xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision a649b133c3154f3d1d297cf85711957e61c0f070)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_domain.h>
15 #include <linux/pm_opp.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 
19 #include <soc/tegra/common.h>
20 #include <soc/tegra/pmc.h>
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_debugfs.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_plane_helper.h>
27 #include <drm/drm_vblank.h>
28 
29 #include "dc.h"
30 #include "drm.h"
31 #include "gem.h"
32 #include "hub.h"
33 #include "plane.h"
34 
35 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
36 					    struct drm_crtc_state *state);
37 
38 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
39 {
40 	stats->frames = 0;
41 	stats->vblank = 0;
42 	stats->underflow = 0;
43 	stats->overflow = 0;
44 }
45 
46 /* Reads the active copy of a register. */
47 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
48 {
49 	u32 value;
50 
51 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
52 	value = tegra_dc_readl(dc, offset);
53 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
54 
55 	return value;
56 }
57 
58 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
59 					      unsigned int offset)
60 {
61 	if (offset >= 0x500 && offset <= 0x638) {
62 		offset = 0x000 + (offset - 0x500);
63 		return plane->offset + offset;
64 	}
65 
66 	if (offset >= 0x700 && offset <= 0x719) {
67 		offset = 0x180 + (offset - 0x700);
68 		return plane->offset + offset;
69 	}
70 
71 	if (offset >= 0x800 && offset <= 0x839) {
72 		offset = 0x1c0 + (offset - 0x800);
73 		return plane->offset + offset;
74 	}
75 
76 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
77 
78 	return plane->offset + offset;
79 }
80 
81 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
82 				    unsigned int offset)
83 {
84 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
85 }
86 
87 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
88 				      unsigned int offset)
89 {
90 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
91 }
92 
93 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
94 {
95 	struct device_node *np = dc->dev->of_node;
96 	struct of_phandle_iterator it;
97 	int err;
98 
99 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
100 		if (it.node == dev->of_node)
101 			return true;
102 
103 	return false;
104 }
105 
106 /*
107  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
108  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
109  * Latching happens mmediately if the display controller is in STOP mode or
110  * on the next frame boundary otherwise.
111  *
112  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
113  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
114  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
115  * into the ACTIVE copy, either immediately if the display controller is in
116  * STOP mode, or at the next frame boundary otherwise.
117  */
118 void tegra_dc_commit(struct tegra_dc *dc)
119 {
120 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
121 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
122 }
123 
124 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
125 				  unsigned int bpp)
126 {
127 	fixed20_12 outf = dfixed_init(out);
128 	fixed20_12 inf = dfixed_init(in);
129 	u32 dda_inc;
130 	int max;
131 
132 	if (v)
133 		max = 15;
134 	else {
135 		switch (bpp) {
136 		case 2:
137 			max = 8;
138 			break;
139 
140 		default:
141 			WARN_ON_ONCE(1);
142 			fallthrough;
143 		case 4:
144 			max = 4;
145 			break;
146 		}
147 	}
148 
149 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
150 	inf.full -= dfixed_const(1);
151 
152 	dda_inc = dfixed_div(inf, outf);
153 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
154 
155 	return dda_inc;
156 }
157 
158 static inline u32 compute_initial_dda(unsigned int in)
159 {
160 	fixed20_12 inf = dfixed_init(in);
161 	return dfixed_frac(inf);
162 }
163 
164 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
165 {
166 	u32 background[3] = {
167 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
168 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
169 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
170 	};
171 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
172 			 BLEND_COLOR_KEY_NONE;
173 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
174 	struct tegra_plane_state *state;
175 	u32 blending[2];
176 	unsigned int i;
177 
178 	/* disable blending for non-overlapping case */
179 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
180 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
181 
182 	state = to_tegra_plane_state(plane->base.state);
183 
184 	if (state->opaque) {
185 		/*
186 		 * Since custom fix-weight blending isn't utilized and weight
187 		 * of top window is set to max, we can enforce dependent
188 		 * blending which in this case results in transparent bottom
189 		 * window if top window is opaque and if top window enables
190 		 * alpha blending, then bottom window is getting alpha value
191 		 * of 1 minus the sum of alpha components of the overlapping
192 		 * plane.
193 		 */
194 		background[0] |= BLEND_CONTROL_DEPENDENT;
195 		background[1] |= BLEND_CONTROL_DEPENDENT;
196 
197 		/*
198 		 * The region where three windows overlap is the intersection
199 		 * of the two regions where two windows overlap. It contributes
200 		 * to the area if all of the windows on top of it have an alpha
201 		 * component.
202 		 */
203 		switch (state->base.normalized_zpos) {
204 		case 0:
205 			if (state->blending[0].alpha &&
206 			    state->blending[1].alpha)
207 				background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 
210 		case 1:
211 			background[2] |= BLEND_CONTROL_DEPENDENT;
212 			break;
213 		}
214 	} else {
215 		/*
216 		 * Enable alpha blending if pixel format has an alpha
217 		 * component.
218 		 */
219 		foreground |= BLEND_CONTROL_ALPHA;
220 
221 		/*
222 		 * If any of the windows on top of this window is opaque, it
223 		 * will completely conceal this window within that area. If
224 		 * top window has an alpha component, it is blended over the
225 		 * bottom window.
