1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * hid-ft260.c - FTDI FT260 USB HID to I2C host bridge 4 * 5 * Copyright (c) 2021, Michael Zaidman <michaelz@xsightlabs.com> 6 * 7 * Data Sheet: 8 * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT260.pdf 9 */ 10 11 #include "hid-ids.h" 12 #include <linux/hidraw.h> 13 #include <linux/i2c.h> 14 #include <linux/module.h> 15 #include <linux/usb.h> 16 17 #ifdef DEBUG 18 static int ft260_debug = 1; 19 #else 20 static int ft260_debug; 21 #endif 22 module_param_named(debug, ft260_debug, int, 0600); 23 MODULE_PARM_DESC(debug, "Toggle FT260 debugging messages"); 24 25 #define ft260_dbg(format, arg...) \ 26 do { \ 27 if (ft260_debug) \ 28 pr_info("%s: " format, __func__, ##arg); \ 29 } while (0) 30 31 #define FT260_REPORT_MAX_LENGTH (64) 32 #define FT260_I2C_DATA_REPORT_ID(len) (FT260_I2C_REPORT_MIN + (len - 1) / 4) 33 /* 34 * The input report format assigns 62 bytes for the data payload, but ft260 35 * returns 60 and 2 in two separate transactions. To minimize transfer time 36 * in reading chunks mode, set the maximum read payload length to 60 bytes. 37 */ 38 #define FT260_RD_DATA_MAX (60) 39 #define FT260_WR_DATA_MAX (60) 40 41 /* 42 * Device interface configuration. 43 * The FT260 has 2 interfaces that are controlled by DCNF0 and DCNF1 pins. 44 * First implementes USB HID to I2C bridge function and 45 * second - USB HID to UART bridge function. 46 */ 47 enum { 48 FT260_MODE_ALL = 0x00, 49 FT260_MODE_I2C = 0x01, 50 FT260_MODE_UART = 0x02, 51 FT260_MODE_BOTH = 0x03, 52 }; 53 54 /* Control pipe */ 55 enum { 56 FT260_GET_RQST_TYPE = 0xA1, 57 FT260_GET_REPORT = 0x01, 58 FT260_SET_RQST_TYPE = 0x21, 59 FT260_SET_REPORT = 0x09, 60 FT260_FEATURE = 0x03, 61 }; 62 63 /* Report IDs / Feature In */ 64 enum { 65 FT260_CHIP_VERSION = 0xA0, 66 FT260_SYSTEM_SETTINGS = 0xA1, 67 FT260_I2C_STATUS = 0xC0, 68 FT260_I2C_READ_REQ = 0xC2, 69 FT260_I2C_REPORT_MIN = 0xD0, 70 FT260_I2C_REPORT_MAX = 0xDE, 71 FT260_GPIO = 0xB0, 72 FT260_UART_INTERRUPT_STATUS = 0xB1, 73 FT260_UART_STATUS = 0xE0, 74 FT260_UART_RI_DCD_STATUS = 0xE1, 75 FT260_UART_REPORT = 0xF0, 76 }; 77 78 /* Feature Out */ 79 enum { 80 FT260_SET_CLOCK = 0x01, 81 FT260_SET_I2C_MODE = 0x02, 82 FT260_SET_UART_MODE = 0x03, 83 FT260_ENABLE_INTERRUPT = 0x05, 84 FT260_SELECT_GPIO2_FUNC = 0x06, 85 FT260_ENABLE_UART_DCD_RI = 0x07, 86 FT260_SELECT_GPIOA_FUNC = 0x08, 87 FT260_SELECT_GPIOG_FUNC = 0x09, 88 FT260_SET_INTERRUPT_TRIGGER = 0x0A, 89 FT260_SET_SUSPEND_OUT_POLAR = 0x0B, 90 FT260_ENABLE_UART_RI_WAKEUP = 0x0C, 91 FT260_SET_UART_RI_WAKEUP_CFG = 0x0D, 92 FT260_SET_I2C_RESET = 0x20, 93 FT260_SET_I2C_CLOCK_SPEED = 0x22, 94 FT260_SET_UART_RESET = 0x40, 95 FT260_SET_UART_CONFIG = 0x41, 96 FT260_SET_UART_BAUD_RATE = 0x42, 97 FT260_SET_UART_DATA_BIT = 0x43, 98 FT260_SET_UART_PARITY = 0x44, 99 FT260_SET_UART_STOP_BIT = 0x45, 100 FT260_SET_UART_BREAKING = 0x46, 101 FT260_SET_UART_XON_XOFF = 0x49, 102 }; 103 104 /* Response codes in I2C status report */ 105 enum { 106 FT260_I2C_STATUS_SUCCESS = 0x00, 107 FT260_I2C_STATUS_CTRL_BUSY = 0x01, 108 FT260_I2C_STATUS_ERROR = 0x02, 109 FT260_I2C_STATUS_ADDR_NO_ACK = 0x04, 110 FT260_I2C_STATUS_DATA_NO_ACK = 0x08, 111 FT260_I2C_STATUS_ARBITR_LOST = 0x10, 112 FT260_I2C_STATUS_CTRL_IDLE = 0x20, 113 FT260_I2C_STATUS_BUS_BUSY = 0x40, 114 }; 115 116 /* I2C Conditions flags */ 117 enum { 118 FT260_FLAG_NONE = 0x00, 119 FT260_FLAG_START = 0x02, 120 FT260_FLAG_START_REPEATED = 0x03, 121 FT260_FLAG_STOP = 0x04, 122 FT260_FLAG_START_STOP = 0x06, 123 FT260_FLAG_START_STOP_REPEATED = 0x07, 124 }; 125 126 #define