1c41aa3ceSMax Schwarz /* 2c41aa3ceSMax Schwarz * Driver for I2C adapter in Rockchip RK3xxx SoC 3c41aa3ceSMax Schwarz * 4c41aa3ceSMax Schwarz * Max Schwarz <max.schwarz@online.de> 5c41aa3ceSMax Schwarz * based on the patches by Rockchip Inc. 6c41aa3ceSMax Schwarz * 7c41aa3ceSMax Schwarz * This program is free software; you can redistribute it and/or modify 8c41aa3ceSMax Schwarz * it under the terms of the GNU General Public License version 2 as 9c41aa3ceSMax Schwarz * published by the Free Software Foundation. 10c41aa3ceSMax Schwarz */ 11c41aa3ceSMax Schwarz 12c41aa3ceSMax Schwarz #include <linux/kernel.h> 13c41aa3ceSMax Schwarz #include <linux/module.h> 14c41aa3ceSMax Schwarz #include <linux/i2c.h> 15c41aa3ceSMax Schwarz #include <linux/interrupt.h> 16c41aa3ceSMax Schwarz #include <linux/errno.h> 17c41aa3ceSMax Schwarz #include <linux/err.h> 18c41aa3ceSMax Schwarz #include <linux/platform_device.h> 19c41aa3ceSMax Schwarz #include <linux/io.h> 20c41aa3ceSMax Schwarz #include <linux/of_address.h> 21c41aa3ceSMax Schwarz #include <linux/of_irq.h> 22c41aa3ceSMax Schwarz #include <linux/spinlock.h> 23c41aa3ceSMax Schwarz #include <linux/clk.h> 24c41aa3ceSMax Schwarz #include <linux/wait.h> 25c41aa3ceSMax Schwarz #include <linux/mfd/syscon.h> 26c41aa3ceSMax Schwarz #include <linux/regmap.h> 270285f8f5Saddy ke #include <linux/math64.h> 28c41aa3ceSMax Schwarz 29c41aa3ceSMax Schwarz 30c41aa3ceSMax Schwarz /* Register Map */ 31c41aa3ceSMax Schwarz #define REG_CON 0x00 /* control register */ 32c41aa3ceSMax Schwarz #define REG_CLKDIV 0x04 /* clock divisor register */ 33c41aa3ceSMax Schwarz #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */ 34c41aa3ceSMax Schwarz #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */ 35c41aa3ceSMax Schwarz #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */ 36c41aa3ceSMax Schwarz #define REG_MRXCNT 0x14 /* number of bytes to be received */ 37c41aa3ceSMax Schwarz #define REG_IEN 0x18 /* interrupt enable */ 38c41aa3ceSMax Schwarz #define REG_IPD 0x1c /* interrupt pending */ 39c41aa3ceSMax Schwarz #define REG_FCNT 0x20 /* finished count */ 40c41aa3ceSMax Schwarz 41c41aa3ceSMax Schwarz /* Data buffer offsets */ 42c41aa3ceSMax Schwarz #define TXBUFFER_BASE 0x100 43c41aa3ceSMax Schwarz #define RXBUFFER_BASE 0x200 44c41aa3ceSMax Schwarz 45c41aa3ceSMax Schwarz /* REG_CON bits */ 46c41aa3ceSMax Schwarz #define REG_CON_EN BIT(0) 47c41aa3ceSMax Schwarz enum { 48c41aa3ceSMax Schwarz REG_CON_MOD_TX = 0, /* transmit data */ 49c41aa3ceSMax Schwarz REG_CON_MOD_REGISTER_TX, /* select register and restart */ 50c41aa3ceSMax Schwarz REG_CON_MOD_RX, /* receive data */ 51c41aa3ceSMax Schwarz REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes 52c41aa3ceSMax Schwarz * register addr */ 53c41aa3ceSMax Schwarz }; 54c41aa3ceSMax Schwarz #define REG_CON_MOD(mod) ((mod) << 1) 55c41aa3ceSMax Schwarz #define REG_CON_MOD_MASK (BIT(1) | BIT(2)) 56c41aa3ceSMax Schwarz #define REG_CON_START BIT(3) 57c41aa3ceSMax Schwarz #define REG_CON_STOP BIT(4) 58c41aa3ceSMax Schwarz #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ 59c41aa3ceSMax Schwarz #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ 60c41aa3ceSMax Schwarz 61c41aa3ceSMax Schwarz /* REG_MRXADDR bits */ 62c41aa3ceSMax Schwarz #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ 63c41aa3ceSMax Schwarz 64c41aa3ceSMax Schwarz /* REG_IEN/REG_IPD bits */ 65c41aa3ceSMax Schwarz #define REG_INT_BTF BIT(0) /* a byte was transmitted */ 66c41aa3ceSMax Schwarz #define REG_INT_BRF BIT(1) /* a byte was received */ 67c41aa3ceSMax Schwarz #define REG_INT_MBTF BIT(2) /* master data transmit finished */ 68c41aa3ceSMax Schwarz #define REG_INT_MBRF BIT(3) /* master data receive finished */ 69c41aa3ceSMax Schwarz #define REG_INT_START BIT(4) /* START condition generated */ 70c41aa3ceSMax Schwarz #define REG_INT_STOP BIT(5) /* STOP condition generated */ 71c41aa3ceSMax Schwarz #define REG_INT_NAKRCV BIT(6) /* NACK received */ 72c41aa3ceSMax Schwarz #define REG_INT_ALL 0x7f 73c41aa3ceSMax Schwarz 74c41aa3ceSMax Schwarz /* Constants */ 75c41aa3ceSMax Schwarz #define WAIT_TIMEOUT 200 /* ms */ 76c41aa3ceSMax Schwarz #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */ 77c41aa3ceSMax Schwarz 78c41aa3ceSMax Schwarz enum rk3x_i2c_state { 79c41aa3ceSMax Schwarz STATE_IDLE, 80c41aa3ceSMax Schwarz STATE_START, 81c41aa3ceSMax Schwarz STATE_READ, 82c41aa3ceSMax Schwarz STATE_WRITE, 83c41aa3ceSMax Schwarz STATE_STOP 84c41aa3ceSMax Schwarz }; 85c41aa3ceSMax Schwarz 86c41aa3ceSMax Schwarz /** 87c41aa3ceSMax Schwarz * @grf_offset: offset inside the grf regmap for setting the i2c type 88c41aa3ceSMax Schwarz */ 89c41aa3ceSMax Schwarz struct rk3x_i2c_soc_data { 90c41aa3ceSMax Schwarz int grf_offset; 91c41aa3ceSMax Schwarz }; 92c41aa3ceSMax Schwarz 93c41aa3ceSMax Schwarz struct rk3x_i2c { 94c41aa3ceSMax Schwarz struct i2c_adapter adap; 95c41aa3ceSMax Schwarz struct device *dev; 96c41aa3ceSMax Schwarz struct rk3x_i2c_soc_data *soc_data; 97c41aa3ceSMax Schwarz 98c41aa3ceSMax Schwarz /* Hardware resources */ 99c41aa3ceSMax Schwarz void __iomem *regs; 100c41aa3ceSMax Schwarz struct clk *clk; 101249051f4SMax Schwarz struct notifier_block clk_rate_nb; 102c41aa3ceSMax Schwarz 103c41aa3ceSMax Schwarz /* Settings */ 104c41aa3ceSMax Schwarz unsigned int scl_frequency; 105*1330e291Saddy ke unsigned int rise_ns; 106*1330e291Saddy ke unsigned int fall_ns; 107c41aa3ceSMax Schwarz 108c41aa3ceSMax Schwarz /* Synchronization & notification */ 109c41aa3ceSMax Schwarz spinlock_t lock; 110c41aa3ceSMax Schwarz wait_queue_head_t wait; 111c41aa3ceSMax Schwarz bool busy; 112c41aa3ceSMax Schwarz 113c41aa3ceSMax Schwarz /* Current message */ 114c41aa3ceSMax Schwarz struct i2c_msg *msg; 115c41aa3ceSMax Schwarz u8 addr; 116c41aa3ceSMax Schwarz unsigned int mode; 117c41aa3ceSMax Schwarz bool is_last_msg; 118c41aa3ceSMax Schwarz 119c41aa3ceSMax Schwarz /* I2C state machine */ 120c41aa3ceSMax Schwarz enum rk3x_i2c_state state; 121c41aa3ceSMax Schwarz unsigned int processed; /* sent/received bytes */ 122c41aa3ceSMax Schwarz int error; 123c41aa3ceSMax Schwarz }; 124c41aa3ceSMax Schwarz 125c41aa3ceSMax Schwarz static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, 126c41aa3ceSMax Schwarz unsigned int offset) 127c41aa3ceSMax Schwarz { 128c41aa3ceSMax Schwarz writel(value, i2c->regs + offset); 129c41aa3ceSMax Schwarz } 130c41aa3ceSMax Schwarz 131c41aa3ceSMax Schwarz static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) 132c41aa3ceSMax Schwarz { 133c41aa3ceSMax Schwarz return readl(i2c->regs + offset); 134c41aa3ceSMax Schwarz } 135c41aa3ceSMax Schwarz 136c41aa3ceSMax Schwarz /* Reset all interrupt pending bits */ 137c41aa3ceSMax Schwarz static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) 138c41aa3ceSMax Schwarz { 139c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_ALL, REG_IPD); 140c41aa3ceSMax Schwarz } 141c41aa3ceSMax Schwarz 142c41aa3ceSMax Schwarz /** 143c41aa3ceSMax Schwarz * Generate a START condition, which triggers a REG_INT_START interrupt. 144c41aa3ceSMax Schwarz */ 145c41aa3ceSMax Schwarz static void rk3x_i2c_start(struct rk3x_i2c *i2c) 146c41aa3ceSMax Schwarz { 147c41aa3ceSMax Schwarz u32 val; 148c41aa3ceSMax Schwarz 149c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 150c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_START, REG_IEN); 151c41aa3ceSMax Schwarz 152c41aa3ceSMax Schwarz /* enable adapter with correct mode, send START condition */ 153c41aa3ceSMax Schwarz val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; 154c41aa3ceSMax Schwarz 155c41aa3ceSMax Schwarz /* if we want to react to NACK, set ACTACK bit */ 156c41aa3ceSMax Schwarz if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) 157c41aa3ceSMax Schwarz val |= REG_CON_ACTACK; 158c41aa3ceSMax Schwarz 159c41aa3ceSMax Schwarz i2c_writel(i2c, val, REG_CON); 160c41aa3ceSMax Schwarz } 161c41aa3ceSMax Schwarz 162c41aa3ceSMax Schwarz /** 163c41aa3ceSMax Schwarz * Generate a STOP condition, which triggers a REG_INT_STOP interrupt. 164c41aa3ceSMax Schwarz * 165c41aa3ceSMax Schwarz * @error: Error code to return in rk3x_i2c_xfer 166c41aa3ceSMax Schwarz */ 167c41aa3ceSMax Schwarz static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) 168c41aa3ceSMax Schwarz { 169c41aa3ceSMax Schwarz unsigned int ctrl; 170c41aa3ceSMax Schwarz 171c41aa3ceSMax Schwarz i2c->processed = 0; 172c41aa3ceSMax Schwarz i2c->msg = NULL; 173c41aa3ceSMax Schwarz i2c->error = error; 174c41aa3ceSMax Schwarz 175c41aa3ceSMax Schwarz if (i2c->is_last_msg) { 176c41aa3ceSMax Schwarz /* Enable stop interrupt */ 177c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_STOP, REG_IEN); 178c41aa3ceSMax Schwarz 179c41aa3ceSMax Schwarz i2c->state = STATE_STOP; 180c41aa3ceSMax Schwarz 181c41aa3ceSMax Schwarz ctrl = i2c_readl(i2c, REG_CON); 182c41aa3ceSMax Schwarz ctrl |= REG_CON_STOP; 183c41aa3ceSMax Schwarz i2c_writel(i2c, ctrl, REG_CON); 184c41aa3ceSMax Schwarz } else { 185c41aa3ceSMax Schwarz /* Signal rk3x_i2c_xfer to start the next message. */ 186c41aa3ceSMax Schwarz i2c->busy = false; 187c41aa3ceSMax Schwarz i2c->state = STATE_IDLE; 188c41aa3ceSMax Schwarz 189c41aa3ceSMax Schwarz /* 190c41aa3ceSMax Schwarz * The HW is actually not capable of REPEATED START. But we can 191c41aa3ceSMax Schwarz * get the intended effect by resetting its internal state 192c41aa3ceSMax Schwarz * and issuing an ordinary START. 193c41aa3ceSMax Schwarz */ 194c41aa3ceSMax Schwarz i2c_writel(i2c, 0, REG_CON); 195c41aa3ceSMax Schwarz 196c41aa3ceSMax Schwarz /* signal that we are finished with the current msg */ 197c41aa3ceSMax Schwarz wake_up(&i2c->wait); 198c41aa3ceSMax Schwarz } 199c41aa3ceSMax Schwarz } 200c41aa3ceSMax Schwarz 201c41aa3ceSMax Schwarz /** 202c41aa3ceSMax Schwarz * Setup a read according to i2c->msg 203c41aa3ceSMax Schwarz */ 204c41aa3ceSMax Schwarz static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) 205c41aa3ceSMax Schwarz { 206c41aa3ceSMax Schwarz unsigned int len = i2c->msg->len - i2c->processed; 207c41aa3ceSMax Schwarz u32 con; 208c41aa3ceSMax Schwarz 209c41aa3ceSMax Schwarz con = i2c_readl(i2c, REG_CON); 210c41aa3ceSMax Schwarz 211c41aa3ceSMax Schwarz /* 212c41aa3ceSMax Schwarz * The hw can read up to 32 bytes at a time. If we need more than one 213c41aa3ceSMax Schwarz * chunk, send an ACK after the last byte of the current chunk. 214c41aa3ceSMax Schwarz */ 21529209338SDoug Anderson if (len > 32) { 216c41aa3ceSMax Schwarz len = 32; 217c41aa3ceSMax Schwarz con &= ~REG_CON_LASTACK; 218c41aa3ceSMax Schwarz } else { 219c41aa3ceSMax Schwarz con |= REG_CON_LASTACK; 220c41aa3ceSMax Schwarz } 221c41aa3ceSMax Schwarz 222c41aa3ceSMax Schwarz /* make sure we are in plain RX mode if we read a second chunk */ 223c41aa3ceSMax Schwarz if (i2c->processed != 0) { 224c41aa3ceSMax Schwarz con &= ~REG_CON_MOD_MASK; 225c41aa3ceSMax Schwarz con |= REG_CON_MOD(REG_CON_MOD_RX); 226c41aa3ceSMax Schwarz } 227c41aa3ceSMax Schwarz 228c41aa3ceSMax Schwarz i2c_writel(i2c, con, REG_CON); 229c41aa3ceSMax Schwarz i2c_writel(i2c, len, REG_MRXCNT); 230c41aa3ceSMax Schwarz } 231c41aa3ceSMax Schwarz 232c41aa3ceSMax Schwarz /** 233c41aa3ceSMax Schwarz * Fill the transmit buffer with data from i2c->msg 234c41aa3ceSMax Schwarz */ 235c41aa3ceSMax Schwarz static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) 236c41aa3ceSMax Schwarz { 237c41aa3ceSMax Schwarz unsigned int i, j; 238c41aa3ceSMax Schwarz u32 cnt = 0; 239c41aa3ceSMax Schwarz u32 val; 240c41aa3ceSMax Schwarz u8 byte; 241c41aa3ceSMax Schwarz 242c41aa3ceSMax Schwarz for (i = 0; i < 8; ++i) { 243c41aa3ceSMax Schwarz val = 0; 244c41aa3ceSMax Schwarz for (j = 0; j < 4; ++j) { 245cf27020dSAlexandru M Stan if ((i2c->processed == i2c->msg->len) && (cnt != 0)) 246c41aa3ceSMax Schwarz break; 247c41aa3ceSMax Schwarz 248c41aa3ceSMax Schwarz if (i2c->processed == 0 && cnt == 0) 249c41aa3ceSMax Schwarz byte = (i2c->addr & 0x7f) << 1; 250c41aa3ceSMax Schwarz else 251c41aa3ceSMax Schwarz byte = i2c->msg->buf[i2c->processed++]; 252c41aa3ceSMax Schwarz 253c41aa3ceSMax Schwarz val |= byte << (j * 8); 254c41aa3ceSMax Schwarz cnt++; 255c41aa3ceSMax Schwarz } 256c41aa3ceSMax Schwarz 257c41aa3ceSMax Schwarz i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); 258c41aa3ceSMax Schwarz 259c41aa3ceSMax Schwarz if (i2c->processed == i2c->msg->len) 260c41aa3ceSMax Schwarz break; 261c41aa3ceSMax Schwarz } 262c41aa3ceSMax Schwarz 263c41aa3ceSMax Schwarz i2c_writel(i2c, cnt, REG_MTXCNT); 264c41aa3ceSMax Schwarz } 265c41aa3ceSMax Schwarz 266c41aa3ceSMax Schwarz 267c41aa3ceSMax Schwarz /* IRQ handlers for individual states */ 268c41aa3ceSMax Schwarz 269c41aa3ceSMax Schwarz static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) 270c41aa3ceSMax Schwarz { 271c41aa3ceSMax Schwarz if (!