1 /* 2 via686a.c - Part of lm_sensors, Linux kernel modules 3 for hardware monitoring 4 5 Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, 6 Ky�sti M�lkki <kmalkki@cc.hut.fi>, 7 Mark Studebaker <mdsxyz123@yahoo.com>, 8 and Bob Dougherty <bobd@stanford.edu> 9 (Some conversion-factor data were contributed by Jonathan Teh Soon Yew 10 <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) 11 12 This program is free software; you can redistribute it and/or modify 13 it under the terms of the GNU General Public License as published by 14 the Free Software Foundation; either version 2 of the License, or 15 (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, 18 but WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 GNU General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 */ 26 27 /* 28 Supports the Via VT82C686A, VT82C686B south bridges. 29 Reports all as a 686A. 30 Warning - only supports a single device. 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/jiffies.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-sensor.h> 39 #include <linux/hwmon.h> 40 #include <linux/err.h> 41 #include <linux/init.h> 42 #include <asm/io.h> 43 44 45 /* If force_addr is set to anything different from 0, we forcibly enable 46 the device at the given address. */ 47 static unsigned short force_addr = 0; 48 module_param(force_addr, ushort, 0); 49 MODULE_PARM_DESC(force_addr, 50 "Initialize the base address of the sensors"); 51 52 /* Addresses to scan. 53 Note that we can't determine the ISA address until we have initialized 54 our module */ 55 static unsigned short normal_i2c[] = { I2C_CLIENT_END }; 56 static unsigned int normal_isa[] = { 0x0000, I2C_CLIENT_ISA_END }; 57 58 /* Insmod parameters */ 59 SENSORS_INSMOD_1(via686a); 60 61 /* 62 The Via 686a southbridge has a LM78-like chip integrated on the same IC. 63 This driver is a customized copy of lm78.c 64 */ 65 66 /* Many VIA686A constants specified below */ 67 68 /* Length of ISA address segment */ 69 #define VIA686A_EXTENT 0x80 70 #define VIA686A_BASE_REG 0x70 71 #define VIA686A_ENABLE_REG 0x74 72 73 /* The VIA686A registers */ 74 /* ins numbered 0-4 */ 75 #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2)) 76 #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2)) 77 #define VIA686A_REG_IN(nr) (0x22 + (nr)) 78 79 /* fans numbered 1-2 */ 80 #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr)) 81 #define VIA686A_REG_FAN(nr) (0x28 + (nr)) 82 83 /* temps numbered 1-3 */ 84 static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f }; 85 static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d }; 86 static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e }; 87 /* bits 7-6 */ 88 #define VIA686A_REG_TEMP_LOW1 0x4b 89 /* 2 = bits 5-4, 3 = bits 7-6 */ 90 #define VIA686A_REG_TEMP_LOW23 0x49 91 92 #define VIA686A_REG_ALARM1 0x41 93 #define VIA686A_REG_ALARM2 0x42 94 #define VIA686A_REG_FANDIV 0x47 95 #define VIA686A_REG_CONFIG 0x40 96 /* The following register sets temp interrupt mode (bits 1-0 for temp1, 97 3-2 for temp2, 5-4 for temp3). Modes are: 98 00 interrupt stays as long as value is out-of-range 99 01 interrupt is cleared once register is read (default) 100 10 comparator mode- like 00, but ignores hysteresis 101 11 same as 00 */ 102 #define VIA686A_REG_TEMP_MODE 0x4b 103 /* We'll just assume that you want to set all 3 simultaneously: */ 104 #define VIA686A_TEMP_MODE_MASK 0x3F 105 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00 106 107 /* Conversions. Limit checking is only done on the TO_REG 108 variants. 109 110 ********* VOLTAGE CONVERSIONS (Bob Dougherty) ******** 111 From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): 112 voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp 113 voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V 114 voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V 115 voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V 116 voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V 117 in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; 118 That is: 119 volts = (25*regVal+133)*factor 120 regVal = (volts/factor-133)/25 121 (These conversions were contributed by Jonathan Teh Soon Yew 122 <j.teh@iname.com>) */ 123 static inline u8 IN_TO_REG(long val, int inNum) 124 { 125 /* To avoid floating point, we multiply constants by 10 (100 for +12V). 