu */ 778*7e086c3fSDavid Wu min_high_div = (min_high_div < 1) ? 2 : min_high_div; 779*7e086c3fSDavid Wu min_low_div = (min_low_div < 1) ? 2 : min_low_div; 780*7e086c3fSDavid Wu 781*7e086c3fSDavid Wu /* These are the min dividers needed for min hold times. */ 782*7e086c3fSDavid Wu min_div_for_hold = (min_low_div + min_high_div); 783*7e086c3fSDavid Wu min_total_ns = min_low_ns + min_high_ns; 784*7e086c3fSDavid Wu 785*7e086c3fSDavid Wu /* 786*7e086c3fSDavid Wu * This is the maximum divider so we don't go over the maximum. 787*7e086c3fSDavid Wu * We don't round up here (we round down) since this is a maximum. 788*7e086c3fSDavid Wu */ 789*7e086c3fSDavid Wu if (min_div_for_hold >= min_total_div) { 790*7e086c3fSDavid Wu /* 791*7e086c3fSDavid Wu * Time needed to meet hold requirements is important. 792*7e086c3fSDavid Wu * Just use that. 793*7e086c3fSDavid Wu */ 794*7e086c3fSDavid Wu t_calc->div_low = min_low_div; 795*7e086c3fSDavid Wu t_calc->div_high = min_high_div; 796*7e086c3fSDavid Wu } else { 797*7e086c3fSDavid Wu /* 798*7e086c3fSDavid Wu * We've got to distribute some time among the low and high 799*7e086c3fSDavid Wu * so we don't run too fast. 800*7e086c3fSDavid Wu * We'll try to split things up by the scale of min_low_div and 801*7e086c3fSDavid Wu * min_high_div, biasing slightly towards having a higher div 802*7e086c3fSDavid Wu * for low (spend more time low). 803*7e086c3fSDavid Wu */ 804*7e086c3fSDavid Wu extra_div = min_total_div - min_div_for_hold; 805*7e086c3fSDavid Wu extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, 806*7e086c3fSDavid Wu min_div_for_hold); 807*7e086c3fSDavid Wu 808*7e086c3fSDavid Wu t_calc->div_low = min_low_div + extra_low_div; 809*7e086c3fSDavid Wu t_calc->div_high = min_high_div + (extra_div - extra_low_div); 810*7e086c3fSDavid Wu } 811*7e086c3fSDavid Wu 812*7e086c3fSDavid Wu /* 813*7e086c3fSDavid Wu * calculate sda data hold count by the rules, data_upd_st:3 814*7e086c3fSDavid Wu * is a appropriate value to reduce calculated times. 815*7e086c3fSDavid Wu */ 816*7e086c3fSDavid Wu for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { 817*7e086c3fSDavid Wu max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg 818*7e086c3fSDavid Wu * (t_calc->div_low) + 1) 819*7e086c3fSDavid Wu * 1000000, clk_rate_khz); 820*7e086c3fSDavid Wu min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg) 821*7e086c3fSDavid Wu * (t_calc->div_low) + 1) 822*7e086c3fSDavid Wu * 1000000, clk_rate_khz); 823*7e086c3fSDavid Wu if ((max_hold_data_ns < spec->max_data_hold_ns) && 824*7e086c3fSDavid Wu (min_setup_data_ns > spec->min_data_setup_ns)) 825*7e086c3fSDavid Wu break; 826*7e086c3fSDavid Wu } 827*7e086c3fSDavid Wu 828*7e086c3fSDavid Wu /* calculate setup start config */ 829*7e086c3fSDavid Wu min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns; 830*7e086c3fSDavid Wu stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns 831*7e086c3fSDavid Wu - 1000000, 8 * 1000000 * (t_calc->div_high)); 832*7e086c3fSDavid Wu 833*7e086c3fSDavid Wu /* calculate setup stop config */ 834*7e086c3fSDavid Wu min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns; 835*7e086c3fSDavid Wu stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns 836*7e086c3fSDavid Wu - 1000000, 8 * 1000000 * (t_calc->div_high)); 837*7e086c3fSDavid Wu 838*7e086c3fSDavid Wu t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) | 