FT260_SET_REQUEST_VALUE(report_id) ((FT260_FEATURE << 8) | report_id) 127 128 /* Feature In reports */ 129 130 struct ft260_get_chip_version_report { 131 u8 report; /* FT260_CHIP_VERSION */ 132 u8 chip_code[4]; /* FTDI chip identification code */ 133 u8 reserved[8]; 134 } __packed; 135 136 struct ft260_get_system_status_report { 137 u8 report; /* FT260_SYSTEM_SETTINGS */ 138 u8 chip_mode; /* DCNF0 and DCNF1 status, bits 0-1 */ 139 u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */ 140 u8 suspend_status; /* 0 - not suspended, 1 - suspended */ 141 u8 pwren_status; /* 0 - FT260 is not ready, 1 - ready */ 142 u8 i2c_enable; /* 0 - disabled, 1 - enabled */ 143 u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */ 144 /* 3 - XON_XOFF, 4 - No flow control */ 145 u8 hid_over_i2c_en; /* 0 - disabled, 1 - enabled */ 146 u8 gpio2_function; /* 0 - GPIO, 1 - SUSPOUT, */ 147 /* 2 - PWREN, 4 - TX_LED */ 148 u8 gpioA_function; /* 0 - GPIO, 3 - TX_ACTIVE, 4 - TX_LED */ 149 u8 gpioG_function; /* 0 - GPIO, 2 - PWREN, */ 150 /* 5 - RX_LED, 6 - BCD_DET */ 151 u8 suspend_out_pol; /* 0 - active-high, 1 - active-low */ 152 u8 enable_wakeup_int; /* 0 - disabled, 1 - enabled */ 153 u8 intr_cond; /* Interrupt trigger conditions */ 154 u8 power_saving_en; /* 0 - disabled, 1 - enabled */ 155 u8 reserved[10]; 156 } __packed; 157 158 struct ft260_get_i2c_status_report { 159 u8 report; /* FT260_I2C_STATUS */ 160 u8 bus_status; /* I2C bus status */ 161 __le16 clock; /* I2C bus clock in range 60-3400 KHz */ 162 u8 reserved; 163 } __packed; 164 165 /* Feature Out reports */ 166 167 struct ft260_set_system_clock_report { 168 u8 report; /* FT260_SYSTEM_SETTINGS */ 169 u8 request; /* FT260_SET_CLOCK */ 170 u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */ 171 } __packed; 172 173 struct ft260_set_i2c_mode_report { 174 u8 report; /* FT260_SYSTEM_SETTINGS */ 175 u8 request; /* FT260_SET_I2C_MODE */ 176 u8 i2c_enable; /* 0 - disabled, 1 - enabled */ 177 } __packed; 178 179 struct ft260_set_uart_mode_report { 180 u8 report; /* FT260_SYSTEM_SETTINGS */ 181 u8 request; /* FT260_SET_UART_MODE */ 182 u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */ 183 /* 3 - XON_XOFF, 4 - No flow control */ 184 } __packed; 185 186 struct ft260_set_i2c_reset_report { 187 u8 report; /* FT260_SYSTEM_SETTINGS */ 188 u8 request; /* FT260_SET_I2C_RESET */ 189 } __packed; 190 191 struct ft260_set_i2c_speed_report { 192 u8 report; /* FT260_SYSTEM_SETTINGS */ 193 u8 request; /* FT260_SET_I2C_CLOCK_SPEED */ 194 __le16 clock; /* I2C bus clock in range 60-3400 KHz */ 195 } __packed; 196 197 /* Data transfer reports */ 198 199 struct ft260_i2c_write_request_report { 200 u8 report; /* FT260_I2C_REPORT */ 201 u8 address; /* 7-bit I2C address */ 202 u8 flag; /* I2C transaction condition */ 203 u8 length; /* data payload length */ 204 u8 data[FT260_WR_DATA_MAX]; /* data payload */ 205 } __packed; 206 207 struct ft260_i2c_read_request_report { 208 u8 report; /* FT260_I2C_READ_REQ */ 209 u8 address; /* 7-bit I2C address */ 210 u8 flag; /* I2C transaction condition */ 211 __le16 length; /* data payload length */ 212 } __packed; 213 214 struct ft260_i2c_input_report { 215 u8 report; /* FT260_I2C_REPORT */ 216 u8 length; /* data payload length */ 217 u8 data[2]; /* data payload */ 218 } __packed; 219 220 static const struct hid_device_id ft260_devices[] = { 221 { HID_USB_DEVICE(USB_VENDOR_ID_FUTURE_TECHNOLOGY, 222 USB_DEVICE_ID_FT260) }, 223 { /* END OF LIST */ } 224 }; 225 MODULE_DEVICE_TABLE(hid, ft260_devices); 226 227 struct ft260_device { 228 struct i2c_adapter adap; 