xref: /openbmc/linux/drivers/hwmon/asb100.c (revision c3813d6af177fab19e322f3114b1f64fbcf08d71)
1 /*
2     asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 	        monitoring
4 
5     Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 
7 	(derived from w83781d.c)
8 
9     Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10     Philip Edelbrock <phil@netroedge.com>, and
11     Mark Studebaker <mdsxyz123@yahoo.com>
12 
13     This program is free software; you can redistribute it and/or modify
14     it under the terms of the GNU General Public License as published by
15     the Free Software Foundation; either version 2 of the License, or
16     (at your option) any later version.
17 
18     This program is distributed in the hope that it will be useful,
19     but WITHOUT ANY WARRANTY; without even the implied warranty of
20     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21     GNU General Public License for more details.
22 
23     You should have received a copy of the GNU General Public License
24     along with this program; if not, write to the Free Software
25     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 
28 /*
29     This driver supports the hardware sensor chips: Asus ASB100 and
30     ASB100-A "BACH".
31 
32     ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33     way for the driver to tell which one is there.
34 
35     Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36     asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38 
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-sysfs.h>
44 #include <linux/hwmon-vid.h>
45 #include <linux/err.h>
46 #include <linux/init.h>
47 #include <linux/jiffies.h>
48 #include <linux/mutex.h>
49 #include "lm75.h"
50 
51 /* I2C addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
53 
54 /* Insmod parameters */
55 I2C_CLIENT_INSMOD_1(asb100);
56 
57 static unsigned short force_subclients[4];
58 module_param_array(force_subclients, short, NULL, 0);
59 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
60 	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
61 
62 /* Voltage IN registers 0-6 */
63 #define ASB100_REG_IN(nr)	(0x20 + (nr))
64 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
65 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
66 
67 /* FAN IN registers 1-3 */
68 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
69 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
70 
71 /* TEMPERATURE registers 1-4 */
72 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
73 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
74 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
75 
76 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
77 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
78 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
79 
80 #define ASB100_REG_TEMP2_CONFIG	0x0152
81 #define ASB100_REG_TEMP3_CONFIG	0x0252
82 
83 
84 #define ASB100_REG_CONFIG	0x40
85 #define ASB100_REG_ALARM1	0x41
86 #define ASB100_REG_ALARM2	0x42
87 #define ASB100_REG_SMIM1	0x43
88 #define ASB100_REG_SMIM2	0x44
89 #define ASB100_REG_VID_FANDIV	0x47
90 #define ASB100_REG_I2C_ADDR	0x48
91 #define ASB100_REG_CHIPID	0x49
92 #define ASB100_REG_I2C_SUBADDR	0x4a
93 #define ASB100_REG_PIN		0x4b
94 #define ASB100_REG_IRQ		0x4c
95 #define ASB100_REG_BANK		0x4e
96 #define ASB100_REG_CHIPMAN	0x4f
97 
98 #define ASB100_REG_WCHIPID	0x58
99 
100 /* bit 7 -> enable, bits 0-3 -> duty cycle */
101 #define ASB100_REG_PWM1		0x59
102 
103 /* CONVERSIONS
104    Rounding and limit checking is only done on the TO_REG variants. */
105 
106 /* These constants are a guess, consistent w/ w83781d */
107 #define ASB100_IN_MIN (   0)
108 #define ASB100_IN_MAX (4080)
109 
110 /* IN: 1/1000 V (0V to 4.08V)
111    REG: 16mV/bit */
112 static u8 IN_TO_REG(unsigned val)
113 {
114 	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
115 	return (nval + 8) / 16;
116 }
117 
