xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 23cb0767f0544858169c02cec445d066d4e02e2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_print.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_vblank.h>
45 
46 #include "vc4_drv.h"
47 #include "vc4_hdmi.h"
48 #include "vc4_regs.h"
49 
50 #define HVS_FIFO_LATENCY_PIX	6
51 
52 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
53 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
54 
55 static const struct debugfs_reg32 crtc_regs[] = {
56 	VC4_REG32(PV_CONTROL),
57 	VC4_REG32(PV_V_CONTROL),
58 	VC4_REG32(PV_VSYNCD_EVEN),
59 	VC4_REG32(PV_HORZA),
60 	VC4_REG32(PV_HORZB),
61 	VC4_REG32(PV_VERTA),
62 	VC4_REG32(PV_VERTB),
63 	VC4_REG32(PV_VERTA_EVEN),
64 	VC4_REG32(PV_VERTB_EVEN),
65 	VC4_REG32(PV_INTEN),
66 	VC4_REG32(PV_INTSTAT),
67 	VC4_REG32(PV_STAT),
68 	VC4_REG32(PV_HACT_ACT),
69 };
70 
71 static unsigned int
72 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
73 {
74 	struct vc4_hvs *hvs = vc4->hvs;
75 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
76 	/* Top/base are supposed to be 4-pixel aligned, but the
77 	 * Raspberry Pi firmware fills the low bits (which are
78 	 * presumably ignored).
79 	 */
80 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
81 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
82 
83 	return top - base + 4;
84 }
85 
86 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
87 					  bool in_vblank_irq,
88 					  int *vpos, int *hpos,
89 					  ktime_t *stime, ktime_t *etime,
90 					  const struct drm_display_mode *mode)
91 {
92 	struct drm_device *dev = crtc->dev;
93 	struct vc4_dev *vc4 = to_vc4_dev(dev);
94 	struct vc4_hvs *hvs = vc4->hvs;
95 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
96 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
97 	unsigned int cob_size;
98 	u32 val;
99 	int fifo_lines;
100 	int vblank_lines;
101 	bool ret = false;
102 
103 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
104 
105 	/* Get optional system timestamp before query. */
106 	if (stime)
107 		*stime = ktime_get();
108 
109 	/*
110 	 * Read vertical scanline which is currently composed for our
111 	 * pixelvalve by the HVS, and also the scaler status.
112 	 */
113 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
114 
115 	/* Get optional system timestamp after query. */
116 	if (etime)
117 		*etime = ktime_get();
118 
119 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
120 
121 	/* Vertical position of hvs composed scanline. */
122 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
123 	*hpos = 0;
124 
125 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
126 		*vpos /= 2;
127 
128 		/* Use hpos to correct for field offset in interlaced mode. */
129 		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
130 			*hpos += mode->crtc_htotal / 2;
131 	}
132 
133 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
134 	/* This is the offset we need for translating hvs -> pv scanout pos. */
135 	fifo_lines = cob_size / mode->crtc_hdisplay;
136 
137 	if (fifo_lines > 0)
138 		ret = true;
139 
140 	/* HVS more than fifo_lines into frame for compositing? */
141 	if (*vpos > fifo_lines) {
142 		/*
143 		 * We are in active scanout and can get some meaningful results
144 		 * from HVS. The actual PV scanout can not trail behind more
145 		 * than fifo_lines as that is the fifo's capacity. Assume that
146 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
147 		 * refilling the fifo and PV consuming from the fifo, ie.
148 		 * whenever the PV consumes and frees up a scanline in the
149 		 * fifo, the HVS will immediately refill it, therefore
150 		 * incrementing vpos. Therefore we choose HVS read position -
151 		 * fifo size in scanlines as a estimate of the real scanout
152 		 * position of the PV.
153 		 */
154 		*vpos -= fifo_lines + 1;
155 
156 		return ret;
157 	}
158 
159 	/*
160 	 * Less: This happens when we are in vblank and the HVS, after getting
161 	 * the VSTART restart signal from the PV, just started refilling its
162 	 * fifo with new lines from the top-most lines of the new framebuffers.
163 	 * The PV does not scan out in vblank, so does not remove lines from
164 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
165 	 * We can't get meaningful readings wrt. scanline position of the PV
166 	 * and need to make things up in a approximative but consistent way.
167 	 */
168 	vblank_lines = mode->vtotal - mode->vdisplay;
169 
170 	if (in_vblank_irq) {
171 		/*
172 		 * Assume the irq handler got called close to first
173 		 * line of vblank, so PV has about a full vblank
174 		 * scanlines to go, and as a base timestamp use the
175 		 * one taken at entry into vblank irq handler, so it
176 		 * is not affected by random delays due to lock
177 		 * contention on event_lock or vblank_time lock in
178 		 * the core.
179 		 */
180 		*vpos = -vblank_lines;
181 
182 		if (stime)
183 			*stime = vc4_crtc->t_vblank;
184 		if (etime)
185 			*etime = vc4_crtc->t_vblank;
186 
187 		/*
188 		 * If the HVS fifo is not yet full then we know for certain
189 		 * we are at the very beginning of vblank, as the hvs just
190 		 * started refilling, and the stime and etime timestamps
191 		 * truly correspond to start of vblank.