229 struct hid_device *hdev; 230 struct completion wait; 231 struct mutex lock; 232 u8 write_buf[FT260_REPORT_MAX_LENGTH]; 233 u8 *read_buf; 234 u16 read_idx; 235 u16 read_len; 236 u16 clock; 237 }; 238 239 static int ft260_hid_feature_report_get(struct hid_device *hdev, 240 unsigned char report_id, u8 *data, 241 size_t len) 242 { 243 u8 *buf; 244 int ret; 245 246 buf = kmalloc(len, GFP_KERNEL); 247 if (!buf) 248 return -ENOMEM; 249 250 ret = hid_hw_raw_request(hdev, report_id, buf, len, HID_FEATURE_REPORT, 251 HID_REQ_GET_REPORT); 252 if (likely(ret == len)) 253 memcpy(data, buf, len); 254 else if (ret >= 0) 255 ret = -EIO; 256 kfree(buf); 257 return ret; 258 } 259 260 static int ft260_hid_feature_report_set(struct hid_device *hdev, u8 *data, 261 size_t len) 262 { 263 u8 *buf; 264 int ret; 265 266 buf = kmemdup(data, len, GFP_KERNEL); 267 if (!buf) 268 return -ENOMEM; 269 270 buf[0] = FT260_SYSTEM_SETTINGS; 271 272 ret = hid_hw_raw_request(hdev, buf[0], buf, len, HID_FEATURE_REPORT, 273 HID_REQ_SET_REPORT); 274 275 kfree(buf); 276 return ret; 277 } 278 279 static int ft260_i2c_reset(struct hid_device *hdev) 280 { 281 struct ft260_set_i2c_reset_report report; 282 int ret; 283 284 report.request = FT260_SET_I2C_RESET; 285 286 ret = ft260_hid_feature_report_set(hdev, (u8 *)&report, sizeof(report)); 287 if (ret < 0) { 288 hid_err(hdev, "failed to reset I2C controller: %d\n", ret); 289 return ret; 290 } 291 292 ft260_dbg("done\n"); 293 return ret; 294 } 295 296 static int ft260_xfer_status(struct ft260_device *dev) 297 { 298 struct hid_device *hdev = dev->hdev; 299 struct ft260_get_i2c_status_report report; 300 int ret; 301 302 ret = ft260_hid_feature_report_get(hdev, FT260_I2C_STATUS, 303 (u8 *)&report, sizeof(report)); 304 if (unlikely(ret < 0)) { 305 hid_err(hdev, "failed to retrieve status: %d\n", ret); 306 return ret; 307 } 308 309 dev->clock = le16_to_cpu(report.clock); 310 ft260_dbg("bus_status %#02x, clock %u\n", report.bus_status, 311 dev->clock); 312 313 if (report.bus_status & FT260_I2C_STATUS_CTRL_BUSY) 314 return -EAGAIN; 315 316 /* 317 * The error condition (bit 1) is a status bit reflecting any 318 * error conditions. When any of the bits 2, 3, or 4 are raised 319 * to 1, bit 1 is also set to 1. 320 */ 321 if (report.bus_status & FT260_I2C_STATUS_ERROR) { 322 hid_err(hdev, "i2c bus error: %#02x\n", report.bus_status); 323 return -EIO; 324 } 325 326 return 0; 327 } 328 329 static int ft260_hid_output_report(struct hid_device *hdev, u8 *data, 330 size_t len) 331 { 332 u8 *buf; 333 int ret; 334 335 buf = kmemdup(data, len, GFP_KERNEL); 336 if (!buf) 337 return -ENOMEM; 338 339 ret = hid_hw_output_report(hdev, buf, len); 340 341 kfree(buf); 342 return ret; 343 } 344 345 static int ft260_hid_output_report_check_status(struct ft260_device *dev, 346 u8 *data, int len) 347 { 348 int ret, usec, try = 3; 349 struct hid_device *hdev = dev->hdev; 350 351 ret = ft260_hid_output_report(hdev, data, len); 352 if (ret < 0) { 353 hid_err(hdev, "%s: failed to start transfer, ret %d\n", 354 __func__, ret); 355 ft260_i2c_reset(hdev); 356 return ret; 357 } 358 359 /* transfer time = 1 / clock(KHz) * 10 bits * bytes */ 360 usec = 10000 / dev->clock * len; 361 usleep_range(usec, usec + 100); 362 ft260_dbg("wait %d usec, len %d\n", usec, len); 363 do { 364 ret = ft260_xfer_status(dev); 365 if (ret != -EAGAIN) 366 break; 367 } while (--try); 368 369 if (ret == 0) 370 return 0; 371 372 ft260_i2c_reset(hdev); 373 return -EIO; 374 } 375 376 static int ft260_i2c_write(struct ft260_device *dev, u8 addr, u8 *data, 377 int data_len, u8 