xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 void vmw_du_cleanup(struct vmw_display_unit *du)
40 {
41 	drm_plane_cleanup(&du->primary);
42 	drm_plane_cleanup(&du->cursor);
43 
44 	drm_connector_unregister(&du->connector);
45 	drm_crtc_cleanup(&du->crtc);
46 	drm_encoder_cleanup(&du->encoder);
47 	drm_connector_cleanup(&du->connector);
48 }
49 
50 /*
51  * Display Unit Cursor functions
52  */
53 
54 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
55 				   u32 *image, u32 width, u32 height,
56 				   u32 hotspotX, u32 hotspotY)
57 {
58 	struct {
59 		u32 cmd;
60 		SVGAFifoCmdDefineAlphaCursor cursor;
61 	} *cmd;
62 	u32 image_size = width * height * 4;
63 	u32 cmd_size = sizeof(*cmd) + image_size;
64 
65 	if (!image)
66 		return -EINVAL;
67 
68 	cmd = VMW_CMD_RESERVE(dev_priv, cmd_size);
69 	if (unlikely(cmd == NULL))
70 		return -ENOMEM;
71 
72 	memset(cmd, 0, sizeof(*cmd));
73 
74 	memcpy(&cmd[1], image, image_size);
75 
76 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77 	cmd->cursor.id = 0;
78 	cmd->cursor.width = width;
79 	cmd->cursor.height = height;
80 	cmd->cursor.hotspotX = hotspotX;
81 	cmd->cursor.hotspotY = hotspotY;
82 
83 	vmw_cmd_commit_flush(dev_priv, cmd_size);
84 
85 	return 0;
86 }
87 
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89 				struct vmw_buffer_object *bo,
90 				u32 width, u32 height,
91 				u32 hotspotX, u32 hotspotY)
92 {
93 	struct ttm_bo_kmap_obj map;
94 	unsigned long kmap_offset;
95 	unsigned long kmap_num;
96 	void *virtual;
97 	bool dummy;
98 	int ret;
99 
100 	kmap_offset = 0;
101 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102 
103 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104 	if (unlikely(ret != 0)) {
105 		DRM_ERROR("reserve failed\n");
106 		return -EINVAL;
107 	}
108 
109 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110 	if (unlikely(ret != 0))
111 		goto err_unreserve;
112 
113 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
114 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115 				      hotspotX, hotspotY);
116 
117 	ttm_bo_kunmap(&map);
118 err_unreserve:
119 	ttm_bo_unreserve(&bo->base);
120 
121 	return ret;
122 }
123 
124 
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126 				       bool show, int x, int y)
127 {
128 	uint32_t count;
129 
130 	spin_lock(&dev_priv->cursor_lock);
131 	vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, show ? 1 : 0);
132 	vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x);
133 	vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y);
134 	count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT);
135 	vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count);
136 	spin_unlock(&dev_priv->cursor_lock);
137 }
138 
139 
140 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
141 			  struct ttm_object_file *tfile,
142 			  struct ttm_buffer_object *bo,
143 			  SVGA3dCmdHeader *header)
144 {
145 	struct ttm_bo_kmap_obj map;
146 	unsigned long kmap_offset;
147 	unsigned long kmap_num;
148 	SVGA3dCopyBox *box;
149 	unsigned box_count;
150 	void *virtual;
151 	bool dummy;
152 	struct vmw_dma_cmd {
153 		SVGA3dCmdHeader header;
154 		SVGA3dCmdSurfaceDMA dma;
155 	} *cmd;
156 	int i, ret;
157 
158 	cmd = container_of(header, struct vmw_dma_cmd, header);
159 
160 	/* No snooper installed */
161 	if (!srf->snooper.image)
162 		return;
163 
164 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
165 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
166 		return;
167 	}
168 
169 	if (cmd->header.size < 64) {
170 		DRM_ERROR("at least one full copy box must be given\n");
171 		return;
172 	}
173 
174 	box = (SVGA3dCopyBox *)&cmd[1];
175 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
176 			sizeof(SVGA3dCopyBox);
177 
178 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
179 	    box->x != 0    || box->y != 0    || box->z != 0    ||
180 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
181 	    box->d != 1    || box_count != 1) {
182 		/* TODO handle none page aligned offsets */
183 		/* TODO handle more dst & src != 0 */
184 		/* TODO handle more then one copy */
185 		DRM_ERROR("Can't snoop dma request for cursor!\n");
186 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
187 			  box->srcx, box->srcy, box->srcz,
188 			  box->x, box->y, box->z,
189 			  box->w, box->h, box->d, box_count,
190 			  cmd->dma.guest.ptr.offset);
191 		return;
192 	}
193 
194 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
195 	kmap_num = (64*64*4) >> PAGE_SHIFT;
196 
197 	ret = ttm_bo_reserve(bo, true, false, NULL);
198 	if (unlikely(ret != 0)) {
199 		DRM_ERROR("reserve failed\n");
200 		return;
201 	}
202 
203 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
204 	if (unlikely(ret != 0))
205 		goto err_unreserve;
206 
207 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
208 
209 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
210 		memcpy(srf->snooper.image, virtual, 64*64*4);
211 	} else {
212 		/* Image is unsigned pointer. */
213 		for (i = 0; i < box->h; i++)
214 			memcpy(srf->snooper.image + i * 64,
215 			       virtual + i * cmd->dma.guest.pitch,
216 			       box->w * 4);
217 	}
218 
219 	srf->snooper.age++;
220 
221 	ttm_bo_kunmap(&map);
222 err_unreserve:
223 	ttm_bo_unreserve(bo);
224 }
225 
226 /**
227  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
228  *
229  * @dev_priv: Pointer to the device private struct.
230  *
231  * Clears all legacy hotspots.
232  */
233 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
234 {
235 	struct drm_device *dev = &dev_priv->drm;
236 	struct vmw_display_unit *du;
237 	struct drm_crtc *crtc;
238 
239 	drm_modeset_lock_all(dev);
240 	drm_for_each_crtc(crtc, dev) {
241 		du = vmw_crtc_to_du(crtc);
242 
243 		du->hotspot_x = 0;
244 		du->hotspot_y = 0;
245 	}
246 	drm_modeset_unlock_all(dev);
247 }
248 
249 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
250 {
251 	struct drm_device *dev = &dev_priv->drm;
252 	struct vmw_display_unit *du;
253 	struct drm_crtc *crtc;
254 
255 	mutex_lock(&dev->mode_config.mutex);
256 
257 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
258 		du = vmw_crtc_to_du(crtc);
259 		if (!du->cursor_surface ||
260 		    du->cursor_age == du->cursor_surface->snooper.age)
261 			continue;
262 
263 		du->cursor_age = du->cursor_surface->snooper.age;
264 		vmw_cursor_update_image(dev_priv,
265 					du->cursor_surface->snooper.image,
266 					64, 64,
267 					du->hotspot_x + du->core_hotspot_x,
268 					du->hotspot_y + du->core_hotspot_y);
269 	}
270 
271 	mutex_unlock(&dev->mode_config.mutex);
272 }
273 
274 
275 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
276 {
277 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
278 
279 	drm_plane_cleanup(plane);
280 }
281 
282 
283 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
284 {
285 	drm_plane_cleanup(plane);
286 
287 	/* Planes are static in our case so we don't free it */
288 }
289 
290 
291 /**
292  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
293  *
294  * @vps: plane state associated with the display surface
295  * @unreference: true if we also want to unreference the display.
296  */
297 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
298 			     bool unreference)
299 {
300 	if (vps->surf) {
301 		if (vps->pinned) {
302 			vmw_resource_unpin(&vps->surf->res);
303 			vps->pinned--;
304 		}
305 
306 		if (unreference) {
307 			if (vps->pinned)
308 				DRM_ERROR("Surface still pinned\n");
309 			vmw_surface_unreference(&vps->surf);
310 		}
311 	}
312 }
313 
314 
315 /**
316  * vmw_du_plane_cleanup_fb - Unpins the cursor
317  *
318  * @plane:  display plane
319  * @old_state: Contains the FB to clean up
320  *
321  * Unpins the framebuffer surface
322  *
323  * Returns 0 on success
324  */
325 void
326 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
327 			struct drm_plane_state *old_state)
328 {
329 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
330 
331 	vmw_du_plane_unpin_surf(vps, false);
332 }
333 
334 
335 /**
336  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
337  *
338  * @plane:  display plane
339  * @new_state: info on the new plane state, including the FB
340  *
341  * Returns 0 on success
342  */
343 int
344 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
345 			       struct drm_plane_state *new_state)
346 {
347 	struct drm_framebuffer *fb = new_state->fb;
348 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
349 
350 
351 	if (vps->surf)
352 		vmw_surface_unreference(&vps->surf);
353 
354 	if (vps->bo)
355 		vmw_bo_unreference(&vps->bo);
356 
357 	if (fb) {
358 		if (vmw_framebuffer_to_vfb(fb)->bo) {
359 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
360 			vmw_bo_reference(vps->bo);
361 		} else {
362 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
363 			vmw_surface_reference(vps->surf);
364 		}
365 	}
366 
367 	return 0;
368 }
369 
370 
371 void
372 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
373 				  struct drm_plane_state *old_state)
374 {
375 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
376 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
377 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
378 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
379 	s32 hotspot_x, hotspot_y;
380 	int ret = 0;
381 
382 
383 	hotspot_x = du->hotspot_x;
384 	hotspot_y = du->hotspot_y;
385 
386 	if (plane->state->fb) {
387 		hotspot_x += plane->state->fb->hot_x;
388 		hotspot_y += plane->state->fb->hot_y;
389 	}
390 
391 	du->cursor_surface = vps->surf;
392 	du->cursor_bo = vps->bo;
393 
394 	if (vps->surf) {
395 		du->cursor_age = du->cursor_surface->snooper.age;
396 
397 		ret = vmw_cursor_update_image(dev_priv,
398 					      vps->surf->snooper.image,
399 					      64, 64, hotspot_x,
400 					      hotspot_y);
401 	} else if (vps->bo) {
402 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
403 					   plane->state->crtc_w,
404 					   plane->state->crtc_h,
405 					   hotspot_x, hotspot_y);
406 	} else {
407 		vmw_cursor_update_position(dev_priv, false, 0, 0);
408 		return;
409 	}
410 
411 	if (!ret) {
412 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
413 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
414 
415 		vmw_cursor_update_position(dev_priv, true,
416 					   du->cursor_x + hotspot_x,
417 					   du->cursor_y + hotspot_y);
418 
419 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
420 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
421 	} else {
422 		DRM_ERROR("Failed to update cursor image\n");
423 	}
424 }
425 
426 
427 /**
428  * vmw_du_primary_plane_atomic_check - check if the new state is okay
429  *
430  * @plane: display plane
431  * @state: info on the new plane state, including the FB
432  *
433  * Check if the new state is settable given the current state.  Other
434  * than what the atomic helper checks, we care about crtc fitting
435  * the FB and maintaining one active framebuffer.