192 		 *
193 		 * Unfortunately there's no way to report this to upper levels
194 		 * and make it more useful.
195 		 */
196 	} else {
197 		/*
198 		 * No clue where we are inside vblank. Return a vpos of zero,
199 		 * which will cause calling code to just return the etime
200 		 * timestamp uncorrected. At least this is no worse than the
201 		 * standard fallback.
202 		 */
203 		*vpos = 0;
204 	}
205 
206 	return ret;
207 }
208 
209 void vc4_crtc_destroy(struct drm_crtc *crtc)
210 {
211 	drm_crtc_cleanup(crtc);
212 }
213 
214 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
215 {
216 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
217 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
218 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
219 	u32 fifo_len_bytes = pv_data->fifo_depth;
220 
221 	/*
222 	 * Pixels are pulled from the HVS if the number of bytes is
223 	 * lower than the FIFO full level.
224 	 *
225 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
226 	 * need to convert those 6 pixels in bytes, depending on the
227 	 * format, and then subtract that from the length of the FIFO
228 	 * to make sure we never end up in a situation where the FIFO
229 	 * is full.
230 	 */
231 	switch (format) {
232 	case PV_CONTROL_FORMAT_DSIV_16:
233 	case PV_CONTROL_FORMAT_DSIC_16:
234 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
235 	case PV_CONTROL_FORMAT_DSIV_18:
236 		return fifo_len_bytes - 14;
237 	case PV_CONTROL_FORMAT_24:
238 	case PV_CONTROL_FORMAT_DSIV_24:
239 	default:
240 		/*
241 		 * For some reason, the pixelvalve4 doesn't work with
242 		 * the usual formula and will only work with 32.
243 		 */
244 		if (crtc_data->hvs_output == 5)
245 			return 32;
246 
247 		/*
248 		 * It looks like in some situations, we will overflow
249 		 * the PixelValve FIFO (with the bit 10 of PV stat being
250 		 * set) and stall the HVS / PV, eventually resulting in
251 		 * a page flip timeout.
252 		 *
253 		 * Displaying the video overlay during a playback with
254 		 * Kodi on an RPi3 seems to be a great solution with a
255 		 * failure rate around 50%.
256 		 *
257 		 * Removing 1 from the FIFO full level however
258 		 * seems to completely remove that issue.
259 		 */
260 		if (!vc4->is_vc5)
261 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
262 
263 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
264 	}
265 }
266 
267 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
268 					     u32 format)
269 {
270 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
271 	u32 ret = 0;
272 
273 	ret |= VC4_SET_FIELD((level >> 6),
274 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
275 
276 	return ret | VC4_SET_FIELD(level & 0x3f,
277 				   PV_CONTROL_FIFO_LEVEL);
278 }
279 
280 /*
281  * Returns the encoder attached to the CRTC.
282  *
283  * VC4 can only scan out to one encoder at a time, while the DRM core
284  * allows drivers to push pixels to more than one encoder from the
285  * same CRTC.
286  */
287 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
288 					 struct drm_crtc_state *state)
289 {
290 	struct drm_encoder *encoder;
291 
292 	WARN_ON(hweight32(state->encoder_mask) > 1);
293 
294 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
295 		return encoder;
296 
297 	return NULL;
298 }
299 
300 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
301 {
302 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
303 
304 	/* The PV needs to be disabled before it can be flushed */
305 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
306 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
307 }
308 
309 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
310 			       struct drm_atomic_state *state)
311 {
312 	struct drm_device *dev = crtc->dev;
313 	struct vc4_dev *vc4 = to_vc4_dev(dev);
314 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
315 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
316 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
317 	struct drm_crtc_state *crtc_state = crtc->state;
318 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
319 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
320 	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
321 		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
322 	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
323 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
324 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
325 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
326 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
327 	u8 ppc = pv_data->pixels_per_clock;
328 	bool debug_dump_regs = false;
329 
330 	if (debug_dump_regs) {
331 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
332 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
333 			 drm_crtc_index(crtc));
334 		drm_print_regset32(&p, &vc4_crtc->regset);
335 	}
336 
337 	vc4_crtc_pixelvalve_reset(crtc);
338 
339 	CRTC_WRITE(PV_HORZA,
340 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
341 				 PV_HORZA_HBP) |
342 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
343 				 PV_HORZA_HSYNC));
344 
345 	CRTC_WRITE(PV_HORZB,
346 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
347 				 PV_HORZB_HFP) |
348 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
349 				 PV_HORZB_HACTIVE));
350 
351 	CRTC_WRITE(PV_VERTA,
352 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
353 				 interlace,
354 				 PV_VERTA_VBP) |
355 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
356 				 PV_VERTA_VSYNC));
357 	CRTC_WRITE(PV_VERTB,
358 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
359 				 PV_VERTB_VFP) |
360 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
361 
362 	if (interlace) {
363 		CRTC_WRITE(PV_VERTA_EVEN,
364 			   VC4_SET_FIELD(mode->crtc_vtotal -
365 					 mode->crtc_vsync_end,
366 					 PV_VERTA_VBP) |
367 			   VC4_SET_FIELD(mode->crtc_vsync_end -
368 					 mode->crtc_vsync_start,
369 					 PV_VERTA_VSYNC));
370 		CRTC_WRITE(PV_VERTB_EVEN,
371 			   VC4_SET_FIELD(mode->crtc_vsync_start -
372 					 mode->crtc_vdisplay,
373 					 PV_VERTB_VFP) |
374 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
375 
376 		/* We set up first field even mode for HDMI.  VEC's
377 		 * NTSC mode would want first field odd instead, once
378 		 * we support it (to do so, set ODD_FIRST and put the
379 		 * delay in VSYNCD_EVEN instead).
