xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41 
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 #define DSI_CMD_FIFO_DEPTH  16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH   4
48 
49 #define DSI0_CTRL		0x00
50 
51 /* Command packet control. */
52 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C		0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
58 
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
63 /* Primary display where cmdfifo provides part of the payload and
64  * pixelvalve the rest.
65  */
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
67 /* Secondary display where cmdfifo provides part of the payload and
68  * pixfifo the rest.
69  */
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
71 
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
74 
75 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
77 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX	0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX	1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
83 /* BTA alone for getting error status after a command, or a TE trigger
84  * without a previous command.
85  */
86 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
87 
88 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
91 # define DSI_TXPKT1C_CMD_EN		BIT(0)
92 
93 /* Command packet header. */
94 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H		0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
98 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
100 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT	0
102 
103 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H		0x14
105 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
106 # define DSI_RXPKT1H_DET_ERR		BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
108 # define DSI_RXPKT1H_COR_ERR		BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
117 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
121 
122 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H		0x18
124 # define DSI_RXPKT1H_DET_ERR		BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
126 # define DSI_RXPKT1H_COR_ERR		BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
130 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT		0
132 
133 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO	0x1c
135 
136 #define DSI0_DISP0_CTRL		0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
141 # define DSI_DISP0_LP_STOP_DISABLE	0
142 # define DSI_DISP0_LP_STOP_PERLINE	1
143 # define DSI_DISP0_LP_STOP_PERFRAME	2
144 
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146  * of going to LP-STOP.
147  */
148 # define DSI_DISP_HACTIVE_NULL		BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL		BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL		BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL		BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT	5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END		BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT	2
161 # define DSI_PFORMAT_RGB565		0
162 # define DSI_PFORMAT_RGB666_PACKED	1
163 # define DSI_PFORMAT_RGB666		2
164 # define DSI_PFORMAT_RGB888		3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE		BIT(1)
167 # define DSI_DISP0_ENABLE		BIT(0)
168 
169 #define DSI0_DISP1_CTRL		0x1c
170 #define DSI1_DISP1_CTRL		0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT	1
174 # define DSI_DISP1_PFORMAT_16BIT	0
175 # define DSI_DISP1_PFORMAT_24BIT	1
176 # define DSI_DISP1_PFORMAT_32BIT_LE	2
177 # define DSI_DISP1_PFORMAT_32BIT_BE	3
178 
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE		BIT(0)
181 
182 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
183 
184 #define DSI0_INT_STAT		0x24
185 #define DSI0_INT_EN		0x28
186 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
187 # define DSI1_INT_PHY_D3_STOP		BIT(29)
188 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
189 # define DSI1_INT_PHY_D2_STOP		BIT(27)
190 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
191 # define DSI1_INT_PHY_D1_STOP		BIT(25)
192 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
193 # define DSI1_INT_PHY_D0_STOP		BIT(23)
194 # define DSI1_INT_FIFO_ERR		BIT(22)
195 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
196 # define DSI1_INT_PHY_RXLPDT		BIT(20)
197 # define DSI1_INT_PHY_RXTRIG		BIT(19)
198 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
199 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
200 
201 /* Signaled when the clock lane enters the given state. */
202 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
203 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
204 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
205 
206 /* Signaled on timeouts */
207 # define DSI1_INT_PR_TO			BIT(13)
208 # define DSI1_INT_TA_TO			BIT(12)
209 # define DSI1_INT_LPRX_TO		BIT(11)
210 # define DSI1_INT_HSTX_TO		BIT(10)
211 
212 /* Contention on a line when trying to drive the line low */
213 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
214 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
215 
216 /* Control error: incorrect line state sequence on data lane 0. */
217 # define DSI1_INT_ERR_CONTROL		BIT(7)
218 /* LPDT synchronization error (bits received not a multiple of 8. */
219 
220 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
221 /* Signaled after receiving an error packet from the display in
222  * response to a read.
223  */
224 # define DSI1_INT_RXPKT2		BIT(5)
225 /* Signaled after receiving a packet.  The header and optional short
226  * response will be in RXPKT1H, and a long response will be in the
227  * RXPKT_FIFO.
228  */
229 # define DSI1_INT_RXPKT1		BIT(4)
230 # define DSI1_INT_TXPKT2_DONE		BIT(3)
231 # define DSI1_INT_TXPKT2_END		BIT(2)
232 /* Signaled after all repeats of TXPKT1 are transferred. */
233 # define DSI1_INT_TXPKT1_DONE		BIT(1)
234 /* Signaled after each TXPKT1 repeat is scheduled. */
235 # define DSI1_INT_TXPKT1_END		BIT(0)
236 
237 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
238 					 DSI1_INT_ERR_CONTROL |	 \
239 					 DSI1_INT_ERR_CONT_LP0 | \
240 					 DSI1_INT_ERR_CONT_LP1 | \
241 					 DSI1_INT_HSTX_TO |	 \
242 					 DSI1_INT_LPRX_TO |	 \
243 					 DSI1_INT_TA_TO |	 \
244 					 DSI1_INT_PR_TO)
245 
246 #define DSI0_STAT		0x2c
247 #define DSI0_HSTX_TO_CNT	0x30
248 #define DSI0_LPRX_TO_CNT	0x34
249 #define DSI0_TA_TO_CNT		0x38
250 #define DSI0_PR_TO_CNT		0x3c
251 #define DSI0_PHYC		0x40
252 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
253 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
254 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
255 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
256 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
257 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
258 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
259 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
260 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
261 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
262 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
263 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
264 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
265 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
266 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
267 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
268 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
269 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
270 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
271 
272 #define DSI0_HS_CLT0		0x44
273 #define DSI0_HS_CLT1		0x48
274 #define DSI0_HS_CLT2		0x4c
275 #define DSI0_HS_DLT3		0x50
276 #define DSI0_HS_DLT4		0x54
277 #define DSI0_HS_DLT5		0x58
278 #define DSI0_HS_DLT6		0x5c
279 #define DSI0_HS_DLT7		0x60
280 
281 #define DSI0_PHY_AFEC0		0x64
282 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
283 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
284 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
285 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
286 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
287 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
288 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