839*7e086c3fSDavid Wu REG_CON_STA_CFG(--stp_sta_cfg) | 840*7e086c3fSDavid Wu REG_CON_STO_CFG(--stp_sto_cfg); 841*7e086c3fSDavid Wu 842*7e086c3fSDavid Wu t_calc->div_low--; 843*7e086c3fSDavid Wu t_calc->div_high--; 844*7e086c3fSDavid Wu 845*7e086c3fSDavid Wu /* Maximum divider supported by hw is 0xffff */ 846*7e086c3fSDavid Wu if (t_calc->div_low > 0xffff) { 847*7e086c3fSDavid Wu t_calc->div_low = 0xffff; 848*7e086c3fSDavid Wu ret = -EINVAL; 849*7e086c3fSDavid Wu } 850*7e086c3fSDavid Wu 851*7e086c3fSDavid Wu if (t_calc->div_high > 0xffff) { 852*7e086c3fSDavid Wu t_calc->div_high = 0xffff; 853*7e086c3fSDavid Wu ret = -EINVAL; 854*7e086c3fSDavid Wu } 855*7e086c3fSDavid Wu 856*7e086c3fSDavid Wu return ret; 857*7e086c3fSDavid Wu } 858*7e086c3fSDavid Wu 859249051f4SMax Schwarz static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) 860c41aa3ceSMax Schwarz { 8611ab92956SDavid Wu struct i2c_timings *t = &i2c->t; 862e26747bfSDavid Wu struct rk3x_i2c_calced_timings calc; 8630285f8f5Saddy ke u64 t_low_ns, t_high_ns; 864*7e086c3fSDavid Wu unsigned long flags; 865*7e086c3fSDavid Wu u32 val; 866249051f4SMax Schwarz int ret; 867c41aa3ceSMax Schwarz 868*7e086c3fSDavid Wu ret = i2c->soc_data->calc_timings(clk_rate, t, &calc); 8691ab92956SDavid Wu WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); 870249051f4SMax Schwarz 871*7e086c3fSDavid Wu clk_enable(i2c->pclk); 872*7e086c3fSDavid Wu 873*7e086c3fSDavid Wu spin_lock_irqsave(&i2c->lock, flags); 874*7e086c3fSDavid Wu val = i2c_readl(i2c, REG_CON); 875*7e086c3fSDavid Wu val &= ~REG_CON_TUNING_MASK; 876*7e086c3fSDavid Wu val |= calc.tuning; 877*7e086c3fSDavid Wu i2c_writel(i2c, val, REG_CON); 878e26747bfSDavid Wu i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff), 879e26747bfSDavid Wu REG_CLKDIV); 880*7e086c3fSDavid Wu spin_unlock_irqrestore(&i2c->lock, flags); 881*7e086c3fSDavid Wu 882*7e086c3fSDavid Wu clk_disable(i2c->pclk); 8830285f8f5Saddy ke 884e26747bfSDavid Wu t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate); 885e26747bfSDavid Wu t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000, 886e26747bfSDavid Wu clk_rate); 8870285f8f5Saddy ke dev_dbg(i2c->dev, 888249051f4SMax Schwarz "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", 889249051f4SMax Schwarz clk_rate / 1000, 8901ab92956SDavid Wu 1000000000 / t->bus_freq_hz, 8910285f8f5Saddy ke t_low_ns, t_high_ns); 892249051f4SMax Schwarz } 8930285f8f5Saddy ke 894249051f4SMax Schwarz /** 895249051f4SMax Schwarz * rk3x_i2c_clk_notifier_cb - Clock rate change callback 896249051f4SMax Schwarz * @nb: Pointer to notifier block 897249051f4SMax Schwarz * @event: Notification reason 898249051f4SMax Schwarz * @data: Pointer to notification data object 899249051f4SMax Schwarz * 900249051f4SMax Schwarz * The callback checks whether a valid bus frequency can be generated after the 901249051f4SMax Schwarz * change. If so, the change is acknowledged, otherwise the change is aborted. 902249051f4SMax Schwarz * New dividers are written to the HW in the pre- or post change notification 903249051f4SMax Schwarz * depending on the scaling direction. 904249051f4SMax Schwarz * 905249051f4SMax Schwarz * Code adapted from i2c-cadence.c. 906249051f4SMax Schwarz * 907249051f4SMax Schwarz * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK 908249051f4SMax Schwarz * to acknowedge the change, NOTIFY_DONE if the notification is 909249051f4SMax Schwarz * considered irrelevant. 