380 		 */
381 		CRTC_WRITE(PV_V_CONTROL,
382 			   PV_VCONTROL_CONTINUOUS |
383 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
384 			   PV_VCONTROL_INTERLACE |
385 			   VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
386 					 PV_VCONTROL_ODD_DELAY));
387 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
388 	} else {
389 		CRTC_WRITE(PV_V_CONTROL,
390 			   PV_VCONTROL_CONTINUOUS |
391 			   (is_dsi ? PV_VCONTROL_DSI : 0));
392 	}
393 
394 	if (is_dsi)
395 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
396 
397 	if (vc4->is_vc5)
398 		CRTC_WRITE(PV_MUX_CFG,
399 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
400 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
401 
402 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
403 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
404 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
405 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
406 		   PV_CONTROL_CLR_AT_START |
407 		   PV_CONTROL_TRIGGER_UNDERFLOW |
408 		   PV_CONTROL_WAIT_HSTART |
409 		   VC4_SET_FIELD(vc4_encoder->clock_select,
410 				 PV_CONTROL_CLK_SELECT));
411 
412 	if (debug_dump_regs) {
413 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
414 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
415 			 drm_crtc_index(crtc));
416 		drm_print_regset32(&p, &vc4_crtc->regset);
417 	}
418 }
419 
420 static void require_hvs_enabled(struct drm_device *dev)
421 {
422 	struct vc4_dev *vc4 = to_vc4_dev(dev);
423 	struct vc4_hvs *hvs = vc4->hvs;
424 
425 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
426 		     SCALER_DISPCTRL_ENABLE);
427 }
428 
429 static int vc4_crtc_disable(struct drm_crtc *crtc,
430 			    struct drm_encoder *encoder,
431 			    struct drm_atomic_state *state,
432 			    unsigned int channel)
433 {
434 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
435 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
436 	struct drm_device *dev = crtc->dev;
437 	struct vc4_dev *vc4 = to_vc4_dev(dev);
438 	int ret;
439 
440 	CRTC_WRITE(PV_V_CONTROL,
441 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
442 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
443 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
444 
445 	/*
446 	 * This delay is needed to avoid to get a pixel stuck in an
447 	 * unflushable FIFO between the pixelvalve and the HDMI
448 	 * controllers on the BCM2711.
449 	 *
450 	 * Timing is fairly sensitive here, so mdelay is the safest
451 	 * approach.
452 	 *
453 	 * If it was to be reworked, the stuck pixel happens on a
454 	 * BCM2711 when changing mode with a good probability, so a
455 	 * script that changes mode on a regular basis should trigger
456 	 * the bug after less than 10 attempts. It manifests itself with
457 	 * every pixels being shifted by one to the right, and thus the
458 	 * last pixel of a line actually being displayed as the first
459 	 * pixel on the next line.
460 	 */
461 	mdelay(20);
462 
463 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
464 		vc4_encoder->post_crtc_disable(encoder, state);
465 
466 	vc4_crtc_pixelvalve_reset(crtc);
467 	vc4_hvs_stop_channel(vc4->hvs, channel);
468 
469 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
470 		vc4_encoder->post_crtc_powerdown(encoder, state);
471 
472 	return 0;
473 }
474 
475 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
476 							enum vc4_encoder_type type)
477 {
478 	struct drm_encoder *encoder;
479 
480 	drm_for_each_encoder(encoder, crtc->dev) {
481 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
482 
483 		if (vc4_encoder->type == type)
484 			return encoder;
485 	}
486 
487 	return NULL;
488 }
489 
490 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
491 {
492 	struct drm_device *drm = crtc->dev;
493 	struct vc4_dev *vc4 = to_vc4_dev(drm);
494 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495 	enum vc4_encoder_type encoder_type;
496 	const struct vc4_pv_data *pv_data;
497 	struct drm_encoder *encoder;
498 	struct vc4_hdmi *vc4_hdmi;
499 	unsigned encoder_sel;
500 	int channel;
501 	int ret;
502 
503 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
504 				      "brcm,bcm2711-pixelvalve2") ||
505 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
506 				      "brcm,bcm2711-pixelvalve4")))
507 		return 0;
508 
509 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
510 		return 0;
511 
512 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
513 		return 0;
514 
515 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
516 	if (channel < 0)
517 		return 0;
518 
519 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
520 	if (WARN_ON(encoder_sel != 0))
521 		return 0;
522 
523 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
524 	encoder_type = pv_data->encoder_types[encoder_sel];
525 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
526 	if (WARN_ON(!encoder))
527 		return 0;
528 
529 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
530 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
531 	if (ret)
532 		return ret;
533 
534 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
535 	if (ret)
536 		return ret;
537 
538 	/*
539 	 * post_crtc_powerdown will have called pm_runtime_put, so we
540 	 * don't need it here otherwise we'll get the reference counting
541 	 * wrong.