126 Rounding is done (120500 is actually 133000 - 12500). 127 Remember that val is expressed in 0.001V/bit, which is why we divide 128 by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) 129 for the constants. */ 130 if (inNum <= 1) 131 return (u8) 132 SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); 133 else if (inNum == 2) 134 return (u8) 135 SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255); 136 else if (inNum == 3) 137 return (u8) 138 SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255); 139 else 140 return (u8) 141 SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255); 142 } 143 144 static inline long IN_FROM_REG(u8 val, int inNum) 145 { 146 /* To avoid floating point, we multiply constants by 10 (100 for +12V). 147 We also multiply them by 1000 because we want 0.001V/bit for the 148 output value. Rounding is done. */ 149 if (inNum <= 1) 150 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); 151 else if (inNum == 2) 152 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737); 153 else if (inNum == 3) 154 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108); 155 else 156 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714); 157 } 158 159 /********* FAN RPM CONVERSIONS ********/ 160 /* Higher register values = slower fans (the fan's strobe gates a counter). 161 But this chip saturates back at 0, not at 255 like all the other chips. 162 So, 0 means 0 RPM */ 163 static inline u8 FAN_TO_REG(long rpm, int div) 164 { 165 if (rpm == 0) 166 return 0; 167 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 168 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); 169 } 170 171 #define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div))) 172 173 /******** TEMP CONVERSIONS (Bob Dougherty) *********/ 174 /* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) 175 if(temp<169) 176 return double(temp)*0.427-32.08; 177 else if(temp>=169 && temp<=202) 178 return double(temp)*0.582-58.16; 179 else 180 return double(temp)*0.924-127.33; 181 182 A fifth-order polynomial fits the unofficial data (provided by Alex van 183 Kaam <darkside@chello.nl>) a bit better. It also give more reasonable 184 numbers on my machine (ie. they agree with what my BIOS tells me). 185 Here's the fifth-order fit to the 8-bit data: 186 temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - 187 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. 188 189 (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for 190 finding my typos in this formula!) 191 192 Alas, none of the elegant function-fit solutions will work because we 193 aren't allowed to use floating point in the kernel and doing it with 194 integers doesn't provide enough precision. So we'll do boring old 195 look-up table stuff. The unofficial data (see below) have effectively 196 7-bit resolution (they are rounded to the nearest degree). I'm assuming 197 that the transfer function of the device is monotonic and smooth, so a 198 smooth function fit to the data will allow us to get better precision. 199 I used the 5th-order poly fit described above and solved for 200 VIA register values 0-255. I *10 before rounding, so we get tenth-degree 201 precision. (I could have done all 1024 values for our 10-bit readings, 202 but the function is very linear in the useful range (0-80 deg C), so 203 we'll just use linear interpolation for 10-bit readings.) So, tempLUT 204 is the temp at via register values 0-255: */ 205 static const long tempLUT[] = 206 { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, 207 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375, 208 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265, 209 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180, 210 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114, 211 