(ipd & REG_INT_START)) { 272c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -EIO); 273c41aa3ceSMax Schwarz dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); 274c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 275c41aa3ceSMax Schwarz return; 276c41aa3ceSMax Schwarz } 277c41aa3ceSMax Schwarz 278c41aa3ceSMax Schwarz /* ack interrupt */ 279c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_START, REG_IPD); 280c41aa3ceSMax Schwarz 281c41aa3ceSMax Schwarz /* disable start bit */ 282c41aa3ceSMax Schwarz i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); 283c41aa3ceSMax Schwarz 284c41aa3ceSMax Schwarz /* enable appropriate interrupts and transition */ 285c41aa3ceSMax Schwarz if (i2c->mode == REG_CON_MOD_TX) { 286c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); 287c41aa3ceSMax Schwarz i2c->state = STATE_WRITE; 288c41aa3ceSMax Schwarz rk3x_i2c_fill_transmit_buf(i2c); 289c41aa3ceSMax Schwarz } else { 290c41aa3ceSMax Schwarz /* in any other case, we are going to be reading. */ 291c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); 292c41aa3ceSMax Schwarz i2c->state = STATE_READ; 293c41aa3ceSMax Schwarz rk3x_i2c_prepare_read(i2c); 294c41aa3ceSMax Schwarz } 295c41aa3ceSMax Schwarz } 296c41aa3ceSMax Schwarz 297c41aa3ceSMax Schwarz static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) 298c41aa3ceSMax Schwarz { 299c41aa3ceSMax Schwarz if (!(ipd & REG_INT_MBTF)) { 300c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -EIO); 301c41aa3ceSMax Schwarz dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); 302c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 303c41aa3ceSMax Schwarz return; 304c41aa3ceSMax Schwarz } 305c41aa3ceSMax Schwarz 306c41aa3ceSMax Schwarz /* ack interrupt */ 307c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBTF, REG_IPD); 308c41aa3ceSMax Schwarz 309c41aa3ceSMax Schwarz /* are we finished? */ 310c41aa3ceSMax Schwarz if (i2c->processed == i2c->msg->len) 311c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, i2c->error); 312c41aa3ceSMax Schwarz else 313c41aa3ceSMax Schwarz rk3x_i2c_fill_transmit_buf(i2c); 314c41aa3ceSMax Schwarz } 315c41aa3ceSMax Schwarz 316c41aa3ceSMax Schwarz static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) 317c41aa3ceSMax Schwarz { 318c41aa3ceSMax Schwarz unsigned int i; 319c41aa3ceSMax Schwarz unsigned int len = i2c->msg->len - i2c->processed; 320c41aa3ceSMax Schwarz u32 uninitialized_var(val); 321c41aa3ceSMax Schwarz u8 byte; 322c41aa3ceSMax Schwarz 323c41aa3ceSMax Schwarz /* we only care for MBRF here. */ 324c41aa3ceSMax Schwarz if (!(ipd & REG_INT_MBRF)) 325c41aa3ceSMax Schwarz return; 326c41aa3ceSMax Schwarz 327c41aa3ceSMax Schwarz /* ack interrupt */ 328c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_MBRF, REG_IPD); 329c41aa3ceSMax Schwarz 3305da4309fSaddy ke /* Can only handle a maximum of 32 bytes at a time */ 3315da4309fSaddy ke if (len > 32) 3325da4309fSaddy ke len = 32; 3335da4309fSaddy ke 334c41aa3ceSMax Schwarz /* read the data from receive buffer */ 335c41aa3ceSMax Schwarz for (i = 0; i < len; ++i) { 336c41aa3ceSMax Schwarz if (i % 4 == 0) 337c41aa3ceSMax Schwarz val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); 338c41aa3ceSMax Schwarz 339c41aa3ceSMax Schwarz byte = (val >> ((i % 4) * 8)) & 0xff; 340c41aa3ceSMax Schwarz i2c->msg->buf[i2c->processed++] = byte; 341c41aa3ceSMax Schwarz } 342c41aa3ceSMax Schwarz 343c41aa3ceSMax Schwarz /* are we finished? */ 344c41aa3ceSMax Schwarz if (i2c->processed == i2c->msg->len) 345c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, i2c->error); 346c41aa3ceSMax Schwarz else 347c41aa3ceSMax Schwarz rk3x_i2c_prepare_read(i2c); 348c41aa3ceSMax Schwarz } 349c41aa3ceSMax Schwarz 350c41aa3ceSMax Schwarz static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) 351c41aa3ceSMax Schwarz { 352c41aa3ceSMax Schwarz unsigned int con; 353c41aa3ceSMax Schwarz 354c41aa3ceSMax Schwarz if (!(ipd & REG_INT_STOP)) { 355c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -EIO); 356c41aa3ceSMax Schwarz dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); 357c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 358c41aa3ceSMax Schwarz return; 359c41aa3ceSMax Schwarz } 360c41aa3ceSMax Schwarz 361c41aa3ceSMax Schwarz /* ack interrupt */ 362c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_STOP, REG_IPD); 363c41aa3ceSMax Schwarz 364c41aa3ceSMax Schwarz /* disable STOP bit */ 365c41aa3ceSMax Schwarz con = i2c_readl(i2c, REG_CON); 366c41aa3ceSMax Schwarz con &= ~REG_CON_STOP; 367c41aa3ceSMax Schwarz i2c_writel(i2c, con, REG_CON); 368c41aa3ceSMax Schwarz 369c41aa3ceSMax Schwarz i2c->busy = false; 370c41aa3ceSMax Schwarz i2c->state = STATE_IDLE; 371c41aa3ceSMax Schwarz 372c41aa3ceSMax Schwarz /* signal rk3x_i2c_xfer that we are finished */ 373c41aa3ceSMax Schwarz wake_up(&i2c->wait); 374c41aa3ceSMax Schwarz } 375c41aa3ceSMax Schwarz 376c41aa3ceSMax Schwarz static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) 377c41aa3ceSMax Schwarz { 378c41aa3ceSMax Schwarz struct rk3x_i2c *i2c = dev_id; 379c41aa3ceSMax Schwarz unsigned int ipd; 380c41aa3ceSMax Schwarz 381c41aa3ceSMax Schwarz spin_lock(&i2c->lock); 382c41aa3ceSMax Schwarz 383c41aa3ceSMax Schwarz ipd = i2c_readl(i2c, REG_IPD); 384c41aa3ceSMax Schwarz if (i2c->state == STATE_IDLE) { 385c41aa3ceSMax Schwarz dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); 386c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 387c41aa3ceSMax Schwarz goto out; 388c41aa3ceSMax Schwarz } 389c41aa3ceSMax Schwarz 390c41aa3ceSMax Schwarz dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); 391c41aa3ceSMax Schwarz 392c41aa3ceSMax Schwarz /* Clean interrupt bits we don't care about */ 393c41aa3ceSMax Schwarz ipd &= ~(REG_INT_BRF | REG_INT_BTF); 394c41aa3ceSMax Schwarz 395c41aa3ceSMax Schwarz if (ipd & REG_INT_NAKRCV) { 396c41aa3ceSMax Schwarz /* 397c41aa3ceSMax Schwarz * We got a NACK in the last operation. Depending on whether 398c41aa3ceSMax Schwarz * IGNORE_NAK is set, we have to stop the operation and report 399c41aa3ceSMax Schwarz * an error. 