xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46 
47 #define HVS_FIFO_LATENCY_PIX	6
48 
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51 
52 static const struct debugfs_reg32 crtc_regs[] = {
53 	VC4_REG32(PV_CONTROL),
54 	VC4_REG32(PV_V_CONTROL),
55 	VC4_REG32(PV_VSYNCD_EVEN),
56 	VC4_REG32(PV_HORZA),
57 	VC4_REG32(PV_HORZB),
58 	VC4_REG32(PV_VERTA),
59 	VC4_REG32(PV_VERTB),
60 	VC4_REG32(PV_VERTA_EVEN),
61 	VC4_REG32(PV_VERTB_EVEN),
62 	VC4_REG32(PV_INTEN),
63 	VC4_REG32(PV_INTSTAT),
64 	VC4_REG32(PV_STAT),
65 	VC4_REG32(PV_HACT_ACT),
66 };
67 
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 	/* Top/base are supposed to be 4-pixel aligned, but the
73 	 * Raspberry Pi firmware fills the low bits (which are
74 	 * presumably ignored).
75 	 */
76 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78 
79 	return top - base + 4;
80 }
81 
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 					  bool in_vblank_irq,
84 					  int *vpos, int *hpos,
85 					  ktime_t *stime, ktime_t *etime,
86 					  const struct drm_display_mode *mode)
87 {
88 	struct drm_device *dev = crtc->dev;
89 	struct vc4_dev *vc4 = to_vc4_dev(dev);
90 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 	unsigned int cob_size;
93 	u32 val;
94 	int fifo_lines;
95 	int vblank_lines;
96 	bool ret = false;
97 
98 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99 
100 	/* Get optional system timestamp before query. */
101 	if (stime)
102 		*stime = ktime_get();
103 
104 	/*
105 	 * Read vertical scanline which is currently composed for our
106 	 * pixelvalve by the HVS, and also the scaler status.
107 	 */
108 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109 
110 	/* Get optional system timestamp after query. */
111 	if (etime)
112 		*etime = ktime_get();
113 
114 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115 
116 	/* Vertical position of hvs composed scanline. */
117 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 	*hpos = 0;
119 
120 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 		*vpos /= 2;
122 
123 		/* Use hpos to correct for field offset in interlaced mode. */
124 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 			*hpos += mode->crtc_htotal / 2;
126 	}
127 
128 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 	/* This is the offset we need for translating hvs -> pv scanout pos. */
130 	fifo_lines = cob_size / mode->crtc_hdisplay;
131 
132 	if (fifo_lines > 0)
133 		ret = true;
134 
135 	/* HVS more than fifo_lines into frame for compositing? */
136 	if (*vpos > fifo_lines) {
137 		/*
138 		 * We are in active scanout and can get some meaningful results
139 		 * from HVS. The actual PV scanout can not trail behind more
140 		 * than fifo_lines as that is the fifo's capacity. Assume that
141 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 		 * refilling the fifo and PV consuming from the fifo, ie.
143 		 * whenever the PV consumes and frees up a scanline in the
144 		 * fifo, the HVS will immediately refill it, therefore
145 		 * incrementing vpos. Therefore we choose HVS read position -
146 		 * fifo size in scanlines as a estimate of the real scanout
147 		 * position of the PV.
148 		 */
149 		*vpos -= fifo_lines + 1;
150 
151 		return ret;
152 	}
153 
154 	/*
155 	 * Less: This happens when we are in vblank and the HVS, after getting
156 	 * the VSTART restart signal from the PV, just started refilling its
157 	 * fifo with new lines from the top-most lines of the new framebuffers.
158 	 * The PV does not scan out in vblank, so does not remove lines from
159 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 	 * We can't get meaningful readings wrt. scanline position of the PV
161 	 * and need to make things up in a approximative but consistent way.
162 	 */
163 	vblank_lines = mode->vtotal - mode->vdisplay;
164 
165 	if (in_vblank_irq) {
166 		/*
167 		 * Assume the irq handler got called close to first
168 		 * line of vblank, so PV has about a full vblank
169 		 * scanlines to go, and as a base timestamp use the
170 		 * one taken at entry into vblank irq handler, so it
171 		 * is not affected by random delays due to lock
172 		 * contention on event_lock or vblank_time lock in
173 		 * the core.