289 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
290 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
291 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
292 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
293 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
294 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
298 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
300 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
301 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
302 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
303 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
304 # define DSI1_PHY_AFEC0_RESET			BIT(13)
305 # define DSI1_PHY_AFEC0_PD			BIT(12)
306 # define DSI0_PHY_AFEC0_RESET			BIT(11)
307 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
308 # define DSI0_PHY_AFEC0_PD			BIT(10)
309 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
310 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
311 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
312 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
313 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
314 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
315 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
316 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
317 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
318 
319 #define DSI0_PHY_AFEC1		0x68
320 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
321 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
322 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
323 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
324 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
325 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
326 
327 #define DSI0_TST_SEL		0x6c
328 #define DSI0_TST_MON		0x70
329 #define DSI0_ID			0x74
330 # define DSI_ID_VALUE		0x00647369
331 
332 #define DSI1_CTRL		0x00
333 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
334 # define DSI_CTRL_HS_CLKC_SHIFT		14
335 # define DSI_CTRL_HS_CLKC_BYTE		0
336 # define DSI_CTRL_HS_CLKC_DDR2		1
337 # define DSI_CTRL_HS_CLKC_DDR		2
338 
339 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
340 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
341 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
342 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
343 # define DSI_CTRL_CAL_BYTE		BIT(9)
344 # define DSI_CTRL_INV_BYTE		BIT(8)
345 # define DSI_CTRL_CLR_LDF		BIT(7)
346 # define DSI0_CTRL_CLR_PBCF		BIT(6)
347 # define DSI1_CTRL_CLR_RXF		BIT(6)
348 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
349 # define DSI1_CTRL_CLR_PDF		BIT(5)
350 # define DSI0_CTRL_CLR_PDF		BIT(4)
351 # define DSI1_CTRL_CLR_CDF		BIT(4)
352 # define DSI0_CTRL_CLR_CDF		BIT(3)
353 # define DSI0_CTRL_CTRL2		BIT(2)
354 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
355 # define DSI0_CTRL_CTRL1		BIT(1)
356 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
357 # define DSI0_CTRL_CTRL0		BIT(0)
358 # define DSI1_CTRL_EN			BIT(0)
359 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
360 					 DSI0_CTRL_CLR_PBCF | \
361 					 DSI0_CTRL_CLR_CPBCF |	\
362 					 DSI0_CTRL_CLR_PDF | \
363 					 DSI0_CTRL_CLR_CDF)
364 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
365 					 DSI1_CTRL_CLR_RXF | \
366 					 DSI1_CTRL_CLR_PDF | \
367 					 DSI1_CTRL_CLR_CDF)
368 
369 #define DSI1_TXPKT2C		0x0c
370 #define DSI1_TXPKT2H		0x10
371 #define DSI1_TXPKT_PIX_FIFO	0x20
372 #define DSI1_RXPKT_FIFO		0x24
373 #define DSI1_DISP0_CTRL		0x28
374 #define DSI1_INT_STAT		0x30
375 #define DSI1_INT_EN		0x34
376 /* State reporting bits.  These mostly behave like INT_STAT, where
377  * writing a 1 clears the bit.
378  */
379 #define DSI1_STAT		0x38
380 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
381 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
382 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
383 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
384 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
385 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
386 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
387 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
388 # define DSI1_STAT_FIFO_ERR		BIT(23)
389 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
390 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
391 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
392 /* Set when in forward direction */
393 # define DSI1_STAT_PHY_DIR		BIT(19)
394 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
395 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
396 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
397 # define DSI1_STAT_PR_TO		BIT(15)
398 # define DSI1_STAT_TA_TO		BIT(14)
399 # define DSI1_STAT_LPRX_TO		BIT(13)
400 # define DSI1_STAT_HSTX_TO		BIT(12)
401 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
402 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
403 # define DSI1_STAT_ERR_CONTROL		BIT(9)
404 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
405 # define DSI1_STAT_RXPKT2		BIT(7)
406 # define DSI1_STAT_RXPKT1		BIT(6)
407 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
408 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
409 # define DSI1_STAT_TXPKT2_END		BIT(3)
410 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
411 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
412 # define DSI1_STAT_TXPKT1_END		BIT(0)
413 
414 #define DSI1_HSTX_TO_CNT	0x3c
415 #define DSI1_LPRX_TO_CNT	0x40
416 #define DSI1_TA_TO_CNT		0x44
417 #define DSI1_PR_TO_CNT		0x48
418 #define DSI1_PHYC		0x4c
419 
420 #define DSI1_HS_CLT0		0x50
421 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
422 # define DSI_HS_CLT0_CZERO_SHIFT	18
423 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
424 # define DSI_HS_CLT0_CPRE_SHIFT		9
425 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
426 # define DSI_HS_CLT0_CPREP_SHIFT	0
427 
428 #define DSI1_HS_CLT1		0x54
429 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
430 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
431 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
432 # define DSI_HS_CLT1_CPOST_SHIFT	0
433 
434 #define DSI1_HS_CLT2		0x58
435 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
436 # define DSI_HS_CLT2_WUP_SHIFT		0
437 
438 #define DSI1_HS_DLT3		0x5c
439 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
440 # define DSI_HS_DLT3_EXIT_SHIFT		18
441 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
442 # define DSI_HS_DLT3_ZERO_SHIFT		9
443 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
444 # define DSI_HS_DLT3_PRE_SHIFT		0
445 
446 #define DSI1_HS_DLT4		0x60
447 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
448 # define DSI_HS_DLT4_ANLAT_SHIFT	18
449 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
450 # define DSI_HS_DLT4_TRAIL_SHIFT	9
451 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
452 # define DSI_HS_DLT4_LPX_SHIFT		0
453 
454 #define DSI1_HS_DLT5		0x64
455 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
456 # define DSI_HS_DLT5_INIT_SHIFT		0
457 
458 #define DSI1_HS_DLT6		0x68
459 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
460 # define DSI_HS_DLT6_TA_GET_SHIFT	24
461 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
462 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
463 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
464 # define DSI_HS_DLT6_TA_GO_SHIFT	8
465 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
466 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
467 
468 #define DSI1_HS_DLT7		0x6c
469 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
470 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
471 
472 #define DSI1_PHY_AFEC0		0x70
473 
474 #define DSI1_PHY_AFEC1		0x74
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
484 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
485 
486 #define DSI1_TST_SEL		0x78
487 #define DSI1_TST_MON		0x7c
488 #define DSI1_PHY_TST1		0x80
489 #define DSI1_PHY_TST2		0x84
490 #define DSI1_PHY_FIFO_STAT	0x88
491 /* Actually, all registers in the range that aren't otherwise claimed
492  * will return the ID.