436  *
437  * Returns 0 on success
438  */
439 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
440 				      struct drm_plane_state *state)
441 {
442 	struct drm_crtc_state *crtc_state = NULL;
443 	struct drm_framebuffer *new_fb = state->fb;
444 	int ret;
445 
446 	if (state->crtc)
447 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
448 
449 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
450 						  DRM_PLANE_HELPER_NO_SCALING,
451 						  DRM_PLANE_HELPER_NO_SCALING,
452 						  false, true);
453 
454 	if (!ret && new_fb) {
455 		struct drm_crtc *crtc = state->crtc;
456 		struct vmw_connector_state *vcs;
457 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
458 
459 		vcs = vmw_connector_state_to_vcs(du->connector.state);
460 	}
461 
462 
463 	return ret;
464 }
465 
466 
467 /**
468  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
469  *
470  * @plane: cursor plane
471  * @state: info on the new plane state
472  *
473  * This is a chance to fail if the new cursor state does not fit
474  * our requirements.
475  *
476  * Returns 0 on success
477  */
478 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
479 				     struct drm_plane_state *new_state)
480 {
481 	int ret = 0;
482 	struct drm_crtc_state *crtc_state = NULL;
483 	struct vmw_surface *surface = NULL;
484 	struct drm_framebuffer *fb = new_state->fb;
485 
486 	if (new_state->crtc)
487 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
488 							   new_state->crtc);
489 
490 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
491 						  DRM_PLANE_HELPER_NO_SCALING,
492 						  DRM_PLANE_HELPER_NO_SCALING,
493 						  true, true);
494 	if (ret)
495 		return ret;
496 
497 	/* Turning off */
498 	if (!fb)
499 		return 0;
500 
501 	/* A lot of the code assumes this */
502 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
503 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
504 			  new_state->crtc_w, new_state->crtc_h);
505 		ret = -EINVAL;
506 	}
507 
508 	if (!vmw_framebuffer_to_vfb(fb)->bo)
509 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
510 
511 	if (surface && !surface->snooper.image) {
512 		DRM_ERROR("surface not suitable for cursor\n");
513 		ret = -EINVAL;
514 	}
515 
516 	return ret;
517 }
518 
519 
520 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
521 			     struct drm_atomic_state *state)
522 {
523 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
524 									 crtc);
525 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
526 	int connector_mask = drm_connector_mask(&du->connector);
527 	bool has_primary = new_state->plane_mask &
528 			   drm_plane_mask(crtc->primary);
529 
530 	/* We always want to have an active plane with an active CRTC */
531 	if (has_primary != new_state->enable)
532 		return -EINVAL;
533 
534 
535 	if (new_state->connector_mask != connector_mask &&
536 	    new_state->connector_mask != 0) {
537 		DRM_ERROR("Invalid connectors configuration\n");
538 		return -EINVAL;
539 	}
540 
541 	/*
542 	 * Our virtual device does not have a dot clock, so use the logical
543 	 * clock value as the dot clock.
544 	 */
545 	if (new_state->mode.crtc_clock == 0)
546 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
547 
548 	return 0;
549 }
550 
551 
552 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
553 			      struct drm_atomic_state *state)
554 {
555 }
556 
557 
558 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
559 			      struct drm_atomic_state *state)
560 {
561 	struct drm_pending_vblank_event *event = crtc->state->event;
562 
563 	if (event) {
564 		crtc->state->event = NULL;
565 
566 		spin_lock_irq(&crtc->dev->event_lock);
567 		drm_crtc_send_vblank_event(crtc, event);
568 		spin_unlock_irq(&crtc->dev->event_lock);
569 	}
570 }
571 
572 
573 /**
574  * vmw_du_crtc_duplicate_state - duplicate crtc state
575  * @crtc: DRM crtc
576  *
577  * Allocates and returns a copy of the crtc state (both common and
578  * vmw-specific) for the specified crtc.
579  *
580  * Returns: The newly allocated crtc state, or NULL on failure.
581  */
582 struct drm_crtc_state *
583 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
584 {
585 	struct drm_crtc_state *state;
586 	struct vmw_crtc_state *vcs;
587 
588 	if (WARN_ON(!crtc->state))
589 		return NULL;
590 
591 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
592 
593 	if (!vcs)
594 		return NULL;
595 
596 	state = &vcs->base;
597 
598 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
599 
600 	return state;
601 }
602 
603 
604 /**
605  * vmw_du_crtc_reset - creates a blank vmw crtc state
606  * @crtc: DRM crtc
607  *
608  * Resets the atomic state for @crtc by freeing the state pointer (which
609  * might be NULL, e.g. at driver load time) and allocating a new empty state
610  * object.
611  */
612 void vmw_du_crtc_reset(struct drm_crtc *crtc)
613 {
614 	struct vmw_crtc_state *vcs;
615 
616 
617 	if (crtc->state) {
618 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
619 
620 		kfree(vmw_crtc_state_to_vcs(crtc->state));
621 	}
622 
623 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
624 
625 	if (!vcs) {
626 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
627 		return;
628 	}
629 
630 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
631 }
632 
633 
634 /**
635  * vmw_du_crtc_destroy_state - destroy crtc state
636  * @crtc: DRM crtc
637  * @state: state object to destroy
638  *
639  * Destroys the crtc state (both common and vmw-specific) for the
640  * specified plane.
641  */
642 void
643 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
644 			  struct drm_crtc_state *state)
645 {
646 	drm_atomic_helper_crtc_destroy_state(crtc, state);
647 }
648 
649 
650 /**
651  * vmw_du_plane_duplicate_state - duplicate plane state
652  * @plane: drm plane
653  *
654  * Allocates and returns a copy of the plane state (both common and
655  * vmw-specific) for the specified plane.
656  *
657  * Returns: The newly allocated plane state, or NULL on failure.
658  */
659 struct drm_plane_state *
660 vmw_du_plane_duplicate_state(struct drm_plane *plane)
661 {
662 	struct drm_plane_state *state;
663 	struct vmw_plane_state *vps;
664 
665 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
666 
667 	if (!vps)
668 		return NULL;
669 
670 	vps->pinned = 0;
671 	vps->cpp = 0;
672 
673 	/* Each ref counted resource needs to be acquired again */
674 	if (vps->surf)
675 		(void) vmw_surface_reference(vps->surf);
676 
677 	if (vps->bo)
678 		(void) vmw_bo_reference(vps->bo);
679 
680 	state = &vps->base;
681 
682 	__drm_atomic_helper_plane_duplicate_state(plane, state);
683 
684 	return state;
685 }
686 
687 
688 /**
689  * vmw_du_plane_reset - creates a blank vmw plane state
690  * @plane: drm plane
691  *
692  * Resets the atomic state for @plane by freeing the state pointer (which might
693  * be NULL, e.g. at driver load time) and allocating a new empty state object.
694  */
695 void vmw_du_plane_reset(struct drm_plane *plane)
696 {
697 	struct vmw_plane_state *vps;
698 
699 
700 	if (plane->state)
701 		vmw_du_plane_destroy_state(plane, plane->state);
702 
703 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
704 
705 	if (!vps) {
706 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
707 		return;
708 	}
709 
710 	__drm_atomic_helper_plane_reset(plane, &vps->base);
711 }
712 
713 
714 /**
715  * vmw_du_plane_destroy_state - destroy plane state
716  * @plane: DRM plane
717  * @state: state object to destroy
718  *
719  * Destroys the plane state (both common and vmw-specific) for the
720  * specified plane.
721  */
722 void
723 vmw_du_plane_destroy_state(struct drm_plane *plane,
724 			   struct drm_plane_state *state)
725 {
726 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
727 
728 
729 	/* Should have been freed by cleanup_fb */
730 	if (vps->surf)
731 		vmw_surface_unreference(&vps->surf);
732 
733 	if (vps->bo)
734 		vmw_bo_unreference(&vps->bo);
735 
736 	drm_atomic_helper_plane_destroy_state(plane, state);
737 }
738 
739 
740 /**
741  * vmw_du_connector_duplicate_state - duplicate connector state
742  * @connector: DRM connector
743  *
744  * Allocates and returns a copy of the connector state (both common and
745  * vmw-specific) for the specified connector.
746  *
747  * Returns: The newly allocated connector state, or NULL on failure.
748  */
749 struct drm_connector_state *
750 vmw_du_connector_duplicate_state(struct drm_connector *connector)
751 {
752 	struct drm_connector_state *state;
753 	struct vmw_connector_state *vcs;
754 
755 	if (WARN_ON(!connector->state))
756 		return NULL;
757 
758 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
759 
760 	if (!vcs)
761 		return NULL;
762 
763 	state = &vcs->base;
764 
765 	__drm_atomic_helper_connector_duplicate_state(connector, state);
766 
767 	return state;
768 }
769 
770 
771 /**
772  * vmw_du_connector_reset - creates a blank vmw connector state
773  * @connector: DRM connector
774  *
775  * Resets the atomic state for @connector by freeing the state pointer (which
776  * might be NULL, e.g. at driver load time) and allocating a new empty state
777  * object.
778  */
779 void vmw_du_connector_reset(struct drm_connector *connector)
780 {
781 	struct vmw_connector_state *vcs;
782 
783 
784 	if (connector->state) {
785 		__drm_atomic_helper_connector_destroy_state(connector->state);
786 
787 		kfree(vmw_connector_state_to_vcs(connector->state));
788 	}
789 
790 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
791 
792 	if (!vcs) {
793 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
794 		return;
795 	}
796 
797 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
798 }
799 
800 
801 /**
802  * vmw_du_connector_destroy_state - destroy connector state
803  * @connector: DRM connector
804  * @state: state object to destroy
805  *
806  * Destroys the connector state (both common and vmw-specific) for the
807  * specified plane.
