xref: /openbmc/linux/drivers/i2c/busses/i2c-au1550.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
3  * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
4  *
5  * 2.6 port by Matt Porter <mporter@kernel.crashing.org>
6  *
7  * The documentation describes this as an SMBus controller, but it doesn't
8  * understand any of the SMBus protocol in hardware.  It's really an I2C
9  * controller that could emulate most of the SMBus in software.
10  *
11  * This is just a skeleton adapter to use with the Au1550 PSC
12  * algorithm.  It was developed for the Pb1550, but will work with
13  * any Au1550 board that has a similar PSC configuration.
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version 2
18  * of the License, or (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
28  */
29 
30 #include <linux/config.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/init.h>
35 #include <linux/errno.h>
36 #include <linux/i2c.h>
37 
38 #include <asm/mach-au1x00/au1000.h>
39 #include <asm/mach-pb1x00/pb1550.h>
40 #include <asm/mach-au1x00/au1xxx_psc.h>
41 
42 #include "i2c-au1550.h"
43 
44 static int
45 wait_xfer_done(struct i2c_au1550_data *adap)
46 {
47 	u32	stat;
48 	int	i;
49 	volatile psc_smb_t	*sp;
50 
51 	sp = (volatile psc_smb_t *)(adap->psc_base);
52 
53 	/* Wait for Tx FIFO Underflow.
54 	*/
55 	for (i = 0; i < adap->xfer_timeout; i++) {
56 		stat = sp->psc_smbevnt;
57 		au_sync();
58 		if ((stat & PSC_SMBEVNT_TU) != 0) {
59 			/* Clear it.  */
60 			sp->psc_smbevnt = PSC_SMBEVNT_TU;
61 			au_sync();
62 			return 0;
63 		}
64 		udelay(1);
65 	}
66 
67 	return -ETIMEDOUT;
68 }
69 
70 static int
71 wait_ack(struct i2c_au1550_data *adap)
72 {
73 	u32	stat;
74 	volatile psc_smb_t	*sp;
75 
76 	if (wait_xfer_done(adap))
77 		return -ETIMEDOUT;
78 
79 	sp = (volatile psc_smb_t *)(adap->psc_base);
80 
81 	stat = sp->psc_smbevnt;
82 	au_sync();
83 
84 	if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0)
85 		return -ETIMEDOUT;
86 
87 	return 0;
88 }
89 
90 static int
91 wait_master_done(struct i2c_au1550_data *adap)
92 {
93 	u32	stat;
94 	int	i;
95 	volatile psc_smb_t	*sp;
96 
97 	sp = (volatile psc_smb_t *)(adap->psc_base);
98 
99 	/* Wait for Master Done.
100 	*/
101 	for (i = 0; i < adap->xfer_timeout; i++) {
102 		stat = sp->psc_smbevnt;
103 		au_sync();
104 		if ((stat & PSC_SMBEVNT_MD) != 0)
105 			return 0;
106 		udelay(1);
107 	}
108 
109 	return -ETIMEDOUT;
110 }
111 
112 static int
113 do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd)
114 {
115 	volatile psc_smb_t	*sp;
116 	u32			stat;
117 
118 	sp = (volatile psc_smb_t *)(adap->psc_base);
119 
120 	/* Reset the FIFOs, clear events.
121 	*/
122 	sp->psc_smbpcr = PSC_SMBPCR_DC;
123 	sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR;
124 	au_sync();
125 	do {
126 		stat = sp->psc_smbpcr;
127 		au_sync();
128 	} while ((stat & PSC_SMBPCR_DC) != 0);
129 
130 	/* Write out the i2c chip address and specify operation
131 	*/
132 	addr <<= 1;
133 	if (rd)
134 		addr |= 1;
135 
136 	/* Put byte into fifo, start up master.