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49, 212 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16, 213 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84, 214 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138, 215 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189, 216 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241, 217 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294, 218 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348, 219 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404, 220 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464, 221 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532, 222 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614, 223 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718, 224 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856, 225 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044, 226 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252, 227 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 228 }; 229 230 /* the original LUT values from Alex van Kaam <darkside@chello.nl> 231 (for via register values 12-240): 232 {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, 233 -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, 234 -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, 235 -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, 236 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, 237 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, 238 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, 239 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, 240 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, 241 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; 242 243 244 Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed 245 an extra term for a good fit to these inverse data!) and then 246 solving for each temp value from -50 to 110 (the useable range for 247 this chip). Here's the fit: 248 viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 249 - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) 250 Note that n=161: */ 251 static const u8 viaLUT[] = 252 { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, 253 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 254 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 255 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 256 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129, 257 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156, 258 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 259 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199, 260 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 261 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224, 262 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232, 263 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 264 239, 240 265 }; 266 267 /* Converting temps to (8-bit) hyst and over registers 268 No interpolation here. 269 The +50 is because the temps start at -50 */ 270 static inline u8 TEMP_TO_REG(long val) 271 { 272 return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : 273 (val < 0 ? val - 500 : val + 500) / 1000 + 50]; 274 } 275 276 /* for 8-bit temperature hyst and over registers */ 277 #define TEMP_FROM_REG(val) (tempLUT[(val)] * 100) 278 279 /* for 10-bit temperature readings */ 280 static inline long TEMP_FROM_REG10(u16 val) 281 { 282 u16 eightBits = val >> 2; 283 u16 twoBits = val & 3; 284 285 /* no interpolation for these */ 286 if (twoBits == 0 || eightBits == 255) 287 return TEMP_FROM_REG(eightBits); 288 289 /* do some linear interpolation */ 290 return (tempLUT[eightBits] * (4 - twoBits) + 291 tempLUT[eightBits + 1] * twoBits) * 25; 292 } 293 294 #define DIV_FROM_REG(val) (1 << (val)) 295 #define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1) 296 297 /* For the VIA686A, we need to keep some data in memory. 298 The structure is dynamically allocated, at the same time when a new 299 via686a client is allocated. */ 300 struct via686a_data { 301 struct i2c_client client; 302 struct class_device *class_dev; 303 struct semaphore update_lock; 304 char valid; /* !