flag) 378 { 379 int len, ret, idx = 0; 380 struct hid_device *hdev = dev->hdev; 381 struct ft260_i2c_write_request_report *rep = 382 (struct ft260_i2c_write_request_report *)dev->write_buf; 383 384 do { 385 if (data_len <= FT260_WR_DATA_MAX) 386 len = data_len; 387 else 388 len = FT260_WR_DATA_MAX; 389 390 rep->report = FT260_I2C_DATA_REPORT_ID(len); 391 rep->address = addr; 392 rep->length = len; 393 rep->flag = flag; 394 395 memcpy(rep->data, &data[idx], len); 396 397 ft260_dbg("rep %#02x addr %#02x off %d len %d d[0] %#02x\n", 398 rep->report, addr, idx, len, data[0]); 399 400 ret = ft260_hid_output_report_check_status(dev, (u8 *)rep, 401 len + 4); 402 if (ret < 0) { 403 hid_err(hdev, "%s: failed to start transfer, ret %d\n", 404 __func__, ret); 405 return ret; 406 } 407 408 data_len -= len; 409 idx += len; 410 411 } while (data_len > 0); 412 413 return 0; 414 } 415 416 static int ft260_smbus_write(struct ft260_device *dev, u8 addr, u8 cmd, 417 u8 *data, u8 data_len, u8 flag) 418 { 419 int ret = 0; 420 int len = 4; 421 422 struct ft260_i2c_write_request_report *rep = 423 (struct ft260_i2c_write_request_report *)dev->write_buf; 424 425 if (data_len >= sizeof(rep->data)) 426 return -EINVAL; 427 428 rep->address = addr; 429 rep->data[0] = cmd; 430 rep->length = data_len + 1; 431 rep->flag = flag; 432 len += rep->length; 433 434 rep->report = FT260_I2C_DATA_REPORT_ID(len); 435 436 if (data_len > 0) 437 memcpy(&rep->data[1], data, data_len); 438 439 ft260_dbg("rep %#02x addr %#02x cmd %#02x datlen %d replen %d\n", 440 rep->report, addr, cmd, rep->length, len); 441 442 ret = ft260_hid_output_report_check_status(dev, (u8 *)rep, len); 443 444 return ret; 445 } 446 447 static int ft260_i2c_read(struct ft260_device *dev, u8 addr, u8 *data, 448 u16 len, u8 flag) 449 { 450 struct ft260_i2c_read_request_report rep; 451 struct hid_device *hdev = dev->hdev; 452 int timeout; 453 int ret; 454 455 if (len > FT260_RD_DATA_MAX) { 456 hid_err(hdev, "%s: unsupported rd len: %d\n", __func__, len); 457 return -EINVAL; 458 } 459 460 dev->read_idx = 0; 461 dev->read_buf = data; 462 dev->read_len = len; 463 464 rep.report = FT260_I2C_READ_REQ; 465 rep.length = cpu_to_le16(len); 466 rep.address = addr; 467 rep.flag = flag; 468 469 ft260_dbg("rep %#02x addr %#02x len %d\n", rep.report, rep.address, 470 rep.length); 471 472 reinit_completion(&dev->wait); 473 474 ret = ft260_hid_output_report(hdev, (u8 *)&rep, sizeof(rep)); 475 if (ret < 0) { 476 hid_err(hdev, "%s: failed to start transaction, ret %d\n", 477 __func__, ret); 478 return ret; 479 } 480 481 timeout = msecs_to_jiffies(5000); 482 if (!wait_for_completion_timeout(&dev->wait, timeout)) { 483 ft260_i2c_reset(hdev); 484 return -ETIMEDOUT; 485 } 486 487 ret = ft260_xfer_status(dev); 488 if (ret == 0) 489 return 0; 490 491 ft260_i2c_reset(hdev); 492 return -EIO; 493 } 494 495 /* 496 * A random read operation is implemented as a dummy write operation, followed 497 * by a current address read operation. The dummy write operation is used to 498 * load the target byte address into the current byte address counter, from 499 * which the subsequent current address read operation then reads. 