910249051f4SMax Schwarz */ 911249051f4SMax Schwarz static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long 912249051f4SMax Schwarz event, void *data) 913249051f4SMax Schwarz { 914249051f4SMax Schwarz struct clk_notifier_data *ndata = data; 915249051f4SMax Schwarz struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); 916e26747bfSDavid Wu struct rk3x_i2c_calced_timings calc; 917249051f4SMax Schwarz 918249051f4SMax Schwarz switch (event) { 919249051f4SMax Schwarz case PRE_RATE_CHANGE: 920*7e086c3fSDavid Wu /* 921*7e086c3fSDavid Wu * Try the calculation (but don't store the result) ahead of 922*7e086c3fSDavid Wu * time to see if we need to block the clock change. Timings 923*7e086c3fSDavid Wu * shouldn't actually take effect until rk3x_i2c_adapt_div(). 924*7e086c3fSDavid Wu */ 925*7e086c3fSDavid Wu if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, 926*7e086c3fSDavid Wu &calc) != 0) 927249051f4SMax Schwarz return NOTIFY_STOP; 928249051f4SMax Schwarz 929249051f4SMax Schwarz /* scale up */ 930249051f4SMax Schwarz if (ndata->new_rate > ndata->old_rate) 931249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, ndata->new_rate); 932249051f4SMax Schwarz 933249051f4SMax Schwarz return NOTIFY_OK; 934249051f4SMax Schwarz case POST_RATE_CHANGE: 935249051f4SMax Schwarz /* scale down */ 936249051f4SMax Schwarz if (ndata->new_rate < ndata->old_rate) 937249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, ndata->new_rate); 938249051f4SMax Schwarz return NOTIFY_OK; 939249051f4SMax Schwarz case ABORT_RATE_CHANGE: 940249051f4SMax Schwarz /* scale up */ 941249051f4SMax Schwarz if (ndata->new_rate > ndata->old_rate) 942249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, ndata->old_rate); 943249051f4SMax Schwarz return NOTIFY_OK; 944249051f4SMax Schwarz default: 945249051f4SMax Schwarz return NOTIFY_DONE; 946249051f4SMax Schwarz } 947c41aa3ceSMax Schwarz } 948c41aa3ceSMax Schwarz 949c41aa3ceSMax Schwarz /** 950c41aa3ceSMax Schwarz * Setup I2C registers for an I2C operation specified by msgs, num. 951c41aa3ceSMax Schwarz * 952c41aa3ceSMax Schwarz * Must be called with i2c->lock held. 953c41aa3ceSMax Schwarz * 954c41aa3ceSMax Schwarz * @msgs: I2C msgs to process 955c41aa3ceSMax Schwarz * @num: Number of msgs 956c41aa3ceSMax Schwarz * 957c41aa3ceSMax Schwarz * returns: Number of I2C msgs processed or negative in case of error 958c41aa3ceSMax Schwarz */ 959c41aa3ceSMax Schwarz static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) 960c41aa3ceSMax Schwarz { 961c41aa3ceSMax Schwarz u32 addr = (msgs[0].addr & 0x7f) << 1; 962c41aa3ceSMax Schwarz int ret = 0; 963c41aa3ceSMax Schwarz 964c41aa3ceSMax Schwarz /* 965c41aa3ceSMax Schwarz * The I2C adapter can issue a small (len < 4) write packet before 966c41aa3ceSMax Schwarz * reading. This speeds up SMBus-style register reads. 967c41aa3ceSMax Schwarz * The MRXADDR/MRXRADDR hold the slave address and the slave register 968c41aa3ceSMax Schwarz * address in this case. 969c41aa3ceSMax Schwarz */ 970c41aa3ceSMax Schwarz 971c41aa3ceSMax Schwarz if (num >= 2 && msgs[0].len < 4 && 972c41aa3ceSMax Schwarz !