118 static unsigned IN_FROM_REG(u8 reg)
119 {
120 	return reg * 16;
121 }
122 
123 static u8 FAN_TO_REG(long rpm, int div)
124 {
125 	if (rpm == -1)
126 		return 0;
127 	if (rpm == 0)
128 		return 255;
129 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
130 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
131 }
132 
133 static int FAN_FROM_REG(u8 val, int div)
134 {
135 	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
136 }
137 
138 /* These constants are a guess, consistent w/ w83781d */
139 #define ASB100_TEMP_MIN (-128000)
140 #define ASB100_TEMP_MAX ( 127000)
141 
142 /* TEMP: 0.001C/bit (-128C to +127C)
143    REG: 1C/bit, two's complement */
144 static u8 TEMP_TO_REG(long temp)
145 {
146 	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
147 	ntemp += (ntemp<0 ? -500 : 500);
148 	return (u8)(ntemp / 1000);
149 }
150 
151 static int TEMP_FROM_REG(u8 reg)
152 {
153 	return (s8)reg * 1000;
154 }
155 
156 /* PWM: 0 - 255 per sensors documentation
157    REG: (6.25% duty cycle per bit) */
158 static u8 ASB100_PWM_TO_REG(int pwm)
159 {
160 	pwm = SENSORS_LIMIT(pwm, 0, 255);
161 	return (u8)(pwm / 16);
162 }
163 
164 static int ASB100_PWM_FROM_REG(u8 reg)
165 {
166 	return reg * 16;
167 }
168 
169 #define DIV_FROM_REG(val) (1 << (val))
170 
171 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
172    REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
173 static u8 DIV_TO_REG(long val)
174 {
175 	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
176 }
177 
178 /* For each registered client, we need to keep some data in memory. That
179    data is pointed to by client->data. The structure itself is
180    dynamically allocated, at the same time the client itself is allocated. */
181 struct asb100_data {
182 	struct device *hwmon_dev;
183 	struct mutex lock;
184 
185 	struct mutex update_lock;
186 	unsigned long last_updated;	/* In jiffies */
187 
188 	/* array of 2 pointers to subclients */
189 	struct i2c_client *lm75[2];
190 
191 	char valid;		/* !=0 if following fields are valid */
192 	u8 in[7];		/* Register value */
193 	u8 in_max[7];		/* Register value */
194 	u8 in_min[7];		/* Register value */
195 	u8 fan[3];		/* Register value */
196 	u8 fan_min[3];		/* Register value */
197 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
198 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
199 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
200 	u8 fan_div[3];		/* Register encoding, right justified */
201 	u8 pwm;			/* Register encoding */
202 	u8 vid;			/* Register encoding, combined */
203 	u32 alarms;		/* Register encoding, combined */
204 	u8 vrm;
205 };
206 
207 static int asb100_read_value(struct i2c_client *client, u16 reg);
208 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
209 
210 static int asb100_probe(struct i2c_client *client,
211 			const struct i2c_device_id *id);
212 static int asb100_detect(struct i2c_client *client,
213 			 struct i2c_board_info *info);
214 static int asb100_remove(struct i2c_client *client);
215 static struct asb100_data *asb100_update_device(struct device *dev);
216 static void asb100_init_client(struct i2c_client *client);
217 
218 static const struct i2c_device_id asb100_id[] = {
219 	{ "asb100", asb100 },
220 	{ }
221 };
222 MODULE_DEVICE_TABLE(i2c, asb100_id);
223 
224 static struct i2c_driver asb100_driver = {
225 	.class		= I2C_CLASS_HWMON,
226 	.driver = {
227 		.name	= "asb100",
228 	},
229 	.probe		= asb100_probe,
230 	.remove		= asb100_remove,
231 	.id_table	= asb100_id,
232 	.detect		= asb100_detect,
233 	.address_list	= normal_i2c,
234 };
235 
236 /* 7 Voltages */
237 #define show_in_reg(reg) \
238 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
239 		char *buf) \
240 { \
241 	int nr = to_sensor_dev_attr(attr)->index; \
242 	struct asb100_data *data = asb100_update_device(dev); \
243 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
244 }
245 
246 show_in_reg(in)