400c41aa3ceSMax Schwarz */ 401c41aa3ceSMax Schwarz i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); 402c41aa3ceSMax Schwarz 403c41aa3ceSMax Schwarz ipd &= ~REG_INT_NAKRCV; 404c41aa3ceSMax Schwarz 405c41aa3ceSMax Schwarz if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) 406c41aa3ceSMax Schwarz rk3x_i2c_stop(i2c, -ENXIO); 407c41aa3ceSMax Schwarz } 408c41aa3ceSMax Schwarz 409c41aa3ceSMax Schwarz /* is there anything left to handle? */ 41029209338SDoug Anderson if ((ipd & REG_INT_ALL) == 0) 411c41aa3ceSMax Schwarz goto out; 412c41aa3ceSMax Schwarz 413c41aa3ceSMax Schwarz switch (i2c->state) { 414c41aa3ceSMax Schwarz case STATE_START: 415c41aa3ceSMax Schwarz rk3x_i2c_handle_start(i2c, ipd); 416c41aa3ceSMax Schwarz break; 417c41aa3ceSMax Schwarz case STATE_WRITE: 418c41aa3ceSMax Schwarz rk3x_i2c_handle_write(i2c, ipd); 419c41aa3ceSMax Schwarz break; 420c41aa3ceSMax Schwarz case STATE_READ: 421c41aa3ceSMax Schwarz rk3x_i2c_handle_read(i2c, ipd); 422c41aa3ceSMax Schwarz break; 423c41aa3ceSMax Schwarz case STATE_STOP: 424c41aa3ceSMax Schwarz rk3x_i2c_handle_stop(i2c, ipd); 425c41aa3ceSMax Schwarz break; 426c41aa3ceSMax Schwarz case STATE_IDLE: 427c41aa3ceSMax Schwarz break; 428c41aa3ceSMax Schwarz } 429c41aa3ceSMax Schwarz 430c41aa3ceSMax Schwarz out: 431c41aa3ceSMax Schwarz spin_unlock(&i2c->lock); 432c41aa3ceSMax Schwarz return IRQ_HANDLED; 433c41aa3ceSMax Schwarz } 434c41aa3ceSMax Schwarz 435249051f4SMax Schwarz /** 436249051f4SMax Schwarz * Calculate divider values for desired SCL frequency 437249051f4SMax Schwarz * 438249051f4SMax Schwarz * @clk_rate: I2C input clock rate 439249051f4SMax Schwarz * @scl_rate: Desired SCL rate 440*1330e291Saddy ke * @rise_ns: How many ns it takes for signals to rise. 441*1330e291Saddy ke * @fall_ns: How many ns it takes for signals to fall. 442249051f4SMax Schwarz * @div_low: Divider output for low 443249051f4SMax Schwarz * @div_high: Divider output for high 444249051f4SMax Schwarz * 445249051f4SMax Schwarz * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case 446249051f4SMax Schwarz * a best-effort divider value is returned in divs. If the target rate is 447249051f4SMax Schwarz * too high, we silently use the highest possible rate. 448249051f4SMax Schwarz */ 449249051f4SMax Schwarz static int rk3x_i2c_calc_divs(unsigned long clk_rate, unsigned long scl_rate, 450*1330e291Saddy ke unsigned long rise_ns, unsigned long fall_ns, 4510285f8f5Saddy ke unsigned long *div_low, unsigned long *div_high) 4520285f8f5Saddy ke { 453*1330e291Saddy ke unsigned long spec_min_low_ns, spec_min_high_ns; 454*1330e291Saddy ke unsigned long spec_max_data_hold_ns; 4550285f8f5Saddy ke unsigned long data_hold_buffer_ns; 456*1330e291Saddy ke 457*1330e291Saddy ke unsigned long min_low_ns, min_high_ns; 4580285f8f5Saddy ke unsigned long max_low_ns, min_total_ns; 4590285f8f5Saddy ke 460249051f4SMax Schwarz unsigned long clk_rate_khz, scl_rate_khz; 4610285f8f5Saddy ke 4620285f8f5Saddy ke unsigned long min_low_div, min_high_div; 4630285f8f5Saddy ke unsigned long max_low_div; 4640285f8f5Saddy ke 4650285f8f5Saddy ke unsigned long min_div_for_hold, min_total_div; 4660285f8f5Saddy ke unsigned long extra_div, extra_low_div, ideal_low_div; 4670285f8f5Saddy ke 468249051f4SMax Schwarz int ret = 0; 469249051f4SMax Schwarz 4700285f8f5Saddy ke /* Only support standard-mode and fast-mode */ 4710285f8f5Saddy ke if (WARN_ON(scl_rate > 400000)) 4720285f8f5Saddy ke scl_rate = 400000; 4730285f8f5Saddy ke 4740285f8f5Saddy ke /* prevent scl_rate_khz from becoming 0 */ 4750285f8f5Saddy ke if (WARN_ON(scl_rate < 1000)) 4760285f8f5Saddy ke scl_rate = 1000; 4770285f8f5Saddy ke 4780285f8f5Saddy ke /* 479*1330e291Saddy ke * min_low_ns: The minimum number of ns we need to hold low to 480*1330e291Saddy ke * meet I2C specification, should include fall time. 481*1330e291Saddy ke * min_high_ns: The minimum number of ns we need to hold high to 482*1330e291Saddy ke * meet I2C specification, should include rise time. 483*1330e291Saddy ke * max_low_ns: The maximum number of ns we can hold low to meet 484*1330e291Saddy ke * I2C specification. 4850285f8f5Saddy ke * 486*1330e291Saddy ke * Note: max_low_ns should be (maximum data hold time * 2 - buffer) 4870285f8f5Saddy ke * This is because the i2c host on Rockchip holds the data line 4880285f8f5Saddy ke * for half the low time. 4890285f8f5Saddy ke */ 4900285f8f5Saddy ke if (scl_rate <= 100000) { 491*1330e291Saddy ke /* Standard-mode */ 492*1330e291Saddy ke spec_min_low_ns = 4700; 493*1330e291Saddy ke spec_min_high_ns = 4000; 494*1330e291Saddy ke spec_max_data_hold_ns = 3450; 4950285f8f5Saddy ke data_hold_buffer_ns = 50; 4960285f8f5Saddy ke } else { 497*1330e291Saddy ke /* Fast-mode */ 498*1330e291Saddy ke spec_min_low_ns = 1300; 499*1330e291Saddy ke spec_min_high_ns = 600; 500*1330e291Saddy ke spec_max_data_hold_ns = 900; 5010285f8f5Saddy ke data_hold_buffer_ns = 50; 5020285f8f5Saddy ke } 503*1330e291Saddy ke min_low_ns = spec_min_low_ns + fall_ns; 504*1330e291Saddy ke min_high_ns = spec_min_high_ns + rise_ns; 505*1330e291Saddy ke max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns; 5060285f8f5Saddy ke min_total_ns = min_low_ns + min_high_ns; 5070285f8f5Saddy ke 5080285f8f5Saddy ke /* Adjust to avoid overflow */ 509249051f4SMax Schwarz clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); 5100285f8f5Saddy ke scl_rate_khz = scl_rate / 1000; 5110285f8f5Saddy ke 5120285f8f5Saddy ke /* 5130285f8f5Saddy ke * We need the total div to be >= this number 5140285f8f5Saddy ke * so we don't clock too fast. 5150285f8f5Saddy ke */ 516249051f4SMax Schwarz min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); 5170285f8f5Saddy ke 5180285f8f5Saddy ke /* These are the min dividers needed for min hold times. */ 519249051f4SMax Schwarz min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); 520249051f4SMax Schwarz min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); 5210285f8f5Saddy ke min_div_for_hold = (min_low_div + min_high_div); 5220285f8f5Saddy ke 5230285f8f5Saddy ke /* 524*1330e291Saddy ke * This is the maximum divider so we don't go over the maximum. 