xref: /openbmc/linux/drivers/hwmon/sbtsi_temp.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1e7bb1a2aSKun Yi // SPDX-License-Identifier: GPL-2.0-or-later
2e7bb1a2aSKun Yi /*
3e7bb1a2aSKun Yi  * sbtsi_temp.c - hwmon driver for a SBI Temperature Sensor Interface (SB-TSI)
4e7bb1a2aSKun Yi  *                compliant AMD SoC temperature device.
5e7bb1a2aSKun Yi  *
6e7bb1a2aSKun Yi  * Copyright (c) 2020, Google Inc.
7e7bb1a2aSKun Yi  * Copyright (c) 2020, Kun Yi <kunyi@google.com>
8e7bb1a2aSKun Yi  */
9e7bb1a2aSKun Yi 
10e7bb1a2aSKun Yi #include <linux/err.h>
11e7bb1a2aSKun Yi #include <linux/i2c.h>
12e7bb1a2aSKun Yi #include <linux/init.h>
13e7bb1a2aSKun Yi #include <linux/hwmon.h>
14e7bb1a2aSKun Yi #include <linux/module.h>
15e7bb1a2aSKun Yi #include <linux/mutex.h>
16e7bb1a2aSKun Yi #include <linux/of.h>
17e7bb1a2aSKun Yi 
18e7bb1a2aSKun Yi /*
19e7bb1a2aSKun Yi  * SB-TSI registers only support SMBus byte data access. "_INT" registers are
20e7bb1a2aSKun Yi  * the integer part of a temperature value or limit, and "_DEC" registers are
21e7bb1a2aSKun Yi  * corresponding decimal parts.
22e7bb1a2aSKun Yi  */
23e7bb1a2aSKun Yi #define SBTSI_REG_TEMP_INT		0x01 /* RO */
24e7bb1a2aSKun Yi #define SBTSI_REG_STATUS		0x02 /* RO */
25e7bb1a2aSKun Yi #define SBTSI_REG_CONFIG		0x03 /* RO */
26e7bb1a2aSKun Yi #define SBTSI_REG_TEMP_HIGH_INT		0x07 /* RW */
27e7bb1a2aSKun Yi #define SBTSI_REG_TEMP_LOW_INT		0x08 /* RW */
28e7bb1a2aSKun Yi #define SBTSI_REG_TEMP_DEC		0x10 /* RW */
29e7bb1a2aSKun Yi #define SBTSI_REG_TEMP_HIGH_DEC		0x13 /* RW */
30e7bb1a2aSKun Yi #define SBTSI_REG_TEMP_LOW_DEC		0x14 /* RW */
31e7bb1a2aSKun Yi 
32e7bb1a2aSKun Yi #define SBTSI_CONFIG_READ_ORDER_SHIFT	5
33e7bb1a2aSKun Yi 
34e7bb1a2aSKun Yi #define SBTSI_TEMP_MIN	0
35e7bb1a2aSKun Yi #define SBTSI_TEMP_MAX	255875
36e7bb1a2aSKun Yi 
37e7bb1a2aSKun Yi /* Each client has this additional data */
38e7bb1a2aSKun Yi struct sbtsi_data {
39e7bb1a2aSKun Yi 	struct i2c_client *client;
40e7bb1a2aSKun Yi 	struct mutex lock;
41e7bb1a2aSKun Yi };
42e7bb1a2aSKun Yi 
43e7bb1a2aSKun Yi /*
44e7bb1a2aSKun Yi  * From SB-TSI spec: CPU temperature readings and limit registers encode the
45e7bb1a2aSKun Yi  * temperature in increments of 0.125 from 0 to 255.875. The "high byte"
46e7bb1a2aSKun Yi  * register encodes the base-2 of the integer portion, and the upper 3 bits of
47e7bb1a2aSKun Yi  * the "low byte" encode in base-2 the decimal portion.
48e7bb1a2aSKun Yi  *
49e7bb1a2aSKun Yi  * e.g. INT=0x19, DEC=0x20 represents 25.125 degrees Celsius
50e7bb1a2aSKun Yi  *
51e7bb1a2aSKun Yi  * Therefore temperature in millidegree Celsius =
52e7bb1a2aSKun Yi  *   (INT + DEC / 256) * 1000 = (INT * 8 + DEC / 32) * 125
53e7bb1a2aSKun Yi  */
sbtsi_reg_to_mc(s32 integer,s32 decimal)54e7bb1a2aSKun Yi static inline int sbtsi_reg_to_mc(s32 integer, s32 decimal)
55e7bb1a2aSKun Yi {
56e7bb1a2aSKun Yi 	return ((integer << 3) + (decimal >> 5)) * 125;
57e7bb1a2aSKun Yi }
58e7bb1a2aSKun Yi 
59e7bb1a2aSKun Yi /*
60e7bb1a2aSKun Yi  * Inversely, given temperature in millidegree Celsius
61e7bb1a2aSKun Yi  *   INT = (TEMP / 125) / 8
62e7bb1a2aSKun Yi  *   DEC = ((TEMP / 125) % 8) * 32
63e7bb1a2aSKun Yi  * Caller have to make sure temp doesn't exceed 255875, the max valid value.