247 show_in_reg(in_min)
248 show_in_reg(in_max)
249 
250 #define set_in_reg(REG, reg) \
251 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
252 		const char *buf, size_t count) \
253 { \
254 	int nr = to_sensor_dev_attr(attr)->index; \
255 	struct i2c_client *client = to_i2c_client(dev); \
256 	struct asb100_data *data = i2c_get_clientdata(client); \
257 	unsigned long val = simple_strtoul(buf, NULL, 10); \
258  \
259 	mutex_lock(&data->update_lock); \
260 	data->in_##reg[nr] = IN_TO_REG(val); \
261 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
262 		data->in_##reg[nr]); \
263 	mutex_unlock(&data->update_lock); \
264 	return count; \
265 }
266 
267 set_in_reg(MIN, min)
268 set_in_reg(MAX, max)
269 
270 #define sysfs_in(offset) \
271 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
272 		show_in, NULL, offset); \
273 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
274 		show_in_min, set_in_min, offset); \
275 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
276 		show_in_max, set_in_max, offset)
277 
278 sysfs_in(0);
279 sysfs_in(1);
280 sysfs_in(2);
281 sysfs_in(3);
282 sysfs_in(4);
283 sysfs_in(5);
284 sysfs_in(6);
285 
286 /* 3 Fans */
287 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
288 		char *buf)
289 {
290 	int nr = to_sensor_dev_attr(attr)->index;
291 	struct asb100_data *data = asb100_update_device(dev);
292 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
293 		DIV_FROM_REG(data->fan_div[nr])));
294 }
295 
296 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
297 		char *buf)
298 {
299 	int nr = to_sensor_dev_attr(attr)->index;
300 	struct asb100_data *data = asb100_update_device(dev);
301 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
302 		DIV_FROM_REG(data->fan_div[nr])));
303 }
304 
305 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
306 		char *buf)
307 {
308 	int nr = to_sensor_dev_attr(attr)->index;
309 	struct asb100_data *data = asb100_update_device(dev);
310 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
311 }
312 
313 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
314 		const char *buf, size_t count)
315 {
316 	int nr = to_sensor_dev_attr(attr)->index;
317 	struct i2c_client *client = to_i2c_client(dev);
318 	struct asb100_data *data = i2c_get_clientdata(client);
319 	u32 val = simple_strtoul(buf, NULL, 10);
320 
321 	mutex_lock(&data->update_lock);
322 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
323 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
324 	mutex_unlock(&data->update_lock);
325 	return count;
326 }
327 
328 /* Note: we save and restore the fan minimum here, because its value is
329    determined in part by the fan divisor.  This follows the principle of
330    least surprise; the user doesn't expect the fan minimum to change just
331    because the divisor changed. */
332 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
333 		const char *buf, size_t count)
334 {
335 	int nr = to_sensor_dev_attr(attr)->index;
336 	struct i2c_client *client = to_i2c_client(dev);
337 	struct asb100_data *data = i2c_get_clientdata(client);
338 	unsigned long min;
339 	unsigned long val = simple_strtoul(buf, NULL, 10);
340 	int reg;
341 
342 	mutex_lock(&data->update_lock);
343 
344 	min = FAN_FROM_REG(data->fan_min[nr],
345 			DIV_FROM_REG(data->fan_div[nr]));
346 	data->fan_div[nr] = DIV_TO_REG(val);
347 
348 	switch (nr) {
349 	case 0:	/* fan 1 */
350 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
351 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
352 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
353 		break;
354 
355 	case 1:	/* fan 2 */
356 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
357 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
358 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
359 		break;
360 
361 	case 2:	/* fan 3 */
362 		reg = asb100_read_value(client, ASB100_REG_PIN);
363 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