493  */
494 #define DSI1_ID			0x8c
495 
496 struct vc4_dsi_variant {
497 	/* Whether we're on bcm2835's DSI0 or DSI1. */
498 	unsigned int port;
499 
500 	bool broken_axi_workaround;
501 
502 	const char *debugfs_name;
503 	const struct debugfs_reg32 *regs;
504 	size_t nregs;
505 
506 };
507 
508 /* General DSI hardware state. */
509 struct vc4_dsi {
510 	struct platform_device *pdev;
511 
512 	struct mipi_dsi_host dsi_host;
513 	struct drm_encoder *encoder;
514 	struct drm_bridge *bridge;
515 	struct list_head bridge_chain;
516 
517 	void __iomem *regs;
518 
519 	struct dma_chan *reg_dma_chan;
520 	dma_addr_t reg_dma_paddr;
521 	u32 *reg_dma_mem;
522 	dma_addr_t reg_paddr;
523 
524 	const struct vc4_dsi_variant *variant;
525 
526 	/* DSI channel for the panel we're connected to. */
527 	u32 channel;
528 	u32 lanes;
529 	u32 format;
530 	u32 divider;
531 	u32 mode_flags;
532 
533 	/* Input clock from CPRMAN to the digital PHY, for the DSI
534 	 * escape clock.
535 	 */
536 	struct clk *escape_clock;
537 
538 	/* Input clock to the analog PHY, used to generate the DSI bit
539 	 * clock.
540 	 */
541 	struct clk *pll_phy_clock;
542 
543 	/* HS Clocks generated within the DSI analog PHY. */
544 	struct clk_fixed_factor phy_clocks[3];
545 
546 	struct clk_hw_onecell_data *clk_onecell;
547 
548 	/* Pixel clock output to the pixelvalve, generated from the HS
549 	 * clock.
550 	 */
551 	struct clk *pixel_clock;
552 
553 	struct completion xfer_completion;
554 	int xfer_result;
555 
556 	struct debugfs_regset32 regset;
557 };
558 
559 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
560 
561 static inline void
562 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
563 {
564 	struct dma_chan *chan = dsi->reg_dma_chan;
565 	struct dma_async_tx_descriptor *tx;
566 	dma_cookie_t cookie;
567 	int ret;
568 
569 	/* DSI0 should be able to write normally. */
570 	if (!chan) {
571 		writel(val, dsi->regs + offset);
572 		return;
573 	}
574 
575 	*dsi->reg_dma_mem = val;
576 
577 	tx = chan->device->device_prep_dma_memcpy(chan,
578 						  dsi->reg_paddr + offset,
579 						  dsi->reg_dma_paddr,
580 						  4, 0);
581 	if (!tx) {
582 		DRM_ERROR("Failed to set up DMA register write\n");
583 		return;
584 	}
585 
586 	cookie = tx->tx_submit(tx);
587 	ret = dma_submit_error(cookie);
588 	if (ret) {
589 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
590 		return;
591 	}
592 	ret = dma_sync_wait(chan, cookie);
593 	if (ret)
594 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
595 }
596 
597 #define DSI_READ(offset) readl(dsi->regs + (offset))
598 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
599 #define DSI_PORT_READ(offset) \
600 	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
601 #define DSI_PORT_WRITE(offset, val) \
602 	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
603 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
604 
605 /* VC4 DSI encoder KMS struct */
606 struct vc4_dsi_encoder {
607 	struct vc4_encoder base;
608 	struct vc4_dsi *dsi;
609 };
610 
611 static inline struct vc4_dsi_encoder *
612 to_vc4_dsi_encoder(struct drm_encoder *encoder)
613 {
614 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
615 }
616 
617 static const struct debugfs_reg32 dsi0_regs[] = {
618 	VC4_REG32(DSI0_CTRL),
619 	VC4_REG32(DSI0_STAT),
620 	VC4_REG32(DSI0_HSTX_TO_CNT),
621 	VC4_REG32(DSI0_LPRX_TO_CNT),
622 	VC4_REG32(DSI0_TA_TO_CNT),
623 	VC4_REG32(DSI0_PR_TO_CNT),
624 	VC4_REG32(DSI0_DISP0_CTRL),
625 	VC4_REG32(DSI0_DISP1_CTRL),
626 	VC4_REG32(DSI0_INT_STAT),
627 	VC4_REG32(DSI0_INT_EN),
628 	VC4_REG32(DSI0_PHYC),
629 	VC4_REG32(DSI0_HS_CLT0),
630 	VC4_REG32(DSI0_HS_CLT1),
631 	VC4_REG32(DSI0_HS_CLT2),
632 	VC4_REG32(DSI0_HS_DLT3),
633 	VC4_REG32(DSI0_HS_DLT4),
634 	VC4_REG32(DSI0_HS_DLT5),
635 	VC4_REG32(DSI0_HS_DLT6),
636 	VC4_REG32(DSI0_HS_DLT7),
637 	VC4_REG32(DSI0_PHY_AFEC0),
638 	VC4_REG32(DSI0_PHY_AFEC1),
639 	VC4_REG32(DSI0_ID),
640 };
641 
642 static const struct debugfs_reg32 dsi1_regs[] = {
643 	VC4_REG32(DSI1_CTRL),
644 	VC4_REG32(DSI1_STAT),
645 	VC4_REG32(DSI1_HSTX_TO_CNT),
646 	VC4_REG32(DSI1_LPRX_TO_CNT),
647 	VC4_REG32(DSI1_TA_TO_CNT),
648 	VC4_REG32(DSI1_PR_TO_CNT),
649 	VC4_REG32(DSI1_DISP0_CTRL),
650 	VC4_REG32(DSI1_DISP1_CTRL),
651 	VC4_REG32(DSI1_INT_STAT),
652 	VC4_REG32(DSI1_INT_EN),
653 	VC4_REG32(DSI1_PHYC),
654 	VC4_REG32(DSI1_HS_CLT0),
655 	VC4_REG32(DSI1_HS_CLT1),
656 	VC4_REG32(DSI1_HS_CLT2),
657 	VC4_REG32(DSI1_HS_DLT3),
658 	VC4_REG32(DSI1_HS_DLT4),
659 	VC4_REG32(DSI1_HS_DLT5),
660 	VC4_REG32(DSI1_HS_DLT6),
661 	VC4_REG32(DSI1_HS_DLT7),
662 	VC4_REG32(DSI1_PHY_AFEC0),
663 	VC4_REG32(DSI1_PHY_AFEC1),
664 	VC4_REG32(DSI1_ID),
665 };
666 
667 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
668 {
669 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
670 
671 	if (latch)
672 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
673 	else
674 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
675 
676 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
677 }
678 
679 /* Enters or exits Ultra Low Power State. */
680 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
681 {
682 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
683 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
684 			 DSI_PHYC_DLANE0_ULPS |
685 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
686 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
687 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
688 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
689 			 DSI1_STAT_PHY_D0_ULPS |
690 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
691 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
692 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
693 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
694 			 DSI1_STAT_PHY_D0_STOP |
695 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
696 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
697 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
698 	int ret;
699 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
700 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
701 
702 	if (ulps == ulps_currently_enabled)
703 		return;
704 
705 	DSI_PORT_WRITE(STAT, stat_ulps);
706 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
707 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
708 	if (ret) {
709 		dev_warn(&dsi->pdev->dev,
710 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
711 			 DSI_PORT_READ(STAT));
712 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
713 		vc4_dsi_latch_ulps(dsi, false);
714 		return;
715 	}
716 
717 	/* The DSI module can't be disabled while the module is
718 	 * generating ULPS state.  So, to be able to disable the
719 	 * module, we have the AFE latch the ULPS state and continue
720 	 * on to having the module enter STOP.