=0 if following fields are valid */ 305 unsigned long last_updated; /* In jiffies */ 306 307 u8 in[5]; /* Register value */ 308 u8 in_max[5]; /* Register value */ 309 u8 in_min[5]; /* Register value */ 310 u8 fan[2]; /* Register value */ 311 u8 fan_min[2]; /* Register value */ 312 u16 temp[3]; /* Register value 10 bit */ 313 u8 temp_over[3]; /* Register value */ 314 u8 temp_hyst[3]; /* Register value */ 315 u8 fan_div[2]; /* Register encoding, shifted right */ 316 u16 alarms; /* Register encoding, combined */ 317 }; 318 319 static struct pci_dev *s_bridge; /* pointer to the (only) via686a */ 320 321 static int via686a_attach_adapter(struct i2c_adapter *adapter); 322 static int via686a_detect(struct i2c_adapter *adapter, int address, int kind); 323 static int via686a_detach_client(struct i2c_client *client); 324 325 static inline int via686a_read_value(struct i2c_client *client, u8 reg) 326 { 327 return (inb_p(client->addr + reg)); 328 } 329 330 static inline void via686a_write_value(struct i2c_client *client, u8 reg, 331 u8 value) 332 { 333 outb_p(value, client->addr + reg); 334 } 335 336 static struct via686a_data *via686a_update_device(struct device *dev); 337 static void via686a_init_client(struct i2c_client *client); 338 339 /* following are the sysfs callback functions */ 340 341 /* 7 voltage sensors */ 342 static ssize_t show_in(struct device *dev, char *buf, int nr) { 343 struct via686a_data *data = via686a_update_device(dev); 344 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr)); 345 } 346 347 static ssize_t show_in_min(struct device *dev, char *buf, int nr) { 348 struct via686a_data *data = via686a_update_device(dev); 349 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr)); 350 } 351 352 static ssize_t show_in_max(struct device *dev, char *buf, int nr) { 353 struct via686a_data *data = via686a_update_device(dev); 354 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr)); 355 } 356 357 static ssize_t set_in_min(struct device *dev, const char *buf, 358 size_t count, int nr) { 359 struct i2c_client *client = to_i2c_client(dev); 360 struct via686a_data *data = i2c_get_clientdata(client); 361 unsigned long val = simple_strtoul(buf, NULL, 10); 362 363 down(&data->update_lock); 364 data->in_min[nr] = IN_TO_REG(val, nr); 365 via686a_write_value(client, VIA686A_REG_IN_MIN(nr), 366 data->in_min[nr]); 367 up(&data->update_lock); 368 return count; 369 } 370 static ssize_t set_in_max(struct device *dev, const char *buf, 371 size_t count, int nr) { 372 struct i2c_client *client = to_i2c_client(dev); 373 struct via686a_data *data = i2c_get_clientdata(client); 374 unsigned long val = simple_strtoul(buf, NULL, 10); 375 376 down(&data->update_lock); 377 data->in_max[nr] = IN_TO_REG(val, nr); 378 via686a_write_value(client, VIA686A_REG_IN_MAX(nr), 379 data->in_max[nr]); 380 up(&data->update_lock); 381 return count; 382 } 383 #define show_in_offset(offset) \ 384 static ssize_t \ 385 show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \ 386 { \ 387 return show_in(dev, buf, offset); \ 388 } \ 389 static ssize_t \ 390 show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \ 391 { \ 392 return show_in_min(dev, buf, offset); \ 393 } \ 394 static ssize_t \ 395 show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \ 396 { \ 397 return show_in_max(dev, buf, offset); \ 398 } \ 399 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \ 400 const char *buf, size_t count) \ 401 { \ 402 return set_in_min(dev, buf, count, offset); \ 403 } \ 404 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \ 405 const char *buf, size_t count) \ 406 { \ 407 return set_in_max(dev, buf, count, offset); \ 408 } \ 409 static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in##offset, NULL);\ 410 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 411 show_in##offset##_min, set_in##offset##_min); \ 412 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 413 show_in##offset##_max, set_in##offset##_max); 414 415 show_in_offset(0); 