364 		asb100_write_value(client, ASB100_REG_PIN, reg);
365 		break;
366 	}
367 
368 	data->fan_min[nr] =
369 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
370 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
371 
372 	mutex_unlock(&data->update_lock);
373 
374 	return count;
375 }
376 
377 #define sysfs_fan(offset) \
378 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
379 		show_fan, NULL, offset - 1); \
380 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
381 		show_fan_min, set_fan_min, offset - 1); \
382 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
383 		show_fan_div, set_fan_div, offset - 1)
384 
385 sysfs_fan(1);
386 sysfs_fan(2);
387 sysfs_fan(3);
388 
389 /* 4 Temp. Sensors */
390 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
391 {
392 	int ret = 0;
393 
394 	switch (nr) {
395 	case 1: case 2:
396 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
397 		break;
398 	case 0: case 3: default:
399 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
400 		break;
401 	}
402 	return ret;
403 }
404 
405 #define show_temp_reg(reg) \
406 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
407 		char *buf) \
408 { \
409 	int nr = to_sensor_dev_attr(attr)->index; \
410 	struct asb100_data *data = asb100_update_device(dev); \
411 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
412 }
413 
414 show_temp_reg(temp);
415 show_temp_reg(temp_max);
416 show_temp_reg(temp_hyst);
417 
418 #define set_temp_reg(REG, reg) \
419 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
420 		const char *buf, size_t count) \
421 { \
422 	int nr = to_sensor_dev_attr(attr)->index; \
423 	struct i2c_client *client = to_i2c_client(dev); \
424 	struct asb100_data *data = i2c_get_clientdata(client); \
425 	long val = simple_strtol(buf, NULL, 10); \
426  \
427 	mutex_lock(&data->update_lock); \
428 	switch (nr) { \
429 	case 1: case 2: \
430 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
431 		break; \
432 	case 0: case 3: default: \
433 		data->reg[nr] = TEMP_TO_REG(val); \
434 		break; \
435 	} \
436 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
437 			data->reg[nr]); \
438 	mutex_unlock(&data->update_lock); \
439 	return count; \
440 }
441 
442 set_temp_reg(MAX, temp_max);
443 set_temp_reg(HYST, temp_hyst);
444 
445 #define sysfs_temp(num) \
446 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
447 		show_temp, NULL, num - 1); \
448 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
449 		show_temp_max, set_temp_max, num - 1); \
450 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
451 		show_temp_hyst, set_temp_hyst, num - 1)
452 
453 sysfs_temp(1);
454 sysfs_temp(2);
455 sysfs_temp(3);
456 sysfs_temp(4);
457 
458 /* VID */
459 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
460 		char *buf)
461 {
462 	struct asb100_data *data = asb100_update_device(dev);
463 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
464 }
465 
466 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
467 
468 /* VRM */
469 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
470 		char *buf)
471 {
472 	struct asb100_data *data = dev_get_drvdata(dev);
473 	return sprintf(buf, "%d\n", data->vrm);
474 }
475 
476 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
477 		const char *buf, size_t count)
478 {
479 	struct asb100_data *data = dev_get_drvdata(dev);
480 	data->vrm = simple_strtoul(buf, NULL, 10);
481 	return count;
482 }
483 
484 /* Alarms */
485 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
486 
487 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
488 		char *buf)
489 {
490 	struct asb100_data *data = asb100_update_device(dev);
491 	return sprintf(buf, "%u\n", data->alarms);
492 }
493 
494 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
495 
496 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
497 		char *buf)
498 {
499 	int bitnr = to_sensor_dev_attr(attr)->index;