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { 973c41aa3ceSMax Schwarz u32 reg_addr = 0; 974c41aa3ceSMax Schwarz int i; 975c41aa3ceSMax Schwarz 976c41aa3ceSMax Schwarz dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", 977c41aa3ceSMax Schwarz addr >> 1); 978c41aa3ceSMax Schwarz 979c41aa3ceSMax Schwarz /* Fill MRXRADDR with the register address(es) */ 980c41aa3ceSMax Schwarz for (i = 0; i < msgs[0].len; ++i) { 981c41aa3ceSMax Schwarz reg_addr |= msgs[0].buf[i] << (i * 8); 982c41aa3ceSMax Schwarz reg_addr |= REG_MRXADDR_VALID(i); 983c41aa3ceSMax Schwarz } 984c41aa3ceSMax Schwarz 985c41aa3ceSMax Schwarz /* msgs[0] is handled by hw. */ 986c41aa3ceSMax Schwarz i2c->msg = &msgs[1]; 987c41aa3ceSMax Schwarz 988c41aa3ceSMax Schwarz i2c->mode = REG_CON_MOD_REGISTER_TX; 989c41aa3ceSMax Schwarz 990c41aa3ceSMax Schwarz i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); 991c41aa3ceSMax Schwarz i2c_writel(i2c, reg_addr, REG_MRXRADDR); 992c41aa3ceSMax Schwarz 993c41aa3ceSMax Schwarz ret = 2; 994c41aa3ceSMax Schwarz } else { 995c41aa3ceSMax Schwarz /* 996c41aa3ceSMax Schwarz * We'll have to do it the boring way and process the msgs 997c41aa3ceSMax Schwarz * one-by-one. 998c41aa3ceSMax Schwarz */ 999c41aa3ceSMax Schwarz 1000c41aa3ceSMax Schwarz if (msgs[0].flags & I2C_M_RD) { 1001c41aa3ceSMax Schwarz addr |= 1; /* set read bit */ 1002c41aa3ceSMax Schwarz 1003c41aa3ceSMax Schwarz /* 1004c41aa3ceSMax Schwarz * We have to transmit the slave addr first. Use 1005c41aa3ceSMax Schwarz * MOD_REGISTER_TX for that purpose. 1006c41aa3ceSMax Schwarz */ 1007c41aa3ceSMax Schwarz i2c->mode = REG_CON_MOD_REGISTER_TX; 1008c41aa3ceSMax Schwarz i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), 1009c41aa3ceSMax Schwarz REG_MRXADDR); 1010c41aa3ceSMax Schwarz i2c_writel(i2c, 0, REG_MRXRADDR); 1011c41aa3ceSMax Schwarz } else { 1012c41aa3ceSMax Schwarz i2c->mode = REG_CON_MOD_TX; 1013c41aa3ceSMax Schwarz } 1014c41aa3ceSMax Schwarz 1015c41aa3ceSMax Schwarz i2c->msg = &msgs[0]; 1016c41aa3ceSMax Schwarz 1017c41aa3ceSMax Schwarz ret = 1; 1018c41aa3ceSMax Schwarz } 1019c41aa3ceSMax Schwarz 1020c41aa3ceSMax Schwarz i2c->addr = msgs[0].addr; 1021c41aa3ceSMax Schwarz i2c->busy = true; 1022c41aa3ceSMax Schwarz i2c->state = STATE_START; 1023c41aa3ceSMax Schwarz i2c->processed = 0; 1024c41aa3ceSMax Schwarz i2c->error = 0; 1025c41aa3ceSMax Schwarz 1026c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 1027c41aa3ceSMax Schwarz 1028c41aa3ceSMax Schwarz return ret; 1029c41aa3ceSMax Schwarz } 1030c41aa3ceSMax Schwarz 1031c41aa3ceSMax Schwarz static int rk3x_i2c_xfer(struct i2c_adapter *adap, 1032c41aa3ceSMax Schwarz struct i2c_msg *msgs, int num) 1033c41aa3ceSMax Schwarz { 1034c41aa3ceSMax Schwarz struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; 1035c41aa3ceSMax Schwarz unsigned long timeout, flags; 1036*7e086c3fSDavid Wu u32 val; 1037c41aa3ceSMax Schwarz int ret = 0; 1038c41aa3ceSMax Schwarz int i; 1039c41aa3ceSMax Schwarz 1040c41aa3ceSMax Schwarz spin_lock_irqsave(&i2c->lock, flags); 1041c41aa3ceSMax Schwarz 1042c41aa3ceSMax Schwarz clk_enable(i2c->clk); 1043*7e086c3fSDavid Wu clk_enable(i2c->pclk); 1044c41aa3ceSMax Schwarz 1045c41aa3ceSMax Schwarz i2c->is_last_msg = false; 1046c41aa3ceSMax Schwarz 1047c41aa3ceSMax Schwarz /* 1048c41aa3ceSMax Schwarz * Process msgs. We can handle more than one message at once (see 1049c41aa3ceSMax Schwarz * rk3x_i2c_setup()). 