174 		 */
175 		*vpos = -vblank_lines;
176 
177 		if (stime)
178 			*stime = vc4_crtc->t_vblank;
179 		if (etime)
180 			*etime = vc4_crtc->t_vblank;
181 
182 		/*
183 		 * If the HVS fifo is not yet full then we know for certain
184 		 * we are at the very beginning of vblank, as the hvs just
185 		 * started refilling, and the stime and etime timestamps
186 		 * truly correspond to start of vblank.
187 		 *
188 		 * Unfortunately there's no way to report this to upper levels
189 		 * and make it more useful.
190 		 */
191 	} else {
192 		/*
193 		 * No clue where we are inside vblank. Return a vpos of zero,
194 		 * which will cause calling code to just return the etime
195 		 * timestamp uncorrected. At least this is no worse than the
196 		 * standard fallback.
197 		 */
198 		*vpos = 0;
199 	}
200 
201 	return ret;
202 }
203 
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206 	drm_crtc_cleanup(crtc);
207 }
208 
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214 	u32 fifo_len_bytes = pv_data->fifo_depth;
215 
216 	/*
217 	 * Pixels are pulled from the HVS if the number of bytes is
218 	 * lower than the FIFO full level.
219 	 *
220 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
221 	 * need to convert those 6 pixels in bytes, depending on the
222 	 * format, and then subtract that from the length of the FIFO
223 	 * to make sure we never end up in a situation where the FIFO
224 	 * is full.
225 	 */
226 	switch (format) {
227 	case PV_CONTROL_FORMAT_DSIV_16:
228 	case PV_CONTROL_FORMAT_DSIC_16:
229 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230 	case PV_CONTROL_FORMAT_DSIV_18:
231 		return fifo_len_bytes - 14;
232 	case PV_CONTROL_FORMAT_24:
233 	case PV_CONTROL_FORMAT_DSIV_24:
234 	default:
235 		/*
236 		 * For some reason, the pixelvalve4 doesn't work with
237 		 * the usual formula and will only work with 32.
238 		 */
239 		if (crtc_data->hvs_output == 5)
240 			return 32;
241 
242 		/*
243 		 * It looks like in some situations, we will overflow
244 		 * the PixelValve FIFO (with the bit 10 of PV stat being
245 		 * set) and stall the HVS / PV, eventually resulting in
246 		 * a page flip timeout.
247 		 *
248 		 * Displaying the video overlay during a playback with
249 		 * Kodi on an RPi3 seems to be a great solution with a
250 		 * failure rate around 50%.
251 		 *
252 		 * Removing 1 from the FIFO full level however
253 		 * seems to completely remove that issue.
254 		 */
255 		if (!vc4->hvs->hvs5)
256 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257 
258 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259 	}
260 }
261 
262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263 					     u32 format)
264 {
265 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266 	u32 ret = 0;
267 
268 	ret |= VC4_SET_FIELD((level >> 6),
269 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
270 
271 	return ret | VC4_SET_FIELD(level & 0x3f,
272 				   PV_CONTROL_FIFO_LEVEL);
273 }
274 
275 /*
276  * Returns the encoder attached to the CRTC.
277  *
278  * VC4 can only scan out to one encoder at a time, while the DRM core
279  * allows drivers to push pixels to more than one encoder from the
280  * same CRTC.
281  */
282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
283 {
284 	struct drm_connector *connector;
285 	struct drm_connector_list_iter conn_iter;
286 
287 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
288 	drm_for_each_connector_iter(connector, &conn_iter) {
289 		if (connector->state->crtc == crtc) {
290 			drm_connector_list_iter_end(&conn_iter);
291 			return connector->encoder;
292 		}
293 	}
294 	drm_connector_list_iter_end(&conn_iter);
295 
296 	return NULL;
297 }
298 
299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302 
303 	/* The PV needs to be disabled before it can be flushed */
304 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307 
308 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
309 {
310 	struct drm_device *dev = crtc->dev;
311 	struct vc4_dev *vc4 = to_vc4_dev(dev);
312 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
313 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 	struct drm_crtc_state *state = crtc->state;
317 	struct drm_display_mode *mode = &state->adjusted_mode;
318 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
323 	u8 ppc = pv_data->pixels_per_clock;
324 	bool debug_dump_regs = false;
325 
326 	if (debug_dump_regs) {
327 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