500 	struct asb100_data *data = asb100_update_device(dev);
501 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
502 }
503 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
504 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
505 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
506 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
507 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
508 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
509 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
510 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
511 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
512 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
513 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
514 
515 /* 1 PWM */
516 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
517 		char *buf)
518 {
519 	struct asb100_data *data = asb100_update_device(dev);
520 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
521 }
522 
523 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
524 		const char *buf, size_t count)
525 {
526 	struct i2c_client *client = to_i2c_client(dev);
527 	struct asb100_data *data = i2c_get_clientdata(client);
528 	unsigned long val = simple_strtoul(buf, NULL, 10);
529 
530 	mutex_lock(&data->update_lock);
531 	data->pwm &= 0x80; /* keep the enable bit */
532 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
533 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
534 	mutex_unlock(&data->update_lock);
535 	return count;
536 }
537 
538 static ssize_t show_pwm_enable1(struct device *dev,
539 		struct device_attribute *attr, char *buf)
540 {
541 	struct asb100_data *data = asb100_update_device(dev);
542 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
543 }
544 
545 static ssize_t set_pwm_enable1(struct device *dev,
546 		struct device_attribute *attr, const char *buf, size_t count)
547 {
548 	struct i2c_client *client = to_i2c_client(dev);
549 	struct asb100_data *data = i2c_get_clientdata(client);
550 	unsigned long val = simple_strtoul(buf, NULL, 10);
551 
552 	mutex_lock(&data->update_lock);
553 	data->pwm &= 0x0f; /* keep the duty cycle bits */
554 	data->pwm |= (val ? 0x80 : 0x00);
555 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
556 	mutex_unlock(&data->update_lock);
557 	return count;
558 }
559 
560 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
561 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
562 		show_pwm_enable1, set_pwm_enable1);
563 
564 static struct attribute *asb100_attributes[] = {
565 	&sensor_dev_attr_in0_input.dev_attr.attr,
566 	&sensor_dev_attr_in0_min.dev_attr.attr,
567 	&sensor_dev_attr_in0_max.dev_attr.attr,
568 	&sensor_dev_attr_in1_input.dev_attr.attr,
569 	&sensor_dev_attr_in1_min.dev_attr.attr,
570 	&sensor_dev_attr_in1_max.dev_attr.attr,
571 	&sensor_dev_attr_in2_input.dev_attr.attr,
572 	&sensor_dev_attr_in2_min.dev_attr.attr,
573 	&sensor_dev_attr_in2_max.dev_attr.attr,
574 	&sensor_dev_attr_in3_input.dev_attr.attr,
575 	&sensor_dev_attr_in3_min.dev_attr.attr,
576 	&sensor_dev_attr_in3_max.dev_attr.attr,
577 	&sensor_dev_attr_in4_input.dev_attr.attr,
578 	&sensor_dev_attr_in4_min.dev_attr.attr,
579 	&sensor_dev_attr_in4_max.dev_attr.attr,
580 	&sensor_dev_attr_in5_input.dev_attr.attr,
581 	&sensor_dev_attr_in5_min.dev_attr.attr,
582 	&sensor_dev_attr_in5_max.dev_attr.attr,
583 	&sensor_dev_attr_in6_input.dev_attr.attr,
584 	&sensor_dev_attr_in6_min.dev_attr.attr,
585 	&sensor_dev_attr_in6_max.dev_attr.attr,
586 
587 	&sensor_dev_attr_fan1_input.dev_attr.attr,
588 	&sensor_dev_attr_fan1_min.dev_attr.attr,
589 	&sensor_dev_attr_fan1_div.dev_attr.attr,
590 	&sensor_dev_attr_fan2_input.dev_attr.attr,
591 	&sensor_dev_attr_fan2_min.dev_attr.attr,
592 	&sensor_dev_attr_fan2_div.dev_attr.attr,
593 	&sensor_dev_attr_fan3_input.dev_attr.attr,
594 	&sensor_dev_attr_fan3_min.dev_attr.attr,
595 	&sensor_dev_attr_fan3_div.dev_attr.attr,
596 