525*1330e291Saddy ke * We don't round up here (we round down) since this is a maximum. 5260285f8f5Saddy ke */ 527249051f4SMax Schwarz max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); 5280285f8f5Saddy ke 5290285f8f5Saddy ke if (min_low_div > max_low_div) { 5300285f8f5Saddy ke WARN_ONCE(true, 5310285f8f5Saddy ke "Conflicting, min_low_div %lu, max_low_div %lu\n", 5320285f8f5Saddy ke min_low_div, max_low_div); 5330285f8f5Saddy ke max_low_div = min_low_div; 5340285f8f5Saddy ke } 5350285f8f5Saddy ke 5360285f8f5Saddy ke if (min_div_for_hold > min_total_div) { 5370285f8f5Saddy ke /* 5380285f8f5Saddy ke * Time needed to meet hold requirements is important. 5390285f8f5Saddy ke * Just use that. 5400285f8f5Saddy ke */ 5410285f8f5Saddy ke *div_low = min_low_div; 5420285f8f5Saddy ke *div_high = min_high_div; 5430285f8f5Saddy ke } else { 5440285f8f5Saddy ke /* 5450285f8f5Saddy ke * We've got to distribute some time among the low and high 5460285f8f5Saddy ke * so we don't run too fast. 5470285f8f5Saddy ke */ 5480285f8f5Saddy ke extra_div = min_total_div - min_div_for_hold; 5490285f8f5Saddy ke 5500285f8f5Saddy ke /* 5510285f8f5Saddy ke * We'll try to split things up perfectly evenly, 5520285f8f5Saddy ke * biasing slightly towards having a higher div 5530285f8f5Saddy ke * for low (spend more time low). 5540285f8f5Saddy ke */ 555249051f4SMax Schwarz ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 5560285f8f5Saddy ke scl_rate_khz * 8 * min_total_ns); 5570285f8f5Saddy ke 558*1330e291Saddy ke /* Don't allow it to go over the maximum */ 5590285f8f5Saddy ke if (ideal_low_div > max_low_div) 5600285f8f5Saddy ke ideal_low_div = max_low_div; 5610285f8f5Saddy ke 5620285f8f5Saddy ke /* 5630285f8f5Saddy ke * Handle when the ideal low div is going to take up 5640285f8f5Saddy ke * more than we have. 5650285f8f5Saddy ke */ 5660285f8f5Saddy ke if (ideal_low_div > min_low_div + extra_div) 5670285f8f5Saddy ke ideal_low_div = min_low_div + extra_div; 5680285f8f5Saddy ke 5690285f8f5Saddy ke /* Give low the "ideal" and give high whatever extra is left */ 5700285f8f5Saddy ke extra_low_div = ideal_low_div - min_low_div; 5710285f8f5Saddy ke *div_low = ideal_low_div; 5720285f8f5Saddy ke *div_high = min_high_div + (extra_div - extra_low_div); 5730285f8f5Saddy ke } 5740285f8f5Saddy ke 5750285f8f5Saddy ke /* 5760285f8f5Saddy ke * Adjust to the fact that the hardware has an implicit "+1". 5770285f8f5Saddy ke * NOTE: Above calculations always produce div_low > 0 and div_high > 0. 5780285f8f5Saddy ke */ 5790285f8f5Saddy ke *div_low = *div_low - 1; 5800285f8f5Saddy ke *div_high = *div_high - 1; 5810285f8f5Saddy ke 582249051f4SMax Schwarz /* Maximum divider supported by hw is 0xffff */ 583249051f4SMax Schwarz if (*div_low > 0xffff) { 584249051f4SMax Schwarz *div_low = 0xffff; 585249051f4SMax Schwarz ret = -EINVAL; 5860285f8f5Saddy ke } 5870285f8f5Saddy ke 588249051f4SMax Schwarz if (*div_high > 0xffff) { 589249051f4SMax Schwarz *div_high = 0xffff; 590249051f4SMax Schwarz ret = -EINVAL; 591249051f4SMax Schwarz } 592249051f4SMax Schwarz 593249051f4SMax Schwarz return ret; 594249051f4SMax Schwarz } 595249051f4SMax Schwarz 596249051f4SMax Schwarz static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) 597c41aa3ceSMax Schwarz { 5980285f8f5Saddy ke unsigned long div_low, div_high; 5990285f8f5Saddy ke u64 t_low_ns, t_high_ns; 600249051f4SMax Schwarz int ret; 601c41aa3ceSMax Schwarz 602*1330e291Saddy ke ret = rk3x_i2c_calc_divs(clk_rate, i2c->scl_frequency, i2c->rise_ns, 603*1330e291Saddy ke i2c->fall_ns, &div_low, &div_high); 604c41aa3ceSMax Schwarz 605249051f4SMax Schwarz WARN_ONCE(ret != 0, "Could not reach SCL freq %u", i2c->scl_frequency); 606249051f4SMax Schwarz 607249051f4SMax Schwarz clk_enable(i2c->clk); 6080285f8f5Saddy ke i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV); 609249051f4SMax Schwarz clk_disable(i2c->clk); 6100285f8f5Saddy ke 611249051f4SMax Schwarz t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate); 612249051f4SMax Schwarz t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate); 6130285f8f5Saddy ke dev_dbg(i2c->dev, 614249051f4SMax Schwarz "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", 615249051f4SMax Schwarz clk_rate / 1000, 616249051f4SMax Schwarz 1000000000 / i2c->scl_frequency, 6170285f8f5Saddy ke t_low_ns, t_high_ns); 618249051f4SMax Schwarz } 6190285f8f5Saddy ke 620249051f4SMax Schwarz /** 621249051f4SMax Schwarz * rk3x_i2c_clk_notifier_cb - Clock rate change callback 622249051f4SMax Schwarz * @nb: Pointer to notifier block 623249051f4SMax Schwarz * @event: Notification reason 624249051f4SMax Schwarz * @data: Pointer to notification data object 625249051f4SMax Schwarz * 626249051f4SMax Schwarz * The callback checks whether a valid bus frequency can be generated after the 627249051f4SMax Schwarz * change. If so, the change is acknowledged, otherwise the change is aborted. 628249051f4SMax Schwarz * New dividers are written to the HW in the pre- or post change notification 629249051f4SMax Schwarz * depending on the scaling direction. 