721 	 */
722 	vc4_dsi_latch_ulps(dsi, ulps);
723 
724 	DSI_PORT_WRITE(STAT, stat_stop);
725 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
726 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
727 	if (ret) {
728 		dev_warn(&dsi->pdev->dev,
729 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
730 			 DSI_PORT_READ(STAT));
731 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
732 		return;
733 	}
734 }
735 
736 static u32
737 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
738 {
739 	/* The HS timings have to be rounded up to a multiple of 8
740 	 * because we're using the byte clock.
741 	 */
742 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
743 }
744 
745 /* ESC always runs at 100Mhz. */
746 #define ESC_TIME_NS 10
747 
748 static u32
749 dsi_esc_timing(u32 ns)
750 {
751 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
752 }
753 
754 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
755 {
756 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
757 	struct vc4_dsi *dsi = vc4_encoder->dsi;
758 	struct device *dev = &dsi->pdev->dev;
759 	struct drm_bridge *iter;
760 
761 	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
762 		if (iter->funcs->disable)
763 			iter->funcs->disable(iter);
764 	}
765 
766 	vc4_dsi_ulps(dsi, true);
767 
768 	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
769 		if (iter->funcs->post_disable)
770 			iter->funcs->post_disable(iter);
771 	}
772 
773 	clk_disable_unprepare(dsi->pll_phy_clock);
774 	clk_disable_unprepare(dsi->escape_clock);
775 	clk_disable_unprepare(dsi->pixel_clock);
776 
777 	pm_runtime_put(dev);
778 }
779 
780 /* Extends the mode's blank intervals to handle BCM2835's integer-only
781  * DSI PLL divider.
782  *
783  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
784  * driver since most peripherals are hanging off of the PLLD_PER
785  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
786  * the pixel clock), only has an integer divider off of DSI.
787  *
788  * To get our panel mode to refresh at the expected 60Hz, we need to
789  * extend the horizontal blank time.  This means we drive a
790  * higher-than-expected clock rate to the panel, but that's what the
791  * firmware does too.
792  */
793 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
794 				       const struct drm_display_mode *mode,
795 				       struct drm_display_mode *adjusted_mode)
796 {
797 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
798 	struct vc4_dsi *dsi = vc4_encoder->dsi;
799 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
800 	unsigned long parent_rate = clk_get_rate(phy_parent);
801 	unsigned long pixel_clock_hz = mode->clock * 1000;
802 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
803 	int divider;
804 
805 	/* Find what divider gets us a faster clock than the requested
806 	 * pixel clock.
807 	 */
808 	for (divider = 1; divider < 8; divider++) {
809 		if (parent_rate / divider < pll_clock) {
810 			divider--;
811 			break;
812 		}
813 	}
814 
815 	/* Now that we've picked a PLL divider, calculate back to its
816 	 * pixel clock.
817 	 */
818 	pll_clock = parent_rate / divider;
819 	pixel_clock_hz = pll_clock / dsi->divider;
820 
821 	adjusted_mode->clock = pixel_clock_hz / 1000;
822 
823 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
824 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
825 				mode->clock;
826 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
827 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
828 
829 	return true;
830 }
831 
832 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
833 {
834 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
835 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
836 	struct vc4_dsi *dsi = vc4_encoder->dsi;
837 	struct device *dev = &dsi->pdev->dev;
838 	bool debug_dump_regs = false;
839 	struct drm_bridge *iter;
840 	unsigned long hs_clock;
841 	u32 ui_ns;
842 	/* Minimum LP state duration in escape clock cycles. */
843 	u32 lpx = dsi_esc_timing(60);
844 	unsigned long pixel_clock_hz = mode->clock * 1000;
845 	unsigned long dsip_clock;
846 	unsigned long phy_clock;
847 	int ret;
848 
849 	ret = pm_runtime_get_sync(dev);
850 	if (ret) {
851 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
852 		return;
853 	}
854 
855 	if (debug_dump_regs) {
856 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
857 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
858 		drm_print_regset32(&p, &dsi->regset);
859 	}
860 
861 	/* Round up the clk_set_rate() request slightly, since
862 	 * PLLD_DSI1 is an integer divider and its rate selection will
863 	 * never round up.