597 	&sensor_dev_attr_temp1_input.dev_attr.attr,
598 	&sensor_dev_attr_temp1_max.dev_attr.attr,
599 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
600 	&sensor_dev_attr_temp2_input.dev_attr.attr,
601 	&sensor_dev_attr_temp2_max.dev_attr.attr,
602 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
603 	&sensor_dev_attr_temp3_input.dev_attr.attr,
604 	&sensor_dev_attr_temp3_max.dev_attr.attr,
605 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
606 	&sensor_dev_attr_temp4_input.dev_attr.attr,
607 	&sensor_dev_attr_temp4_max.dev_attr.attr,
608 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
609 
610 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
611 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
612 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
613 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
614 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
615 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
616 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
617 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
618 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
619 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
620 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
621 
622 	&dev_attr_cpu0_vid.attr,
623 	&dev_attr_vrm.attr,
624 	&dev_attr_alarms.attr,
625 	&dev_attr_pwm1.attr,
626 	&dev_attr_pwm1_enable.attr,
627 
628 	NULL
629 };
630 
631 static const struct attribute_group asb100_group = {
632 	.attrs = asb100_attributes,
633 };
634 
635 static int asb100_detect_subclients(struct i2c_client *client)
636 {
637 	int i, id, err;
638 	int address = client->addr;
639 	unsigned short sc_addr[2];
640 	struct asb100_data *data = i2c_get_clientdata(client);
641 	struct i2c_adapter *adapter = client->adapter;
642 
643 	id = i2c_adapter_id(adapter);
644 
645 	if (force_subclients[0] == id && force_subclients[1] == address) {
646 		for (i = 2; i <= 3; i++) {
647 			if (force_subclients[i] < 0x48 ||
648 			    force_subclients[i] > 0x4f) {
649 				dev_err(&client->dev, "invalid subclient "
650 					"address %d; must be 0x48-0x4f\n",
651 					force_subclients[i]);
652 				err = -ENODEV;
653 				goto ERROR_SC_2;
654 			}
655 		}
656 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
657 					(force_subclients[2] & 0x07) |
658 					((force_subclients[3] & 0x07) << 4));
659 		sc_addr[0] = force_subclients[2];
660 		sc_addr[1] = force_subclients[3];
661 	} else {
662 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
663 		sc_addr[0] = 0x48 + (val & 0x07);
664 		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
665 	}
666 
667 	if (sc_addr[0] == sc_addr[1]) {
668 		dev_err(&client->dev, "duplicate addresses 0x%x "
669 				"for subclients\n", sc_addr[0]);
670 		err = -ENODEV;
671 		goto ERROR_SC_2;
672 	}
673 
674 	data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
675 	if (!data->lm75[0]) {
676 		dev_err(&client->dev, "subclient %d registration "
677 			"at address 0x%x failed.\n", 1, sc_addr[0]);
678 		err = -ENOMEM;
679 		goto ERROR_SC_2;
680 	}
681 
682 	data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
683 	if (!data->lm75[1]) {
684 		dev_err(&client->dev, "subclient %d registration "
685 			"at address 0x%x failed.\n", 2, sc_addr[1]);
686 		err = -ENOMEM;
687 		goto ERROR_SC_3;
688 	}
689 
690 	return 0;
691 
692 /* Undo inits in case of errors */
693 ERROR_SC_3:
694 	i2c_unregister_device(data->lm75[0]);
695 ERROR_SC_2:
696 	return err;
697 }
698 
699 /* Return 0 if detection is successful, -ENODEV otherwise */
700 static int asb100_detect(struct i2c_client *client,
701 			 struct i2c_board_info *info)
702 {
703 	struct i2c_adapter *adapter = client->adapter;
704 	int val1, val2;
705 
706 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
707 		pr_debug("asb100.o: detect failed, "
708 				"smbus byte data not supported!\n");
709 		return -ENODEV;
710 	}
711 
712 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