542 	 */
543 
544 	return 0;
545 }
546 
547 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
548 				    struct drm_atomic_state *state)
549 {
550 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
551 									 crtc);
552 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
553 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
554 	struct drm_device *dev = crtc->dev;
555 
556 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
557 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
558 
559 	require_hvs_enabled(dev);
560 
561 	/* Disable vblank irq handling before crtc is disabled. */
562 	drm_crtc_vblank_off(crtc);
563 
564 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
565 
566 	/*
567 	 * Make sure we issue a vblank event after disabling the CRTC if
568 	 * someone was waiting it.
569 	 */
570 	if (crtc->state->event) {
571 		unsigned long flags;
572 
573 		spin_lock_irqsave(&dev->event_lock, flags);
574 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
575 		crtc->state->event = NULL;
576 		spin_unlock_irqrestore(&dev->event_lock, flags);
577 	}
578 }
579 
580 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
581 				   struct drm_atomic_state *state)
582 {
583 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
584 									 crtc);
585 	struct drm_device *dev = crtc->dev;
586 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
587 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
588 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
589 
590 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
591 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
592 
593 	require_hvs_enabled(dev);
594 
595 	/* Enable vblank irq handling before crtc is started otherwise
596 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
597 	 */
598 	drm_crtc_vblank_on(crtc);
599 
600 	vc4_hvs_atomic_enable(crtc, state);
601 
602 	if (vc4_encoder->pre_crtc_configure)
603 		vc4_encoder->pre_crtc_configure(encoder, state);
604 
605 	vc4_crtc_config_pv(crtc, encoder, state);
606 
607 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
608 
609 	if (vc4_encoder->pre_crtc_enable)
610 		vc4_encoder->pre_crtc_enable(encoder, state);
611 
612 	/* When feeding the transposer block the pixelvalve is unneeded and
613 	 * should not be enabled.
614 	 */
615 	CRTC_WRITE(PV_V_CONTROL,
616 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
617 
618 	if (vc4_encoder->post_crtc_enable)
619 		vc4_encoder->post_crtc_enable(encoder, state);
620 }
621 
622 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
623 						const struct drm_display_mode *mode)
624 {
625 	/* Do not allow doublescan modes from user space */
626 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
627 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
628 			      crtc->base.id);
629 		return MODE_NO_DBLESCAN;
630 	}
631 
632 	return MODE_OK;
633 }
634 
635 void vc4_crtc_get_margins(struct drm_crtc_state *state,
636 			  unsigned int *left, unsigned int *right,
637 			  unsigned int *top, unsigned int *bottom)
638 {
639 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
640 	struct drm_connector_state *conn_state;
641 	struct drm_connector *conn;
642 	int i;
643 
644 	*left = vc4_state->margins.left;
645 	*right = vc4_state->margins.right;
646 	*top = vc4_state->margins.top;
647 	*bottom = vc4_state->margins.bottom;
648 
649 	/* We have to interate over all new connector states because
650 	 * vc4_crtc_get_margins() might be called before
651 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
652 	 * might be outdated.
653 	 */
654 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
655 		if (conn_state->crtc != state->crtc)
656 			continue;
657 
658 		*left = conn_state->tv.margins.left;
659 		*right = conn_state->tv.margins.right;
660 		*top = conn_state->tv.margins.top;
661 		*bottom = conn_state->tv.margins.bottom;
662 		break;
663 	}
664 }
665 
666 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
667 				 struct drm_atomic_state *state)
668 {
669 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
670 									  crtc);
671 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
672 	struct drm_connector *conn;
673 	struct drm_connector_state *conn_state;
674 	struct drm_encoder *encoder;
675 	int ret, i;
676 
677 	ret = vc4_hvs_atomic_check(crtc, state);
678 	if (ret)
679 		return ret;
680 
681 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
682 	if (encoder) {
683 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
684 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
685 
686 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
687 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
688 						  mode->clock * 9 / 10) * 1000;
689 		} else {
690 			vc4_state->hvs_load = mode->clock * 1000;
691 		}
692 	}
693 
694 	for_each_new_connector_in_state(state, conn, conn_state,
695 					i) {
696 		if (conn_state->crtc != crtc)
697 			continue;
698 
699 		vc4_state->margins.left = conn_state->tv.margins.left;
700 		vc4_state->margins.right = conn_state->tv.margins.right;
701 		vc4_state->margins.top = conn_state->tv.margins.top;
702 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
703 		break;
704 	}
705 
706 	return 0;
707 }
708 
709 static int vc4_enable_vblank(struct drm_crtc *crtc)
710 {
711 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
712 
713 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
714 
715 	return 0;
716 }
717 
718 static void vc4_disable_vblank(struct drm_crtc *crtc)
719 {
720 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
721 
722 	CRTC_WRITE(PV_INTEN, 0);
723 }
724 
725 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
726 {
727 	struct drm_crtc *crtc = &vc4_crtc->base;
728 	struct drm_device *dev = crtc->dev;
729 	struct vc4_dev *vc4 = to_vc4_dev(dev);
730 	struct vc4_hvs *hvs = vc4->hvs;
731 	u32 chan = vc4_crtc->current_hvs_channel;
732 	unsigned long flags;
733 
734 	spin_lock_irqsave(&dev->event_lock, flags);
735 	spin_lock(&vc4_crtc->irq_lock);
736 	if (vc4_crtc->event &&
737 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
738 	     vc4_crtc->feeds_txp)) {
739 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
740 		vc4_crtc->event = NULL;
741 		drm_crtc_vblank_put(crtc);
742 
743 		/* Wait for the page flip to unmask the underrun to ensure that
744 		 * the display list was updated by the hardware. Before that
745 		 * happens, the HVS will be using the previous display list with
746 		 * the CRTC and encoder already reconfigured, leading to
747 		 * underruns. This can be seen when reconfiguring the CRTC.