328 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
329 			 drm_crtc_index(crtc));
330 		drm_print_regset32(&p, &vc4_crtc->regset);
331 	}
332 
333 	vc4_crtc_pixelvalve_reset(crtc);
334 
335 	CRTC_WRITE(PV_HORZA,
336 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
337 				 PV_HORZA_HBP) |
338 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
339 				 PV_HORZA_HSYNC));
340 
341 	CRTC_WRITE(PV_HORZB,
342 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
343 				 PV_HORZB_HFP) |
344 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
345 				 PV_HORZB_HACTIVE));
346 
347 	CRTC_WRITE(PV_VERTA,
348 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
349 				 PV_VERTA_VBP) |
350 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
351 				 PV_VERTA_VSYNC));
352 	CRTC_WRITE(PV_VERTB,
353 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
354 				 PV_VERTB_VFP) |
355 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
356 
357 	if (interlace) {
358 		CRTC_WRITE(PV_VERTA_EVEN,
359 			   VC4_SET_FIELD(mode->crtc_vtotal -
360 					 mode->crtc_vsync_end - 1,
361 					 PV_VERTA_VBP) |
362 			   VC4_SET_FIELD(mode->crtc_vsync_end -
363 					 mode->crtc_vsync_start,
364 					 PV_VERTA_VSYNC));
365 		CRTC_WRITE(PV_VERTB_EVEN,
366 			   VC4_SET_FIELD(mode->crtc_vsync_start -
367 					 mode->crtc_vdisplay,
368 					 PV_VERTB_VFP) |
369 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370 
371 		/* We set up first field even mode for HDMI.  VEC's
372 		 * NTSC mode would want first field odd instead, once
373 		 * we support it (to do so, set ODD_FIRST and put the
374 		 * delay in VSYNCD_EVEN instead).
375 		 */
376 		CRTC_WRITE(PV_V_CONTROL,
377 			   PV_VCONTROL_CONTINUOUS |
378 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
379 			   PV_VCONTROL_INTERLACE |
380 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
381 					 PV_VCONTROL_ODD_DELAY));
382 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
383 	} else {
384 		CRTC_WRITE(PV_V_CONTROL,
385 			   PV_VCONTROL_CONTINUOUS |
386 			   (is_dsi ? PV_VCONTROL_DSI : 0));
387 	}
388 
389 	if (is_dsi)
390 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
391 
392 	if (vc4->hvs->hvs5)
393 		CRTC_WRITE(PV_MUX_CFG,
394 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
395 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
396 
397 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
398 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
399 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
400 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
401 		   PV_CONTROL_CLR_AT_START |
402 		   PV_CONTROL_TRIGGER_UNDERFLOW |
403 		   PV_CONTROL_WAIT_HSTART |
404 		   VC4_SET_FIELD(vc4_encoder->clock_select,
405 				 PV_CONTROL_CLK_SELECT));
406 
407 	if (debug_dump_regs) {
408 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
409 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
410 			 drm_crtc_index(crtc));
411 		drm_print_regset32(&p, &vc4_crtc->regset);
412 	}
413 }
414 
415 static void require_hvs_enabled(struct drm_device *dev)
416 {
417 	struct vc4_dev *vc4 = to_vc4_dev(dev);
418 
419 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
420 		     SCALER_DISPCTRL_ENABLE);
421 }
422 
423 static int vc4_crtc_disable(struct drm_crtc *crtc,
424 			    struct drm_atomic_state *state,
425 			    unsigned int channel)
426 {
427 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
428 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
429 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
430 	struct drm_device *dev = crtc->dev;
431 	int ret;
432 
433 	CRTC_WRITE(PV_V_CONTROL,
434 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
435 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
436 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
437 
438 	/*
439 	 * This delay is needed to avoid to get a pixel stuck in an
440 	 * unflushable FIFO between the pixelvalve and the HDMI
441 	 * controllers on the BCM2711.
442 	 *
443 	 * Timing is fairly sensitive here, so mdelay is the safest
444 	 * approach.
445 	 *
446 	 * If it was to be reworked, the stuck pixel happens on a
447 	 * BCM2711 when changing mode with a good probability, so a
448 	 * script that changes mode on a regular basis should trigger
449 	 * the bug after less than 10 attempts. It manifests itself with
450 	 * every pixels being shifted by one to the right, and thus the
451 	 * last pixel of a line actually being displayed as the first
452 	 * pixel on the next line.