808  */
809 void
810 vmw_du_connector_destroy_state(struct drm_connector *connector,
811 			  struct drm_connector_state *state)
812 {
813 	drm_atomic_helper_connector_destroy_state(connector, state);
814 }
815 /*
816  * Generic framebuffer code
817  */
818 
819 /*
820  * Surface framebuffer code
821  */
822 
823 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
824 {
825 	struct vmw_framebuffer_surface *vfbs =
826 		vmw_framebuffer_to_vfbs(framebuffer);
827 
828 	drm_framebuffer_cleanup(framebuffer);
829 	vmw_surface_unreference(&vfbs->surface);
830 	if (vfbs->base.user_obj)
831 		ttm_base_object_unref(&vfbs->base.user_obj);
832 
833 	kfree(vfbs);
834 }
835 
836 /**
837  * vmw_kms_readback - Perform a readback from the screen system to
838  * a buffer-object backed framebuffer.
839  *
840  * @dev_priv: Pointer to the device private structure.
841  * @file_priv: Pointer to a struct drm_file identifying the caller.
842  * Must be set to NULL if @user_fence_rep is NULL.
843  * @vfb: Pointer to the buffer-object backed framebuffer.
844  * @user_fence_rep: User-space provided structure for fence information.
845  * Must be set to non-NULL if @file_priv is non-NULL.
846  * @vclips: Array of clip rects.
847  * @num_clips: Number of clip rects in @vclips.
848  *
849  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
850  * interrupted.
851  */
852 int vmw_kms_readback(struct vmw_private *dev_priv,
853 		     struct drm_file *file_priv,
854 		     struct vmw_framebuffer *vfb,
855 		     struct drm_vmw_fence_rep __user *user_fence_rep,
856 		     struct drm_vmw_rect *vclips,
857 		     uint32_t num_clips)
858 {
859 	switch (dev_priv->active_display_unit) {
860 	case vmw_du_screen_object:
861 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
862 					    user_fence_rep, vclips, num_clips,
863 					    NULL);
864 	case vmw_du_screen_target:
865 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
866 					user_fence_rep, NULL, vclips, num_clips,
867 					1, false, true, NULL);
868 	default:
869 		WARN_ONCE(true,
870 			  "Readback called with invalid display system.\n");
871 }
872 
873 	return -ENOSYS;
874 }
875 
876 
877 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
878 	.destroy = vmw_framebuffer_surface_destroy,
879 	.dirty = drm_atomic_helper_dirtyfb,
880 };
881 
882 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
883 					   struct vmw_surface *surface,
884 					   struct vmw_framebuffer **out,
885 					   const struct drm_mode_fb_cmd2
886 					   *mode_cmd,
887 					   bool is_bo_proxy)
888 
889 {
890 	struct drm_device *dev = &dev_priv->drm;
891 	struct vmw_framebuffer_surface *vfbs;
892 	enum SVGA3dSurfaceFormat format;
893 	int ret;
894 	struct drm_format_name_buf format_name;
895 
896 	/* 3D is only supported on HWv8 and newer hosts */
897 	if (dev_priv->active_display_unit == vmw_du_legacy)
898 		return -ENOSYS;
899 
900 	/*
901 	 * Sanity checks.
902 	 */
903 
904 	/* Surface must be marked as a scanout. */
905 	if (unlikely(!surface->metadata.scanout))
906 		return -EINVAL;
907 
908 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
909 		     surface->metadata.num_sizes != 1 ||
910 		     surface->metadata.base_size.width < mode_cmd->width ||
911 		     surface->metadata.base_size.height < mode_cmd->height ||
912 		     surface->metadata.base_size.depth != 1)) {
913 		DRM_ERROR("Incompatible surface dimensions "
914 			  "for requested mode.\n");
915 		return -EINVAL;
916 	}
917 
918 	switch (mode_cmd->pixel_format) {
919 	case DRM_FORMAT_ARGB8888:
920 		format = SVGA3D_A8R8G8B8;
921 		break;
922 	case DRM_FORMAT_XRGB8888:
923 		format = SVGA3D_X8R8G8B8;
924 		break;
925 	case DRM_FORMAT_RGB565:
926 		format = SVGA3D_R5G6B5;
927 		break;
928 	case DRM_FORMAT_XRGB1555:
929 		format = SVGA3D_A1R5G5B5;
930 		break;
931 	default:
932 		DRM_ERROR("Invalid pixel format: %s\n",
933 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
934 		return -EINVAL;
935 	}
936 
937 	/*
938 	 * For DX, surface format validation is done when surface->scanout
939 	 * is set.
940 	 */
941 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
942 		DRM_ERROR("Invalid surface format for requested mode.\n");
943 		return -EINVAL;
944 	}
945 
946 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
947 	if (!vfbs) {
948 		ret = -ENOMEM;
949 		goto out_err1;
950 	}
951 
952 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
953 	vfbs->surface = vmw_surface_reference(surface);
954 	vfbs->base.user_handle = mode_cmd->handles[0];
955 	vfbs->is_bo_proxy = is_bo_proxy;
956 
957 	*out = &vfbs->base;
958 
959 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
960 				   &vmw_framebuffer_surface_funcs);
961 	if (ret)
962 		goto out_err2;
963 
964 	return 0;
965 
966 out_err2:
967 	vmw_surface_unreference(&surface);
968 	kfree(vfbs);
969 out_err1:
970 	return ret;
971 }
972 
973 /*
974  * Buffer-object framebuffer code
975  */
976 
977 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
978 {
979 	struct vmw_framebuffer_bo *vfbd =
980 		vmw_framebuffer_to_vfbd(framebuffer);
981 
982 	drm_framebuffer_cleanup(framebuffer);
983 	vmw_bo_unreference(&vfbd->buffer);
984 	if (vfbd->base.user_obj)
985 		ttm_base_object_unref(&vfbd->base.user_obj);
986 
987 	kfree(vfbd);
988 }
989 
990 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
991 				    struct drm_file *file_priv,
992 				    unsigned int flags, unsigned int color,
993 				    struct drm_clip_rect *clips,
994 				    unsigned int num_clips)
995 {
996 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
997 	struct vmw_framebuffer_bo *vfbd =
998 		vmw_framebuffer_to_vfbd(framebuffer);
999 	struct drm_clip_rect norect;
1000 	int ret, increment = 1;
1001 
1002 	drm_modeset_lock_all(&dev_priv->drm);
1003 
1004 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1005 	if (unlikely(ret != 0)) {
1006 		drm_modeset_unlock_all(&dev_priv->drm);
1007 		return ret;
1008 	}
1009 
1010 	if (!num_clips) {
1011 		num_clips = 1;
1012 		clips = &norect;
1013 		norect.x1 = norect.y1 = 0;
1014 		norect.x2 = framebuffer->width;
1015 		norect.y2 = framebuffer->height;
1016 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1017 		num_clips /= 2;
1018 		increment = 2;
1019 	}
1020 
1021 	switch (dev_priv->active_display_unit) {
1022 	case vmw_du_legacy:
1023 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1024 					      clips, num_clips, increment);
1025 		break;
1026 	default:
1027 		ret = -EINVAL;
1028 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1029 		break;
1030 	}
1031 
1032 	vmw_cmd_flush(dev_priv, false);
1033 	ttm_read_unlock(&dev_priv->reservation_sem);
1034 
1035 	drm_modeset_unlock_all(&dev_priv->drm);
1036 
1037 	return ret;
1038 }
1039 
1040 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1041 					struct drm_file *file_priv,
1042 					unsigned int flags, unsigned int color,
1043 					struct drm_clip_rect *clips,
1044 					unsigned int num_clips)
1045 {
1046 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1047 
1048 	if (dev_priv->active_display_unit == vmw_du_legacy)
1049 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1050 						color, clips, num_clips);
1051 
1052 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1053 					 clips, num_clips);
1054 }
1055 
1056 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1057 	.destroy = vmw_framebuffer_bo_destroy,
1058 	.dirty = vmw_framebuffer_bo_dirty_ext,
1059 };
1060 
1061 /**
1062  * Pin the bofer in a location suitable for access by the
1063  * display system.
1064  */
1065 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1066 {
1067 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1068 	struct vmw_buffer_object *buf;
1069 	struct ttm_placement *placement;
1070 	int ret;
1071 
1072 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1073 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1074 
1075 	if (!buf)
1076 		return 0;
1077 
1078 	switch (dev_priv->active_display_unit) {
1079 	case vmw_du_legacy:
1080 		vmw_overlay_pause_all(dev_priv);
1081 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1082 		vmw_overlay_resume_all(dev_priv);
1083 		break;
1084 	case vmw_du_screen_object:
1085 	case vmw_du_screen_target:
1086 		if (vfb->bo) {
1087 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1088 				/*
1089 				 * Use surface DMA to get content to
1090 				 * sreen target surface.