416 show_in_offset(1); 417 show_in_offset(2); 418 show_in_offset(3); 419 show_in_offset(4); 420 421 /* 3 temperatures */ 422 static ssize_t show_temp(struct device *dev, char *buf, int nr) { 423 struct via686a_data *data = via686a_update_device(dev); 424 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr])); 425 } 426 static ssize_t show_temp_over(struct device *dev, char *buf, int nr) { 427 struct via686a_data *data = via686a_update_device(dev); 428 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr])); 429 } 430 static ssize_t show_temp_hyst(struct device *dev, char *buf, int nr) { 431 struct via686a_data *data = via686a_update_device(dev); 432 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr])); 433 } 434 static ssize_t set_temp_over(struct device *dev, const char *buf, 435 size_t count, int nr) { 436 struct i2c_client *client = to_i2c_client(dev); 437 struct via686a_data *data = i2c_get_clientdata(client); 438 int val = simple_strtol(buf, NULL, 10); 439 440 down(&data->update_lock); 441 data->temp_over[nr] = TEMP_TO_REG(val); 442 via686a_write_value(client, VIA686A_REG_TEMP_OVER[nr], 443 data->temp_over[nr]); 444 up(&data->update_lock); 445 return count; 446 } 447 static ssize_t set_temp_hyst(struct device *dev, const char *buf, 448 size_t count, int nr) { 449 struct i2c_client *client = to_i2c_client(dev); 450 struct via686a_data *data = i2c_get_clientdata(client); 451 int val = simple_strtol(buf, NULL, 10); 452 453 down(&data->update_lock); 454 data->temp_hyst[nr] = TEMP_TO_REG(val); 455 via686a_write_value(client, VIA686A_REG_TEMP_HYST[nr], 456 data->temp_hyst[nr]); 457 up(&data->update_lock); 458 return count; 459 } 460 #define show_temp_offset(offset) \ 461 static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf) \ 462 { \ 463 return show_temp(dev, buf, offset - 1); \ 464 } \ 465 static ssize_t \ 466 show_temp_##offset##_over (struct device *dev, struct device_attribute *attr, char *buf) \ 467 { \ 468 return show_temp_over(dev, buf, offset - 1); \ 469 } \ 470 static ssize_t \ 471 show_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, char *buf) \ 472 { \ 473 return show_temp_hyst(dev, buf, offset - 1); \ 474 } \ 475 static ssize_t set_temp_##offset##_over (struct device *dev, struct device_attribute *attr, \ 476 const char *buf, size_t count) \ 477 { \ 478 return set_temp_over(dev, buf, count, offset - 1); \ 479 } \ 480 static ssize_t set_temp_##offset##_hyst (struct device *dev, struct device_attribute *attr, \ 481 const char *buf, size_t count) \ 482 { \ 483 return set_temp_hyst(dev, buf, count, offset - 1); \ 484 } \ 485 static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, NULL);\ 486 static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ 487 show_temp_##offset##_over, set_temp_##offset##_over); \ 488 static DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \ 489 show_temp_##offset##_hyst, set_temp_##offset##_hyst); 490 491 show_temp_offset(1); 492 show_temp_offset(2); 493 show_temp_offset(3); 494 495 /* 2 Fans */ 496 static ssize_t show_fan(struct device *dev, char *buf, int nr) { 497 struct via686a_data *data = via686a_update_device(dev); 498 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 499 DIV_FROM_REG(data->fan_div[nr])) ); 500 } 501 static ssize_t show_fan_min(struct device *dev, char *buf, int nr) { 502 struct via686a_data *data = via686a_update_device(dev); 503 return sprintf(buf, "%d\n", 504 FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) ); 505 } 506 static ssize_t show_fan_div(struct device *dev, char *buf, int nr) { 507 struct via686a_data *data = via686a_update_device(dev); 508 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) ); 509 } 510 static ssize_t set_fan_min(struct device *dev, const char *buf, 511 size_t count, int nr) { 512 struct i2c_client *client = to_i2c_client(dev); 513 struct via686a_data *data = i2c_get_clientdata(client); 514 int val = simple_strtol(buf, NULL, 10); 515 516 down(&data->update_lock); 517 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 518 