1050c41aa3ceSMax Schwarz */ 1051c41aa3ceSMax Schwarz for (i = 0; i < num; i += ret) { 1052c41aa3ceSMax Schwarz ret = rk3x_i2c_setup(i2c, msgs + i, num - i); 1053c41aa3ceSMax Schwarz 1054c41aa3ceSMax Schwarz if (ret < 0) { 1055c41aa3ceSMax Schwarz dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); 1056c41aa3ceSMax Schwarz break; 1057c41aa3ceSMax Schwarz } 1058c41aa3ceSMax Schwarz 1059c41aa3ceSMax Schwarz if (i + ret >= num) 1060c41aa3ceSMax Schwarz i2c->is_last_msg = true; 1061c41aa3ceSMax Schwarz 1062c41aa3ceSMax Schwarz spin_unlock_irqrestore(&i2c->lock, flags); 1063c41aa3ceSMax Schwarz 1064c41aa3ceSMax Schwarz rk3x_i2c_start(i2c); 1065c41aa3ceSMax Schwarz 1066c41aa3ceSMax Schwarz timeout = wait_event_timeout(i2c->wait, !i2c->busy, 1067c41aa3ceSMax Schwarz msecs_to_jiffies(WAIT_TIMEOUT)); 1068c41aa3ceSMax Schwarz 1069c41aa3ceSMax Schwarz spin_lock_irqsave(&i2c->lock, flags); 1070c41aa3ceSMax Schwarz 1071c41aa3ceSMax Schwarz if (timeout == 0) { 1072c41aa3ceSMax Schwarz dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", 1073c41aa3ceSMax Schwarz i2c_readl(i2c, REG_IPD), i2c->state); 1074c41aa3ceSMax Schwarz 1075c41aa3ceSMax Schwarz /* Force a STOP condition without interrupt */ 1076c41aa3ceSMax Schwarz i2c_writel(i2c, 0, REG_IEN); 1077*7e086c3fSDavid Wu val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; 1078*7e086c3fSDavid Wu val |= REG_CON_EN | REG_CON_STOP; 1079*7e086c3fSDavid Wu i2c_writel(i2c, val, REG_CON); 1080c41aa3ceSMax Schwarz 1081c41aa3ceSMax Schwarz i2c->state = STATE_IDLE; 1082c41aa3ceSMax Schwarz 1083c41aa3ceSMax Schwarz ret = -ETIMEDOUT; 1084c41aa3ceSMax Schwarz break; 1085c41aa3ceSMax Schwarz } 1086c41aa3ceSMax Schwarz 1087c41aa3ceSMax Schwarz if (i2c->error) { 1088c41aa3ceSMax Schwarz ret = i2c->error; 1089c41aa3ceSMax Schwarz break; 1090c41aa3ceSMax Schwarz } 1091c41aa3ceSMax Schwarz } 1092c41aa3ceSMax Schwarz 1093*7e086c3fSDavid Wu clk_disable(i2c->pclk); 1094c41aa3ceSMax Schwarz clk_disable(i2c->clk); 1095*7e086c3fSDavid Wu 1096c41aa3ceSMax Schwarz spin_unlock_irqrestore(&i2c->lock, flags); 1097c41aa3ceSMax Schwarz 1098c6cbfb91SDmitry Torokhov return ret < 0 ? ret : num; 1099c41aa3ceSMax Schwarz } 1100c41aa3ceSMax Schwarz 1101c41aa3ceSMax Schwarz static u32 rk3x_i2c_func(struct i2c_adapter *adap) 1102c41aa3ceSMax Schwarz { 1103c41aa3ceSMax Schwarz return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; 1104c41aa3ceSMax Schwarz } 1105c41aa3ceSMax Schwarz 1106c41aa3ceSMax Schwarz static const struct i2c_algorithm rk3x_i2c_algorithm = { 1107c41aa3ceSMax Schwarz .master_xfer = rk3x_i2c_xfer, 1108c41aa3ceSMax Schwarz .functionality = rk3x_i2c_func, 1109c41aa3ceSMax Schwarz }; 1110c41aa3ceSMax Schwarz 1111bef358c4SDavid Wu static const struct rk3x_i2c_soc_data rk3066_soc_data = { 1112bef358c4SDavid Wu .grf_offset = 0x154, 1113*7e086c3fSDavid Wu .calc_timings = rk3x_i2c_v0_calc_timings, 1114bef358c4SDavid Wu }; 1115bef358c4SDavid Wu 1116bef358c4SDavid Wu static const struct rk3x_i2c_soc_data rk3188_soc_data = { 1117bef358c4SDavid Wu .grf_offset = 0x0a4, 1118*7e086c3fSDavid Wu .calc_timings = rk3x_i2c_v0_calc_timings, 1119bef358c4SDavid Wu }; 1120bef358c4SDavid Wu 1121bef358c4SDavid Wu static const struct rk3x_i2c_soc_data rk3228_soc_data = { 1122bef358c4SDavid Wu .grf_offset = -1, 1123*7e086c3fSDavid Wu .calc_timings = rk3x_i2c_v0_calc_timings, 1124bef358c4SDavid Wu }; 1125bef358c4SDavid Wu 1126bef358c4SDavid Wu static