1091 				 */
1092 				placement = &vmw_vram_gmr_placement;
1093 			} else {
1094 				/* Use CPU blit. */
1095 				placement = &vmw_sys_placement;
1096 			}
1097 		} else {
1098 			/* Use surface / image update */
1099 			placement = &vmw_mob_placement;
1100 		}
1101 
1102 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1103 	default:
1104 		return -EINVAL;
1105 	}
1106 
1107 	return ret;
1108 }
1109 
1110 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1111 {
1112 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1113 	struct vmw_buffer_object *buf;
1114 
1115 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1116 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1117 
1118 	if (WARN_ON(!buf))
1119 		return 0;
1120 
1121 	return vmw_bo_unpin(dev_priv, buf, false);
1122 }
1123 
1124 /**
1125  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1126  *
1127  * @dev: DRM device
1128  * @mode_cmd: parameters for the new surface
1129  * @bo_mob: MOB backing the buffer object
1130  * @srf_out: newly created surface
1131  *
1132  * When the content FB is a buffer object, we create a surface as a proxy to the
1133  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1134  * This is a more efficient approach
1135  *
1136  * RETURNS:
1137  * 0 on success, error code otherwise
1138  */
1139 static int vmw_create_bo_proxy(struct drm_device *dev,
1140 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1141 			       struct vmw_buffer_object *bo_mob,
1142 			       struct vmw_surface **srf_out)
1143 {
1144 	struct vmw_surface_metadata metadata = {0};
1145 	uint32_t format;
1146 	struct vmw_resource *res;
1147 	unsigned int bytes_pp;
1148 	struct drm_format_name_buf format_name;
1149 	int ret;
1150 
1151 	switch (mode_cmd->pixel_format) {
1152 	case DRM_FORMAT_ARGB8888:
1153 	case DRM_FORMAT_XRGB8888:
1154 		format = SVGA3D_X8R8G8B8;
1155 		bytes_pp = 4;
1156 		break;
1157 
1158 	case DRM_FORMAT_RGB565:
1159 	case DRM_FORMAT_XRGB1555:
1160 		format = SVGA3D_R5G6B5;
1161 		bytes_pp = 2;
1162 		break;
1163 
1164 	case 8:
1165 		format = SVGA3D_P8;
1166 		bytes_pp = 1;
1167 		break;
1168 
1169 	default:
1170 		DRM_ERROR("Invalid framebuffer format %s\n",
1171 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1172 		return -EINVAL;
1173 	}
1174 
1175 	metadata.format = format;
1176 	metadata.mip_levels[0] = 1;
1177 	metadata.num_sizes = 1;
1178 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1179 	metadata.base_size.height =  mode_cmd->height;
1180 	metadata.base_size.depth = 1;
1181 	metadata.scanout = true;
1182 
1183 	ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out);
1184 	if (ret) {
1185 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1186 		return ret;
1187 	}
1188 
1189 	res = &(*srf_out)->res;
1190 
1191 	/* Reserve and switch the backing mob. */
1192 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1193 	(void) vmw_resource_reserve(res, false, true);
1194 	vmw_bo_unreference(&res->backup);
1195 	res->backup = vmw_bo_reference(bo_mob);
1196 	res->backup_offset = 0;
1197 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1198 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1199 
1200 	return 0;
1201 }
1202 
1203 
1204 
1205 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1206 				      struct vmw_buffer_object *bo,
1207 				      struct vmw_framebuffer **out,
1208 				      const struct drm_mode_fb_cmd2
1209 				      *mode_cmd)
1210 
1211 {
1212 	struct drm_device *dev = &dev_priv->drm;
1213 	struct vmw_framebuffer_bo *vfbd;
1214 	unsigned int requested_size;
1215 	struct drm_format_name_buf format_name;
1216 	int ret;
1217 
1218 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1219 	if (unlikely(requested_size > bo->base.base.size)) {
1220 		DRM_ERROR("Screen buffer object size is too small "
1221 			  "for requested mode.\n");
1222 		return -EINVAL;
1223 	}
1224 
1225 	/* Limited framebuffer color depth support for screen objects */
1226 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1227 		switch (mode_cmd->pixel_format) {
1228 		case DRM_FORMAT_XRGB8888:
1229 		case DRM_FORMAT_ARGB8888:
1230 			break;
1231 		case DRM_FORMAT_XRGB1555:
1232 		case DRM_FORMAT_RGB565:
1233 			break;
1234 		default:
1235 			DRM_ERROR("Invalid pixel format: %s\n",
1236 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1237 			return -EINVAL;
1238 		}
1239 	}
1240 
1241 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1242 	if (!vfbd) {
1243 		ret = -ENOMEM;
1244 		goto out_err1;
1245 	}
1246 
1247 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1248 	vfbd->base.bo = true;
1249 	vfbd->buffer = vmw_bo_reference(bo);
1250 	vfbd->base.user_handle = mode_cmd->handles[0];
1251 	*out = &vfbd->base;
1252 
1253 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1254 				   &vmw_framebuffer_bo_funcs);
1255 	if (ret)
1256 		goto out_err2;
1257 
1258 	return 0;
1259 
1260 out_err2:
1261 	vmw_bo_unreference(&bo);
1262 	kfree(vfbd);
1263 out_err1:
1264 	return ret;
1265 }
1266 
1267 
1268 /**
1269  * vmw_kms_srf_ok - check if a surface can be created
1270  *
1271  * @width: requested width
1272  * @height: requested height
1273  *
1274  * Surfaces need to be less than texture size
1275  */
1276 static bool
1277 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1278 {
1279 	if (width  > dev_priv->texture_max_width ||
1280 	    height > dev_priv->texture_max_height)
1281 		return false;
1282 
1283 	return true;
1284 }
1285 
1286 /**
1287  * vmw_kms_new_framebuffer - Create a new framebuffer.
1288  *
1289  * @dev_priv: Pointer to device private struct.
1290  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1291  * Either @bo or @surface must be NULL.
1292  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1293  * Either @bo or @surface must be NULL.
1294  * @only_2d: No presents will occur to this buffer object based framebuffer.
1295  * This helps the code to do some important optimizations.
1296  * @mode_cmd: Frame-buffer metadata.
1297  */
1298 struct vmw_framebuffer *
1299 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1300 			struct vmw_buffer_object *bo,
1301 			struct vmw_surface *surface,
1302 			bool only_2d,
1303 			const struct drm_mode_fb_cmd2 *mode_cmd)
1304 {
1305 	struct vmw_framebuffer *vfb = NULL;
1306 	bool is_bo_proxy = false;
1307 	int ret;
1308 
1309 	/*
1310 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1311 	 * therefore, wrap the buffer object in a surface so we can use the
1312 	 * SurfaceCopy command.
1313 	 */
1314 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1315 	    bo && only_2d &&
1316 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1317 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1318 		ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd,
1319 					  bo, &surface);
1320 		if (ret)
1321 			return ERR_PTR(ret);
1322 
1323 		is_bo_proxy = true;
1324 	}
1325 
1326 	/* Create the new framebuffer depending one what we have */
1327 	if (surface) {
1328 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1329 						      mode_cmd,
1330 						      is_bo_proxy);
1331 
1332 		/*
1333 		 * vmw_create_bo_proxy() adds a reference that is no longer
1334 		 * needed
1335 		 */
1336 		if (is_bo_proxy)
1337 			vmw_surface_unreference(&surface);
1338 	} else if (bo) {
1339 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1340 						 mode_cmd);
1341 	} else {
1342 		BUG();
1343 	}
1344 
1345 	if (ret)
1346 		return ERR_PTR(ret);
1347 
1348 	vfb->pin = vmw_framebuffer_pin;
1349 	vfb->unpin = vmw_framebuffer_unpin;
1350 
1351 	return vfb;
1352 }
1353 
1354 /*
1355  * Generic Kernel modesetting functions
1356  */
1357 
1358 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1359 						 struct drm_file *file_priv,
1360 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1361 {
1362 	struct vmw_private *dev_priv = vmw_priv(dev);
1363 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1364 	struct vmw_framebuffer *vfb = NULL;
1365 	struct vmw_surface *surface = NULL;
1366 	struct vmw_buffer_object *bo = NULL;
1367 	struct ttm_base_object *user_obj;
1368 	int ret;
1369 
1370 	/*
1371 	 * Take a reference on the user object of the resource
1372 	 * backing the kms fb. This ensures that user-space handle
1373 	 * lookups on that resource will always work as long as
1374 	 * it's registered with a kms framebuffer. This is important,
1375 	 * since vmw_execbuf_process identifies resources in the
1376 	 * command stream using user-space handles.
1377 	 */
1378 
1379 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1380 	if (unlikely(user_obj == NULL)) {
1381 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1382 		return ERR_PTR(-ENOENT);
1383 	}
1384 
1385 	/**
1386 	 * End conditioned code.
1387 	 */
1388 
1389 	/* returns either a bo or surface */
1390 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1391 				     mode_cmd->handles[0],
1392 				     &surface, &bo);
1393 	if (ret)
1394 		goto err_out;
1395 
1396 
1397 	if (!bo &&
1398 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1399 		DRM_ERROR("Surface size cannot exceed %dx%d",
1400 			dev_priv->texture_max_width,
1401 			dev_priv->texture_max_height);
1402 		goto err_out;
1403 	}
1404 
1405 
1406 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1407 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1408 				      mode_cmd);
1409 	if (IS_ERR(vfb)) {
1410 		ret = PTR_ERR(vfb);
1411 		goto err_out;
1412  	}
1413 
1414 err_out:
1415 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1416 	if (bo)
1417 		vmw_bo_unreference(&bo);
1418 	if (surface)
1419 		vmw_surface_unreference(&surface);
1420 
1421 	if (ret) {
1422 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1423 		ttm_base_object_unref(&user_obj);
1424 		return ERR_PTR(ret);
1425 	} else
1426 		vfb->user_obj = user_obj;
1427 
1428 	return &vfb->base;
1429 }
1430 
1431 /**
1432  * vmw_kms_check_display_memory - Validates display memory required for a
1433  * topology
1434  * @dev: DRM device
1435  * @num_rects: number of drm_rect in rects
1436  * @rects: array of drm_rect representing the topology to validate indexed by
1437  * crtc index.
1438  *
1439  * Returns:
1440  * 0 on success otherwise negative error code
1441  */
1442 static int vmw_kms_check_display_memory(struct drm_device *dev,
1443 					uint32_t num_rects,
1444 					struct drm_rect *rects)
1445 {
1446 	struct vmw_private *dev_priv = vmw_priv(dev);
1447 	struct drm_rect bounding_box = {0};
1448 	u64 total_pixels = 0, pixel_mem, bb_mem;
1449 	int i;
1450 
1451 	for (i = 0; i < num_rects; i++) {
1452 		/*
1453 		 * For STDU only individual screen (screen target) is limited by
1454 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1455 		 */
1456 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1457 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1458 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1459 			VMW_DEBUG_KMS("Screen size not supported.\n");
1460 			return -EINVAL;
1461 		}
1462 
1463 		/* Bounding box upper left is at (0,0). */
1464 		if (rects[i].x2 > bounding_box.x2)
1465 			bounding_box.x2 = rects[i].x2;
1466 
1467 		if (rects[i].y2 > bounding_box.y2)
1468 			bounding_box.y2 = rects[i].y2;
1469 
1470 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1471 			(u64) drm_rect_height(&rects[i]);
1472 	}
1473 
1474 	/* Virtual svga device primary limits are always in 32-bpp. */
1475 	pixel_mem = total_pixels * 4;
1476 
1477 	/*
1478 	 * For HV10 and below prim_bb_mem is vram size. When
1479 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1480 	 * limit on primary bounding box
1481 	 */
1482 	if (pixel_mem > dev_priv->prim_bb_mem) {
1483 		VMW_DEBUG_KMS("Combined output size too large.\n");
1484 		return -EINVAL;
1485 	}
1486 
1487 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1488 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1489 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1490 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1491 
1492 		if (bb_mem > dev_priv->prim_bb_mem) {
1493 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1494 			return -EINVAL;
1495 		}
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 /**
1502  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1503  * crtc mutex
1504  * @state: The atomic state pointer containing the new atomic state
1505  * @crtc: The crtc
1506  *
1507  * This function returns the new crtc state if it's part of the state update.