500 */ 501 static int ft260_i2c_write_read(struct ft260_device *dev, struct i2c_msg *msgs) 502 { 503 int len, ret; 504 u16 left_len = msgs[1].len; 505 u8 *read_buf = msgs[1].buf; 506 u8 addr = msgs[0].addr; 507 u16 read_off = 0; 508 struct hid_device *hdev = dev->hdev; 509 510 if (msgs[0].len > 2) { 511 hid_err(hdev, "%s: unsupported wr len: %d\n", __func__, 512 msgs[0].len); 513 return -EOPNOTSUPP; 514 } 515 516 memcpy(&read_off, msgs[0].buf, msgs[0].len); 517 518 do { 519 if (left_len <= FT260_RD_DATA_MAX) 520 len = left_len; 521 else 522 len = FT260_RD_DATA_MAX; 523 524 ft260_dbg("read_off %#x left_len %d len %d\n", read_off, 525 left_len, len); 526 527 ret = ft260_i2c_write(dev, addr, (u8 *)&read_off, msgs[0].len, 528 FT260_FLAG_START); 529 if (ret < 0) 530 return ret; 531 532 ret = ft260_i2c_read(dev, addr, read_buf, len, 533 FT260_FLAG_START_STOP); 534 if (ret < 0) 535 return ret; 536 537 left_len -= len; 538 read_buf += len; 539 read_off += len; 540 541 } while (left_len > 0); 542 543 return 0; 544 } 545 546 static int ft260_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, 547 int num) 548 { 549 int ret; 550 struct ft260_device *dev = i2c_get_adapdata(adapter); 551 struct hid_device *hdev = dev->hdev; 552 553 mutex_lock(&dev->lock); 554 555 ret = hid_hw_power(hdev, PM_HINT_FULLON); 556 if (ret < 0) { 557 hid_err(hdev, "failed to enter FULLON power mode: %d\n", ret); 558 mutex_unlock(&dev->lock); 559 return ret; 560 } 561 562 if (num == 1) { 563 if (msgs->flags & I2C_M_RD) 564 ret = ft260_i2c_read(dev, msgs->addr, msgs->buf, 565 msgs->len, FT260_FLAG_START_STOP); 566 else 567 ret = ft260_i2c_write(dev, msgs->addr, msgs->buf, 568 msgs->len, FT260_FLAG_START_STOP); 569 if (ret < 0) 570 goto i2c_exit; 571 572 } else { 573 /* Combined write then read message */ 574 ret = ft260_i2c_write_read(dev, msgs); 575 if (ret < 0) 576 goto i2c_exit; 577 } 578 579 ret = num; 580 i2c_exit: 581 hid_hw_power(hdev, PM_HINT_NORMAL); 582 mutex_unlock(&dev->lock); 583 return ret; 584 } 585 586 static int ft260_smbus_xfer(struct i2c_adapter *adapter, u16 addr, u16 flags, 587 char read_write, u8 cmd, int size, 588 union i2c_smbus_data *data) 589 { 590 int ret; 591 struct ft260_device *dev = i2c_get_adapdata(adapter); 592 struct hid_device *hdev = dev->hdev; 593 594 ft260_dbg("smbus size %d\n", size); 595 596 mutex_lock(&dev->lock); 597 598 ret = hid_hw_power(hdev, PM_HINT_FULLON); 599 if (ret < 0) { 600 hid_err(hdev, "power management error: %d\n", ret); 601 mutex_unlock(&dev->lock); 602 return ret; 603 } 604 605 switch (size) { 606 case I2C_SMBUS_QUICK: 607 if (read_write == I2C_SMBUS_READ) 608 ret = ft260_i2c_read(dev, addr, &data->byte, 0, 609 FT260_FLAG_START_STOP); 610 else 611 ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, 612 FT260_FLAG_START_STOP); 613 break; 614 case I2C_SMBUS_BYTE: 615 if (read_write == I2C_SMBUS_READ) 616 ret = ft260_i2c_read(dev, addr, &data->byte, 1, 617 FT260_FLAG_START_STOP); 618 else 619 ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, 620 FT260_FLAG_START_STOP); 621 break; 622 case I2C_SMBUS_BYTE_DATA: 623 if (read_write == I2C_SMBUS_READ) { 624 ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, 625 FT260_FLAG_START); 626 if (ret) 627 goto smbus_exit; 628 629 ret = ft260_i2c_read(dev, addr, &data->byte, 1, 630 FT260_FLAG_START_STOP_REPEATED); 631 } else { 632 ret = ft260_smbus_write(dev, addr, cmd, &data->byte, 1, 633 FT260_FLAG_START_STOP); 634 } 635 break; 636 case I2C_SMBUS_WORD_DATA: 637 if (read_write == I2C_SMBUS_READ) { 638 ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, 639 FT260_FLAG_START); 640 if (ret) 641 goto smbus_exit; 642 643 ret = ft260_i2c_read(dev, addr, (u8 *)&data->word, 2, 644 FT260_FLAG_START_STOP_REPEATED); 645 } else { 646 ret = ft260_smbus_write(dev, addr, cmd, 647 (u8 *)&data->word, 2, 648 FT260_FLAG_START_STOP); 649 } 650 break; 651 case I2C_SMBUS_BLOCK_DATA: 652 if (read_write == I2C_SMBUS_READ) { 653 ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, 