630249051f4SMax Schwarz * 631249051f4SMax Schwarz * Code adapted from i2c-cadence.c. 632249051f4SMax Schwarz * 633249051f4SMax Schwarz * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK 634249051f4SMax Schwarz * to acknowedge the change, NOTIFY_DONE if the notification is 635249051f4SMax Schwarz * considered irrelevant. 636249051f4SMax Schwarz */ 637249051f4SMax Schwarz static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long 638249051f4SMax Schwarz event, void *data) 639249051f4SMax Schwarz { 640249051f4SMax Schwarz struct clk_notifier_data *ndata = data; 641249051f4SMax Schwarz struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); 642249051f4SMax Schwarz unsigned long div_low, div_high; 643249051f4SMax Schwarz 644249051f4SMax Schwarz switch (event) { 645249051f4SMax Schwarz case PRE_RATE_CHANGE: 646249051f4SMax Schwarz if (rk3x_i2c_calc_divs(ndata->new_rate, i2c->scl_frequency, 647*1330e291Saddy ke i2c->rise_ns, i2c->fall_ns, &div_low, 648*1330e291Saddy ke &div_high) != 0) 649249051f4SMax Schwarz return NOTIFY_STOP; 650249051f4SMax Schwarz 651249051f4SMax Schwarz /* scale up */ 652249051f4SMax Schwarz if (ndata->new_rate > ndata->old_rate) 653249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, ndata->new_rate); 654249051f4SMax Schwarz 655249051f4SMax Schwarz return NOTIFY_OK; 656249051f4SMax Schwarz case POST_RATE_CHANGE: 657249051f4SMax Schwarz /* scale down */ 658249051f4SMax Schwarz if (ndata->new_rate < ndata->old_rate) 659249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, ndata->new_rate); 660249051f4SMax Schwarz return NOTIFY_OK; 661249051f4SMax Schwarz case ABORT_RATE_CHANGE: 662249051f4SMax Schwarz /* scale up */ 663249051f4SMax Schwarz if (ndata->new_rate > ndata->old_rate) 664249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, ndata->old_rate); 665249051f4SMax Schwarz return NOTIFY_OK; 666249051f4SMax Schwarz default: 667249051f4SMax Schwarz return NOTIFY_DONE; 668249051f4SMax Schwarz } 669c41aa3ceSMax Schwarz } 670c41aa3ceSMax Schwarz 671c41aa3ceSMax Schwarz /** 672c41aa3ceSMax Schwarz * Setup I2C registers for an I2C operation specified by msgs, num. 673c41aa3ceSMax Schwarz * 674c41aa3ceSMax Schwarz * Must be called with i2c->lock held. 675c41aa3ceSMax Schwarz * 676c41aa3ceSMax Schwarz * @msgs: I2C msgs to process 677c41aa3ceSMax Schwarz * @num: Number of msgs 678c41aa3ceSMax Schwarz * 679c41aa3ceSMax Schwarz * returns: Number of I2C msgs processed or negative in case of error 680c41aa3ceSMax Schwarz */ 681c41aa3ceSMax Schwarz static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) 682c41aa3ceSMax Schwarz { 683c41aa3ceSMax Schwarz u32 addr = (msgs[0].addr & 0x7f) << 1; 684c41aa3ceSMax Schwarz int ret = 0; 685c41aa3ceSMax Schwarz 686c41aa3ceSMax Schwarz /* 687c41aa3ceSMax Schwarz * The I2C adapter can issue a small (len < 4) write packet before 688c41aa3ceSMax Schwarz * reading. This speeds up SMBus-style register reads. 689c41aa3ceSMax Schwarz * The MRXADDR/MRXRADDR hold the slave address and the slave register 690c41aa3ceSMax Schwarz * address in this case. 691c41aa3ceSMax Schwarz */ 692c41aa3ceSMax Schwarz 693c41aa3ceSMax Schwarz if (num >= 2 && msgs[0].len < 4 && 694c41aa3ceSMax Schwarz !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { 695c41aa3ceSMax Schwarz u32 reg_addr = 0; 696c41aa3ceSMax Schwarz int i; 697c41aa3ceSMax Schwarz 698c41aa3ceSMax Schwarz dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", 699c41aa3ceSMax Schwarz addr >> 1); 700c41aa3ceSMax Schwarz 701c41aa3ceSMax Schwarz /* Fill MRXRADDR with the register address(es) */ 702c41aa3ceSMax Schwarz for (i = 0; i < msgs[0].len; ++i) { 703c41aa3ceSMax Schwarz reg_addr |= msgs[0].buf[i] << (i * 8); 704c41aa3ceSMax Schwarz reg_addr |= REG_MRXADDR_VALID(i); 705c41aa3ceSMax Schwarz } 706c41aa3ceSMax Schwarz 707c41aa3ceSMax Schwarz /* msgs[0] is handled by hw. */ 708c41aa3ceSMax Schwarz i2c->msg = &msgs[1]; 709c41aa3ceSMax Schwarz 710c41aa3ceSMax Schwarz i2c->mode = REG_CON_MOD_REGISTER_TX; 711c41aa3ceSMax Schwarz 712c41aa3ceSMax Schwarz i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); 713c41aa3ceSMax Schwarz i2c_writel(i2c, reg_addr, REG_MRXRADDR); 714c41aa3ceSMax Schwarz 715c41aa3ceSMax Schwarz ret = 2; 716c41aa3ceSMax Schwarz } else { 717c41aa3ceSMax Schwarz /* 718c41aa3ceSMax Schwarz * We'll have to do it the boring way and process the msgs 719c41aa3ceSMax Schwarz * one-by-one. 720c41aa3ceSMax Schwarz */ 721c41aa3ceSMax Schwarz 722c41aa3ceSMax Schwarz if (msgs[0].flags & I2C_M_RD) { 723c41aa3ceSMax Schwarz addr |= 1; /* set read bit */ 724c41aa3ceSMax Schwarz 725c41aa3ceSMax Schwarz /* 726c41aa3ceSMax Schwarz * We have to transmit the slave addr first. Use 727c41aa3ceSMax Schwarz * MOD_REGISTER_TX for that purpose. 728c41aa3ceSMax Schwarz */ 729c41aa3ceSMax Schwarz i2c->mode = REG_CON_MOD_REGISTER_TX; 730c41aa3ceSMax Schwarz i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), 731c41aa3ceSMax Schwarz REG_MRXADDR); 732c41aa3ceSMax Schwarz i2c_writel(i2c, 0, REG_MRXRADDR); 733c41aa3ceSMax Schwarz } else { 734c41aa3ceSMax Schwarz i2c->mode = REG_CON_MOD_TX; 735c41aa3ceSMax Schwarz } 736c41aa3ceSMax Schwarz 737c41aa3ceSMax Schwarz i2c->msg = &msgs[0]; 738c41aa3ceSMax Schwarz 739c41aa3ceSMax Schwarz ret = 1; 740c41aa3ceSMax Schwarz } 741c41aa3ceSMax Schwarz 742c41aa3ceSMax Schwarz i2c->addr = msgs[0].addr; 743c41aa3ceSMax Schwarz i2c->busy = true; 744c41aa3ceSMax Schwarz i2c->state = STATE_START; 745c41aa3ceSMax Schwarz i2c->processed = 0; 746c41aa3ceSMax Schwarz i2c->error = 0; 747c41aa3ceSMax Schwarz 748c41aa3ceSMax Schwarz rk3x_i2c_clean_ipd(i2c); 749c41aa3ceSMax Schwarz 750c41aa3ceSMax Schwarz return ret; 751c41aa3ceSMax Schwarz } 752c41aa3ceSMax Schwarz 753c41aa3ceSMax Schwarz static int rk3x_i2c_xfer(struct i2c_adapter *adap, 754c41aa3ceSMax Schwarz struct i2c_msg *msgs, int num) 755c41aa3ceSMax Schwarz { 756c41aa3ceSMax Schwarz struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; 757c41aa3ceSMax Schwarz unsigned long timeout, flags; 758c41aa3ceSMax Schwarz int ret = 0; 759c41aa3ceSMax Schwarz int i; 760c41aa3ceSMax Schwarz 761c41aa3ceSMax Schwarz spin_lock_irqsave(&i2c->lock, flags); 762c41aa3ceSMax Schwarz 763c41aa3ceSMax Schwarz clk_enable(i2c->clk); 764c41aa3ceSMax Schwarz 765c41aa3ceSMax Schwarz i2c->is_last_msg = false; 766c41aa3ceSMax Schwarz 767c41aa3ceSMax Schwarz /* 768c41aa3ceSMax Schwarz * Process msgs. We can handle more than one message at once (see 769c41aa3ceSMax Schwarz * rk3x_i2c_setup()). 