via686a_write_value(client, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]); 519 up(&data->update_lock); 520 return count; 521 } 522 static ssize_t set_fan_div(struct device *dev, const char *buf, 523 size_t count, int nr) { 524 struct i2c_client *client = to_i2c_client(dev); 525 struct via686a_data *data = i2c_get_clientdata(client); 526 int val = simple_strtol(buf, NULL, 10); 527 int old; 528 529 down(&data->update_lock); 530 old = via686a_read_value(client, VIA686A_REG_FANDIV); 531 data->fan_div[nr] = DIV_TO_REG(val); 532 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); 533 via686a_write_value(client, VIA686A_REG_FANDIV, old); 534 up(&data->update_lock); 535 return count; 536 } 537 538 #define show_fan_offset(offset) \ 539 static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf) \ 540 { \ 541 return show_fan(dev, buf, offset - 1); \ 542 } \ 543 static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \ 544 { \ 545 return show_fan_min(dev, buf, offset - 1); \ 546 } \ 547 static ssize_t show_fan_##offset##_div (struct device *dev, struct device_attribute *attr, char *buf) \ 548 { \ 549 return show_fan_div(dev, buf, offset - 1); \ 550 } \ 551 static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr, \ 552 const char *buf, size_t count) \ 553 { \ 554 return set_fan_min(dev, buf, count, offset - 1); \ 555 } \ 556 static ssize_t set_fan_##offset##_div (struct device *dev, struct device_attribute *attr, \ 557 const char *buf, size_t count) \ 558 { \ 559 return set_fan_div(dev, buf, count, offset - 1); \ 560 } \ 561 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, NULL);\ 562 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 563 show_fan_##offset##_min, set_fan_##offset##_min); \ 564 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 565 show_fan_##offset##_div, set_fan_##offset##_div); 566 567 show_fan_offset(1); 568 show_fan_offset(2); 569 570 /* Alarms */ 571 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { 572 struct via686a_data *data = via686a_update_device(dev); 573 return sprintf(buf, "%u\n", data->alarms); 574 } 575 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 576 577 /* The driver. I choose to use type i2c_driver, as at is identical to both 578 smbus_driver and isa_driver, and clients could be of either kind */ 579 static struct i2c_driver via686a_driver = { 580 .owner = THIS_MODULE, 581 .name = "via686a", 582 .id = I2C_DRIVERID_VIA686A, 583 .flags = I2C_DF_NOTIFY, 584 .attach_adapter = via686a_attach_adapter, 585 .detach_client = via686a_detach_client, 586 }; 587 588 589 /* This is called when the module is loaded */ 590 static int via686a_attach_adapter(struct i2c_adapter *adapter) 591 { 592 if (!(adapter->class & I2C_CLASS_HWMON)) 593 return 0; 594 return i2c_detect(adapter, &addr_data, via686a_detect); 595 } 596 597 static int via686a_detect(struct i2c_adapter *adapter, int address, int kind) 598 { 599 struct i2c_client *new_client; 600 struct via686a_data *data; 601 int err = 0; 602 const char client_name[] = "via686a"; 603 u16 val; 604 605 /* Make sure we are probing the ISA bus!! */ 606 if (!i2c_is_isa_adapter(adapter)) { 607 dev_err(&adapter->dev, 608 "via686a_detect called for an I2C bus adapter?!?\n"); 609 return 0; 610 } 611 612 /* 8231 requires multiple of 256, we enforce that on 686 as well */ 613 if (force_addr) 614 address = force_addr & 0xFF00; 615 616 if (force_addr) { 617 dev_warn(&adapter->dev, "forcing ISA address 0x%04X\n", 618 address); 619 if (PCIBIOS_SUCCESSFUL != 620 pci_write_config_word(s_bridge, VIA686A_BASE_REG, address)) 621 return -ENODEV; 622 } 623 if (PCIBIOS_SUCCESSFUL != 624 pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val)) 625 return -ENODEV; 626 if (!(val & 0x0001)) { 627 dev_warn(&adapter->dev, "enabling sensors\n"); 628 if (PCIBIOS_SUCCESSFUL != 629 pci_write_config_word(s_bridge, VIA686A_ENABLE_REG, 630 val | 0x0001)) 631 return -ENODEV; 632 } 633 634 /* Reserve the ISA region */ 635 if (!request_region(address, VIA686A_EXTENT, via686a_driver.name)) { 636 dev_err(&adapter->dev, "region 0x%x already in use!\n", 637 address); 638 return -ENODEV; 639 } 640 641 if (!