654 FT260_FLAG_START); 655 if (ret) 656 goto smbus_exit; 657 658 ret = ft260_i2c_read(dev, addr, data->block, 659 data->block[0] + 1, 660 FT260_FLAG_START_STOP_REPEATED); 661 } else { 662 ret = ft260_smbus_write(dev, addr, cmd, data->block, 663 data->block[0] + 1, 664 FT260_FLAG_START_STOP); 665 } 666 break; 667 case I2C_SMBUS_I2C_BLOCK_DATA: 668 if (read_write == I2C_SMBUS_READ) { 669 ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, 670 FT260_FLAG_START); 671 if (ret) 672 goto smbus_exit; 673 674 ret = ft260_i2c_read(dev, addr, data->block + 1, 675 data->block[0], 676 FT260_FLAG_START_STOP_REPEATED); 677 } else { 678 ret = ft260_smbus_write(dev, addr, cmd, data->block + 1, 679 data->block[0], 680 FT260_FLAG_START_STOP); 681 } 682 break; 683 default: 684 hid_err(hdev, "unsupported smbus transaction size %d\n", size); 685 ret = -EOPNOTSUPP; 686 } 687 688 smbus_exit: 689 hid_hw_power(hdev, PM_HINT_NORMAL); 690 mutex_unlock(&dev->lock); 691 return ret; 692 } 693 694 static u32 ft260_functionality(struct i2c_adapter *adap) 695 { 696 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_QUICK | 697 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | 698 I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_I2C_BLOCK; 699 } 700 701 static const struct i2c_adapter_quirks ft260_i2c_quirks = { 702 .flags = I2C_AQ_COMB_WRITE_THEN_READ, 703 .max_comb_1st_msg_len = 2, 704 }; 705 706 static const struct i2c_algorithm ft260_i2c_algo = { 707 .master_xfer = ft260_i2c_xfer, 708 .smbus_xfer = ft260_smbus_xfer, 709 .functionality = ft260_functionality, 710 }; 711 712 static int ft260_get_system_config(struct hid_device *hdev, 713 struct ft260_get_system_status_report *cfg) 714 { 715 int ret; 716 int len = sizeof(struct ft260_get_system_status_report); 717 718 ret = ft260_hid_feature_report_get(hdev, FT260_SYSTEM_SETTINGS, 719 (u8 *)cfg, len); 720 if (ret < 0) { 721 hid_err(hdev, "failed to retrieve system status\n"); 722 return ret; 723 } 724 return 0; 725 } 726 727 static int ft260_is_interface_enabled(struct hid_device *hdev) 728 { 729 struct ft260_get_system_status_report cfg; 730 struct usb_interface *usbif = to_usb_interface(hdev->dev.parent); 731 int interface = usbif->cur_altsetting->desc.bInterfaceNumber; 732 int ret; 733 734 ret = ft260_get_system_config(hdev, &cfg); 735 if (ret < 0) 736 return ret; 737 738 ft260_dbg("interface: 0x%02x\n", interface); 739 ft260_dbg("chip mode: 0x%02x\n", cfg.chip_mode); 740 ft260_dbg("clock_ctl: 0x%02x\n", cfg.clock_ctl); 741 ft260_dbg("i2c_enable: 0x%02x\n", cfg.i2c_enable); 742 ft260_dbg("uart_mode: 0x%02x\n", cfg.uart_mode); 743 744 switch (cfg.chip_mode) { 745 case FT260_MODE_ALL: 746 case FT260_MODE_BOTH: 747 if (interface == 1) 748 hid_info(hdev, "uart interface is not supported\n"); 749 else 750 ret = 1; 751 break; 752 case FT260_MODE_UART: 753 hid_info(hdev, "uart interface is not supported\n"); 754 break; 755 case FT260_MODE_I2C: 756 ret = 1; 757 break; 758 } 759 return ret; 760 } 761 762 static int ft260_byte_show(struct hid_device *hdev, int id, u8 *cfg, int len, 763 u8 *field, u8 *buf) 764 { 765 int ret; 766 767 ret = ft260_hid_feature_report_get(hdev, id, cfg, len); 768 if (ret < 0) 769 return ret; 770 771 return scnprintf(buf, PAGE_SIZE, "%d\n", *field); 772 } 773 774 static int ft260_word_show(struct hid_device *hdev, int id, u8 *cfg, int len, 775 u16 *field, u8 *buf) 776 { 777 int ret; 778 779 ret = ft260_hid_feature_report_get(hdev, id, cfg, len); 780 if (ret < 0) 781 return ret; 782 783 return scnprintf(buf, PAGE_SIZE, "%d\n", le16_to_cpu(*field)); 