770c41aa3ceSMax Schwarz */ 771c41aa3ceSMax Schwarz for (i = 0; i < num; i += ret) { 772c41aa3ceSMax Schwarz ret = rk3x_i2c_setup(i2c, msgs + i, num - i); 773c41aa3ceSMax Schwarz 774c41aa3ceSMax Schwarz if (ret < 0) { 775c41aa3ceSMax Schwarz dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); 776c41aa3ceSMax Schwarz break; 777c41aa3ceSMax Schwarz } 778c41aa3ceSMax Schwarz 779c41aa3ceSMax Schwarz if (i + ret >= num) 780c41aa3ceSMax Schwarz i2c->is_last_msg = true; 781c41aa3ceSMax Schwarz 782c41aa3ceSMax Schwarz spin_unlock_irqrestore(&i2c->lock, flags); 783c41aa3ceSMax Schwarz 784c41aa3ceSMax Schwarz rk3x_i2c_start(i2c); 785c41aa3ceSMax Schwarz 786c41aa3ceSMax Schwarz timeout = wait_event_timeout(i2c->wait, !i2c->busy, 787c41aa3ceSMax Schwarz msecs_to_jiffies(WAIT_TIMEOUT)); 788c41aa3ceSMax Schwarz 789c41aa3ceSMax Schwarz spin_lock_irqsave(&i2c->lock, flags); 790c41aa3ceSMax Schwarz 791c41aa3ceSMax Schwarz if (timeout == 0) { 792c41aa3ceSMax Schwarz dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", 793c41aa3ceSMax Schwarz i2c_readl(i2c, REG_IPD), i2c->state); 794c41aa3ceSMax Schwarz 795c41aa3ceSMax Schwarz /* Force a STOP condition without interrupt */ 796c41aa3ceSMax Schwarz i2c_writel(i2c, 0, REG_IEN); 797c41aa3ceSMax Schwarz i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON); 798c41aa3ceSMax Schwarz 799c41aa3ceSMax Schwarz i2c->state = STATE_IDLE; 800c41aa3ceSMax Schwarz 801c41aa3ceSMax Schwarz ret = -ETIMEDOUT; 802c41aa3ceSMax Schwarz break; 803c41aa3ceSMax Schwarz } 804c41aa3ceSMax Schwarz 805c41aa3ceSMax Schwarz if (i2c->error) { 806c41aa3ceSMax Schwarz ret = i2c->error; 807c41aa3ceSMax Schwarz break; 808c41aa3ceSMax Schwarz } 809c41aa3ceSMax Schwarz } 810c41aa3ceSMax Schwarz 811c41aa3ceSMax Schwarz clk_disable(i2c->clk); 812c41aa3ceSMax Schwarz spin_unlock_irqrestore(&i2c->lock, flags); 813c41aa3ceSMax Schwarz 814c41aa3ceSMax Schwarz return ret; 815c41aa3ceSMax Schwarz } 816c41aa3ceSMax Schwarz 817c41aa3ceSMax Schwarz static u32 rk3x_i2c_func(struct i2c_adapter *adap) 818c41aa3ceSMax Schwarz { 819c41aa3ceSMax Schwarz return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; 820c41aa3ceSMax Schwarz } 821c41aa3ceSMax Schwarz 822c41aa3ceSMax Schwarz static const struct i2c_algorithm rk3x_i2c_algorithm = { 823c41aa3ceSMax Schwarz .master_xfer = rk3x_i2c_xfer, 824c41aa3ceSMax Schwarz .functionality = rk3x_i2c_func, 825c41aa3ceSMax Schwarz }; 826c41aa3ceSMax Schwarz 827c41aa3ceSMax Schwarz static struct rk3x_i2c_soc_data soc_data[3] = { 828c41aa3ceSMax Schwarz { .grf_offset = 0x154 }, /* rk3066 */ 829c41aa3ceSMax Schwarz { .grf_offset = 0x0a4 }, /* rk3188 */ 830c41aa3ceSMax Schwarz { .grf_offset = -1 }, /* no I2C switching needed */ 831c41aa3ceSMax Schwarz }; 832c41aa3ceSMax Schwarz 833c41aa3ceSMax Schwarz static const struct of_device_id rk3x_i2c_match[] = { 834c41aa3ceSMax Schwarz { .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] }, 835c41aa3ceSMax Schwarz { .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] }, 836c41aa3ceSMax Schwarz { .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] }, 837c51bd6acSDan Carpenter {}, 838c41aa3ceSMax Schwarz }; 839c41aa3ceSMax Schwarz 840c41aa3ceSMax Schwarz static int rk3x_i2c_probe(struct platform_device *pdev) 841c41aa3ceSMax Schwarz { 842c41aa3ceSMax Schwarz struct device_node *np = pdev->dev.of_node; 843c41aa3ceSMax Schwarz const struct of_device_id *match; 844c41aa3ceSMax Schwarz struct rk3x_i2c *i2c; 845c41aa3ceSMax Schwarz struct resource *mem; 846c41aa3ceSMax Schwarz int ret = 0; 847c41aa3ceSMax Schwarz int bus_nr; 848c41aa3ceSMax Schwarz u32 value; 849c41aa3ceSMax Schwarz int irq; 850249051f4SMax Schwarz unsigned long clk_rate; 851c41aa3ceSMax Schwarz 852c41aa3ceSMax Schwarz i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); 853c41aa3ceSMax Schwarz if (!i2c) 854c41aa3ceSMax Schwarz return -ENOMEM; 855c41aa3ceSMax Schwarz 856c41aa3ceSMax Schwarz match = of_match_node(rk3x_i2c_match, np); 857c41aa3ceSMax Schwarz i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data; 858c41aa3ceSMax Schwarz 859c41aa3ceSMax Schwarz if (of_property_read_u32(pdev->dev.of_node, "clock-frequency", 860c41aa3ceSMax Schwarz &i2c->scl_frequency)) { 861c41aa3ceSMax Schwarz dev_info(&pdev->dev, "using default SCL frequency: %d\n", 862c41aa3ceSMax Schwarz DEFAULT_SCL_RATE); 863c41aa3ceSMax Schwarz i2c->scl_frequency = DEFAULT_SCL_RATE; 864c41aa3ceSMax Schwarz } 865c41aa3ceSMax Schwarz 866c41aa3ceSMax Schwarz if (i2c->scl_frequency == 0 || i2c->scl_frequency > 400 * 1000) { 867c41aa3ceSMax Schwarz dev_warn(&pdev->dev, "invalid SCL frequency specified.\n"); 868c41aa3ceSMax Schwarz dev_warn(&pdev->dev, "using default SCL frequency: %d\n", 869c41aa3ceSMax Schwarz DEFAULT_SCL_RATE); 870c41aa3ceSMax Schwarz i2c->scl_frequency = DEFAULT_SCL_RATE; 871c41aa3ceSMax Schwarz } 872c41aa3ceSMax Schwarz 873*1330e291Saddy ke /* 874*1330e291Saddy ke * Read rise and fall time from device tree. If not available use 875*1330e291Saddy ke * the default maximum timing from the specification. 