713 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
714 
715 	/* If we're in bank 0 */
716 	if ((!(val1 & 0x07)) &&
717 			/* Check for ASB100 ID (low byte) */
718 			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
719 			/* Check for ASB100 ID (high byte ) */
720 			((val1 & 0x80) && (val2 != 0x06)))) {
721 		pr_debug("asb100: detect failed, bad chip id 0x%02x!\n", val2);
722 		return -ENODEV;
723 	}
724 
725 	/* Put it now into bank 0 and Vendor ID High Byte */
726 	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
727 		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
728 		| 0x80);
729 
730 	/* Determine the chip type. */
731 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
732 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
733 
734 	if (val1 != 0x31 || val2 != 0x06)
735 		return -ENODEV;
736 
737 	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
738 
739 	return 0;
740 }
741 
742 static int asb100_probe(struct i2c_client *client,
743 			const struct i2c_device_id *id)
744 {
745 	int err;
746 	struct asb100_data *data;
747 
748 	data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
749 	if (!data) {
750 		pr_debug("asb100.o: probe failed, kzalloc failed!\n");
751 		err = -ENOMEM;
752 		goto ERROR0;
753 	}
754 
755 	i2c_set_clientdata(client, data);
756 	mutex_init(&data->lock);
757 	mutex_init(&data->update_lock);
758 
759 	/* Attach secondary lm75 clients */
760 	err = asb100_detect_subclients(client);
761 	if (err)
762 		goto ERROR1;
763 
764 	/* Initialize the chip */
765 	asb100_init_client(client);
766 
767 	/* A few vars need to be filled upon startup */
768 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
769 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
770 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
771 
772 	/* Register sysfs hooks */
773 	if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
774 		goto ERROR3;
775 
776 	data->hwmon_dev = hwmon_device_register(&client->dev);
777 	if (IS_ERR(data->hwmon_dev)) {
778 		err = PTR_ERR(data->hwmon_dev);
779 		goto ERROR4;
780 	}
781 
782 	return 0;
783 
784 ERROR4:
785 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
786 ERROR3:
787 	i2c_unregister_device(data->lm75[1]);
788 	i2c_unregister_device(data->lm75[0]);
789 ERROR1:
790 	kfree(data);
791 ERROR0:
792 	return err;
793 }
794 
795 static int asb100_remove(struct i2c_client *client)
796 {
797 	struct asb100_data *data = i2c_get_clientdata(client);
798 
799 	hwmon_device_unregister(data->hwmon_dev);
800 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
801 
802 	i2c_unregister_device(data->lm75[1]);
803 	i2c_unregister_device(data->lm75[0]);
804 
805 	kfree(data);
806 
807 	return 0;
808 }
809 
810 /* The SMBus locks itself, usually, but nothing may access the chip between
811    bank switches. */
812 static int asb100_read_value(struct i2c_client *client, u16 reg)
813 {
814 	struct asb100_data *data = i2c_get_clientdata(client);
815 	struct i2c_client *cl;
816 	int res, bank;
817 
818 	mutex_lock(&data->lock);
819 
820 	bank = (reg >> 8) & 0x0f;
821 	if (bank > 2)
822 		/* switch banks */
823 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
824 
825 	if (bank == 0 || bank > 2) {
826 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
827 	} else {
828 		/* switch to subclient */
829 		cl = data->lm75[bank - 1];
830 
831 		/* convert from ISA to LM75 I2C addresses */
832 		switch (reg & 0xff) {
833 		case 0x50: /* TEMP */
834 			res = swab16(i2c_smbus_read_word_data(cl, 0));
835 			break;
836 		case 0x52: /* CONFIG */
837 			res = i2c_smbus_read_byte_data(cl, 1);
838 			break;
839 		case 0x53: /* HYST */
840 			res = swab16(i2c_smbus_read_word_data(cl, 2));
841 			break;
842 		case 0x55: /* MAX */
843 		default:
844 			res = swab16(i2c_smbus_read_word_data(cl, 3));
845 			break;
846 		}
847 	}
848 
849 	if (bank > 2)
850 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