(data = kmalloc(sizeof(struct via686a_data), GFP_KERNEL))) { 642 err = -ENOMEM; 643 goto exit_release; 644 } 645 memset(data, 0, sizeof(struct via686a_data)); 646 647 new_client = &data->client; 648 i2c_set_clientdata(new_client, data); 649 new_client->addr = address; 650 new_client->adapter = adapter; 651 new_client->driver = &via686a_driver; 652 new_client->flags = 0; 653 654 /* Fill in the remaining client fields and put into the global list */ 655 strlcpy(new_client->name, client_name, I2C_NAME_SIZE); 656 657 data->valid = 0; 658 init_MUTEX(&data->update_lock); 659 /* Tell the I2C layer a new client has arrived */ 660 if ((err = i2c_attach_client(new_client))) 661 goto exit_free; 662 663 /* Initialize the VIA686A chip */ 664 via686a_init_client(new_client); 665 666 /* Register sysfs hooks */ 667 data->class_dev = hwmon_device_register(&new_client->dev); 668 if (IS_ERR(data->class_dev)) { 669 err = PTR_ERR(data->class_dev); 670 goto exit_detach; 671 } 672 673 device_create_file(&new_client->dev, &dev_attr_in0_input); 674 device_create_file(&new_client->dev, &dev_attr_in1_input); 675 device_create_file(&new_client->dev, &dev_attr_in2_input); 676 device_create_file(&new_client->dev, &dev_attr_in3_input); 677 device_create_file(&new_client->dev, &dev_attr_in4_input); 678 device_create_file(&new_client->dev, &dev_attr_in0_min); 679 device_create_file(&new_client->dev, &dev_attr_in1_min); 680 device_create_file(&new_client->dev, &dev_attr_in2_min); 681 device_create_file(&new_client->dev, &dev_attr_in3_min); 682 device_create_file(&new_client->dev, &dev_attr_in4_min); 683 device_create_file(&new_client->dev, &dev_attr_in0_max); 684 device_create_file(&new_client->dev, &dev_attr_in1_max); 685 device_create_file(&new_client->dev, &dev_attr_in2_max); 686 device_create_file(&new_client->dev, &dev_attr_in3_max); 687 device_create_file(&new_client->dev, &dev_attr_in4_max); 688 device_create_file(&new_client->dev, &dev_attr_temp1_input); 689 device_create_file(&new_client->dev, &dev_attr_temp2_input); 690 device_create_file(&new_client->dev, &dev_attr_temp3_input); 691 device_create_file(&new_client->dev, &dev_attr_temp1_max); 692 device_create_file(&new_client->dev, &dev_attr_temp2_max); 693 device_create_file(&new_client->dev, &dev_attr_temp3_max); 694 device_create_file(&new_client->dev, &dev_attr_temp1_max_hyst); 695 device_create_file(&new_client->dev, &dev_attr_temp2_max_hyst); 696 device_create_file(&new_client->dev, &dev_attr_temp3_max_hyst); 697 device_create_file(&new_client->dev, &dev_attr_fan1_input); 698 device_create_file(&new_client->dev, &dev_attr_fan2_input); 699 device_create_file(&new_client->dev, &dev_attr_fan1_min); 700 device_create_file(&new_client->dev, &dev_attr_fan2_min); 701 device_create_file(&new_client->dev, &dev_attr_fan1_div); 702 device_create_file(&new_client->dev, &dev_attr_fan2_div); 703 device_create_file(&new_client->dev, &dev_attr_alarms); 704 705 return 0; 706 707 exit_detach: 708 i2c_detach_client(new_client); 709 exit_free: 710 kfree(data); 711 exit_release: 712 release_region(address, VIA686A_EXTENT); 713 return err; 714 } 715 716 static int via686a_detach_client(struct i2c_client *client) 717 { 718 struct via686a_data *data = i2c_get_clientdata(client); 719 int err; 720 721 hwmon_device_unregister(data->class_dev); 722 723 if ((err = i2c_detach_client(client))) { 724 dev_err(&client->dev, 725 "Client deregistration failed, client not detached.\n"); 726 return err; 727 } 728 729 release_region(client->addr, VIA686A_EXTENT); 730 kfree(data); 731 732 return 0; 733 } 734 735 /* Called when we have found a new VIA686A. Set limits, etc. */ 736 static void via686a_init_client(struct i2c_client *client) 737 { 738 u8 reg; 739 740 /* Start monitoring */ 741 reg = via686a_read_value(client, VIA686A_REG_CONFIG); 742 via686a_write_value(client, VIA686A_REG_CONFIG, (reg|0x01)&0x7F); 743 744 /* Configure temp interrupt mode for continuous-interrupt operation */ 745 via686a_write_value(client, VIA686A_REG_TEMP_MODE, 746 via686a_read_value(client, VIA686A_REG_TEMP_MODE) & 747 !