876*1330e291Saddy ke */ 877*1330e291Saddy ke if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-rising-time-ns", 878*1330e291Saddy ke &i2c->rise_ns)) { 879*1330e291Saddy ke if (i2c->scl_frequency <= 100000) 880*1330e291Saddy ke i2c->rise_ns = 1000; 881*1330e291Saddy ke else 882*1330e291Saddy ke i2c->rise_ns = 300; 883*1330e291Saddy ke } 884*1330e291Saddy ke if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-falling-time-ns", 885*1330e291Saddy ke &i2c->fall_ns)) 886*1330e291Saddy ke i2c->fall_ns = 300; 887*1330e291Saddy ke 888c41aa3ceSMax Schwarz strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); 889c41aa3ceSMax Schwarz i2c->adap.owner = THIS_MODULE; 890c41aa3ceSMax Schwarz i2c->adap.algo = &rk3x_i2c_algorithm; 891c41aa3ceSMax Schwarz i2c->adap.retries = 3; 892c41aa3ceSMax Schwarz i2c->adap.dev.of_node = np; 893c41aa3ceSMax Schwarz i2c->adap.algo_data = i2c; 894c41aa3ceSMax Schwarz i2c->adap.dev.parent = &pdev->dev; 895c41aa3ceSMax Schwarz 896c41aa3ceSMax Schwarz i2c->dev = &pdev->dev; 897c41aa3ceSMax Schwarz 898c41aa3ceSMax Schwarz spin_lock_init(&i2c->lock); 899c41aa3ceSMax Schwarz init_waitqueue_head(&i2c->wait); 900c41aa3ceSMax Schwarz 901c41aa3ceSMax Schwarz i2c->clk = devm_clk_get(&pdev->dev, NULL); 902c41aa3ceSMax Schwarz if (IS_ERR(i2c->clk)) { 903c41aa3ceSMax Schwarz dev_err(&pdev->dev, "cannot get clock\n"); 904c41aa3ceSMax Schwarz return PTR_ERR(i2c->clk); 905c41aa3ceSMax Schwarz } 906c41aa3ceSMax Schwarz 907c41aa3ceSMax Schwarz mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 908c41aa3ceSMax Schwarz i2c->regs = devm_ioremap_resource(&pdev->dev, mem); 909c41aa3ceSMax Schwarz if (IS_ERR(i2c->regs)) 910c41aa3ceSMax Schwarz return PTR_ERR(i2c->regs); 911c41aa3ceSMax Schwarz 912c41aa3ceSMax Schwarz /* Try to set the I2C adapter number from dt */ 913c41aa3ceSMax Schwarz bus_nr = of_alias_get_id(np, "i2c"); 914c41aa3ceSMax Schwarz 915c41aa3ceSMax Schwarz /* 916c41aa3ceSMax Schwarz * Switch to new interface if the SoC also offers the old one. 917c41aa3ceSMax Schwarz * The control bit is located in the GRF register space. 918c41aa3ceSMax Schwarz */ 919c41aa3ceSMax Schwarz if (i2c->soc_data->grf_offset >= 0) { 920c41aa3ceSMax Schwarz struct regmap *grf; 921c41aa3ceSMax Schwarz 922c41aa3ceSMax Schwarz grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); 923c41aa3ceSMax Schwarz if (IS_ERR(grf)) { 924c41aa3ceSMax Schwarz dev_err(&pdev->dev, 925c41aa3ceSMax Schwarz "rk3x-i2c needs 'rockchip,grf' property\n"); 926c41aa3ceSMax Schwarz return PTR_ERR(grf); 927c41aa3ceSMax Schwarz } 928c41aa3ceSMax Schwarz 929c41aa3ceSMax Schwarz if (bus_nr < 0) { 930c41aa3ceSMax Schwarz dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); 931c41aa3ceSMax Schwarz return -EINVAL; 932c41aa3ceSMax Schwarz } 933c41aa3ceSMax Schwarz 934c41aa3ceSMax Schwarz /* 27+i: write mask, 11+i: value */ 935c41aa3ceSMax Schwarz value = BIT(27 + bus_nr) | BIT(11 + bus_nr); 936c41aa3ceSMax Schwarz 937c41aa3ceSMax Schwarz ret = regmap_write(grf, i2c->soc_data->grf_offset, value); 938c41aa3ceSMax Schwarz if (ret != 0) { 939c41aa3ceSMax Schwarz dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); 940c41aa3ceSMax Schwarz return ret; 941c41aa3ceSMax Schwarz } 942c41aa3ceSMax Schwarz } 943c41aa3ceSMax Schwarz 944c41aa3ceSMax Schwarz /* IRQ setup */ 945c41aa3ceSMax Schwarz irq = platform_get_irq(pdev, 0); 946c41aa3ceSMax Schwarz if (irq < 0) { 947c41aa3ceSMax Schwarz dev_err(&pdev->dev, "cannot find rk3x IRQ\n"); 948c41aa3ceSMax Schwarz return irq; 949c41aa3ceSMax Schwarz } 950c41aa3ceSMax Schwarz 951c41aa3ceSMax Schwarz ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, 952c41aa3ceSMax Schwarz 0, dev_name(&pdev->dev), i2c); 953c41aa3ceSMax Schwarz if (ret < 0) { 954c41aa3ceSMax Schwarz dev_err(&pdev->dev, "cannot request IRQ\n"); 955c41aa3ceSMax Schwarz return ret; 956c41aa3ceSMax Schwarz } 957c41aa3ceSMax Schwarz 958c41aa3ceSMax Schwarz platform_set_drvdata(pdev, i2c); 959c41aa3ceSMax Schwarz 960c41aa3ceSMax Schwarz ret = clk_prepare(i2c->clk); 961c41aa3ceSMax Schwarz if (ret < 0) { 962c41aa3ceSMax Schwarz dev_err(&pdev->dev, "Could not prepare clock\n"); 963c41aa3ceSMax Schwarz return ret; 964c41aa3ceSMax Schwarz } 965c41aa3ceSMax Schwarz 966249051f4SMax Schwarz i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; 967249051f4SMax Schwarz ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); 968249051f4SMax Schwarz if (ret != 0) { 969249051f4SMax Schwarz dev_err(&pdev->dev, "Unable to register clock notifier\n"); 970249051f4SMax Schwarz goto err_clk; 971249051f4SMax Schwarz } 972249051f4SMax Schwarz 973249051f4SMax Schwarz clk_rate = clk_get_rate(i2c->clk); 974249051f4SMax Schwarz rk3x_i2c_adapt_div(i2c, clk_rate); 975249051f4SMax Schwarz 976c41aa3ceSMax Schwarz ret = i2c_add_adapter(&i2c->adap); 977c41aa3ceSMax Schwarz if (ret < 0) { 978c41aa3ceSMax Schwarz dev_err(&pdev->dev, "Could not register adapter\n"); 979249051f4SMax Schwarz goto err_clk_notifier; 980c41aa3ceSMax Schwarz } 981c41aa3ceSMax Schwarz 982c41aa3ceSMax Schwarz dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs); 983c41aa3ceSMax Schwarz 984c41aa3ceSMax Schwarz return 0; 985c41aa3ceSMax Schwarz 986249051f4SMax Schwarz err_clk_notifier: 987249051f4SMax Schwarz clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); 988c41aa3ceSMax Schwarz err_clk: 989c41aa3ceSMax Schwarz clk_unprepare(i2c->clk); 990c41aa3ceSMax Schwarz return ret; 991c41aa3ceSMax Schwarz } 992c41aa3ceSMax Schwarz 993c41aa3ceSMax Schwarz static int rk3x_i2c_remove(struct platform_device *pdev) 994c41aa3ceSMax Schwarz { 995c41aa3ceSMax Schwarz struct rk3x_i2c *i2c = platform_get_drvdata(pdev); 996c41aa3ceSMax Schwarz 997c41aa3ceSMax Schwarz i2c_del_adapter(&i2c->adap); 998249051f4SMax Schwarz 999249051f4SMax Schwarz clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); 1000c41aa3ceSMax Schwarz clk_unprepare(i2c->clk); 1001c41aa3ceSMax Schwarz 1002c41aa3ceSMax Schwarz return 0; 1003c41aa3ceSMax Schwarz } 1004c41aa3ceSMax Schwarz 1005c41aa3ceSMax Schwarz static struct platform_driver rk3x_i2c_driver = { 1006c41aa3ceSMax Schwarz .probe = rk3x_i2c_probe, 1007c41aa3ceSMax Schwarz .remove = rk3x_i2c_remove, 1008c41aa3ceSMax Schwarz .driver = { 1009c41aa3ceSMax Schwarz .name = "rk3x-i2c", 1010c41aa3ceSMax Schwarz .of_match_table = rk3x_i2c_match, 1011c41aa3ceSMax Schwarz }, 1012c41aa3ceSMax Schwarz }; 1013c41aa3ceSMax Schwarz 1014c41aa3ceSMax Schwarz module_platform_driver(rk3x_i2c_driver); 1015c41aa3ceSMax Schwarz 1016c41aa3ceSMax Schwarz MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); 1017c41aa3ceSMax Schwarz MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); 1018c41aa3ceSMax Schwarz MODULE_LICENSE("GPL v2"); 1019