784 } 785 786 #define FT260_ATTR_SHOW(name, reptype, id, type, func) \ 787 static ssize_t name##_show(struct device *kdev, \ 788 struct device_attribute *attr, char *buf) \ 789 { \ 790 struct reptype rep; \ 791 struct hid_device *hdev = to_hid_device(kdev); \ 792 type *field = &rep.name; \ 793 int len = sizeof(rep); \ 794 \ 795 return func(hdev, id, (u8 *)&rep, len, field, buf); \ 796 } 797 798 #define FT260_SSTAT_ATTR_SHOW(name) \ 799 FT260_ATTR_SHOW(name, ft260_get_system_status_report, \ 800 FT260_SYSTEM_SETTINGS, u8, ft260_byte_show) 801 802 #define FT260_I2CST_ATTR_SHOW(name) \ 803 FT260_ATTR_SHOW(name, ft260_get_i2c_status_report, \ 804 FT260_I2C_STATUS, u16, ft260_word_show) 805 806 #define FT260_ATTR_STORE(name, reptype, id, req, type, func) \ 807 static ssize_t name##_store(struct device *kdev, \ 808 struct device_attribute *attr, \ 809 const char *buf, size_t count) \ 810 { \ 811 struct reptype rep; \ 812 struct hid_device *hdev = to_hid_device(kdev); \ 813 type name; \ 814 int ret; \ 815 \ 816 if (!func(buf, 10, &name)) { \ 817 rep.name = name; \ 818 rep.report = id; \ 819 rep.request = req; \ 820 ret = ft260_hid_feature_report_set(hdev, (u8 *)&rep, \ 821 sizeof(rep)); \ 822 if (!ret) \ 823 ret = count; \ 824 } else { \ 825 ret = -EINVAL; \ 826 } \ 827 return ret; \ 828 } 829 830 #define FT260_BYTE_ATTR_STORE(name, reptype, req) \ 831 FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \ 832 u8, kstrtou8) 833 834 #define FT260_WORD_ATTR_STORE(name, reptype, req) \ 835 FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \ 836 u16, kstrtou16) 837 838 FT260_SSTAT_ATTR_SHOW(chip_mode); 839 static DEVICE_ATTR_RO(chip_mode); 840 841 FT260_SSTAT_ATTR_SHOW(pwren_status); 842 static DEVICE_ATTR_RO(pwren_status); 843 844 FT260_SSTAT_ATTR_SHOW(suspend_status); 845 static DEVICE_ATTR_RO(suspend_status); 846 847 FT260_SSTAT_ATTR_SHOW(hid_over_i2c_en); 848 static DEVICE_ATTR_RO(hid_over_i2c_en); 849 850 FT260_SSTAT_ATTR_SHOW(power_saving_en); 851 static DEVICE_ATTR_RO(power_saving_en); 852 853 FT260_SSTAT_ATTR_SHOW(i2c_enable); 854 FT260_BYTE_ATTR_STORE(i2c_enable, ft260_set_i2c_mode_report, 855 FT260_SET_I2C_MODE); 856 static DEVICE_ATTR_RW(i2c_enable); 857 858 FT260_SSTAT_ATTR_SHOW(uart_mode); 859 FT260_BYTE_ATTR_STORE(uart_mode, ft260_set_uart_mode_report, 860 FT260_SET_UART_MODE); 861 static DEVICE_ATTR_RW(uart_mode); 862 863 FT260_SSTAT_ATTR_SHOW(clock_ctl); 864 FT260_BYTE_ATTR_STORE(clock_ctl, ft260_set_system_clock_report, 865 FT260_SET_CLOCK); 866 static DEVICE_ATTR_RW(clock_ctl); 867 868 FT260_I2CST_ATTR_SHOW(clock); 869 FT260_WORD_ATTR_STORE(clock, ft260_set_i2c_speed_report, 870 FT260_SET_I2C_CLOCK_SPEED); 871 static DEVICE_ATTR_RW(clock); 872 873 static ssize_t i2c_reset_store(struct device *kdev, 874 struct device_attribute *attr, const char *buf, 875 size_t count) 876 { 877 struct hid_device *hdev = to_hid_device(kdev); 878 int ret = ft260_i2c_reset(hdev); 879 880 if (ret) 881 return ret; 882 return count; 883 } 884 static DEVICE_ATTR_WO(i2c_reset); 885 886 static const struct attribute_group ft260_attr_group = { 887 .attrs = (struct attribute *[]) { 888 &dev_attr_chip_mode.attr, 889 &dev_attr_pwren_status.attr, 890 &dev_attr_suspend_status.attr, 891 &dev_attr_hid_over_i2c_en.attr, 892 &dev_attr_power_saving_en.attr, 893 &dev_attr_i2c_enable.attr, 894 &dev_attr_uart_mode.attr, 895 &dev_attr_clock_ctl.attr, 896 &dev_attr_i2c_reset.attr, 897 &dev_attr_clock.attr, 898 NULL 899 } 900 }; 901 902 static int ft260_probe(struct hid_device *hdev, const struct hid_device_id *id) 903 { 904 struct