(VIA686A_TEMP_MODE_MASK | VIA686A_TEMP_MODE_CONTINUOUS)); 748 } 749 750 static struct via686a_data *via686a_update_device(struct device *dev) 751 { 752 struct i2c_client *client = to_i2c_client(dev); 753 struct via686a_data *data = i2c_get_clientdata(client); 754 int i; 755 756 down(&data->update_lock); 757 758 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 759 || !data->valid) { 760 for (i = 0; i <= 4; i++) { 761 data->in[i] = 762 via686a_read_value(client, VIA686A_REG_IN(i)); 763 data->in_min[i] = via686a_read_value(client, 764 VIA686A_REG_IN_MIN 765 (i)); 766 data->in_max[i] = 767 via686a_read_value(client, VIA686A_REG_IN_MAX(i)); 768 } 769 for (i = 1; i <= 2; i++) { 770 data->fan[i - 1] = 771 via686a_read_value(client, VIA686A_REG_FAN(i)); 772 data->fan_min[i - 1] = via686a_read_value(client, 773 VIA686A_REG_FAN_MIN(i)); 774 } 775 for (i = 0; i <= 2; i++) { 776 data->temp[i] = via686a_read_value(client, 777 VIA686A_REG_TEMP[i]) << 2; 778 data->temp_over[i] = 779 via686a_read_value(client, 780 VIA686A_REG_TEMP_OVER[i]); 781 data->temp_hyst[i] = 782 via686a_read_value(client, 783 VIA686A_REG_TEMP_HYST[i]); 784 } 785 /* add in lower 2 bits 786 temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 787 temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 788 temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 789 */ 790 data->temp[0] |= (via686a_read_value(client, 791 VIA686A_REG_TEMP_LOW1) 792 & 0xc0) >> 6; 793 data->temp[1] |= 794 (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) & 795 0x30) >> 4; 796 data->temp[2] |= 797 (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) & 798 0xc0) >> 6; 799 800 i = via686a_read_value(client, VIA686A_REG_FANDIV); 801 data->fan_div[0] = (i >> 4) & 0x03; 802 data->fan_div[1] = i >> 6; 803 data->alarms = 804 via686a_read_value(client, 805 VIA686A_REG_ALARM1) | 806 (via686a_read_value(client, VIA686A_REG_ALARM2) << 8); 807 data->last_updated = jiffies; 808 data->valid = 1; 809 } 810 811 up(&data->update_lock); 812 813 return data; 814 } 815 816 static struct pci_device_id via686a_pci_ids[] = { 817 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, 818 { 0, } 819 }; 820 821 MODULE_DEVICE_TABLE(pci, via686a_pci_ids); 822 823 static int __devinit via686a_pci_probe(struct pci_dev *dev, 824 const struct pci_device_id *id) 825 { 826 u16 val; 827 int addr = 0; 828 829 if (PCIBIOS_SUCCESSFUL != 830 pci_read_config_word(dev, VIA686A_BASE_REG, &val)) 831 return -ENODEV; 832 833 addr = val & ~(VIA686A_EXTENT - 1); 834 if (addr == 0 && force_addr == 0) { 835 dev_err(&dev->dev, "base address not set - upgrade BIOS " 836 "or use force_addr=0xaddr\n"); 837 return -ENODEV; 838 } 839 if (force_addr) 840 addr = force_addr; /* so detect will get called */ 841 842 if (!addr) { 843 dev_err(&dev->dev, "No Via 686A sensors found.\n"); 844 return -ENODEV; 845 } 846 normal_isa[0] = addr; 847 848 s_bridge = pci_dev_get(dev); 849 if (i2c_add_driver(&via686a_driver)) { 850 pci_dev_put(s_bridge); 851 s_bridge = NULL; 852 } 853 854 /* Always return failure here. This is to allow other drivers to bind 855 * to this pci device. We don't really want to have control over the 856 * pci device, we only wanted to read as few register values from it. 857 */ 858 return -ENODEV; 859 } 860 861 static struct pci_driver via686a_pci_driver = { 862 .name = "via686a", 863 .id_table = via686a_pci_ids, 864 .probe = via686a_pci_probe, 865 }; 866 867 static int __init sm_via686a_init(void) 868 { 869 return pci_register_driver(&via686a_pci_driver); 870 } 871 872 static void __exit sm_via686a_exit(void) 873 { 874 pci_unregister_driver(&via686a_pci_driver); 875 if (s_bridge != NULL) { 876 i2c_del_driver(&via686a_driver); 877 pci_dev_put(s_bridge); 878 s_bridge = NULL; 879 } 880 } 881 882 MODULE_AUTHOR("Ky�sti M�lkki <kmalkki@cc.hut.fi>, " 883 "Mark Studebaker <mdsxyz123@yahoo.com> " 884 "and Bob Dougherty <bobd@stanford.edu>"); 885 MODULE_DESCRIPTION("VIA 686A Sensor device"); 886 MODULE_LICENSE("GPL"); 887 888 module_init(sm_via686a_init); 889 module_exit(sm_via686a_exit); 890