748 		 */
749 		vc4_hvs_unmask_underrun(hvs, chan);
750 	}
751 	spin_unlock(&vc4_crtc->irq_lock);
752 	spin_unlock_irqrestore(&dev->event_lock, flags);
753 }
754 
755 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
756 {
757 	crtc->t_vblank = ktime_get();
758 	drm_crtc_handle_vblank(&crtc->base);
759 	vc4_crtc_handle_page_flip(crtc);
760 }
761 
762 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
763 {
764 	struct vc4_crtc *vc4_crtc = data;
765 	u32 stat = CRTC_READ(PV_INTSTAT);
766 	irqreturn_t ret = IRQ_NONE;
767 
768 	if (stat & PV_INT_VFP_START) {
769 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
770 		vc4_crtc_handle_vblank(vc4_crtc);
771 		ret = IRQ_HANDLED;
772 	}
773 
774 	return ret;
775 }
776 
777 struct vc4_async_flip_state {
778 	struct drm_crtc *crtc;
779 	struct drm_framebuffer *fb;
780 	struct drm_framebuffer *old_fb;
781 	struct drm_pending_vblank_event *event;
782 
783 	union {
784 		struct dma_fence_cb fence;
785 		struct vc4_seqno_cb seqno;
786 	} cb;
787 };
788 
789 /* Called when the V3D execution for the BO being flipped to is done, so that
790  * we can actually update the plane's address to point to it.
791  */
792 static void
793 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
794 {
795 	struct drm_crtc *crtc = flip_state->crtc;
796 	struct drm_device *dev = crtc->dev;
797 	struct drm_plane *plane = crtc->primary;
798 
799 	vc4_plane_async_set_fb(plane, flip_state->fb);
800 	if (flip_state->event) {
801 		unsigned long flags;
802 
803 		spin_lock_irqsave(&dev->event_lock, flags);
804 		drm_crtc_send_vblank_event(crtc, flip_state->event);
805 		spin_unlock_irqrestore(&dev->event_lock, flags);
806 	}
807 
808 	drm_crtc_vblank_put(crtc);
809 	drm_framebuffer_put(flip_state->fb);
810 
811 	if (flip_state->old_fb)
812 		drm_framebuffer_put(flip_state->old_fb);
813 
814 	kfree(flip_state);
815 }
816 
817 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
818 {
819 	struct vc4_async_flip_state *flip_state =
820 		container_of(cb, struct vc4_async_flip_state, cb.seqno);
821 	struct vc4_bo *bo = NULL;
822 
823 	if (flip_state->old_fb) {
824 		struct drm_gem_cma_object *cma_bo =
825 			drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
826 		bo = to_vc4_bo(&cma_bo->base);
827 	}
828 
829 	vc4_async_page_flip_complete(flip_state);
830 
831 	/*
832 	 * Decrement the BO usecnt in order to keep the inc/dec
833 	 * calls balanced when the planes are updated through
834 	 * the async update path.
835 	 *
836 	 * FIXME: we should move to generic async-page-flip when
837 	 * it's available, so that we can get rid of this
838 	 * hand-made cleanup_fb() logic.