453 	 */
454 	mdelay(20);
455 
456 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
457 		vc4_encoder->post_crtc_disable(encoder, state);
458 
459 	vc4_crtc_pixelvalve_reset(crtc);
460 	vc4_hvs_stop_channel(dev, channel);
461 
462 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
463 		vc4_encoder->post_crtc_powerdown(encoder, state);
464 
465 	return 0;
466 }
467 
468 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
469 {
470 	struct drm_device *drm = crtc->dev;
471 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472 	int channel;
473 
474 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
475 				      "brcm,bcm2711-pixelvalve2") ||
476 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
477 				      "brcm,bcm2711-pixelvalve4")))
478 		return 0;
479 
480 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
481 		return 0;
482 
483 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
484 		return 0;
485 
486 	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
487 	if (channel < 0)
488 		return 0;
489 
490 	return vc4_crtc_disable(crtc, NULL, channel);
491 }
492 
493 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
494 				    struct drm_atomic_state *state)
495 {
496 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
497 									 crtc);
498 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
499 	struct drm_device *dev = crtc->dev;
500 
501 	require_hvs_enabled(dev);
502 
503 	/* Disable vblank irq handling before crtc is disabled. */
504 	drm_crtc_vblank_off(crtc);
505 
506 	vc4_crtc_disable(crtc, state, old_vc4_state->assigned_channel);
507 
508 	/*
509 	 * Make sure we issue a vblank event after disabling the CRTC if
510 	 * someone was waiting it.
511 	 */
512 	if (crtc->state->event) {
513 		unsigned long flags;
514 
515 		spin_lock_irqsave(&dev->event_lock, flags);
516 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
517 		crtc->state->event = NULL;
518 		spin_unlock_irqrestore(&dev->event_lock, flags);
519 	}
520 }
521 
522 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
523 				   struct drm_atomic_state *state)
524 {
525 	struct drm_device *dev = crtc->dev;
526 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
527 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
528 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
529 
530 	require_hvs_enabled(dev);
531 
532 	/* Enable vblank irq handling before crtc is started otherwise
533 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
534 	 */
535 	drm_crtc_vblank_on(crtc);
536 
537 	vc4_hvs_atomic_enable(crtc, state);
538 
539 	if (vc4_encoder->pre_crtc_configure)
540 		vc4_encoder->pre_crtc_configure(encoder, state);
541 
542 	vc4_crtc_config_pv(crtc);
543 
544 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
545 
546 	if (vc4_encoder->pre_crtc_enable)
547 		vc4_encoder->pre_crtc_enable(encoder, state);
548 
549 	/* When feeding the transposer block the pixelvalve is unneeded and
550 	 * should not be enabled.
551 	 */
552 	CRTC_WRITE(PV_V_CONTROL,
553 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
554 
555 	if (vc4_encoder->post_crtc_enable)
556 		vc4_encoder->post_crtc_enable(encoder, state);
557 }
558 
559 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
560 						const struct drm_display_mode *mode)
561 {
562 	/* Do not allow doublescan modes from user space */
563 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
564 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
565 			      crtc->base.id);
566 		return MODE_NO_DBLESCAN;
567 	}
568 
569 	return MODE_OK;
570 }
571 
572 void vc4_crtc_get_margins(struct drm_crtc_state *state,
573 			  unsigned int *left, unsigned int *right,
574 			  unsigned int *top, unsigned int *bottom)
575 {
576 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577 	struct drm_connector_state *conn_state;
578 	struct drm_connector *conn;
579 	int i;
580 
581 	*left = vc4_state->margins.left;
582 	*right = vc4_state->margins.right;
583 	*top = vc4_state->margins.top;
584 	*bottom = vc4_state->margins.bottom;
585 
586 	/* We have to interate over all new connector states because
587 	 * vc4_crtc_get_margins() might be called before
588 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
589 	 * might be outdated.