864 	 */
865 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
866 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
867 	if (ret) {
868 		dev_err(&dsi->pdev->dev,
869 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
870 	}
871 
872 	/* Reset the DSI and all its fifos. */
873 	DSI_PORT_WRITE(CTRL,
874 		       DSI_CTRL_SOFT_RESET_CFG |
875 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
876 
877 	DSI_PORT_WRITE(CTRL,
878 		       DSI_CTRL_HSDT_EOT_DISABLE |
879 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
880 
881 	/* Clear all stat bits so we see what has happened during enable. */
882 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
883 
884 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
885 	if (dsi->variant->port == 0) {
886 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
887 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
888 
889 		if (dsi->lanes < 2)
890 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
891 
892 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
893 			afec0 |= DSI0_PHY_AFEC0_RESET;
894 
895 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
896 
897 		DSI_PORT_WRITE(PHY_AFEC1,
898 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
899 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
900 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
901 	} else {
902 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
903 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
904 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
905 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
906 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
907 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
908 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
909 
910 		if (dsi->lanes < 4)
911 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
912 		if (dsi->lanes < 3)
913 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
914 		if (dsi->lanes < 2)
915 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
916 
917 		afec0 |= DSI1_PHY_AFEC0_RESET;
918 
919 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
920 
921 		DSI_PORT_WRITE(PHY_AFEC1, 0);
922 
923 		/* AFEC reset hold time */
924 		mdelay(1);
925 	}
926 
927 	ret = clk_prepare_enable(dsi->escape_clock);
928 	if (ret) {
929 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
930 		return;
931 	}
932 
933 	ret = clk_prepare_enable(dsi->pll_phy_clock);
934 	if (ret) {
935 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
936 		return;
937 	}
938 
939 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
940 
941 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
942 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
943 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
944 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
945 	 * and HS_CLKC is fed into the PV to divide down to the actual
946 	 * pixel clock for pushing pixels into DSI.
947 	 */
948 	dsip_clock = phy_clock / 8;
949 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
950 	if (ret) {
951 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
952 			dsip_clock, ret);
953 	}
954 
955 	ret = clk_prepare_enable(dsi->pixel_clock);
956 	if (ret) {
957 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
958 		return;
959 	}
960 
961 	/* How many ns one DSI unit interval is.  Note that the clock
962 	 * is DDR, so there's an extra divide by 2.
963 	 */
964 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
965 
966 	DSI_PORT_WRITE(HS_CLT0,
967 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
968 				     DSI_HS_CLT0_CZERO) |
969 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
970 				     DSI_HS_CLT0_CPRE) |
971 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
972 				     DSI_HS_CLT0_CPREP));
973 
974 	DSI_PORT_WRITE(HS_CLT1,
975 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
976 				     DSI_HS_CLT1_CTRAIL) |
977 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
978 				     DSI_HS_CLT1_CPOST));
979 
980 	DSI_PORT_WRITE(HS_CLT2,
981 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
982 				     DSI_HS_CLT2_WUP));
983 
984 	DSI_PORT_WRITE(HS_DLT3,
985 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
986 				     DSI_HS_DLT3_EXIT) |
987 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
988 				     DSI_HS_DLT3_ZERO) |
989 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
990 				     DSI_HS_DLT3_PRE));
991 
992 	DSI_PORT_WRITE(HS_DLT4,
993 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
994 				     DSI_HS_DLT4_LPX) |
995 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
996 					 dsi_hs_timing(ui_ns, 60, 4)),
997 				     DSI_HS_DLT4_TRAIL) |
998 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
999 
1000 	/* T_INIT is how long STOP is driven after power-up to
1001 	 * indicate to the slave (also coming out of power-up) that
1002 	 * master init is complete, and should be greater than the
1003 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1004 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1005 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1006 	 * greater minimums.  The vc4 firmware uses an extremely
1007 	 * conservative 5ms, and we maintain that here.
1008 	 */
1009 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1010 							    5 * 1000 * 1000, 0),
1011 					      DSI_HS_DLT5_INIT));
1012 
1013 	DSI_PORT_WRITE(HS_DLT6,
1014 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1015 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1016 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1017 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1018 
1019 	DSI_PORT_WRITE(HS_DLT7,
1020 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1021 				     DSI_HS_DLT7_LP_WUP));
1022 
1023 	DSI_PORT_WRITE(PHYC,
1024 		       DSI_PHYC_DLANE0_ENABLE |
1025 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1026 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1027 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1028 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1029 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1030 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1031 		       (dsi->variant->port == 0 ?
1032 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1033 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1034 
1035 	DSI_PORT_WRITE(CTRL,
1036 		       DSI_PORT_READ(CTRL) |
1037 		       DSI_CTRL_CAL_BYTE);
1038 
1039 	/* HS timeout in HS clock cycles: disabled. */
1040 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1041 	/* LP receive timeout in HS clocks. */
1042 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1043 	/* Bus turnaround timeout */
1044 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1045 	/* Display reset sequence timeout */
1046 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1047 
1048 	/* Set up DISP1 for transferring long command payloads through
1049 	 * the pixfifo.
1050 	 */
1051 	DSI_PORT_WRITE(DISP1_CTRL,
1052 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1053 				     DSI_DISP1_PFORMAT) |
1054 		       DSI_DISP1_ENABLE);
1055 
1056 	/* Ungate the block. */
1057 	if (dsi->variant->port == 0)
1058 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1059 	else
1060 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1061 
1062 	/* Bring AFE out of reset. */
1063 	if (dsi->variant->port == 0) {
1064 	} else {
1065 		DSI_PORT_WRITE(PHY_AFEC0,
1066 			       DSI_PORT_READ(PHY_AFEC0) &
1067 			       ~DSI1_PHY_AFEC0_RESET);
1068 	}
1069 
1070 	vc4_dsi_ulps(dsi, false);
1071 
1072 	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1073 		if (iter->funcs->pre_enable)
1074 			iter->funcs->pre_enable(iter);
1075 	}
1076 
1077 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1078 		DSI_PORT_WRITE(DISP0_CTRL,
1079 			       VC4_SET_FIELD(dsi->divider,
1080 					     DSI_DISP0_PIX_CLK_DIV) |
1081 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1082 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1083 					     DSI_DISP0_LP_STOP_CTRL) |
1084 			       DSI_DISP0_ST_END |
1085 			       DSI_DISP0_ENABLE);
1086 	} else {
1087 		DSI_PORT_WRITE(DISP0_CTRL,
1088 			       DSI_DISP0_COMMAND_MODE |
1089 			       DSI_DISP0_ENABLE);
1090 	}
1091 
1092 	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1093 		if (iter->funcs->enable)
1094 			iter->funcs->enable(iter);
1095 	}
1096 
1097 	if (debug_dump_regs) {
1098 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1099 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1100 		drm_print_regset32(&p, &dsi->regset);
1101 	}
1102 }
1103 
1104 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1105 				     const struct mipi_dsi_msg *msg)
1106 {
1107 	struct vc4_dsi *dsi = host_to_dsi(host);
1108 	struct mipi_dsi_packet packet;
1109 	u32 pkth = 0, pktc = 0;
1110 	int i, ret;
1111 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1112 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1113 
1114 	mipi_dsi_create_packet(&packet, msg);
1115 
1116 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1117 	pkth |= VC4_SET_FIELD(packet.header[1] |
1118 			      (packet.header[2] << 8),
1119 			      DSI_TXPKT1H_BC_PARAM);
1120 	if (is_long) {
1121 		/* Divide data across the various FIFOs we have available.