1508  * Otherwise returns the current crtc state. It also makes sure that the
1509  * crtc mutex is locked.
1510  *
1511  * Returns: A valid crtc state pointer or NULL. It may also return a
1512  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1513  */
1514 static struct drm_crtc_state *
1515 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1516 {
1517 	struct drm_crtc_state *crtc_state;
1518 
1519 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1520 	if (crtc_state) {
1521 		lockdep_assert_held(&crtc->mutex.mutex.base);
1522 	} else {
1523 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1524 
1525 		if (ret != 0 && ret != -EALREADY)
1526 			return ERR_PTR(ret);
1527 
1528 		crtc_state = crtc->state;
1529 	}
1530 
1531 	return crtc_state;
1532 }
1533 
1534 /**
1535  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1536  * from the same fb after the new state is committed.
1537  * @dev: The drm_device.
1538  * @state: The new state to be checked.
1539  *
1540  * Returns:
1541  *   Zero on success,
1542  *   -EINVAL on invalid state,
1543  *   -EDEADLK if modeset locking needs to be rerun.
1544  */
1545 static int vmw_kms_check_implicit(struct drm_device *dev,
1546 				  struct drm_atomic_state *state)
1547 {
1548 	struct drm_framebuffer *implicit_fb = NULL;
1549 	struct drm_crtc *crtc;
1550 	struct drm_crtc_state *crtc_state;
1551 	struct drm_plane_state *plane_state;
1552 
1553 	drm_for_each_crtc(crtc, dev) {
1554 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1555 
1556 		if (!du->is_implicit)
1557 			continue;
1558 
1559 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1560 		if (IS_ERR(crtc_state))
1561 			return PTR_ERR(crtc_state);
1562 
1563 		if (!crtc_state || !crtc_state->enable)
1564 			continue;
1565 
1566 		/*
1567 		 * Can't move primary planes across crtcs, so this is OK.
1568 		 * It also means we don't need to take the plane mutex.
1569 		 */
1570 		plane_state = du->primary.state;
1571 		if (plane_state->crtc != crtc)
1572 			continue;
1573 
1574 		if (!implicit_fb)
1575 			implicit_fb = plane_state->fb;
1576 		else if (implicit_fb != plane_state->fb)
1577 			return -EINVAL;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1585  * @dev: DRM device
1586  * @state: the driver state object
1587  *
1588  * Returns:
1589  * 0 on success otherwise negative error code
1590  */
1591 static int vmw_kms_check_topology(struct drm_device *dev,
1592 				  struct drm_atomic_state *state)
1593 {
1594 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1595 	struct drm_rect *rects;
1596 	struct drm_crtc *crtc;
1597 	uint32_t i;
1598 	int ret = 0;
1599 
1600 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1601 			GFP_KERNEL);
1602 	if (!rects)
1603 		return -ENOMEM;
1604 
1605 	drm_for_each_crtc(crtc, dev) {
1606 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1607 		struct drm_crtc_state *crtc_state;
1608 
1609 		i = drm_crtc_index(crtc);
1610 
1611 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1612 		if (IS_ERR(crtc_state)) {
1613 			ret = PTR_ERR(crtc_state);
1614 			goto clean;
1615 		}
1616 
1617 		if (!crtc_state)
1618 			continue;
1619 
1620 		if (crtc_state->enable) {
1621 			rects[i].x1 = du->gui_x;
1622 			rects[i].y1 = du->gui_y;
1623 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1624 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1625 		} else {
1626 			rects[i].x1 = 0;
1627 			rects[i].y1 = 0;
1628 			rects[i].x2 = 0;
1629 			rects[i].y2 = 0;
1630 		}
1631 	}
1632 
1633 	/* Determine change to topology due to new atomic state */
1634 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1635 				      new_crtc_state, i) {
1636 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1637 		struct drm_connector *connector;
1638 		struct drm_connector_state *conn_state;
1639 		struct vmw_connector_state *vmw_conn_state;
1640 
1641 		if (!du->pref_active && new_crtc_state->enable) {
1642 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1643 			ret = -EINVAL;
1644 			goto clean;
1645 		}
1646 
1647 		/*
1648 		 * For vmwgfx each crtc has only one connector attached and it
1649 		 * is not changed so don't really need to check the
1650 		 * crtc->connector_mask and iterate over it.
1651 		 */
1652 		connector = &du->connector;
1653 		conn_state = drm_atomic_get_connector_state(state, connector);
1654 		if (IS_ERR(conn_state)) {
1655 			ret = PTR_ERR(conn_state);
1656 			goto clean;
1657 		}
1658 
1659 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1660 		vmw_conn_state->gui_x = du->gui_x;
1661 		vmw_conn_state->gui_y = du->gui_y;
1662 	}
1663 
1664 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1665 					   rects);
1666 
1667 clean:
1668 	kfree(rects);
1669 	return ret;
1670 }
1671 
1672 /**
1673  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1674  *
1675  * @dev: DRM device
1676  * @state: the driver state object
1677  *
1678  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1679  * us to assign a value to mode->crtc_clock so that
1680  * drm_calc_timestamping_constants() won't throw an error message
1681  *
1682  * Returns:
1683  * Zero for success or -errno
1684  */
1685 static int
1686 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1687 			     struct drm_atomic_state *state)
1688 {
1689 	struct drm_crtc *crtc;
1690 	struct drm_crtc_state *crtc_state;
1691 	bool need_modeset = false;
1692 	int i, ret;
1693 
1694 	ret = drm_atomic_helper_check(dev, state);
1695 	if (ret)
1696 		return ret;
1697 
1698 	ret = vmw_kms_check_implicit(dev, state);
1699 	if (ret) {
1700 		VMW_DEBUG_KMS("Invalid implicit state\n");
1701 		return ret;
1702 	}
1703 
1704 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1705 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1706 			need_modeset = true;
1707 	}
1708 
1709 	if (need_modeset)
1710 		return vmw_kms_check_topology(dev, state);
1711 
1712 	return ret;
1713 }
1714 
1715 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1716 	.fb_create = vmw_kms_fb_create,
1717 	.atomic_check = vmw_kms_atomic_check_modeset,
1718 	.atomic_commit = drm_atomic_helper_commit,
1719 };
1720 
1721 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1722 				   struct drm_file *file_priv,
1723 				   struct vmw_framebuffer *vfb,
1724 				   struct vmw_surface *surface,
1725 				   uint32_t sid,
1726 				   int32_t destX, int32_t destY,
1727 				   struct drm_vmw_rect *clips,
1728 				   uint32_t num_clips)
1729 {
1730 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1731 					    &surface->res, destX, destY,
1732 					    num_clips, 1, NULL, NULL);
1733 }
1734 
1735 
1736 int vmw_kms_present(struct vmw_private *dev_priv,
1737 		    struct drm_file *file_priv,
1738 		    struct vmw_framebuffer *vfb,
1739 		    struct vmw_surface *surface,
1740 		    uint32_t sid,
1741 		    int32_t destX, int32_t destY,
1742 		    struct drm_vmw_rect *clips,
1743 		    uint32_t num_clips)
1744 {
1745 	int ret;
1746 
1747 	switch (dev_priv->active_display_unit) {
1748 	case vmw_du_screen_target:
1749 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1750 						 &surface->res, destX, destY,
1751 						 num_clips, 1, NULL, NULL);
1752 		break;
1753 	case vmw_du_screen_object:
1754 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1755 					      sid, destX, destY, clips,
1756 					      num_clips);
1757 		break;
1758 	default:
1759 		WARN_ONCE(true,
1760 			  "Present called with invalid display system.\n");
1761 		ret = -ENOSYS;
1762 		break;
1763 	}
1764 	if (ret)
1765 		return ret;
1766 
1767 	vmw_cmd_flush(dev_priv, false);
1768 
1769 	return 0;
1770 }
1771 
1772 static void
1773 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1774 {
1775 	if (dev_priv->hotplug_mode_update_property)
1776 		return;
1777 
1778 	dev_priv->hotplug_mode_update_property =
1779 		drm_property_create_range(&dev_priv->drm,
1780 					  DRM_MODE_PROP_IMMUTABLE,
1781 					  "hotplug_mode_update", 0, 1);
1782 
1783 	if (!dev_priv->hotplug_mode_update_property)
1784 		return;
1785 
1786 }
1787 
1788 int vmw_kms_init(struct vmw_private *dev_priv)
1789 {
1790 	struct drm_device *dev = &dev_priv->drm;
1791 	int ret;
1792 
1793 	drm_mode_config_init(dev);
1794 	dev->mode_config.funcs = &vmw_kms_funcs;
1795 	dev->mode_config.min_width = 1;
1796 	dev->mode_config.min_height = 1;
1797 	dev->mode_config.max_width = dev_priv->texture_max_width;
1798 	dev->mode_config.max_height = dev_priv->texture_max_height;
1799 
1800 	drm_mode_create_suggested_offset_properties(dev);
1801 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1802 
1803 	ret = vmw_kms_stdu_init_display(dev_priv);
1804 	if (ret) {
1805 		ret = vmw_kms_sou_init_display(dev_priv);
1806 		if (ret) /* Fallback */
1807 			ret = vmw_kms_ldu_init_display(dev_priv);
1808 	}
1809 
1810 	return ret;
1811 }
1812 
1813 int vmw_kms_close(struct vmw_private *dev_priv)
1814 {
1815 	int ret = 0;
1816 
1817 	/*
1818 	 * Docs says we should take the lock before calling this function
1819 	 * but since it destroys encoders and our destructor calls
1820 	 * drm_encoder_cleanup which takes the lock we deadlock.