839 	 */
840 	if (bo)
841 		vc4_bo_dec_usecnt(bo);
842 }
843 
844 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
845 					       struct dma_fence_cb *cb)
846 {
847 	struct vc4_async_flip_state *flip_state =
848 		container_of(cb, struct vc4_async_flip_state, cb.fence);
849 
850 	vc4_async_page_flip_complete(flip_state);
851 	dma_fence_put(fence);
852 }
853 
854 static int vc4_async_set_fence_cb(struct drm_device *dev,
855 				  struct vc4_async_flip_state *flip_state)
856 {
857 	struct drm_framebuffer *fb = flip_state->fb;
858 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
859 	struct vc4_dev *vc4 = to_vc4_dev(dev);
860 	struct dma_fence *fence;
861 	int ret;
862 
863 	if (!vc4->is_vc5) {
864 		struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
865 
866 		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
867 					  vc4_async_page_flip_seqno_complete);
868 	}
869 
870 	ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
871 	if (ret)
872 		return ret;
873 
874 	/* If there's no fence, complete the page flip immediately */
875 	if (!fence) {
876 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
877 		return 0;
878 	}
879 
880 	/* If the fence has already been completed, complete the page flip */
881 	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
882 				   vc4_async_page_flip_fence_complete))
883 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
884 
885 	return 0;
886 }
887 
888 static int
889 vc4_async_page_flip_common(struct drm_crtc *crtc,
890 			   struct drm_framebuffer *fb,
891 			   struct drm_pending_vblank_event *event,
892 			   uint32_t flags)
893 {
894 	struct drm_device *dev = crtc->dev;
895 	struct drm_plane *plane = crtc->primary;
896 	struct vc4_async_flip_state *flip_state;
897 
898 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
899 	if (!flip_state)
900 		return -ENOMEM;
901 
902 	drm_framebuffer_get(fb);
903 	flip_state->fb = fb;
904 	flip_state->crtc = crtc;
905 	flip_state->event = event;
906 
907 	/* Save the current FB before it's replaced by the new one in
908 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
909 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
910 	 * it consistent.
911 	 * FIXME: we should move to generic async-page-flip when it's
912 	 * available, so that we can get rid of this hand-made cleanup_fb()
913 	 * logic.
914 	 */
915 	flip_state->old_fb = plane->state->fb;
916 	if (flip_state->old_fb)
917 		drm_framebuffer_get(flip_state->old_fb);
918 
919 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
920 
921 	/* Immediately update the plane's legacy fb pointer, so that later
922 	 * modeset prep sees the state that will be present when the semaphore
923 	 * is released.
924 	 */
925 	drm_atomic_set_fb_for_plane(plane->state, fb);
926 
927 	vc4_async_set_fence_cb(dev, flip_state);
928 
929 	/* Driver takes ownership of state on successful async commit. */
930 	return 0;
931 }
932 
933 /* Implements async (non-vblank-synced) page flips.
934  *
935  * The page flip ioctl needs to return immediately, so we grab the
936  * modeset semaphore on the pipe, and queue the address update for
937  * when V3D is done with the BO being flipped to.
938  */
939 static int vc4_async_page_flip(struct drm_crtc *crtc,
940 			       struct drm_framebuffer *fb,
941 			       struct drm_pending_vblank_event *event,
942 			       uint32_t flags)
943 {
944 	struct drm_device *dev = crtc->dev;
945 	struct vc4_dev *vc4 = to_vc4_dev(dev);
946 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
947 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
948 	int ret;
949 
950 	if (WARN_ON_ONCE(vc4->is_vc5))
951 		return -ENODEV;
952 
953 	/*
954 	 * Increment the BO usecnt here, so that we never end up with an
955 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
956 	 * plane is later updated through the non-async path.
957 	 *
958 	 * FIXME: we should move to generic async-page-flip when
959 	 * it's available, so that we can get rid of this
960 	 * hand-made prepare_fb() logic.
961 	 */
962 	ret = vc4_bo_inc_usecnt(bo);
963 	if (ret)
964 		return ret;
965 
966 	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
967 	if (ret) {
968 		vc4_bo_dec_usecnt(bo);
969 		return ret;
970 	}
971 
972 	return 0;
973 }
974 
975 static int vc5_async_page_flip(struct drm_crtc *crtc,
976 			       struct drm_framebuffer *fb,
977 			       struct drm_pending_vblank_event *event,
978 			       uint32_t flags)
979 {
980 	return vc4_async_page_flip_common(crtc, fb, event, flags);
981 }
982 
983 int vc4_page_flip(struct drm_crtc *crtc,
984 		  struct drm_framebuffer *fb,
985 		  struct drm_pending_vblank_event *event,
986 		  uint32_t flags,
987 		  struct drm_modeset_acquire_ctx *ctx)
988 {
989 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
990 		struct drm_device *dev = crtc->dev;
991 		struct vc4_dev *vc4 = to_vc4_dev(dev);
992 
993 		if (vc4->is_vc5)
994 			return vc5_async_page_flip(crtc, fb, event, flags);
995 		else
996 			return vc4_async_page_flip(crtc, fb, event, flags);
997 	} else {
998 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
999 	}
1000 }
1001 
1002 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1003 {
1004 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1005 
1006 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1007 	if (!vc4_state)
1008 		return NULL;
1009 
1010 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1011 	vc4_state->margins = old_vc4_state->margins;
1012 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1013 
1014 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1015 	return &vc4_state->base;
1016 }
1017 
1018 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1019 			    struct drm_crtc_state *state)
1020 {
1021 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1022 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1023 
1024 	if (drm_mm_node_allocated(&vc4_state->mm)) {
1025 		unsigned long flags;
1026 
1027 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1028 		drm_mm_remove_node(&vc4_state->mm);
1029 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1030 
1031 	}
1032 
1033 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1034 }
1035 
1036 void vc4_crtc_reset(struct drm_crtc *crtc)
1037 {
1038 	struct vc4_crtc_state *vc4_crtc_state;
1039 