590 	 */
591 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
592 		if (conn_state->crtc != state->crtc)
593 			continue;
594 
595 		*left = conn_state->tv.margins.left;
596 		*right = conn_state->tv.margins.right;
597 		*top = conn_state->tv.margins.top;
598 		*bottom = conn_state->tv.margins.bottom;
599 		break;
600 	}
601 }
602 
603 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
604 				 struct drm_atomic_state *state)
605 {
606 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
607 									  crtc);
608 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
609 	struct drm_connector *conn;
610 	struct drm_connector_state *conn_state;
611 	int ret, i;
612 
613 	ret = vc4_hvs_atomic_check(crtc, state);
614 	if (ret)
615 		return ret;
616 
617 	for_each_new_connector_in_state(state, conn, conn_state,
618 					i) {
619 		if (conn_state->crtc != crtc)
620 			continue;
621 
622 		vc4_state->margins.left = conn_state->tv.margins.left;
623 		vc4_state->margins.right = conn_state->tv.margins.right;
624 		vc4_state->margins.top = conn_state->tv.margins.top;
625 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
626 		break;
627 	}
628 
629 	return 0;
630 }
631 
632 static int vc4_enable_vblank(struct drm_crtc *crtc)
633 {
634 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
635 
636 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
637 
638 	return 0;
639 }
640 
641 static void vc4_disable_vblank(struct drm_crtc *crtc)
642 {
643 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
644 
645 	CRTC_WRITE(PV_INTEN, 0);
646 }
647 
648 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
649 {
650 	struct drm_crtc *crtc = &vc4_crtc->base;
651 	struct drm_device *dev = crtc->dev;
652 	struct vc4_dev *vc4 = to_vc4_dev(dev);
653 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
654 	u32 chan = vc4_state->assigned_channel;
655 	unsigned long flags;
656 
657 	spin_lock_irqsave(&dev->event_lock, flags);
658 	if (vc4_crtc->event &&
659 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
660 	     vc4_state->feed_txp)) {
661 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
662 		vc4_crtc->event = NULL;
663 		drm_crtc_vblank_put(crtc);
664 
665 		/* Wait for the page flip to unmask the underrun to ensure that
666 		 * the display list was updated by the hardware. Before that
667 		 * happens, the HVS will be using the previous display list with
668 		 * the CRTC and encoder already reconfigured, leading to
669 		 * underruns. This can be seen when reconfiguring the CRTC.
670 		 */
671 		vc4_hvs_unmask_underrun(dev, chan);
672 	}
673 	spin_unlock_irqrestore(&dev->event_lock, flags);
674 }
675 
676 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
677 {
678 	crtc->t_vblank = ktime_get();
679 	drm_crtc_handle_vblank(&crtc->base);
680 	vc4_crtc_handle_page_flip(crtc);
681 }
682 
683 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
684 {
685 	struct vc4_crtc *vc4_crtc = data;
686 	u32 stat = CRTC_READ(PV_INTSTAT);
687 	irqreturn_t ret = IRQ_NONE;
688 
689 	if (stat & PV_INT_VFP_START) {
690 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
691 		vc4_crtc_handle_vblank(vc4_crtc);
692 		ret = IRQ_HANDLED;
693 	}
694 
695 	return ret;
696 }
697 
698 struct vc4_async_flip_state {
699 	struct drm_crtc *crtc;
700 	struct drm_framebuffer *fb;
701 	struct drm_framebuffer *old_fb;
702 	struct drm_pending_vblank_event *event;
703 
704 	struct vc4_seqno_cb cb;
705 };
706 
707 /* Called when the V3D execution for the BO being flipped to is done, so that
708  * we can actually update the plane's address to point to it.
709  */
710 static void
711 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
712 {
713 	struct vc4_async_flip_state *flip_state =
714 		container_of(cb, struct vc4_async_flip_state, cb);
715 	struct drm_crtc *crtc = flip_state->crtc;
716 	struct drm_device *dev = crtc->dev;
717 	struct drm_plane *plane = crtc->primary;
718 
719 	vc4_plane_async_set_fb(plane, flip_state->fb);
720 	if (flip_state->event) {
721 		unsigned long flags;
722 
723 		spin_lock_irqsave(&dev->event_lock, flags);
724 		drm_crtc_send_vblank_event(crtc, flip_state->event);
725 		spin_unlock_irqrestore(&dev->event_lock, flags);
726 	}
727 
728 	drm_crtc_vblank_put(crtc);
729 	drm_framebuffer_put(flip_state->fb);
730 
731 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
732 	 * when the planes are updated through the async update path.
733 	 * FIXME: we should move to generic async-page-flip when it's
734 	 * available, so that we can get rid of this hand-made cleanup_fb()
735 	 * logic.
736 	 */
737 	if (flip_state->old_fb) {
738 		struct drm_gem_cma_object *cma_bo;
739 		struct vc4_bo *bo;
740 
741 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
742 		bo = to_vc4_bo(&cma_bo->base);
743 		vc4_bo_dec_usecnt(bo);
744 		drm_framebuffer_put(flip_state->old_fb);
745 	}
746 
747 	kfree(flip_state);
748 }
749 
750 /* Implements async (non-vblank-synced) page flips.
751  *
752  * The page flip ioctl needs to return immediately, so we grab the
753  * modeset semaphore on the pipe, and queue the address update for
754  * when V3D is done with the BO being flipped to.