137 	*/
138 	sp->psc_smbtxrx = addr;
139 	au_sync();
140 	sp->psc_smbpcr = PSC_SMBPCR_MS;
141 	au_sync();
142 	if (wait_ack(adap))
143 		return -EIO;
144 	return 0;
145 }
146 
147 static u32
148 wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data)
149 {
150 	int	j;
151 	u32	data, stat;
152 	volatile psc_smb_t	*sp;
153 
154 	if (wait_xfer_done(adap))
155 		return -EIO;
156 
157 	sp = (volatile psc_smb_t *)(adap->psc_base);
158 
159 	j =  adap->xfer_timeout * 100;
160 	do {
161 		j--;
162 		if (j <= 0)
163 			return -EIO;
164 
165 		stat = sp->psc_smbstat;
166 		au_sync();
167 		if ((stat & PSC_SMBSTAT_RE) == 0)
168 			j = 0;
169 		else
170 			udelay(1);
171 	} while (j > 0);
172 	data = sp->psc_smbtxrx;
173 	au_sync();
174 	*ret_data = data;
175 
176 	return 0;
177 }
178 
179 static int
180 i2c_read(struct i2c_au1550_data *adap, unsigned char *buf,
181 		    unsigned int len)
182 {
183 	int	i;
184 	u32	data;
185 	volatile psc_smb_t	*sp;
186 
187 	if (len == 0)
188 		return 0;
189 
190 	/* A read is performed by stuffing the transmit fifo with
191 	 * zero bytes for timing, waiting for bytes to appear in the
192 	 * receive fifo, then reading the bytes.
193 	 */
194 
195 	sp = (volatile psc_smb_t *)(adap->psc_base);
196 
197 	i = 0;
198 	while (i < (len-1)) {
199 		sp->psc_smbtxrx = 0;
200 		au_sync();
201 		if (wait_for_rx_byte(adap, &data))
202 			return -EIO;
203 
204 		buf[i] = data;
205 		i++;
206 	}
207 
208 	/* The last byte has to indicate transfer done.
209 	*/
210 	sp->psc_smbtxrx = PSC_SMBTXRX_STP;
211 	au_sync();
212 	if (wait_master_done(adap))
213 		return -EIO;
214 
215 	data = sp->psc_smbtxrx;
216 	au_sync();
217 	buf[i] = data;
218 	return 0;
219 }
220 
221 static int
222 i2c_write(struct i2c_au1550_data *adap, unsigned char *buf,
223 		     unsigned int len)
224 {
225 	int	i;
226 	u32	data;
227 	volatile psc_smb_t	*sp;
228 
229 	if (len == 0)
230 		return 0;
231 
232 	sp = (volatile psc_smb_t *)(adap->psc_base);
233 
234 	i = 0;
235 	while (i < (len-1)) {
236 		data = buf[i];
237 		sp->psc_smbtxrx = data;
238 		au_sync();
239 		if (wait_ack(adap))
240 			return -EIO;
241 		i++;
242 	}
243 
244 	/* The last byte has to indicate transfer done.
245 	*/
246 	data = buf[i];
247 	data |= PSC_SMBTXRX_STP;
248 	sp->psc_smbtxrx = data;
249 	au_sync();
250 	if (wait_master_done(adap))
251 		return -EIO;
252 	return 0;
253 }
254 
255 static int
256 au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
257 {
258 	struct i2c_au1550_data *adap = i2c_adap->algo_data;
259 	struct i2c_msg *p;
260 	int i, err = 0;
261 
262 	for (i = 0; !err && i < num; i++) {
263 		p = &msgs[i];
264 		err = do_address(adap, p->addr, p->flags & I2C_M_RD);
265 		if (err || !p->len)
266 			continue;
267 		if (p->flags & I2C_M_RD)
268 			err = i2c_read(adap, p->buf, p->len);
269 		else
270 			err = i2c_write(adap, p->buf, p->len);
271 	}
272 
273 	/* Return the number of messages processed, or the error code.
274 	*/
275 	if (err == 0)
276 		err = num;
277 	return err;
278 }
279 
280 static u32
281 au1550_func(struct i2c_adapter *adap)
282 {
283 	return I2C_FUNC_I2C;
284 }
285 
286 static struct i2c_algorithm au1550_algo = {
287 	.name		= "Au1550 algorithm",
288 	.id		= I2C_ALGO_AU1550,
289 	.master_xfer	= au1550_xfer,
290 	.functionality	= au1550_func,
291 };
292 
293 /*
294  * registering functions to load algorithms at runtime
295  * Prior to calling us, the 50MHz clock frequency and routing
296  * must have been set up for the PSC indicated by the adapter.
297  */
298 int
299 i2c_au1550_add_bus(struct i2c_adapter *i2c_adap)
300 {
301 	struct i2c_au1550_data *adap = i2c_adap->algo_data;
302 	volatile psc_smb_t	*sp;
303 	u32	stat;
304 
305 	i2c_adap->algo = &au1550_algo;
306 
307 	/* Now, set up the PSC for SMBus PIO mode.