1040 	if (crtc->state)
1041 		vc4_crtc_destroy_state(crtc, crtc->state);
1042 
1043 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1044 	if (!vc4_crtc_state) {
1045 		crtc->state = NULL;
1046 		return;
1047 	}
1048 
1049 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1050 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1051 }
1052 
1053 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1054 	.set_config = drm_atomic_helper_set_config,
1055 	.destroy = vc4_crtc_destroy,
1056 	.page_flip = vc4_page_flip,
1057 	.set_property = NULL,
1058 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1059 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1060 	.reset = vc4_crtc_reset,
1061 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1062 	.atomic_destroy_state = vc4_crtc_destroy_state,
1063 	.enable_vblank = vc4_enable_vblank,
1064 	.disable_vblank = vc4_disable_vblank,
1065 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1066 };
1067 
1068 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1069 	.mode_valid = vc4_crtc_mode_valid,
1070 	.atomic_check = vc4_crtc_atomic_check,
1071 	.atomic_begin = vc4_hvs_atomic_begin,
1072 	.atomic_flush = vc4_hvs_atomic_flush,
1073 	.atomic_enable = vc4_crtc_atomic_enable,
1074 	.atomic_disable = vc4_crtc_atomic_disable,
1075 	.get_scanout_position = vc4_crtc_get_scanout_position,
1076 };
1077 
1078 static const struct vc4_pv_data bcm2835_pv0_data = {
1079 	.base = {
1080 		.hvs_available_channels = BIT(0),
1081 		.hvs_output = 0,
1082 	},
1083 	.debugfs_name = "crtc0_regs",
1084 	.fifo_depth = 64,
1085 	.pixels_per_clock = 1,
1086 	.encoder_types = {
1087 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1088 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1089 	},
1090 };
1091 
1092 static const struct vc4_pv_data bcm2835_pv1_data = {
1093 	.base = {
1094 		.hvs_available_channels = BIT(2),
1095 		.hvs_output = 2,
1096 	},
1097 	.debugfs_name = "crtc1_regs",
1098 	.fifo_depth = 64,
1099 	.pixels_per_clock = 1,
1100 	.encoder_types = {
1101 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1102 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1103 	},
1104 };
1105 
1106 static const struct vc4_pv_data bcm2835_pv2_data = {
1107 	.base = {
1108 		.hvs_available_channels = BIT(1),
1109 		.hvs_output = 1,
1110 	},
1111 	.debugfs_name = "crtc2_regs",
1112 	.fifo_depth = 64,
1113 	.pixels_per_clock = 1,
1114 	.encoder_types = {
1115 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1116 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1117 	},
1118 };
1119 
1120 static const struct vc4_pv_data bcm2711_pv0_data = {
1121 	.base = {
1122 		.hvs_available_channels = BIT(0),
1123 		.hvs_output = 0,
1124 	},
1125 	.debugfs_name = "crtc0_regs",
1126 	.fifo_depth = 64,
1127 	.pixels_per_clock = 1,
1128 	.encoder_types = {
1129 		[0] = VC4_ENCODER_TYPE_DSI0,
1130 		[1] = VC4_ENCODER_TYPE_DPI,
1131 	},
1132 };
1133 
1134 static const struct vc4_pv_data bcm2711_pv1_data = {
1135 	.base = {
1136 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1137 		.hvs_output = 3,
1138 	},
1139 	.debugfs_name = "crtc1_regs",
1140 	.fifo_depth = 64,
1141 	.pixels_per_clock = 1,
1142 	.encoder_types = {
1143 		[0] = VC4_ENCODER_TYPE_DSI1,
1144 		[1] = VC4_ENCODER_TYPE_SMI,
1145 	},
1146 };
1147 
1148 static const struct vc4_pv_data bcm2711_pv2_data = {
1149 	.base = {
1150 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1151 		.hvs_output = 4,
1152 	},
1153 	.debugfs_name = "crtc2_regs",
1154 	.fifo_depth = 256,
1155 	.pixels_per_clock = 2,
1156 	.encoder_types = {
1157 		[0] = VC4_ENCODER_TYPE_HDMI0,
1158 	},
1159 };
1160 
1161 static const struct vc4_pv_data bcm2711_pv3_data = {
1162 	.base = {
1163 		.hvs_available_channels = BIT(1),
1164 		.hvs_output = 1,
1165 	},
1166 	.debugfs_name = "crtc3_regs",
1167 	.fifo_depth = 64,
1168 	.pixels_per_clock = 1,
1169 	.encoder_types = {
1170 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1171 	},
1172 };
1173 
1174 static const struct vc4_pv_data bcm2711_pv4_data = {
1175 	.base = {
1176 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1177 		.hvs_output = 5,
1178 	},
1179 	.debugfs_name = "crtc4_regs",
1180 	.fifo_depth = 64,
1181 	.pixels_per_clock = 2,
1182 	.encoder_types = {
1183 		[0] = VC4_ENCODER_TYPE_HDMI1,
1184 	},
1185 };
1186 
1187 static const struct of_device_id vc4_crtc_dt_match[] = {
1188 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1189 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1190 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1191 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1192 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1193 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1194 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1195 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1196 	{}
1197 };
1198 
1199 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1200 					struct drm_crtc *crtc)
1201 {
1202 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1203 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1204 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1205 	struct drm_encoder *encoder;
1206 
1207 	drm_for_each_encoder(encoder, drm) {
1208 		struct vc4_encoder *vc4_encoder;
1209 		int i;
1210 
1211 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1212 			continue;
1213 
1214 		vc4_encoder = to_vc4_encoder(encoder);
1215 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1216 			if (vc4_encoder->type == encoder_types[i]) {
1217 				vc4_encoder->clock_select = i;
1218 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1219 				break;
1220 			}
1221 		}
1222 	}
1223 }
1224 
1225 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1226 		  const struct drm_crtc_funcs *crtc_funcs,
1227 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1228 {
1229 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1230 	struct drm_crtc *crtc = &vc4_crtc->base;
1231 	struct drm_plane *primary_plane;
1232 	unsigned int i;
1233 
1234 	/* For now, we create just the primary and the legacy cursor
1235 	 * planes.  We should be able to stack more planes on easily,
1236 	 * but to do that we would need to compute the bandwidth
1237 	 * requirement of the plane configuration, and reject ones
1238 	 * that will take too much.