755  */
756 static int vc4_async_page_flip(struct drm_crtc *crtc,
757 			       struct drm_framebuffer *fb,
758 			       struct drm_pending_vblank_event *event,
759 			       uint32_t flags)
760 {
761 	struct drm_device *dev = crtc->dev;
762 	struct drm_plane *plane = crtc->primary;
763 	int ret = 0;
764 	struct vc4_async_flip_state *flip_state;
765 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
766 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
767 
768 	/* Increment the BO usecnt here, so that we never end up with an
769 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
770 	 * plane is later updated through the non-async path.
771 	 * FIXME: we should move to generic async-page-flip when it's
772 	 * available, so that we can get rid of this hand-made prepare_fb()
773 	 * logic.
774 	 */
775 	ret = vc4_bo_inc_usecnt(bo);
776 	if (ret)
777 		return ret;
778 
779 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
780 	if (!flip_state) {
781 		vc4_bo_dec_usecnt(bo);
782 		return -ENOMEM;
783 	}
784 
785 	drm_framebuffer_get(fb);
786 	flip_state->fb = fb;
787 	flip_state->crtc = crtc;
788 	flip_state->event = event;
789 
790 	/* Save the current FB before it's replaced by the new one in
791 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
792 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
793 	 * it consistent.
794 	 * FIXME: we should move to generic async-page-flip when it's
795 	 * available, so that we can get rid of this hand-made cleanup_fb()
796 	 * logic.
797 	 */
798 	flip_state->old_fb = plane->state->fb;
799 	if (flip_state->old_fb)
800 		drm_framebuffer_get(flip_state->old_fb);
801 
802 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
803 
804 	/* Immediately update the plane's legacy fb pointer, so that later
805 	 * modeset prep sees the state that will be present when the semaphore
806 	 * is released.
807 	 */
808 	drm_atomic_set_fb_for_plane(plane->state, fb);
809 
810 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
811 			   vc4_async_page_flip_complete);
812 
813 	/* Driver takes ownership of state on successful async commit. */
814 	return 0;
815 }
816 
817 int vc4_page_flip(struct drm_crtc *crtc,
818 		  struct drm_framebuffer *fb,
819 		  struct drm_pending_vblank_event *event,
820 		  uint32_t flags,
821 		  struct drm_modeset_acquire_ctx *ctx)
822 {
823 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
824 		return vc4_async_page_flip(crtc, fb, event, flags);
825 	else
826 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
827 }
828 
829 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
830 {
831 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
832 
833 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
834 	if (!vc4_state)
835 		return NULL;
836 
837 	old_vc4_state = to_vc4_crtc_state(crtc->state);
838 	vc4_state->feed_txp = old_vc4_state->feed_txp;
839 	vc4_state->margins = old_vc4_state->margins;
840 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
841 
842 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
843 	return &vc4_state->base;
844 }
845 
846 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
847 			    struct drm_crtc_state *state)
848 {
849 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
850 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
851 
852 	if (drm_mm_node_allocated(&vc4_state->mm)) {
853 		unsigned long flags;
854 
855 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
856 		drm_mm_remove_node(&vc4_state->mm);
857 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
858 
859 	}
860 
861 	drm_atomic_helper_crtc_destroy_state(crtc, state);
862 }
863 
864 void vc4_crtc_reset(struct drm_crtc *crtc)
865 {
866 	struct vc4_crtc_state *vc4_crtc_state;
867 
868 	if (crtc->state)
869 		vc4_crtc_destroy_state(crtc, crtc->state);
870 
871 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
872 	if (!vc4_crtc_state) {
873 		crtc->state = NULL;
874 		return;
875 	}
876 
877 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
878 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
879 }
880 
881 static const struct drm_crtc_funcs vc4_crtc_funcs = {
882 	.set_config = drm_atomic_helper_set_config,
883 	.destroy = vc4_crtc_destroy,
884 	.page_flip = vc4_page_flip,
885 	.set_property = NULL,
886 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
887 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
888 	.reset = vc4_crtc_reset,
889 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
890 	.atomic_destroy_state = vc4_crtc_destroy_state,
891 	.enable_vblank = vc4_enable_vblank,
892 	.disable_vblank = vc4_disable_vblank,
893 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
894 };
895 
896 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
897 	.mode_valid = vc4_crtc_mode_valid,
898 	.atomic_check = vc4_crtc_atomic_check,
899 	.atomic_flush = vc4_hvs_atomic_flush,