1122 		 * The command FIFO takes byte-oriented data, but is of
1123 		 * limited size. The pixel FIFO (never actually used for
1124 		 * pixel data in reality) is word oriented, and substantially
1125 		 * larger. So, we use the pixel FIFO for most of the data,
1126 		 * sending the residual bytes in the command FIFO at the start.
1127 		 *
1128 		 * With this arrangement, the command FIFO will never get full.
1129 		 */
1130 		if (packet.payload_length <= 16) {
1131 			cmd_fifo_len = packet.payload_length;
1132 			pix_fifo_len = 0;
1133 		} else {
1134 			cmd_fifo_len = (packet.payload_length %
1135 					DSI_PIX_FIFO_WIDTH);
1136 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1137 					DSI_PIX_FIFO_WIDTH);
1138 		}
1139 
1140 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1141 
1142 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1143 	}
1144 
1145 	if (msg->rx_len) {
1146 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1147 				      DSI_TXPKT1C_CMD_CTRL);
1148 	} else {
1149 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1150 				      DSI_TXPKT1C_CMD_CTRL);
1151 	}
1152 
1153 	for (i = 0; i < cmd_fifo_len; i++)
1154 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1155 	for (i = 0; i < pix_fifo_len; i++) {
1156 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1157 
1158 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1159 			       pix[0] |
1160 			       pix[1] << 8 |
1161 			       pix[2] << 16 |
1162 			       pix[3] << 24);
1163 	}
1164 
1165 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1166 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1167 	if (is_long)
1168 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1169 
1170 	/* Send one copy of the packet.  Larger repeats are used for pixel
1171 	 * data in command mode.
1172 	 */
1173 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1174 
1175 	pktc |= DSI_TXPKT1C_CMD_EN;
1176 	if (pix_fifo_len) {
1177 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1178 				      DSI_TXPKT1C_DISPLAY_NO);
1179 	} else {
1180 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1181 				      DSI_TXPKT1C_DISPLAY_NO);
1182 	}
1183 
1184 	/* Enable the appropriate interrupt for the transfer completion. */
1185 	dsi->xfer_result = 0;
1186 	reinit_completion(&dsi->xfer_completion);
1187 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1188 	if (msg->rx_len) {
1189 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1190 					DSI1_INT_PHY_DIR_RTF));
1191 	} else {
1192 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1193 					DSI1_INT_TXPKT1_DONE));
1194 	}
1195 
1196 	/* Send the packet. */
1197 	DSI_PORT_WRITE(TXPKT1H, pkth);
1198 	DSI_PORT_WRITE(TXPKT1C, pktc);
1199 
1200 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1201 					 msecs_to_jiffies(1000))) {
1202 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1203 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1204 			DSI_PORT_READ(INT_STAT));
1205 		ret = -ETIMEDOUT;
1206 	} else {
1207 		ret = dsi->xfer_result;
1208 	}
1209 
1210 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1211 
1212 	if (ret)
1213 		goto reset_fifo_and_return;
1214 
1215 	if (ret == 0 && msg->rx_len) {
1216 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1217 		u8 *msg_rx = msg->rx_buf;
1218 
1219 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1220 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1221 						  DSI_RXPKT1H_BC_PARAM);
1222 
1223 			if (rxlen != msg->rx_len) {
1224 				DRM_ERROR("DSI returned %db, expecting %db\n",
1225 					  rxlen, (int)msg->rx_len);
1226 				ret = -ENXIO;
1227 				goto reset_fifo_and_return;
1228 			}
1229 
1230 			for (i = 0; i < msg->rx_len; i++)
1231 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1232 		} else {
1233 			/* FINISHME: Handle AWER */
1234 
1235 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1236 						  DSI_RXPKT1H_SHORT_0);
1237 			if (msg->rx_len > 1) {
1238 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1239 							  DSI_RXPKT1H_SHORT_1);
1240 			}
1241 		}
1242 	}
1243 
1244 	return ret;
1245 
1246 reset_fifo_and_return:
1247 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1248 
1249 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1250 	udelay(1);
1251 	DSI_PORT_WRITE(CTRL,
1252 		       DSI_PORT_READ(CTRL) |
1253 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1254 
1255 	DSI_PORT_WRITE(TXPKT1C, 0);
1256 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1257 	return ret;
1258 }
1259 
1260 static const struct component_ops vc4_dsi_ops;
1261 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1262 			       struct mipi_dsi_device *device)
1263 {
1264 	struct vc4_dsi *dsi = host_to_dsi(host);
1265 
1266 	dsi->lanes = device->lanes;
1267 	dsi->channel = device->channel;
1268 	dsi->mode_flags = device->mode_flags;
1269 
1270 	switch (device->format) {
1271 	case MIPI_DSI_FMT_RGB888:
1272 		dsi->format = DSI_PFORMAT_RGB888;
1273 		dsi->divider = 24 / dsi->lanes;
1274 		break;
1275 	case MIPI_DSI_FMT_RGB666:
1276 		dsi->format = DSI_PFORMAT_RGB666;
1277 		dsi->divider = 24 / dsi->lanes;
1278 		break;
1279 	case MIPI_DSI_FMT_RGB666_PACKED:
1280 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1281 		dsi->divider = 18 / dsi->lanes;
1282 		break;
1283 	case MIPI_DSI_FMT_RGB565:
1284 		dsi->format = DSI_PFORMAT_RGB565;
1285 		dsi->divider = 16 / dsi->lanes;
1286 		break;
1287 	default:
1288 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1289 			dsi->format);
1290 		return 0;
1291 	}
1292 