1821 	 */
1822 	drm_mode_config_cleanup(&dev_priv->drm);
1823 	if (dev_priv->active_display_unit == vmw_du_legacy)
1824 		ret = vmw_kms_ldu_close_display(dev_priv);
1825 
1826 	return ret;
1827 }
1828 
1829 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1830 				struct drm_file *file_priv)
1831 {
1832 	struct drm_vmw_cursor_bypass_arg *arg = data;
1833 	struct vmw_display_unit *du;
1834 	struct drm_crtc *crtc;
1835 	int ret = 0;
1836 
1837 
1838 	mutex_lock(&dev->mode_config.mutex);
1839 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1840 
1841 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1842 			du = vmw_crtc_to_du(crtc);
1843 			du->hotspot_x = arg->xhot;
1844 			du->hotspot_y = arg->yhot;
1845 		}
1846 
1847 		mutex_unlock(&dev->mode_config.mutex);
1848 		return 0;
1849 	}
1850 
1851 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1852 	if (!crtc) {
1853 		ret = -ENOENT;
1854 		goto out;
1855 	}
1856 
1857 	du = vmw_crtc_to_du(crtc);
1858 
1859 	du->hotspot_x = arg->xhot;
1860 	du->hotspot_y = arg->yhot;
1861 
1862 out:
1863 	mutex_unlock(&dev->mode_config.mutex);
1864 
1865 	return ret;
1866 }
1867 
1868 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1869 			unsigned width, unsigned height, unsigned pitch,
1870 			unsigned bpp, unsigned depth)
1871 {
1872 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1873 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1874 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1875 		vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
1876 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1877 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1878 	if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
1879 		vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1880 
1881 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1882 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1883 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1884 		return -EINVAL;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1891 				uint32_t pitch,
1892 				uint32_t height)
1893 {
1894 	return ((u64) pitch * (u64) height) < (u64)
1895 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1896 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1897 }
1898 
1899 
1900 /**
1901  * Function called by DRM code called with vbl_lock held.
1902  */
1903 u32 vmw_get_vblank_counter(struct drm_crtc *crtc)
1904 {
1905 	return 0;
1906 }
1907 
1908 /**
1909  * Function called by DRM code called with vbl_lock held.
1910  */
1911 int vmw_enable_vblank(struct drm_crtc *crtc)
1912 {
1913 	return -EINVAL;
1914 }
1915 
1916 /**
1917  * Function called by DRM code called with vbl_lock held.
1918  */
1919 void vmw_disable_vblank(struct drm_crtc *crtc)
1920 {
1921 }
1922 
1923 /**
1924  * vmw_du_update_layout - Update the display unit with topology from resolution
1925  * plugin and generate DRM uevent
1926  * @dev_priv: device private
1927  * @num_rects: number of drm_rect in rects
1928  * @rects: toplogy to update
1929  */
1930 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1931 				unsigned int num_rects, struct drm_rect *rects)
1932 {
1933 	struct drm_device *dev = &dev_priv->drm;
1934 	struct vmw_display_unit *du;
1935 	struct drm_connector *con;
1936 	struct drm_connector_list_iter conn_iter;
1937 	struct drm_modeset_acquire_ctx ctx;
1938 	struct drm_crtc *crtc;
1939 	int ret;
1940 
1941 	/* Currently gui_x/y is protected with the crtc mutex */
1942 	mutex_lock(&dev->mode_config.mutex);
1943 	drm_modeset_acquire_init(&ctx, 0);
1944 retry:
1945 	drm_for_each_crtc(crtc, dev) {
1946 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1947 		if (ret < 0) {
1948 			if (ret == -EDEADLK) {
1949 				drm_modeset_backoff(&ctx);
1950 				goto retry;
1951       		}
1952 			goto out_fini;
1953 		}
1954 	}
1955 
1956 	drm_connector_list_iter_begin(dev, &conn_iter);
1957 	drm_for_each_connector_iter(con, &conn_iter) {
1958 		du = vmw_connector_to_du(con);
1959 		if (num_rects > du->unit) {
1960 			du->pref_width = drm_rect_width(&rects[du->unit]);
1961 			du->pref_height = drm_rect_height(&rects[du->unit]);
1962 			du->pref_active = true;
1963 			du->gui_x = rects[du->unit].x1;
1964 			du->gui_y = rects[du->unit].y1;
1965 		} else {
1966 			du->pref_width = 800;
1967 			du->pref_height = 600;
1968 			du->pref_active = false;
1969 			du->gui_x = 0;
1970 			du->gui_y = 0;
1971 		}
1972 	}
1973 	drm_connector_list_iter_end(&conn_iter);
1974 
1975 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1976 		du = vmw_connector_to_du(con);
1977 		if (num_rects > du->unit) {
1978 			drm_object_property_set_value
1979 			  (&con->base, dev->mode_config.suggested_x_property,
1980 			   du->gui_x);
1981 			drm_object_property_set_value
1982 			  (&con->base, dev->mode_config.suggested_y_property,
1983 			   du->gui_y);
1984 		} else {
1985 			drm_object_property_set_value
1986 			  (&con->base, dev->mode_config.suggested_x_property,
1987 			   0);
1988 			drm_object_property_set_value
1989 			  (&con->base, dev->mode_config.suggested_y_property,
1990 			   0);
1991 		}
1992 		con->status = vmw_du_connector_detect(con, true);
1993 	}
1994 
1995 	drm_sysfs_hotplug_event(dev);
1996 out_fini:
1997 	drm_modeset_drop_locks(&ctx);
1998 	drm_modeset_acquire_fini(&ctx);
1999 	mutex_unlock(&dev->mode_config.mutex);
2000 
2001 	return 0;
2002 }
2003 
2004 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2005 			  u16 *r, u16 *g, u16 *b,
2006 			  uint32_t size,
2007 			  struct drm_modeset_acquire_ctx *ctx)
2008 {
2009 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2010 	int i;
2011 
2012 	for (i = 0; i < size; i++) {
2013 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2014 			  r[i], g[i], b[i]);
2015 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2016 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2017 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2024 {
2025 	return 0;
2026 }
2027 
2028 enum drm_connector_status
2029 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2030 {
2031 	uint32_t num_displays;
2032 	struct drm_device *dev = connector->dev;
2033 	struct vmw_private *dev_priv = vmw_priv(dev);
2034 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2035 
2036 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2037 
2038 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2039 		 du->pref_active) ?
2040 		connector_status_connected : connector_status_disconnected);
2041 }
2042 
2043 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2044 	/* 640x480@60Hz */
2045 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2046 		   752, 800, 0, 480, 489, 492, 525, 0,
2047 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2048 	/* 800x600@60Hz */
2049 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2050 		   968, 1056, 0, 600, 601, 605, 628, 0,
2051 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2052 	/* 1024x768@60Hz */
2053 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2054 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2055 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2056 	/* 1152x864@75Hz */
2057 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2058 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2059 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2060 	/* 1280x768@60Hz */
2061 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2062 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2063 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2064 	/* 1280x800@60Hz */
2065 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2066 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2067 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2068 	/* 1280x960@60Hz */
2069 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2070 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2071 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2072 	/* 1280x1024@60Hz */
2073 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2074 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2075 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2076 	/* 1360x768@60Hz */
2077 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2078 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2080 	/* 1440x1050@60Hz */
2081 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2082 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2083 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2084 	/* 1440x900@60Hz */
2085 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2086 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2087 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2088 	/* 1600x1200@60Hz */
2089 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2090 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2091 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2092 	/* 1680x1050@60Hz */
2093 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2094 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2095 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2096 	/* 1792x1344@60Hz */
2097 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2098 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2099 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2100 	/* 1853x1392@60Hz */
2101 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2102 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2103 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2104 	/* 1920x1200@60Hz */
2105 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2106 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2107 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2108 	/* 1920x1440@60Hz */
2109 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2110 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2111 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2112 	/* 2560x1600@60Hz */
2113 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2114 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2115 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2116 	/* Terminate */
2117 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2118 };
2119 
2120 /**
2121  * vmw_guess_mode_timing - Provide fake timings for a
2122  * 60Hz vrefresh mode.
2123  *
2124  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2125  * members filled in.
2126  */
2127 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2128 {
2129 	mode->hsync_start = mode->hdisplay + 50;
2130 	mode->hsync_end = mode->hsync_start + 50;
2131 	mode->htotal = mode->hsync_end + 50;
2132 
2133 	mode->vsync_start = mode->vdisplay + 50;
2134 	mode->vsync_end = mode->vsync_start + 50;
2135 	mode->vtotal = mode->vsync_end + 50;
2136 
2137 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2138 }
2139 
2140 
2141 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2142 				uint32_t max_width, uint32_t max_height)
2143 {
2144 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2145 	struct drm_device *dev = connector->dev;
2146 	struct vmw_private *dev_priv = vmw_priv(dev);
2147 	struct drm_display_mode *mode = NULL;
2148 	struct drm_display_mode *bmode;
2149 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2150 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2151 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2152 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2153 	};
2154 	int i;
2155 	u32 assumed_bpp = 4;
2156 
2157 	if (dev_priv->assume_16bpp)
2158 		assumed_bpp = 2;
2159 
2160 	max_width  = min(max_width,  dev_priv->texture_max_width);
2161 	max_height = min(max_height, dev_priv->texture_max_height);
2162 
2163 	/*
2164 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2165 	 * HEIGHT registers.