851 
852 	mutex_unlock(&data->lock);
853 
854 	return res;
855 }
856 
857 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
858 {
859 	struct asb100_data *data = i2c_get_clientdata(client);
860 	struct i2c_client *cl;
861 	int bank;
862 
863 	mutex_lock(&data->lock);
864 
865 	bank = (reg >> 8) & 0x0f;
866 	if (bank > 2)
867 		/* switch banks */
868 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
869 
870 	if (bank == 0 || bank > 2) {
871 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
872 	} else {
873 		/* switch to subclient */
874 		cl = data->lm75[bank - 1];
875 
876 		/* convert from ISA to LM75 I2C addresses */
877 		switch (reg & 0xff) {
878 		case 0x52: /* CONFIG */
879 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
880 			break;
881 		case 0x53: /* HYST */
882 			i2c_smbus_write_word_data(cl, 2, swab16(value));
883 			break;
884 		case 0x55: /* MAX */
885 			i2c_smbus_write_word_data(cl, 3, swab16(value));
886 			break;
887 		}
888 	}
889 
890 	if (bank > 2)
891 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
892 
893 	mutex_unlock(&data->lock);
894 }
895 
896 static void asb100_init_client(struct i2c_client *client)
897 {
898 	struct asb100_data *data = i2c_get_clientdata(client);
899 
900 	data->vrm = vid_which_vrm();
901 
902 	/* Start monitoring */
903 	asb100_write_value(client, ASB100_REG_CONFIG,
904 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
905 }
906 
907 static struct asb100_data *asb100_update_device(struct device *dev)
908 {
909 	struct i2c_client *client = to_i2c_client(dev);
910 	struct asb100_data *data = i2c_get_clientdata(client);
911 	int i;
912 
913 	mutex_lock(&data->update_lock);
914 
915 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
916 		|| !data->valid) {
917 
918 		dev_dbg(&client->dev, "starting device update...\n");
919 
920 		/* 7 voltage inputs */
921 		for (i = 0; i < 7; i++) {
922 			data->in[i] = asb100_read_value(client,
923 				ASB100_REG_IN(i));
924 			data->in_min[i] = asb100_read_value(client,
925 				ASB100_REG_IN_MIN(i));
926 			data->in_max[i] = asb100_read_value(client,
927 				ASB100_REG_IN_MAX(i));
928 		}
929 
930 		/* 3 fan inputs */
931 		for (i = 0; i < 3; i++) {
932 			data->fan[i] = asb100_read_value(client,
933 					ASB100_REG_FAN(i));
934 			data->fan_min[i] = asb100_read_value(client,
935 					ASB100_REG_FAN_MIN(i));
936 		}
937 
938 		/* 4 temperature inputs */
939 		for (i = 1; i <= 4; i++) {
940 			data->temp[i-1] = asb100_read_value(client,
941 					ASB100_REG_TEMP(i));
942 			data->temp_max[i-1] = asb100_read_value(client,
943 					ASB100_REG_TEMP_MAX(i));
944 			data->temp_hyst[i-1] = asb100_read_value(client,
945 					ASB100_REG_TEMP_HYST(i));
946 		}
947 
948 		/* VID and fan divisors */
949 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
950 		data->vid = i & 0x0f;
951 		data->vid |= (asb100_read_value(client,
952 				ASB100_REG_CHIPID) & 0x01) << 4;
953 		data->fan_div[0] = (i >> 4) & 0x03;
954 		data->fan_div[1] = (i >> 6) & 0x03;
955 		data->fan_div[2] = (asb100_read_value(client,
956 				ASB100_REG_PIN) >> 6) & 0x03;
957 
958 		/* PWM */
959 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
960 
961 		/* alarms */
962 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
963 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
964 
965 		data->last_updated = jiffies;
966 		data->valid = 1;
967 
968 		dev_dbg(&client->dev, "... device update complete\n");
969 	}
970 
971 	mutex_unlock(&data->update_lock);
972 
973 	return data;
974 }
975 
976 static int __init asb100_init(void)
977 {
978 	return i2c_add_driver(&asb100_driver);
979 }
980 
981 static void __exit asb100_exit(void)
982 {
983 	i2c_del_driver(&asb100_driver);
984 }
985 
986 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
987 MODULE_DESCRIPTION("ASB100 Bach driver");
988 MODULE_LICENSE("GPL");
989 
990 module_init(asb100_init);
991 module_exit(asb100_exit);
992