1293 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1294 		dev_err(&dsi->pdev->dev,
1295 			"Only VIDEO mode panels supported currently.\n");
1296 		return 0;
1297 	}
1298 
1299 	return component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1300 }
1301 
1302 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1303 			       struct mipi_dsi_device *device)
1304 {
1305 	struct vc4_dsi *dsi = host_to_dsi(host);
1306 
1307 	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1308 	return 0;
1309 }
1310 
1311 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1312 	.attach = vc4_dsi_host_attach,
1313 	.detach = vc4_dsi_host_detach,
1314 	.transfer = vc4_dsi_host_transfer,
1315 };
1316 
1317 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1318 	.disable = vc4_dsi_encoder_disable,
1319 	.enable = vc4_dsi_encoder_enable,
1320 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1321 };
1322 
1323 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1324 	.port			= 1,
1325 	.debugfs_name		= "dsi1_regs",
1326 	.regs			= dsi1_regs,
1327 	.nregs			= ARRAY_SIZE(dsi1_regs),
1328 };
1329 
1330 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1331 	.port			= 0,
1332 	.debugfs_name		= "dsi0_regs",
1333 	.regs			= dsi0_regs,
1334 	.nregs			= ARRAY_SIZE(dsi0_regs),
1335 };
1336 
1337 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1338 	.port			= 1,
1339 	.broken_axi_workaround	= true,
1340 	.debugfs_name		= "dsi1_regs",
1341 	.regs			= dsi1_regs,
1342 	.nregs			= ARRAY_SIZE(dsi1_regs),
1343 };
1344 
1345 static const struct of_device_id vc4_dsi_dt_match[] = {
1346 	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1347 	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1348 	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1349 	{}
1350 };
1351 
1352 static void dsi_handle_error(struct vc4_dsi *dsi,
1353 			     irqreturn_t *ret, u32 stat, u32 bit,
1354 			     const char *type)
1355 {
1356 	if (!(stat & bit))
1357 		return;
1358 
1359 	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1360 	*ret = IRQ_HANDLED;
1361 }
1362 
1363 /*
1364  * Initial handler for port 1 where we need the reg_dma workaround.
1365  * The register DMA writes sleep, so we can't do it in the top half.
1366  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1367  * parent interrupt contrller until our interrupt thread is done.
1368  */
1369 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1370 {
1371 	struct vc4_dsi *dsi = data;
1372 	u32 stat = DSI_PORT_READ(INT_STAT);
1373 
1374 	if (!stat)
1375 		return IRQ_NONE;
1376 
1377 	return IRQ_WAKE_THREAD;
1378 }
1379 
1380 /*
1381  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1382  * 1 where we need the reg_dma workaround.
1383  */
1384 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1385 {
1386 	struct vc4_dsi *dsi = data;
1387 	u32 stat = DSI_PORT_READ(INT_STAT);
1388 	irqreturn_t ret = IRQ_NONE;
1389 
1390 	DSI_PORT_WRITE(INT_STAT, stat);
1391 
1392 	dsi_handle_error(dsi, &ret, stat,
1393 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1394 	dsi_handle_error(dsi, &ret, stat,
1395 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1396 	dsi_handle_error(dsi, &ret, stat,
1397 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1398 	dsi_handle_error(dsi, &ret, stat,
1399 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1400 	dsi_handle_error(dsi, &ret, stat,
1401 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1402 	dsi_handle_error(dsi, &ret, stat,
1403 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1404 	dsi_handle_error(dsi, &ret, stat,
1405 			 DSI1_INT_TA_TO, "turnaround timeout");
1406 	dsi_handle_error(dsi, &ret, stat,
1407 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1408 
1409 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1410 		complete(&dsi->xfer_completion);
1411 		ret = IRQ_HANDLED;
1412 	} else if (stat & DSI1_INT_HSTX_TO) {
1413 		complete(&dsi->xfer_completion);
1414 		dsi->xfer_result = -ETIMEDOUT;
1415 		ret = IRQ_HANDLED;
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1423  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1424  * @dsi: DSI encoder
1425  */
1426 static int
1427 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1428 {
1429 	struct device *dev = &dsi->pdev->dev;
1430 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1431 	static const struct {
1432 		const char *name;
1433 		int div;
1434 	} phy_clocks[] = {
1435 		{ "byte", 8 },
1436 		{ "ddr2", 4 },
1437 		{ "ddr", 2 },
1438 	};
1439 	int i;
1440 
1441 	dsi->clk_onecell = devm_kzalloc(dev,
1442 					sizeof(*dsi->clk_onecell) +
1443 					ARRAY_SIZE(phy_clocks) *
1444 					sizeof(struct clk_hw *),
1445 					GFP_KERNEL);
1446 	if (!dsi->clk_onecell)
1447 		return -ENOMEM;
1448 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1449 
1450 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1451 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1452 		struct clk_init_data init;
1453 		char clk_name[16];
1454 		int ret;
1455 
1456 		snprintf(clk_name, sizeof(clk_name),
1457 			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1458 
1459 		/* We just use core fixed factor clock ops for the PHY
1460 		 * clocks.  The clocks are actually gated by the
1461 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1462 		 * setting if we use the DDR/DDR2 clocks.  However,
1463 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1464 		 * setting both our parent DSI PLL's rate and this
1465 		 * clock's rate, so it knows if DDR/DDR2 are going to
1466 		 * be used and could enable the gates itself.