const struct rk3x_i2c_soc_data rk3288_soc_data = { 1127bef358c4SDavid Wu .grf_offset = -1, 1128*7e086c3fSDavid Wu .calc_timings = rk3x_i2c_v0_calc_timings, 1129*7e086c3fSDavid Wu }; 1130*7e086c3fSDavid Wu 1131*7e086c3fSDavid Wu static const struct rk3x_i2c_soc_data rk3399_soc_data = { 1132*7e086c3fSDavid Wu .grf_offset = -1, 1133*7e086c3fSDavid Wu .calc_timings = rk3x_i2c_v1_calc_timings, 1134c41aa3ceSMax Schwarz }; 1135c41aa3ceSMax Schwarz 1136c41aa3ceSMax Schwarz static const struct of_device_id rk3x_i2c_match[] = { 1137bef358c4SDavid Wu { 1138bef358c4SDavid Wu .compatible = "rockchip,rk3066-i2c", 1139bef358c4SDavid Wu .data = (void *)&rk3066_soc_data 1140bef358c4SDavid Wu }, 1141bef358c4SDavid Wu { 1142bef358c4SDavid Wu .compatible = "rockchip,rk3188-i2c", 1143bef358c4SDavid Wu .data = (void *)&rk3188_soc_data 1144bef358c4SDavid Wu }, 1145bef358c4SDavid Wu { 1146bef358c4SDavid Wu .compatible = "rockchip,rk3228-i2c", 1147bef358c4SDavid Wu .data = (void *)&rk3228_soc_data 1148bef358c4SDavid Wu }, 1149bef358c4SDavid Wu { 1150bef358c4SDavid Wu .compatible = "rockchip,rk3288-i2c", 1151bef358c4SDavid Wu .data = (void *)&rk3288_soc_data 1152bef358c4SDavid Wu }, 1153*7e086c3fSDavid Wu { 1154*7e086c3fSDavid Wu .compatible = "rockchip,rk3399-i2c", 1155*7e086c3fSDavid Wu .data = (void *)&rk3399_soc_data 1156*7e086c3fSDavid Wu }, 1157c51bd6acSDan Carpenter {}, 1158c41aa3ceSMax Schwarz }; 1159598cf161SLuis de Bethencourt MODULE_DEVICE_TABLE(of, rk3x_i2c_match); 1160c41aa3ceSMax Schwarz 1161c41aa3ceSMax Schwarz static int rk3x_i2c_probe(struct platform_device *pdev) 1162c41aa3ceSMax Schwarz { 1163c41aa3ceSMax Schwarz struct device_node *np = pdev->dev.of_node; 1164c41aa3ceSMax Schwarz const struct of_device_id *match; 1165c41aa3ceSMax Schwarz struct rk3x_i2c *i2c; 1166c41aa3ceSMax Schwarz struct resource *mem; 1167c41aa3ceSMax Schwarz int ret = 0; 1168c41aa3ceSMax Schwarz int bus_nr; 1169c41aa3ceSMax Schwarz u32 value; 1170c41aa3ceSMax Schwarz int irq; 1171249051f4SMax Schwarz unsigned long clk_rate; 1172c41aa3ceSMax Schwarz 1173c41aa3ceSMax Schwarz i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); 1174c41aa3ceSMax Schwarz if (!i2c) 1175c41aa3ceSMax Schwarz return -ENOMEM; 1176c41aa3ceSMax Schwarz 1177c41aa3ceSMax Schwarz match = of_match_node(rk3x_i2c_match, np); 1178c41aa3ceSMax Schwarz i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data; 1179c41aa3ceSMax Schwarz 11801ab92956SDavid Wu /* use common interface to get I2C timing properties */ 11811ab92956SDavid Wu i2c_parse_fw_timings(&pdev->dev, &i2c->t, true); 11821330e291Saddy ke 1183c41aa3ceSMax Schwarz strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); 1184c41aa3ceSMax Schwarz i2c->adap.owner = THIS_MODULE; 1185c41aa3ceSMax Schwarz i2c->adap.algo = &rk3x_i2c_algorithm; 1186c41aa3ceSMax Schwarz i2c->adap.retries = 3; 1187c41aa3ceSMax Schwarz i2c->adap.dev.of_node = np; 1188c41aa3ceSMax Schwarz i2c->adap.algo_data = i2c; 1189c41aa3ceSMax Schwarz i2c->adap.dev.parent = &pdev->dev; 1190c41aa3ceSMax Schwarz 1191c41aa3ceSMax Schwarz i2c->dev = &pdev->dev; 1192c41aa3ceSMax Schwarz 1193c41aa3ceSMax Schwarz spin_lock_init(&i2c->lock); 1194c41aa3ceSMax Schwarz init_waitqueue_head(&i2c->wait); 1195c41aa3ceSMax Schwarz 1196c41aa3ceSMax Schwarz mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1197c41aa3ceSMax Schwarz i2c->regs = devm_ioremap_resource(&pdev->dev, mem); 1198c41aa3ceSMax Schwarz if (IS_ERR(i2c->regs)) 1199c41aa3ceSMax Schwarz return PTR_ERR(i2c->regs); 1200c41aa3ceSMax Schwarz 1201c41aa3ceSMax Schwarz /* Try to set the I2C adapter number from dt */ 1202c41aa3ceSMax Schwarz bus_nr = of_alias_get_id(np, "i2c"); 1203c41aa3ceSMax Schwarz 1204c41aa3ceSMax Schwarz /* 1205c41aa3ceSMax Schwarz * Switch to new interface if the SoC also offers the old one. 1206c41aa3ceSMax Schwarz * The control bit is located in the GRF register space. 1207c41aa3ceSMax Schwarz */ 1208c41aa3ceSMax Schwarz if (i2c->soc_data->grf_offset >= 0) { 1209c41aa3ceSMax Schwarz struct regmap *grf; 1210c41aa3ceSMax Schwarz 1211c41aa3ceSMax Schwarz grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); 1212c41aa3ceSMax Schwarz if (IS_ERR(grf)) { 1213c41aa3ceSMax Schwarz dev_err(&pdev->dev, 1214c41aa3ceSMax Schwarz "rk3x-i2c needs 'rockchip,grf' property\n"); 1215c41aa3ceSMax Schwarz return PTR_ERR(grf); 1216c41aa3ceSMax Schwarz } 1217c41aa3ceSMax Schwarz 1218c41aa3ceSMax Schwarz if (bus_nr < 0) { 1219c41aa3ceSMax Schwarz dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); 1220c41aa3ceSMax Schwarz return -EINVAL; 1221c41aa3ceSMax Schwarz } 1222c41aa3ceSMax Schwarz 1223c41aa3ceSMax Schwarz /* 27+i: write mask, 11+i: value */ 1224c41aa3ceSMax Schwarz value = BIT(27 + bus_nr) | BIT(11 + bus_nr); 1225c41aa3ceSMax Schwarz 1226c41aa3ceSMax Schwarz ret = regmap_write(grf, i2c->soc_data->grf_offset, value); 1227c41aa3ceSMax Schwarz if (ret != 0) { 1228c41aa3ceSMax Schwarz dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); 1229c41aa3ceSMax Schwarz return ret; 1230c41aa3ceSMax Schwarz } 1231c41aa3ceSMax Schwarz } 1232c41aa3ceSMax Schwarz 1233c41aa3ceSMax Schwarz /* IRQ setup */ 1234c41aa3ceSMax Schwarz irq = platform_get_irq(pdev, 0); 1235c41aa3ceSMax Schwarz if (irq < 0) { 1236c41aa3ceSMax Schwarz dev_err(&pdev->dev, "cannot find rk3x IRQ\n"); 1237c41aa3ceSMax Schwarz return irq; 1238c41aa3ceSMax Schwarz } 1239c41aa3ceSMax Schwarz 1240c41aa3ceSMax Schwarz ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, 1241c41aa3ceSMax Schwarz 0, dev_name(&pdev->dev), i2c); 1242c41aa3ceSMax Schwarz if (ret < 0) { 1243c41aa3ceSMax Schwarz dev_err(&pdev->dev, "cannot request IRQ\n"); 1244c41aa3ceSMax Schwarz return ret; 1245c41aa3ceSMax Schwarz } 1246c41aa3ceSMax Schwarz 1247c41aa3ceSMax Schwarz platform_set_drvdata(pdev, i2c); 1248c41aa3ceSMax Schwarz 1249*7e086c3fSDavid Wu if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) { 1250*7e086c3fSDavid Wu /* Only one clock to use for bus clock and peripheral clock */ 1251*7e086c3fSDavid Wu i2c->clk = devm_clk_get(&pdev->dev, NULL); 1252*7e086c3fSDavid Wu i2c->pclk = i2c->clk; 1253*7e086c3fSDavid Wu } else { 1254*7e086c3fSDavid Wu i2c->clk = devm_clk_get(&pdev->dev, "i2c"); 1255*7e086c3fSDavid Wu i2c->pclk = devm_clk_get(&pdev->dev, "pclk"); 1256*7e086c3fSDavid Wu } 1257*7e086c3fSDavid Wu 1258*7e086c3fSDavid Wu if (IS_ERR(i2c->clk)) { 1259*7e086c3fSDavid Wu ret = PTR_ERR(i2c->clk); 1260*7e086c3fSDavid Wu if (ret != -EPROBE_DEFER) 1261*7e086c3fSDavid Wu dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret); 1262*7e086c3fSDavid Wu return ret; 1263*7e086c3fSDavid Wu } 1264*7e086c3fSDavid Wu if (IS_ERR(i2c->pclk)) { 1265*7e086c3fSDavid Wu ret = PTR_ERR(i2c->pclk); 1266*7e086c3fSDavid Wu if (ret != -EPROBE_DEFER) 1267*7e086c3fSDavid Wu dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret); 1268*7e086c3fSDavid Wu return ret; 1269*7e086c3fSDavid Wu } 1270*7e086c3fSDavid Wu 1271c41aa3ceSMax Schwarz ret = clk_prepare(i2c->clk); 1272c41aa3ceSMax Schwarz if (ret < 0) { 1273*7e086c3fSDavid Wu dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret); 1274c41aa3ceSMax Schwarz return ret; 1275c41aa3ceSMax Schwarz } 1276*7e086c3fSDavid Wu ret = clk_prepare(i2c->pclk); 1277*7e086c3fSDavid Wu if (ret < 0) { 1278*7e086c3fSDavid Wu dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret); 1279*7e086c3fSDavid Wu goto err_clk; 1280*7e086c3fSDavid Wu } 1281c41aa3ceSMax Schwarz 1282249051f4SMax Schwarz i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; 1283249051f4SMax Schwarz ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); 1284249051f4SMax Schwarz if (ret != 0) { 1285249051f4SMax Schwarz dev_err(&pdev->dev, "Unable to register clock notifier\n"); 1286*7e086c3fSDavid Wu goto err_pclk; 1287249051f4SMax Schwarz } 1288249051f4SMax Schwarz 1289249051f4SMax Schwarz clk_rate = clk_get_rate(i2c->clk); 1290249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, clk_rate); 1291249051f4SMax Schwarz 1292c41aa3ceSMax Schwarz ret = i2c_add_adapter(&i2c->adap); 1293c41aa3ceSMax Schwarz if (ret < 0) { 1294c41aa3ceSMax Schwarz dev_err(&pdev->dev, "Could not register adapter\n"); 1295249051f4SMax Schwarz goto err_clk_notifier; 1296c41aa3ceSMax Schwarz } 1297c41aa3ceSMax Schwarz 1298c41aa3ceSMax Schwarz dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs); 1299c41aa3ceSMax Schwarz 1300c41aa3ceSMax Schwarz return 0; 1301c41aa3ceSMax Schwarz 1302249051f4SMax Schwarz err_clk_notifier: 1303249051f4SMax Schwarz clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); 1304*7e086c3fSDavid Wu err_pclk: 1305*7e086c3fSDavid Wu clk_unprepare(i2c->pclk); 1306c41aa3ceSMax Schwarz err_clk: 1307c41aa3ceSMax Schwarz clk_unprepare(i2c->clk); 1308c41aa3ceSMax Schwarz return ret; 1309c41aa3ceSMax Schwarz } 1310c41aa3ceSMax Schwarz 1311c41aa3ceSMax Schwarz static int rk3x_i2c_remove(struct platform_device *pdev) 1312c41aa3ceSMax Schwarz { 1313c41aa3ceSMax Schwarz struct rk3x_i2c *i2c = platform_get_drvdata(pdev); 1314c41aa3ceSMax Schwarz 1315c41aa3ceSMax Schwarz i2c_del_adapter(&i2c->adap); 1316249051f4SMax Schwarz 1317249051f4SMax Schwarz clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); 1318*7e086c3fSDavid Wu clk_unprepare(i2c->pclk); 1319c41aa3ceSMax Schwarz clk_unprepare(i2c->clk); 1320c41aa3ceSMax Schwarz 1321c41aa3ceSMax Schwarz return 0; 1322c41aa3ceSMax Schwarz } 1323c41aa3ceSMax Schwarz 1324c41aa3ceSMax Schwarz static struct platform_driver rk3x_i2c_driver = { 1325c41aa3ceSMax Schwarz .probe = rk3x_i2c_probe, 1326c41aa3ceSMax Schwarz .remove = rk3x_i2c_remove, 1327c41aa3ceSMax Schwarz .driver = { 1328c41aa3ceSMax Schwarz .name = "rk3x-i2c", 1329c41aa3ceSMax Schwarz .of_match_table = rk3x_i2c_match, 1330c41aa3ceSMax Schwarz }, 1331c41aa3ceSMax Schwarz }; 1332c41aa3ceSMax Schwarz 1333c41aa3ceSMax Schwarz module_platform_driver(rk3x_i2c_driver); 1334c41aa3ceSMax Schwarz 1335c41aa3ceSMax Schwarz MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); 1336c41aa3ceSMax Schwarz MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); 1337c41aa3ceSMax Schwarz MODULE_LICENSE("GPL v2"); 1338