2166 	 */
2167 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2168 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2169 		max_height = min(max_height, dev_priv->stdu_max_height);
2170 	}
2171 
2172 	/* Add preferred mode */
2173 	mode = drm_mode_duplicate(dev, &prefmode);
2174 	if (!mode)
2175 		return 0;
2176 	mode->hdisplay = du->pref_width;
2177 	mode->vdisplay = du->pref_height;
2178 	vmw_guess_mode_timing(mode);
2179 
2180 	if (vmw_kms_validate_mode_vram(dev_priv,
2181 					mode->hdisplay * assumed_bpp,
2182 					mode->vdisplay)) {
2183 		drm_mode_probed_add(connector, mode);
2184 	} else {
2185 		drm_mode_destroy(dev, mode);
2186 		mode = NULL;
2187 	}
2188 
2189 	if (du->pref_mode) {
2190 		list_del_init(&du->pref_mode->head);
2191 		drm_mode_destroy(dev, du->pref_mode);
2192 	}
2193 
2194 	/* mode might be null here, this is intended */
2195 	du->pref_mode = mode;
2196 
2197 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2198 		bmode = &vmw_kms_connector_builtin[i];
2199 		if (bmode->hdisplay > max_width ||
2200 		    bmode->vdisplay > max_height)
2201 			continue;
2202 
2203 		if (!vmw_kms_validate_mode_vram(dev_priv,
2204 						bmode->hdisplay * assumed_bpp,
2205 						bmode->vdisplay))
2206 			continue;
2207 
2208 		mode = drm_mode_duplicate(dev, bmode);
2209 		if (!mode)
2210 			return 0;
2211 
2212 		drm_mode_probed_add(connector, mode);
2213 	}
2214 
2215 	drm_connector_list_update(connector);
2216 	/* Move the prefered mode first, help apps pick the right mode. */
2217 	drm_mode_sort(&connector->modes);
2218 
2219 	return 1;
2220 }
2221 
2222 /**
2223  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2224  * @dev: drm device for the ioctl
2225  * @data: data pointer for the ioctl
2226  * @file_priv: drm file for the ioctl call
2227  *
2228  * Update preferred topology of display unit as per ioctl request. The topology
2229  * is expressed as array of drm_vmw_rect.
2230  * e.g.
2231  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2232  *
2233  * NOTE:
2234  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2235  * device limit on topology, x + w and y + h (lower right) cannot be greater
2236  * than INT_MAX. So topology beyond these limits will return with error.
2237  *
2238  * Returns:
2239  * Zero on success, negative errno on failure.
2240  */
2241 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2242 				struct drm_file *file_priv)
2243 {
2244 	struct vmw_private *dev_priv = vmw_priv(dev);
2245 	struct drm_mode_config *mode_config = &dev->mode_config;
2246 	struct drm_vmw_update_layout_arg *arg =
2247 		(struct drm_vmw_update_layout_arg *)data;
2248 	void __user *user_rects;
2249 	struct drm_vmw_rect *rects;
2250 	struct drm_rect *drm_rects;
2251 	unsigned rects_size;
2252 	int ret, i;
2253 
2254 	if (!arg->num_outputs) {
2255 		struct drm_rect def_rect = {0, 0, 800, 600};
2256 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2257 			      def_rect.x1, def_rect.y1,
2258 			      def_rect.x2, def_rect.y2);
2259 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2260 		return 0;
2261 	}
2262 
2263 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2264 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2265 			GFP_KERNEL);
2266 	if (unlikely(!rects))
2267 		return -ENOMEM;
2268 
2269 	user_rects = (void __user *)(unsigned long)arg->rects;
2270 	ret = copy_from_user(rects, user_rects, rects_size);
2271 	if (unlikely(ret != 0)) {
2272 		DRM_ERROR("Failed to get rects.\n");
2273 		ret = -EFAULT;
2274 		goto out_free;
2275 	}
2276 
2277 	drm_rects = (struct drm_rect *)rects;
2278 
2279 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2280 	for (i = 0; i < arg->num_outputs; i++) {
2281 		struct drm_vmw_rect curr_rect;
2282 
2283 		/* Verify user-space for overflow as kernel use drm_rect */
2284 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2285 		    (rects[i].y + rects[i].h > INT_MAX)) {
2286 			ret = -ERANGE;
2287 			goto out_free;
2288 		}
2289 
2290 		curr_rect = rects[i];
2291 		drm_rects[i].x1 = curr_rect.x;
2292 		drm_rects[i].y1 = curr_rect.y;
2293 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2294 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2295 
2296 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2297 			      drm_rects[i].x1, drm_rects[i].y1,
2298 			      drm_rects[i].x2, drm_rects[i].y2);
2299 
2300 		/*
2301 		 * Currently this check is limiting the topology within
2302 		 * mode_config->max (which actually is max texture size
2303 		 * supported by virtual device). This limit is here to address
2304 		 * window managers that create a big framebuffer for whole
2305 		 * topology.
2306 		 */
2307 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2308 		    drm_rects[i].x2 > mode_config->max_width ||
2309 		    drm_rects[i].y2 > mode_config->max_height) {
2310 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2311 				      drm_rects[i].x1, drm_rects[i].y1,
2312 				      drm_rects[i].x2, drm_rects[i].y2);
2313 			ret = -EINVAL;
2314 			goto out_free;
2315 		}
2316 	}
2317 
2318 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2319 
2320 	if (ret == 0)
2321 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2322 
2323 out_free:
2324 	kfree(rects);
2325 	return ret;
2326 }
2327 
2328 /**
2329  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2330  * on a set of cliprects and a set of display units.
2331  *
2332  * @dev_priv: Pointer to a device private structure.
2333  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2334  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2335  * Cliprects are given in framebuffer coordinates.
2336  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2337  * be NULL. Cliprects are given in source coordinates.
2338  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2339  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2340  * @num_clips: Number of cliprects in the @clips or @vclips array.
2341  * @increment: Integer with which to increment the clip counter when looping.
2342  * Used to skip a predetermined number of clip rects.
2343  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2344  */
2345 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2346 			 struct vmw_framebuffer *framebuffer,
2347 			 const struct drm_clip_rect *clips,
2348 			 const struct drm_vmw_rect *vclips,
2349 			 s32 dest_x, s32 dest_y,
2350 			 int num_clips,
2351 			 int increment,
2352 			 struct vmw_kms_dirty *dirty)
2353 {
2354 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2355 	struct drm_crtc *crtc;
2356 	u32 num_units = 0;
2357 	u32 i, k;
2358 
2359 	dirty->dev_priv = dev_priv;
2360 
2361 	/* If crtc is passed, no need to iterate over other display units */
2362 	if (dirty->crtc) {
2363 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2364 	} else {
2365 		list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
2366 				    head) {
2367 			struct drm_plane *plane = crtc->primary;
2368 
2369 			if (plane->state->fb == &framebuffer->base)
2370 				units[num_units++] = vmw_crtc_to_du(crtc);
2371 		}
2372 	}
2373 
2374 	for (k = 0; k < num_units; k++) {
2375 		struct vmw_display_unit *unit = units[k];
2376 		s32 crtc_x = unit->crtc.x;
2377 		s32 crtc_y = unit->crtc.y;
2378 		s32 crtc_width = unit->crtc.mode.hdisplay;
2379 		s32 crtc_height = unit->crtc.mode.vdisplay;
2380 		const struct drm_clip_rect *clips_ptr = clips;
2381 		const struct drm_vmw_rect *vclips_ptr = vclips;
2382 
2383 		dirty->unit = unit;
2384 		if (dirty->fifo_reserve_size > 0) {
2385 			dirty->cmd = VMW_CMD_RESERVE(dev_priv,
2386 						      dirty->fifo_reserve_size);
2387 			if (!dirty->cmd)
2388 				return -ENOMEM;
2389 
2390 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2391 		}
2392 		dirty->num_hits = 0;
2393 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2394 		       vclips_ptr += increment) {
2395 			s32 clip_left;
2396 			s32 clip_top;
2397 
2398 			/*
2399 			 * Select clip array type. Note that integer type
2400 			 * in @clips is unsigned short, whereas in @vclips
2401 			 * it's 32-bit.
2402 			 */
2403 			if (clips) {
2404 				dirty->fb_x = (s32) clips_ptr->x1;
2405 				dirty->fb_y = (s32) clips_ptr->y1;
2406 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2407 					crtc_x;
2408 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2409 					crtc_y;
2410 			} else {
2411 				dirty->fb_x = vclips_ptr->x;
2412 				dirty->fb_y = vclips_ptr->y;
2413 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2414 					dest_x - crtc_x;
2415 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2416 					dest_y - crtc_y;
2417 			}
2418 
2419 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2420 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2421 
2422 			/* Skip this clip if it's outside the crtc region */
2423 			if (dirty->unit_x1 >= crtc_width ||
2424 			    dirty->unit_y1 >= crtc_height ||
2425 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2426 				continue;
2427 
2428 			/* Clip right and bottom to crtc limits */
2429 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2430 					       crtc_width);
2431 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2432 					       crtc_height);
2433 
2434 			/* Clip left and top to crtc limits */
2435 			clip_left = min_t(s32, dirty->unit_x1, 0);
2436 			clip_top = min_t(s32, dirty->unit_y1, 0);
2437 			dirty->unit_x1 -= clip_left;
2438 			dirty->unit_y1 -= clip_top;
2439 			dirty->fb_x -= clip_left;
2440 			dirty->fb_y -= clip_top;
2441 
2442 			dirty->clip(dirty);
2443 		}
2444 
2445 		dirty->fifo_commit(dirty);
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 /**
2452  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2453  * cleanup and fencing
2454  * @dev_priv: Pointer to the device-private struct
2455  * @file_priv: Pointer identifying the client when user-space fencing is used
2456  * @ctx: Pointer to the validation context
2457  * @out_fence: If non-NULL, returned refcounted fence-pointer
2458  * @user_fence_rep: If non-NULL, pointer to user-space address area
2459  * in which to copy user-space fence info
2460  */
2461 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2462 				      struct drm_file *file_priv,
2463 				      struct vmw_validation_context *ctx,
2464 				      struct vmw_fence_obj **out_fence,
2465 				      struct drm_vmw_fence_rep __user *
2466 				      user_fence_rep)
2467 {
2468 	struct vmw_fence_obj *fence = NULL;
2469 	uint32_t handle = 0;
2470 	int ret = 0;
2471 
2472 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2473 	    out_fence)
2474 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2475 						 file_priv ? &handle : NULL);
2476 	vmw_validation_done(ctx, fence);
2477 	if (file_priv)
2478 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2479 					    ret, user_fence_rep, fence,
2480 					    handle, -1, NULL);
2481 	if (out_fence)
2482 		*out_fence = fence;
2483 	else
2484 		vmw_fence_obj_unreference(&fence);
2485 }
2486 
2487 /**
2488  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2489  * its backing MOB.