64e7bb1a2aSKun Yi  */
sbtsi_mc_to_reg(s32 temp,u8 * integer,u8 * decimal)65e7bb1a2aSKun Yi static inline void sbtsi_mc_to_reg(s32 temp, u8 *integer, u8 *decimal)
66e7bb1a2aSKun Yi {
67e7bb1a2aSKun Yi 	temp /= 125;
68e7bb1a2aSKun Yi 	*integer = temp >> 3;
69e7bb1a2aSKun Yi 	*decimal = (temp & 0x7) << 5;
70e7bb1a2aSKun Yi }
71e7bb1a2aSKun Yi 
sbtsi_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)72e7bb1a2aSKun Yi static int sbtsi_read(struct device *dev, enum hwmon_sensor_types type,
73e7bb1a2aSKun Yi 		      u32 attr, int channel, long *val)
74e7bb1a2aSKun Yi {
75e7bb1a2aSKun Yi 	struct sbtsi_data *data = dev_get_drvdata(dev);
76e7bb1a2aSKun Yi 	s32 temp_int, temp_dec;
77e7bb1a2aSKun Yi 	int err;
78e7bb1a2aSKun Yi 
79e7bb1a2aSKun Yi 	switch (attr) {
80e7bb1a2aSKun Yi 	case hwmon_temp_input:
81e7bb1a2aSKun Yi 		/*
82e7bb1a2aSKun Yi 		 * ReadOrder bit specifies the reading order of integer and
83e7bb1a2aSKun Yi 		 * decimal part of CPU temp for atomic reads. If bit == 0,
84e7bb1a2aSKun Yi 		 * reading integer part triggers latching of the decimal part,
85e7bb1a2aSKun Yi 		 * so integer part should be read first. If bit == 1, read
86e7bb1a2aSKun Yi 		 * order should be reversed.
87e7bb1a2aSKun Yi 		 */
88e7bb1a2aSKun Yi 		err = i2c_smbus_read_byte_data(data->client, SBTSI_REG_CONFIG);
89e7bb1a2aSKun Yi 		if (err < 0)
90e7bb1a2aSKun Yi 			return err;
91e7bb1a2aSKun Yi 
92e7bb1a2aSKun Yi 		mutex_lock(&data->lock);
93e7bb1a2aSKun Yi 		if (err & BIT(SBTSI_CONFIG_READ_ORDER_SHIFT)) {
94e7bb1a2aSKun Yi 			temp_dec = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_DEC);
95e7bb1a2aSKun Yi 			temp_int = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_INT);
96e7bb1a2aSKun Yi 		} else {
97e7bb1a2aSKun Yi 			temp_int = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_INT);
98e7bb1a2aSKun Yi 			temp_dec = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_DEC);
99e7bb1a2aSKun Yi 		}
100e7bb1a2aSKun Yi 		mutex_unlock(&data->lock);
101e7bb1a2aSKun Yi 		break;
102e7bb1a2aSKun Yi 	case hwmon_temp_max:
103e7bb1a2aSKun Yi 		mutex_lock(&data->lock);
104e7bb1a2aSKun Yi 		temp_int = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_HIGH_INT);
105e7bb1a2aSKun Yi 		temp_dec = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_HIGH_DEC);
106e7bb1a2aSKun Yi 		mutex_unlock(&data->lock);
107e7bb1a2aSKun Yi 		break;
108e7bb1a2aSKun Yi 	case hwmon_temp_min:
109e7bb1a2aSKun Yi 		mutex_lock(&data->lock);
110e7bb1a2aSKun Yi 		temp_int = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_LOW_INT);
111e7bb1a2aSKun Yi 		temp_dec = i2c_smbus_read_byte_data(data->client, SBTSI_REG_TEMP_LOW_DEC);
112e7bb1a2aSKun Yi 		mutex_unlock(&data->lock);
113e7bb1a2aSKun Yi 		break;
114e7bb1a2aSKun Yi 	default:
115e7bb1a2aSKun Yi 		return -EINVAL;
116e7bb1a2aSKun Yi 	}
117e7bb1a2aSKun Yi 
118e7bb1a2aSKun Yi 
119e7bb1a2aSKun Yi 	if (temp_int < 0)
120e7bb1a2aSKun Yi 		return temp_int;
121e7bb1a2aSKun Yi 	if (temp_dec < 0)
122e7bb1a2aSKun Yi 		return temp_dec;
123e7bb1a2aSKun Yi 
124e7bb1a2aSKun Yi 	*val = sbtsi_reg_to_mc(temp_int, temp_dec);
125e7bb1a2aSKun Yi 
126e7bb1a2aSKun Yi 	return 0;
127e7bb1a2aSKun Yi }
128e7bb1a2aSKun Yi 
sbtsi_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)129e7bb1a2aSKun Yi static int sbtsi_write(struct device *dev, enum hwmon_sensor_types type,
130e7bb1a2aSKun Yi 		       u32 attr, int channel, long val)
131e7bb1a2aSKun Yi {
132e7bb1a2aSKun Yi 	struct sbtsi_data *data = dev_get_drvdata(dev);
133e7bb1a2aSKun Yi 	int reg_int, reg_dec, err;
134e7bb1a2aSKun Yi 	u8 temp_int, temp_dec;
135e7bb1a2aSKun Yi 
136e7bb1a2aSKun Yi 	switch (attr) {
137e7bb1a2aSKun Yi 	case hwmon_temp_max:
138e7bb1a2aSKun Yi 		reg_int = SBTSI_REG_TEMP_HIGH_INT;
139e7bb1a2aSKun Yi 		reg_dec = SBTSI_REG_TEMP_HIGH_DEC;
140e7bb1a2aSKun Yi 		break;
141e7bb1a2aSKun Yi 	case hwmon_temp_min:
142e7bb1a2aSKun Yi 		reg_int = SBTSI_REG_TEMP_LOW_INT;
143e7bb1a2aSKun Yi 		reg_dec = SBTSI_REG_TEMP_LOW_DEC;
144e7bb1a2aSKun Yi 		break;
145e7bb1a2aSKun Yi 	default:
146e7bb1a2aSKun Yi 		return -EINVAL;
147e7bb1a2aSKun Yi 	}
148e7bb1a2aSKun Yi 
149e7bb1a2aSKun Yi 	val = clamp_val(val, SBTSI_TEMP_MIN, SBTSI_TEMP_MAX);
150e7bb1a2aSKun Yi 	sbtsi_mc_to_reg(val, &temp_int, &temp_dec);
151e7bb1a2aSKun Yi 
152e7bb1a2aSKun Yi 	mutex_lock(&data->lock);
153e7bb1a2aSKun Yi 	err = i2c_smbus_write_byte_data(data->client, reg_int, temp_int);
154e7bb1a2aSKun Yi 	if (err)
155e7bb1a2aSKun Yi 		goto exit;
156e7bb1a2aSKun Yi 
157e7bb1a2aSKun Yi 	err = i2c_smbus_write_byte_data(data->client, reg_dec, temp_dec);
158e7bb1a2aSKun Yi exit:
159e7bb1a2aSKun Yi 	mutex_unlock(&data->lock);
160e7bb1a2aSKun Yi 	return err;
161e7bb1a2aSKun Yi }
162e7bb1a2aSKun Yi 
sbtsi_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)163e7bb1a2aSKun Yi static umode_t sbtsi_is_visible(const void *data,
164e7bb1a2aSKun Yi 				enum hwmon_sensor_types type,
165e7bb1a2aSKun Yi 				u32 attr, int channel)
166e7bb1a2aSKun Yi {
167e7bb1a2aSKun Yi 	switch (type) {
168e7bb1a2aSKun Yi 	case hwmon_temp:
169e7bb1a2aSKun Yi 		switch (attr) {
170e7bb1a2aSKun Yi 		case hwmon_temp_input:
171e7bb1a2aSKun Yi 			return 0444;
172e7bb1a2aSKun Yi 		case hwmon_temp_min:
173e7bb1a2aSKun Yi 			return 0644;
174e7bb1a2aSKun Yi 		case hwmon_temp_max:
175e7bb1a2aSKun Yi 			return 0644;
176e7bb1a2aSKun Yi 		}
177e7bb1a2aSKun Yi 		break;
178e7bb1a2aSKun Yi 	default:
179e7bb1a2aSKun Yi 		break;
180e7bb1a2aSKun Yi 	}
181e7bb1a2aSKun Yi 	return 0;
182e7bb1a2aSKun Yi }
183e7bb1a2aSKun Yi 