1467 		 */
1468 		fix->mult = 1;
1469 		fix->div = phy_clocks[i].div;
1470 		fix->hw.init = &init;
1471 
1472 		memset(&init, 0, sizeof(init));
1473 		init.parent_names = &parent_name;
1474 		init.num_parents = 1;
1475 		init.name = clk_name;
1476 		init.ops = &clk_fixed_factor_ops;
1477 
1478 		ret = devm_clk_hw_register(dev, &fix->hw);
1479 		if (ret)
1480 			return ret;
1481 
1482 		dsi->clk_onecell->hws[i] = &fix->hw;
1483 	}
1484 
1485 	return of_clk_add_hw_provider(dev->of_node,
1486 				      of_clk_hw_onecell_get,
1487 				      dsi->clk_onecell);
1488 }
1489 
1490 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1491 {
1492 	struct platform_device *pdev = to_platform_device(dev);
1493 	struct drm_device *drm = dev_get_drvdata(master);
1494 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1495 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1496 	const struct of_device_id *match;
1497 	dma_cap_mask_t dma_mask;
1498 	int ret;
1499 
1500 	match = of_match_device(vc4_dsi_dt_match, dev);
1501 	if (!match)
1502 		return -ENODEV;
1503 
1504 	dsi->variant = match->data;
1505 
1506 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1507 				       GFP_KERNEL);
1508 	if (!vc4_dsi_encoder)
1509 		return -ENOMEM;
1510 
1511 	INIT_LIST_HEAD(&dsi->bridge_chain);
1512 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1513 	vc4_dsi_encoder->dsi = dsi;
1514 	dsi->encoder = &vc4_dsi_encoder->base.base;
1515 
1516 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1517 	if (IS_ERR(dsi->regs))
1518 		return PTR_ERR(dsi->regs);
1519 
1520 	dsi->regset.base = dsi->regs;
1521 	dsi->regset.regs = dsi->variant->regs;
1522 	dsi->regset.nregs = dsi->variant->nregs;
1523 
1524 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1525 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1526 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1527 		return -ENODEV;
1528 	}
1529 
1530 	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1531 	 * writes from the ARM.  It does handle writes from the DMA engine,
1532 	 * so set up a channel for talking to it.
1533 	 */
1534 	if (dsi->variant->broken_axi_workaround) {
1535 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1536 						      &dsi->reg_dma_paddr,
1537 						      GFP_KERNEL);
1538 		if (!dsi->reg_dma_mem) {
1539 			DRM_ERROR("Failed to get DMA memory\n");
1540 			return -ENOMEM;
1541 		}
1542 
1543 		dma_cap_zero(dma_mask);
1544 		dma_cap_set(DMA_MEMCPY, dma_mask);
1545 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1546 		if (IS_ERR(dsi->reg_dma_chan)) {
1547 			ret = PTR_ERR(dsi->reg_dma_chan);
1548 			if (ret != -EPROBE_DEFER)
1549 				DRM_ERROR("Failed to get DMA channel: %d\n",
1550 					  ret);
1551 			return ret;
1552 		}
1553 
1554 		/* Get the physical address of the device's registers.  The
1555 		 * struct resource for the regs gives us the bus address
1556 		 * instead.
1557 		 */
1558 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1559 							     0, NULL, NULL));
1560 	}
1561 
1562 	init_completion(&dsi->xfer_completion);
1563 	/* At startup enable error-reporting interrupts and nothing else. */
1564 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1565 	/* Clear any existing interrupt state. */
1566 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1567 
1568 	if (dsi->reg_dma_mem)
1569 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1570 						vc4_dsi_irq_defer_to_thread_handler,
1571 						vc4_dsi_irq_handler,
1572 						IRQF_ONESHOT,
1573 						"vc4 dsi", dsi);
1574 	else
1575 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1576 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1577 	if (ret) {
1578 		if (ret != -EPROBE_DEFER)
1579 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1580 		return ret;
1581 	}
1582 
1583 	dsi->escape_clock = devm_clk_get(dev, "escape");
1584 	if (IS_ERR(dsi->escape_clock)) {
1585 		ret = PTR_ERR(dsi->escape_clock);
1586 		if (ret != -EPROBE_DEFER)
1587 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1588 		return ret;
1589 	}
1590 
1591 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1592 	if (IS_ERR(dsi->pll_phy_clock)) {
1593 		ret = PTR_ERR(dsi->pll_phy_clock);
1594 		if (ret != -EPROBE_DEFER)
1595 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1596 		return ret;
1597 	}
1598 
1599 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1600 	if (IS_ERR(dsi->pixel_clock)) {
1601 		ret = PTR_ERR(dsi->pixel_clock);
1602 		if (ret != -EPROBE_DEFER)
1603 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1604 		return ret;
1605 	}
1606 
1607 	dsi->bridge = devm_drm_of_get_bridge(dev, dev->of_node, 0, 0);
1608 	if (IS_ERR(dsi->bridge))
1609 		return PTR_ERR(dsi->bridge);
1610 
1611 	/* The esc clock rate is supposed to always be 100Mhz. */
1612 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1613 	if (ret) {
1614 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1615 		return ret;
1616 	}
1617 
1618 	ret = vc4_dsi_init_phy_clocks(dsi);
1619 	if (ret)
1620 		return ret;
1621 
1622 	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1623 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1624 
1625 	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1626 	if (ret)
1627 		return ret;
1628 	/* Disable the atomic helper calls into the bridge.  We
1629 	 * manually call the bridge pre_enable / enable / etc. calls
1630 	 * from our driver, since we need to sequence them within the
1631 	 * encoder's enable/disable paths.
1632 	 */
1633 	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1634 
1635 	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1636 
1637 	pm_runtime_enable(dev);
1638 
1639 	return 0;
1640 }
1641 
1642 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1643 			   void *data)
1644 {
1645 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1646 
1647 	pm_runtime_disable(dev);
1648 
1649 	/*
1650 	 * Restore the bridge_chain so the bridge detach procedure can happen
1651 	 * normally.
1652 	 */
1653 	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1654 	drm_encoder_cleanup(dsi->encoder);
1655 }
1656 
1657 static const struct component_ops vc4_dsi_ops = {
1658 	.bind   = vc4_dsi_bind,
1659 	.unbind = vc4_dsi_unbind,
1660 };
1661 
1662 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1663 {
1664 	struct device *dev = &pdev->dev;
1665 	struct vc4_dsi *dsi;
1666 
1667 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1668 	if (!dsi)
1669 		return -ENOMEM;
1670 	dev_set_drvdata(dev, dsi);
1671 
1672 	dsi->pdev = pdev;
1673 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1674 	dsi->dsi_host.dev = dev;
1675 	mipi_dsi_host_register(&dsi->dsi_host);
1676 
1677 	return 0;
1678 }
1679 
1680 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1681 {
1682 	struct device *dev = &pdev->dev;
1683 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1684 
1685 	mipi_dsi_host_unregister(&dsi->dsi_host);
1686 	return 0;
1687 }
1688 
1689 struct platform_driver vc4_dsi_driver = {
1690 	.probe = vc4_dsi_dev_probe,
1691 	.remove = vc4_dsi_dev_remove,
1692 	.driver = {
1693 		.name = "vc4_dsi",
1694 		.of_match_table = vc4_dsi_dt_match,
1695 	},
1696 };
1697