ft260_device *dev; 905 struct ft260_get_chip_version_report version; 906 int ret; 907 908 if (!hid_is_usb(hdev)) 909 return -EINVAL; 910 911 dev = devm_kzalloc(&hdev->dev, sizeof(*dev), GFP_KERNEL); 912 if (!dev) 913 return -ENOMEM; 914 915 ret = hid_parse(hdev); 916 if (ret) { 917 hid_err(hdev, "failed to parse HID\n"); 918 return ret; 919 } 920 921 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); 922 if (ret) { 923 hid_err(hdev, "failed to start HID HW\n"); 924 return ret; 925 } 926 927 ret = hid_hw_open(hdev); 928 if (ret) { 929 hid_err(hdev, "failed to open HID HW\n"); 930 goto err_hid_stop; 931 } 932 933 ret = ft260_hid_feature_report_get(hdev, FT260_CHIP_VERSION, 934 (u8 *)&version, sizeof(version)); 935 if (ret < 0) { 936 hid_err(hdev, "failed to retrieve chip version\n"); 937 goto err_hid_close; 938 } 939 940 hid_info(hdev, "chip code: %02x%02x %02x%02x\n", 941 version.chip_code[0], version.chip_code[1], 942 version.chip_code[2], version.chip_code[3]); 943 944 ret = ft260_is_interface_enabled(hdev); 945 if (ret <= 0) 946 goto err_hid_close; 947 948 hid_set_drvdata(hdev, dev); 949 dev->hdev = hdev; 950 dev->adap.owner = THIS_MODULE; 951 dev->adap.class = I2C_CLASS_HWMON; 952 dev->adap.algo = &ft260_i2c_algo; 953 dev->adap.quirks = &ft260_i2c_quirks; 954 dev->adap.dev.parent = &hdev->dev; 955 snprintf(dev->adap.name, sizeof(dev->adap.name), 956 "FT260 usb-i2c bridge on hidraw%d", 957 ((struct hidraw *)hdev->hidraw)->minor); 958 959 mutex_init(&dev->lock); 960 init_completion(&dev->wait); 961 962 ret = ft260_xfer_status(dev); 963 if (ret) 964 ft260_i2c_reset(hdev); 965 966 i2c_set_adapdata(&dev->adap, dev); 967 ret = i2c_add_adapter(&dev->adap); 968 if (ret) { 969 hid_err(hdev, "failed to add i2c adapter\n"); 970 goto err_hid_close; 971 } 972 973 ret = sysfs_create_group(&hdev->dev.kobj, &ft260_attr_group); 974 if (ret < 0) { 975 hid_err(hdev, "failed to create sysfs attrs\n"); 976 goto err_i2c_free; 977 } 978 979 return 0; 980 981 err_i2c_free: 982 i2c_del_adapter(&dev->adap); 983 err_hid_close: 984 hid_hw_close(hdev); 985 err_hid_stop: 986 hid_hw_stop(hdev); 987 return ret; 988 } 989 990 static void ft260_remove(struct hid_device *hdev) 991 { 992 struct ft260_device *dev = hid_get_drvdata(hdev); 993 994 if (!dev) 995 return; 996 997 sysfs_remove_group(&hdev->dev.kobj, &ft260_attr_group); 998 i2c_del_adapter(&dev->adap); 999 1000 hid_hw_close(hdev); 1001 hid_hw_stop(hdev); 1002 } 1003 1004 static int ft260_raw_event(struct hid_device *hdev, struct hid_report *report, 1005 u8 *data, int size) 1006 { 1007 struct ft260_device *dev = hid_get_drvdata(hdev); 1008 struct ft260_i2c_input_report *xfer = (void *)data; 1009 1010 if (xfer->report >= FT260_I2C_REPORT_MIN && 1011 xfer->report <= FT260_I2C_REPORT_MAX) { 1012 ft260_dbg("i2c resp: rep %#02x len %d\n", xfer->report, 1013 xfer->length); 1014 1015 memcpy(&dev->read_buf[dev->read_idx], &xfer->data, 1016 xfer->length); 1017 dev->read_idx += xfer->length; 1018 1019 if (dev->read_idx == dev->read_len) 1020 complete(&dev->wait); 1021 1022 } else { 1023 hid_err(hdev, "unknown report: %#02x\n", xfer->report); 1024 return 0; 1025 } 1026 return 1; 1027 } 1028 1029 static struct hid_driver ft260_driver = { 1030 .name = "ft260", 1031 .id_table = ft260_devices, 1032 .probe = ft260_probe, 1033 .remove = ft260_remove, 1034 .raw_event = ft260_raw_event, 1035 }; 1036 1037 module_hid_driver(ft260_driver); 1038 MODULE_DESCRIPTION("FTDI FT260 USB HID to I2C host bridge"); 1039 MODULE_AUTHOR("Michael Zaidman <michael.zaidman@gmail.com>"); 1040 MODULE_LICENSE("GPL v2"); 1041