184eeda3a44SKrzysztof Kozlowski static const struct hwmon_channel_info * const sbtsi_info[] = {
185e7bb1a2aSKun Yi 	HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
186e7bb1a2aSKun Yi 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX),
187e7bb1a2aSKun Yi 	NULL
188e7bb1a2aSKun Yi };
189e7bb1a2aSKun Yi 
190e7bb1a2aSKun Yi static const struct hwmon_ops sbtsi_hwmon_ops = {
191e7bb1a2aSKun Yi 	.is_visible = sbtsi_is_visible,
192e7bb1a2aSKun Yi 	.read = sbtsi_read,
193e7bb1a2aSKun Yi 	.write = sbtsi_write,
194e7bb1a2aSKun Yi };
195e7bb1a2aSKun Yi 
196e7bb1a2aSKun Yi static const struct hwmon_chip_info sbtsi_chip_info = {
197e7bb1a2aSKun Yi 	.ops = &sbtsi_hwmon_ops,
198e7bb1a2aSKun Yi 	.info = sbtsi_info,
199e7bb1a2aSKun Yi };
200e7bb1a2aSKun Yi 
sbtsi_probe(struct i2c_client * client)201deeab9eaSStephen Kitt static int sbtsi_probe(struct i2c_client *client)
202e7bb1a2aSKun Yi {
203e7bb1a2aSKun Yi 	struct device *dev = &client->dev;
204e7bb1a2aSKun Yi 	struct device *hwmon_dev;
205e7bb1a2aSKun Yi 	struct sbtsi_data *data;
206e7bb1a2aSKun Yi 
207e7bb1a2aSKun Yi 	data = devm_kzalloc(dev, sizeof(struct sbtsi_data), GFP_KERNEL);
208e7bb1a2aSKun Yi 	if (!data)
209e7bb1a2aSKun Yi 		return -ENOMEM;
210e7bb1a2aSKun Yi 
211e7bb1a2aSKun Yi 	data->client = client;
212e7bb1a2aSKun Yi 	mutex_init(&data->lock);
213e7bb1a2aSKun Yi 
214e7bb1a2aSKun Yi 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &sbtsi_chip_info,
215e7bb1a2aSKun Yi 							 NULL);
216e7bb1a2aSKun Yi 
217e7bb1a2aSKun Yi 	return PTR_ERR_OR_ZERO(hwmon_dev);
218e7bb1a2aSKun Yi }
219e7bb1a2aSKun Yi 
220e7bb1a2aSKun Yi static const struct i2c_device_id sbtsi_id[] = {
221e7bb1a2aSKun Yi 	{"sbtsi", 0},
222e7bb1a2aSKun Yi 	{}
223e7bb1a2aSKun Yi };
224e7bb1a2aSKun Yi MODULE_DEVICE_TABLE(i2c, sbtsi_id);
225e7bb1a2aSKun Yi 
226e7bb1a2aSKun Yi static const struct of_device_id __maybe_unused sbtsi_of_match[] = {
227e7bb1a2aSKun Yi 	{
228e7bb1a2aSKun Yi 		.compatible = "amd,sbtsi",
229e7bb1a2aSKun Yi 	},
230e7bb1a2aSKun Yi 	{ },
231e7bb1a2aSKun Yi };
232e7bb1a2aSKun Yi MODULE_DEVICE_TABLE(of, sbtsi_of_match);
233e7bb1a2aSKun Yi 
234e7bb1a2aSKun Yi static struct i2c_driver sbtsi_driver = {
235e7bb1a2aSKun Yi 	.class = I2C_CLASS_HWMON,
236e7bb1a2aSKun Yi 	.driver = {
237e7bb1a2aSKun Yi 		.name = "sbtsi",
238e7bb1a2aSKun Yi 		.of_match_table = of_match_ptr(sbtsi_of_match),
239e7bb1a2aSKun Yi 	},
240*1975d167SUwe Kleine-König 	.probe = sbtsi_probe,
241e7bb1a2aSKun Yi 	.id_table = sbtsi_id,
242e7bb1a2aSKun Yi };
243e7bb1a2aSKun Yi 
244e7bb1a2aSKun Yi module_i2c_driver(sbtsi_driver);
245e7bb1a2aSKun Yi 
246e7bb1a2aSKun Yi MODULE_AUTHOR("Kun Yi <kunyi@google.com>");
247e7bb1a2aSKun Yi MODULE_DESCRIPTION("Hwmon driver for AMD SB-TSI emulated sensor");
248e7bb1a2aSKun Yi MODULE_LICENSE("GPL");
249