900 	.atomic_enable = vc4_crtc_atomic_enable,
901 	.atomic_disable = vc4_crtc_atomic_disable,
902 	.get_scanout_position = vc4_crtc_get_scanout_position,
903 };
904 
905 static const struct vc4_pv_data bcm2835_pv0_data = {
906 	.base = {
907 		.hvs_available_channels = BIT(0),
908 		.hvs_output = 0,
909 	},
910 	.debugfs_name = "crtc0_regs",
911 	.fifo_depth = 64,
912 	.pixels_per_clock = 1,
913 	.encoder_types = {
914 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
915 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
916 	},
917 };
918 
919 static const struct vc4_pv_data bcm2835_pv1_data = {
920 	.base = {
921 		.hvs_available_channels = BIT(2),
922 		.hvs_output = 2,
923 	},
924 	.debugfs_name = "crtc1_regs",
925 	.fifo_depth = 64,
926 	.pixels_per_clock = 1,
927 	.encoder_types = {
928 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
929 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
930 	},
931 };
932 
933 static const struct vc4_pv_data bcm2835_pv2_data = {
934 	.base = {
935 		.hvs_available_channels = BIT(1),
936 		.hvs_output = 1,
937 	},
938 	.debugfs_name = "crtc2_regs",
939 	.fifo_depth = 64,
940 	.pixels_per_clock = 1,
941 	.encoder_types = {
942 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
943 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
944 	},
945 };
946 
947 static const struct vc4_pv_data bcm2711_pv0_data = {
948 	.base = {
949 		.hvs_available_channels = BIT(0),
950 		.hvs_output = 0,
951 	},
952 	.debugfs_name = "crtc0_regs",
953 	.fifo_depth = 64,
954 	.pixels_per_clock = 1,
955 	.encoder_types = {
956 		[0] = VC4_ENCODER_TYPE_DSI0,
957 		[1] = VC4_ENCODER_TYPE_DPI,
958 	},
959 };
960 
961 static const struct vc4_pv_data bcm2711_pv1_data = {
962 	.base = {
963 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
964 		.hvs_output = 3,
965 	},
966 	.debugfs_name = "crtc1_regs",
967 	.fifo_depth = 64,
968 	.pixels_per_clock = 1,
969 	.encoder_types = {
970 		[0] = VC4_ENCODER_TYPE_DSI1,
971 		[1] = VC4_ENCODER_TYPE_SMI,
972 	},
973 };
974 
975 static const struct vc4_pv_data bcm2711_pv2_data = {
976 	.base = {
977 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
978 		.hvs_output = 4,
979 	},
980 	.debugfs_name = "crtc2_regs",
981 	.fifo_depth = 256,
982 	.pixels_per_clock = 2,
983 	.encoder_types = {
984 		[0] = VC4_ENCODER_TYPE_HDMI0,
985 	},
986 };
987 
988 static const struct vc4_pv_data bcm2711_pv3_data = {
989 	.base = {
990 		.hvs_available_channels = BIT(1),
991 		.hvs_output = 1,
992 	},
993 	.debugfs_name = "crtc3_regs",
994 	.fifo_depth = 64,
995 	.pixels_per_clock = 1,
996 	.encoder_types = {
997 		[0] = VC4_ENCODER_TYPE_VEC,
998 	},
999 };
1000 
1001 static const struct vc4_pv_data bcm2711_pv4_data = {
1002 	.base = {
1003 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1004 		.hvs_output = 5,
1005 	},
1006 	.debugfs_name = "crtc4_regs",
1007 	.fifo_depth = 64,
1008 	.pixels_per_clock = 2,
1009 	.encoder_types = {
1010 		[0] = VC4_ENCODER_TYPE_HDMI1,
1011 	},
1012 };
1013 
1014 static const struct of_device_id vc4_crtc_dt_match[] = {
1015 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1016 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1017 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1018 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1019 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1020 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1021 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1022 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1023 	{}
1024 };
1025 
1026 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1027 					struct drm_crtc *crtc)
1028 {
1029 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1030 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1031 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1032 	struct drm_encoder *encoder;
1033 
1034 	drm_for_each_encoder(encoder, drm) {
1035 		struct vc4_encoder *vc4_encoder;
1036 		int i;
1037 
1038 		vc4_encoder = to_vc4_encoder(encoder);
1039 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1040 			if (vc4_encoder->type == encoder_types[i]) {
1041 				vc4_encoder->clock_select = i;
1042 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1043 				break;
1044 			}
1045 		}
1046 	}
1047 }
1048 
1049 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1050 		  const struct drm_crtc_funcs *crtc_funcs,
1051 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1052 {
1053 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1054 	struct drm_crtc *crtc = &vc4_crtc->base;
1055 	struct drm_plane *primary_plane;
1056 	unsigned int i;
1057 
1058 	/* For now, we create just the primary and the legacy cursor
1059 	 * planes.  We should be able to stack more planes on easily,
1060 	 * but to do that we would need to compute the bandwidth
1061 	 * requirement of the plane configuration, and reject ones
1062 	 * that will take too much.