1239 	 */
1240 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1241 	if (IS_ERR(primary_plane)) {
1242 		dev_err(drm->dev, "failed to construct primary plane\n");
1243 		return PTR_ERR(primary_plane);
1244 	}
1245 
1246 	spin_lock_init(&vc4_crtc->irq_lock);
1247 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1248 				  crtc_funcs, NULL);
1249 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1250 
1251 	if (!vc4->is_vc5) {
1252 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1253 
1254 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1255 
1256 		/* We support CTM, but only for one CRTC at a time. It's therefore
1257 		 * implemented as private driver state in vc4_kms, not here.
1258 		 */
1259 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1260 	}
1261 
1262 	for (i = 0; i < crtc->gamma_size; i++) {
1263 		vc4_crtc->lut_r[i] = i;
1264 		vc4_crtc->lut_g[i] = i;
1265 		vc4_crtc->lut_b[i] = i;
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1272 {
1273 	struct platform_device *pdev = to_platform_device(dev);
1274 	struct drm_device *drm = dev_get_drvdata(master);
1275 	const struct vc4_pv_data *pv_data;
1276 	struct vc4_crtc *vc4_crtc;
1277 	struct drm_crtc *crtc;
1278 	struct drm_plane *destroy_plane, *temp;
1279 	int ret;
1280 
1281 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1282 	if (!vc4_crtc)
1283 		return -ENOMEM;
1284 	crtc = &vc4_crtc->base;
1285 
1286 	pv_data = of_device_get_match_data(dev);
1287 	if (!pv_data)
1288 		return -ENODEV;
1289 	vc4_crtc->data = &pv_data->base;
1290 	vc4_crtc->pdev = pdev;
1291 
1292 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1293 	if (IS_ERR(vc4_crtc->regs))
1294 		return PTR_ERR(vc4_crtc->regs);
1295 
1296 	vc4_crtc->regset.base = vc4_crtc->regs;
1297 	vc4_crtc->regset.regs = crtc_regs;
1298 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1299 
1300 	ret = vc4_crtc_init(drm, vc4_crtc,
1301 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1302 	if (ret)
1303 		return ret;
1304 	vc4_set_crtc_possible_masks(drm, crtc);
1305 
1306 	CRTC_WRITE(PV_INTEN, 0);
1307 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1308 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1309 			       vc4_crtc_irq_handler,
1310 			       IRQF_SHARED,
1311 			       "vc4 crtc", vc4_crtc);
1312 	if (ret)
1313 		goto err_destroy_planes;
1314 
1315 	platform_set_drvdata(pdev, vc4_crtc);
1316 
1317 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1318 				 &vc4_crtc->regset);
1319 
1320 	return 0;
1321 
1322 err_destroy_planes:
1323 	list_for_each_entry_safe(destroy_plane, temp,
1324 				 &drm->mode_config.plane_list, head) {
1325 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1326 		    destroy_plane->funcs->destroy(destroy_plane);
1327 	}
1328 
1329 	return ret;
1330 }
1331 
1332 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1333 			    void *data)
1334 {
1335 	struct platform_device *pdev = to_platform_device(dev);
1336 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1337 
1338 	vc4_crtc_destroy(&vc4_crtc->base);
1339 
1340 	CRTC_WRITE(PV_INTEN, 0);
1341 
1342 	platform_set_drvdata(pdev, NULL);
1343 }
1344 
1345 static const struct component_ops vc4_crtc_ops = {
1346 	.bind   = vc4_crtc_bind,
1347 	.unbind = vc4_crtc_unbind,
1348 };
1349 
1350 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1351 {
1352 	return component_add(&pdev->dev, &vc4_crtc_ops);
1353 }
1354 
1355 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1356 {
1357 	component_del(&pdev->dev, &vc4_crtc_ops);
1358 	return 0;
1359 }
1360 
1361 struct platform_driver vc4_crtc_driver = {
1362 	.probe = vc4_crtc_dev_probe,
1363 	.remove = vc4_crtc_dev_remove,
1364 	.driver = {
1365 		.name = "vc4_crtc",
1366 		.of_match_table = vc4_crtc_dt_match,
1367 	},
1368 };
1369