308 	*/
309 	sp = (volatile psc_smb_t *)(adap->psc_base);
310 	sp->psc_ctrl = PSC_CTRL_DISABLE;
311 	au_sync();
312 	sp->psc_sel = PSC_SEL_PS_SMBUSMODE;
313 	sp->psc_smbcfg = 0;
314 	au_sync();
315 	sp->psc_ctrl = PSC_CTRL_ENABLE;
316 	au_sync();
317 	do {
318 		stat = sp->psc_smbstat;
319 		au_sync();
320 	} while ((stat & PSC_SMBSTAT_SR) == 0);
321 
322 	sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 |
323 				PSC_SMBCFG_DD_DISABLE);
324 
325 	/* Divide by 8 to get a 6.25 MHz clock.  The later protocol
326 	 * timings are based on this clock.
327 	 */
328 	sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8);
329 	sp->psc_smbmsk = PSC_SMBMSK_ALLMASK;
330 	au_sync();
331 
332 	/* Set the protocol timer values.  See Table 71 in the
333 	 * Au1550 Data Book for standard timing values.
334 	 */
335 	sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
336 		PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
337 		PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
338 		PSC_SMBTMR_SET_CH(15);
339 	au_sync();
340 
341 	sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE;
342 	do {
343 		stat = sp->psc_smbstat;
344 		au_sync();
345 	} while ((stat & PSC_SMBSTAT_DR) == 0);
346 
347 	return i2c_add_adapter(i2c_adap);
348 }
349 
350 
351 int
352 i2c_au1550_del_bus(struct i2c_adapter *adap)
353 {
354 	return i2c_del_adapter(adap);
355 }
356 
357 static int
358 pb1550_reg(struct i2c_client *client)
359 {
360 	return 0;
361 }
362 
363 static int
364 pb1550_unreg(struct i2c_client *client)
365 {
366 	return 0;
367 }
368 
369 static struct i2c_au1550_data pb1550_i2c_info = {
370 	SMBUS_PSC_BASE, 200, 200
371 };
372 
373 static struct i2c_adapter pb1550_board_adapter = {
374 	name:              "pb1550 adapter",
375 	id:                I2C_HW_AU1550_PSC,
376 	algo:              NULL,
377 	algo_data:         &pb1550_i2c_info,
378 	client_register:   pb1550_reg,
379 	client_unregister: pb1550_unreg,
380 };
381 
382 /* BIG hack to support the control interface on the Wolfson WM8731
383  * audio codec on the Pb1550 board.  We get an address and two data
384  * bytes to write, create an i2c message, and send it across the
385  * i2c transfer function.  We do this here because we have access to
386  * the i2c adapter structure.
387  */
388 static struct i2c_msg wm_i2c_msg;  /* We don't want this stuff on the stack */
389 static	u8 i2cbuf[2];
390 
391 int
392 pb1550_wm_codec_write(u8 addr, u8 reg, u8 val)
393 {
394 	wm_i2c_msg.addr = addr;
395 	wm_i2c_msg.flags = 0;
396 	wm_i2c_msg.buf = i2cbuf;
397 	wm_i2c_msg.len = 2;
398 	i2cbuf[0] = reg;
399 	i2cbuf[1] = val;
400 
401 	return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1);
402 }
403 
404 static int __init
405 i2c_au1550_init(void)
406 {
407 	printk(KERN_INFO "Au1550 I2C: ");
408 
409 	/* This is where we would set up a 50MHz clock source
410 	 * and routing.  On the Pb1550, the SMBus is PSC2, which
411 	 * uses a shared clock with USB.  This has been already
412 	 * configured by Yamon as a 48MHz clock, close enough
413 	 * for our work.
414 	 */
415         if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) {
416 		printk("failed to initialize.\n");
417                 return -ENODEV;
418 	}
419 
420 	printk("initialized.\n");
421 	return 0;
422 }
423 
424 static void __exit
425 i2c_au1550_exit(void)
426 {
427 	i2c_au1550_del_bus(&pb1550_board_adapter);
428 }
429 
430 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
431 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
432 MODULE_LICENSE("GPL");
433 
434 module_init (i2c_au1550_init);
435 module_exit (i2c_au1550_exit);
436