2490  *
2491  * @res: Pointer to the surface resource
2492  * @clips: Clip rects in framebuffer (surface) space.
2493  * @num_clips: Number of clips in @clips.
2494  * @increment: Integer with which to increment the clip counter when looping.
2495  * Used to skip a predetermined number of clip rects.
2496  *
2497  * This function makes sure the proxy surface is updated from its backing MOB
2498  * using the region given by @clips. The surface resource @res and its backing
2499  * MOB needs to be reserved and validated on call.
2500  */
2501 int vmw_kms_update_proxy(struct vmw_resource *res,
2502 			 const struct drm_clip_rect *clips,
2503 			 unsigned num_clips,
2504 			 int increment)
2505 {
2506 	struct vmw_private *dev_priv = res->dev_priv;
2507 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2508 	struct {
2509 		SVGA3dCmdHeader header;
2510 		SVGA3dCmdUpdateGBImage body;
2511 	} *cmd;
2512 	SVGA3dBox *box;
2513 	size_t copy_size = 0;
2514 	int i;
2515 
2516 	if (!clips)
2517 		return 0;
2518 
2519 	cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2520 	if (!cmd)
2521 		return -ENOMEM;
2522 
2523 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2524 		box = &cmd->body.box;
2525 
2526 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2527 		cmd->header.size = sizeof(cmd->body);
2528 		cmd->body.image.sid = res->id;
2529 		cmd->body.image.face = 0;
2530 		cmd->body.image.mipmap = 0;
2531 
2532 		if (clips->x1 > size->width || clips->x2 > size->width ||
2533 		    clips->y1 > size->height || clips->y2 > size->height) {
2534 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2535 			return -EINVAL;
2536 		}
2537 
2538 		box->x = clips->x1;
2539 		box->y = clips->y1;
2540 		box->z = 0;
2541 		box->w = clips->x2 - clips->x1;
2542 		box->h = clips->y2 - clips->y1;
2543 		box->d = 1;
2544 
2545 		copy_size += sizeof(*cmd);
2546 	}
2547 
2548 	vmw_cmd_commit(dev_priv, copy_size);
2549 
2550 	return 0;
2551 }
2552 
2553 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2554 			    unsigned unit,
2555 			    u32 max_width,
2556 			    u32 max_height,
2557 			    struct drm_connector **p_con,
2558 			    struct drm_crtc **p_crtc,
2559 			    struct drm_display_mode **p_mode)
2560 {
2561 	struct drm_connector *con;
2562 	struct vmw_display_unit *du;
2563 	struct drm_display_mode *mode;
2564 	int i = 0;
2565 	int ret = 0;
2566 
2567 	mutex_lock(&dev_priv->drm.mode_config.mutex);
2568 	list_for_each_entry(con, &dev_priv->drm.mode_config.connector_list,
2569 			    head) {
2570 		if (i == unit)
2571 			break;
2572 
2573 		++i;
2574 	}
2575 
2576 	if (&con->head == &dev_priv->drm.mode_config.connector_list) {
2577 		DRM_ERROR("Could not find initial display unit.\n");
2578 		ret = -EINVAL;
2579 		goto out_unlock;
2580 	}
2581 
2582 	if (list_empty(&con->modes))
2583 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2584 
2585 	if (list_empty(&con->modes)) {
2586 		DRM_ERROR("Could not find initial display mode.\n");
2587 		ret = -EINVAL;
2588 		goto out_unlock;
2589 	}
2590 
2591 	du = vmw_connector_to_du(con);
2592 	*p_con = con;
2593 	*p_crtc = &du->crtc;
2594 
2595 	list_for_each_entry(mode, &con->modes, head) {
2596 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2597 			break;
2598 	}
2599 
2600 	if (&mode->head == &con->modes) {
2601 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2602 		*p_mode = list_first_entry(&con->modes,
2603 					   struct drm_display_mode,
2604 					   head);
2605 	} else {
2606 		*p_mode = mode;
2607 	}
2608 
2609  out_unlock:
2610 	mutex_unlock(&dev_priv->drm.mode_config.mutex);
2611 
2612 	return ret;
2613 }
2614 
2615 /**
2616  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2617  * property.
2618  *
2619  * @dev_priv: Pointer to a device private struct.
2620  *
2621  * Sets up the implicit placement property unless it's already set up.
2622  */
2623 void
2624 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2625 {
2626 	if (dev_priv->implicit_placement_property)
2627 		return;
2628 
2629 	dev_priv->implicit_placement_property =
2630 		drm_property_create_range(&dev_priv->drm,
2631 					  DRM_MODE_PROP_IMMUTABLE,
2632 					  "implicit_placement", 0, 1);
2633 }
2634 
2635 /**
2636  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2637  *
2638  * @dev: Pointer to the drm device
2639  * Return: 0 on success. Negative error code on failure.
2640  */
2641 int vmw_kms_suspend(struct drm_device *dev)
2642 {
2643 	struct vmw_private *dev_priv = vmw_priv(dev);
2644 
2645 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2646 	if (IS_ERR(dev_priv->suspend_state)) {
2647 		int ret = PTR_ERR(dev_priv->suspend_state);
2648 
2649 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2650 		dev_priv->suspend_state = NULL;
2651 
2652 		return ret;
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 
2659 /**
2660  * vmw_kms_resume - Re-enable modesetting and restore state
2661  *
2662  * @dev: Pointer to the drm device
2663  * Return: 0 on success. Negative error code on failure.
2664  *
2665  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2666  * to call this function without a previous vmw_kms_suspend().
2667  */
2668 int vmw_kms_resume(struct drm_device *dev)
2669 {
2670 	struct vmw_private *dev_priv = vmw_priv(dev);
2671 	int ret;
2672 
2673 	if (WARN_ON(!dev_priv->suspend_state))
2674 		return 0;
2675 
2676 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2677 	dev_priv->suspend_state = NULL;
2678 
2679 	return ret;
2680 }
2681 
2682 /**
2683  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2684  *
2685  * @dev: Pointer to the drm device
2686  */
2687 void vmw_kms_lost_device(struct drm_device *dev)
2688 {
2689 	drm_atomic_helper_shutdown(dev);
2690 }
2691 
2692 /**
2693  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2694  * @update: The closure structure.
2695  *
2696  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2697  * update on display unit.
2698  *
2699  * Return: 0 on success or a negative error code on failure.
2700  */
2701 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2702 {
2703 	struct drm_plane_state *state = update->plane->state;
2704 	struct drm_plane_state *old_state = update->old_state;
2705 	struct drm_atomic_helper_damage_iter iter;
2706 	struct drm_rect clip;
2707 	struct drm_rect bb;
2708 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2709 	uint32_t reserved_size = 0;
2710 	uint32_t submit_size = 0;
2711 	uint32_t curr_size = 0;
2712 	uint32_t num_hits = 0;
2713 	void *cmd_start;
2714 	char *cmd_next;
2715 	int ret;
2716 
2717 	/*
2718 	 * Iterate in advance to check if really need plane update and find the
2719 	 * number of clips that actually are in plane src for fifo allocation.
2720 	 */
2721 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2722 	drm_atomic_for_each_plane_damage(&iter, &clip)
2723 		num_hits++;
2724 
2725 	if (num_hits == 0)
2726 		return 0;
2727 
2728 	if (update->vfb->bo) {
2729 		struct vmw_framebuffer_bo *vfbbo =
2730 			container_of(update->vfb, typeof(*vfbbo), base);
2731 
2732 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2733 					    update->cpu_blit);
2734 	} else {
2735 		struct vmw_framebuffer_surface *vfbs =
2736 			container_of(update->vfb, typeof(*vfbs), base);
2737 
2738 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2739 						  0, VMW_RES_DIRTY_NONE, NULL,
2740 						  NULL);
2741 	}
2742 
2743 	if (ret)
2744 		return ret;
2745 
2746 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2747 	if (ret)
2748 		goto out_unref;
2749 
2750 	reserved_size = update->calc_fifo_size(update, num_hits);
2751 	cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
2752 	if (!cmd_start) {
2753 		ret = -ENOMEM;
2754 		goto out_revert;
2755 	}
2756 
2757 	cmd_next = cmd_start;
2758 
2759 	if (update->post_prepare) {
2760 		curr_size = update->post_prepare(update, cmd_next);
2761 		cmd_next += curr_size;
2762 		submit_size += curr_size;
2763 	}
2764 
2765 	if (update->pre_clip) {
2766 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2767 		cmd_next += curr_size;
2768 		submit_size += curr_size;
2769 	}
2770 
2771 	bb.x1 = INT_MAX;
2772 	bb.y1 = INT_MAX;
2773 	bb.x2 = INT_MIN;
2774 	bb.y2 = INT_MIN;
2775 
2776 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2777 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2778 		uint32_t fb_x = clip.x1;
2779 		uint32_t fb_y = clip.y1;
2780 
2781 		vmw_du_translate_to_crtc(state, &clip);
2782 		if (update->clip) {
2783 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2784 						 fb_y);
2785 			cmd_next += curr_size;
2786 			submit_size += curr_size;
2787 		}
2788 		bb.x1 = min_t(int, bb.x1, clip.x1);
2789 		bb.y1 = min_t(int, bb.y1, clip.y1);
2790 		bb.x2 = max_t(int, bb.x2, clip.x2);
2791 		bb.y2 = max_t(int, bb.y2, clip.y2);
2792 	}
2793 
2794 	curr_size = update->post_clip(update, cmd_next, &bb);
2795 	submit_size += curr_size;
2796 
2797 	if (reserved_size < submit_size)
2798 		submit_size = 0;
2799 
2800 	vmw_cmd_commit(update->dev_priv, submit_size);
2801 
2802 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2803 					 update->out_fence, NULL);
2804 	return ret;
2805 
2806 out_revert:
2807 	vmw_validation_revert(&val_ctx);
2808 
2809 out_unref:
2810 	vmw_validation_unref_lists(&val_ctx);
2811 	return ret;
2812 }
2813