1063 	 */
1064 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1065 	if (IS_ERR(primary_plane)) {
1066 		dev_err(drm->dev, "failed to construct primary plane\n");
1067 		return PTR_ERR(primary_plane);
1068 	}
1069 
1070 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1071 				  crtc_funcs, NULL);
1072 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1073 
1074 	if (!vc4->hvs->hvs5) {
1075 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1076 
1077 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1078 
1079 		/* We support CTM, but only for one CRTC at a time. It's therefore
1080 		 * implemented as private driver state in vc4_kms, not here.
1081 		 */
1082 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1083 	}
1084 
1085 	for (i = 0; i < crtc->gamma_size; i++) {
1086 		vc4_crtc->lut_r[i] = i;
1087 		vc4_crtc->lut_g[i] = i;
1088 		vc4_crtc->lut_b[i] = i;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1095 {
1096 	struct platform_device *pdev = to_platform_device(dev);
1097 	struct drm_device *drm = dev_get_drvdata(master);
1098 	const struct vc4_pv_data *pv_data;
1099 	struct vc4_crtc *vc4_crtc;
1100 	struct drm_crtc *crtc;
1101 	struct drm_plane *destroy_plane, *temp;
1102 	int ret;
1103 
1104 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1105 	if (!vc4_crtc)
1106 		return -ENOMEM;
1107 	crtc = &vc4_crtc->base;
1108 
1109 	pv_data = of_device_get_match_data(dev);
1110 	if (!pv_data)
1111 		return -ENODEV;
1112 	vc4_crtc->data = &pv_data->base;
1113 	vc4_crtc->pdev = pdev;
1114 
1115 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1116 	if (IS_ERR(vc4_crtc->regs))
1117 		return PTR_ERR(vc4_crtc->regs);
1118 
1119 	vc4_crtc->regset.base = vc4_crtc->regs;
1120 	vc4_crtc->regset.regs = crtc_regs;
1121 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1122 
1123 	ret = vc4_crtc_init(drm, vc4_crtc,
1124 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1125 	if (ret)
1126 		return ret;
1127 	vc4_set_crtc_possible_masks(drm, crtc);
1128 
1129 	CRTC_WRITE(PV_INTEN, 0);
1130 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1131 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1132 			       vc4_crtc_irq_handler,
1133 			       IRQF_SHARED,
1134 			       "vc4 crtc", vc4_crtc);
1135 	if (ret)
1136 		goto err_destroy_planes;
1137 
1138 	platform_set_drvdata(pdev, vc4_crtc);
1139 
1140 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1141 				 &vc4_crtc->regset);
1142 
1143 	return 0;
1144 
1145 err_destroy_planes:
1146 	list_for_each_entry_safe(destroy_plane, temp,
1147 				 &drm->mode_config.plane_list, head) {
1148 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1149 		    destroy_plane->funcs->destroy(destroy_plane);
1150 	}
1151 
1152 	return ret;
1153 }
1154 
1155 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1156 			    void *data)
1157 {
1158 	struct platform_device *pdev = to_platform_device(dev);
1159 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1160 
1161 	vc4_crtc_destroy(&vc4_crtc->base);
1162 
1163 	CRTC_WRITE(PV_INTEN, 0);
1164 
1165 	platform_set_drvdata(pdev, NULL);
1166 }
1167 
1168 static const struct component_ops vc4_crtc_ops = {
1169 	.bind   = vc4_crtc_bind,
1170 	.unbind = vc4_crtc_unbind,
1171 };
1172 
1173 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1174 {
1175 	return component_add(&pdev->dev, &vc4_crtc_ops);
1176 }
1177 
1178 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1179 {
1180 	component_del(&pdev->dev, &vc4_crtc_ops);
1181 	return 0;
1182 }
1183 
1184 struct platform_driver vc4_crtc_driver = {
1185 	.probe = vc4_crtc_dev_probe,
1186 	.remove = vc4_crtc_dev_remove,
1187 	.driver = {
1188 		.name = "vc4_crtc",
1189 		.of_match_table = vc4_crtc_dt_match,
1190 	},
1191 };
1192