226 		 */
227 		for (i = 0; i < 2; i++) {
228 			if (state->blending[i].alpha &&
229 			    state->blending[i].top)
230 				background[i] |= BLEND_CONTROL_DEPENDENT;
231 		}
232 
233 		switch (state->base.normalized_zpos) {
234 		case 0:
235 			if (state->blending[0].alpha &&
236 			    state->blending[1].alpha)
237 				background[2] |= BLEND_CONTROL_DEPENDENT;
238 			break;
239 
240 		case 1:
241 			/*
242 			 * When both middle and topmost windows have an alpha,
243 			 * these windows a mixed together and then the result
244 			 * is blended over the bottom window.
245 			 */
246 			if (state->blending[0].alpha &&
247 			    state->blending[0].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 
250 			if (state->blending[1].alpha &&
251 			    state->blending[1].top)
252 				background[2] |= BLEND_CONTROL_ALPHA;
253 			break;
254 		}
255 	}
256 
257 	switch (state->base.normalized_zpos) {
258 	case 0:
259 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
260 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
261 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
262 		break;
263 
264 	case 1:
265 		/*
266 		 * If window B / C is topmost, then X / Y registers are
267 		 * matching the order of blending[...] state indices,
268 		 * otherwise a swap is required.
269 		 */
270 		if (!state->blending[0].top && state->blending[1].top) {
271 			blending[0] = foreground;
272 			blending[1] = background[1];
273 		} else {
274 			blending[0] = background[0];
275 			blending[1] = foreground;
276 		}
277 
278 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
279 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
280 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
281 		break;
282 
283 	case 2:
284 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
285 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
286 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
287 		break;
288 	}
289 }
290 
291 static void tegra_plane_setup_blending(struct tegra_plane *plane,
292 				       const struct tegra_dc_window *window)
293 {
294 	u32 value;
295 
296 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
297 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
298 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
299 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
300 
301 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
302 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
303 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
304 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
305 
306 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
307 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
308 }
309 
310 static bool
311 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
312 				     const struct tegra_dc_window *window)
313 {
314 	struct tegra_dc *dc = plane->dc;
315 
316 	if (window->src.w == window->dst.w)
317 		return false;
318 
319 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
320 		return false;
321 
322 	return true;
323 }
324 
325 static bool
326 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
327 				   const struct tegra_dc_window *window)
328 {
329 	struct tegra_dc *dc = plane->dc;
330 
331 	if (window->src.h == window->dst.h)
332 		return false;
333 
334 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
335 		return false;
336 
337 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
338 		return false;
339 
340 	return true;
341 }
342 
343 static void tegra_dc_setup_window(struct tegra_plane *plane,
344 				  const struct tegra_dc_window *window)
345 {
346 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
347 	struct tegra_dc *dc = plane->dc;
348 	unsigned int planes;
349 	u32 value;
350 	bool yuv;
351 
352 	/*
353 	 * For YUV planar modes, the number of bytes per pixel takes into
354 	 * account only the luma component and therefore is 1.
355 	 */
356 	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
357 	if (!yuv)
358 		bpp = window->bits_per_pixel / 8;
359 	else
360 		bpp = (planes > 1) ? 1 : 2;
361 
362 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
363 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
364 
365 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
366 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
367 
368 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
369 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
370 
371 	h_offset = window->src.x * bpp;
372 	v_offset = window->src.y;
373 	h_size = window->src.w * bpp;
374 	v_size = window->src.h;
375 
376 	if (window->reflect_x)
377 		h_offset += (window->src.w - 1) * bpp;
378 
379 	if (window->reflect_y)
380 		v_offset += window->src.h - 1;
381 
382 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
383 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
384 
385 	/*
386 	 * For DDA computations the number of bytes per pixel for YUV planar
387 	 * modes needs to take into account all Y, U and V components.
388 	 */
389 	if (yuv && planes > 1)
390 		bpp = 2;
391 
392 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
393 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
394 
395 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
396 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
397 
398 	h_dda = compute_initial_dda(window->src.x);
399 	v_dda = compute_initial_dda(window->src.y);
400 
401 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
402 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
403 
404 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
405 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
406 
407 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
408 
409 	if (yuv && planes > 1) {
410 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
411 
412 		if (planes > 2)
413 			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
414 
415 		value = window->stride[1] << 16 | window->stride[0];
416 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
417 	} else {
418 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
419 	}
420 
421 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
422 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
423 
424 	if (dc->soc->supports_block_linear) {
425 		unsigned long height = window->tiling.value;
426 
427 		switch (window->tiling.mode) {
428 		case TEGRA_BO_TILING_MODE_PITCH:
429 			value = DC_WINBUF_SURFACE_KIND_PITCH;
430 			break;
431 
432 		case TEGRA_BO_TILING_MODE_TILED:
433 			value = DC_WINBUF_SURFACE_KIND_TILED;
434 			break;
435 
436 		case TEGRA_BO_TILING_MODE_BLOCK:
437 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
438 				DC_WINBUF_SURFACE_KIND_BLOCK;
439 			break;
440 		}
441 
442 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
443 	} else {
444 		switch (window->tiling.mode) {
445 		case TEGRA_BO_TILING_MODE_PITCH:
446 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
447 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
448 			break;
449 
450 		case TEGRA_BO_TILING_MODE_TILED:
451 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
452 				DC_WIN_BUFFER_ADDR_MODE_TILE;
453 			break;
454 
455 		case TEGRA_BO_TILING_MODE_BLOCK:
456 			/*
457 			 * No need to handle this here because ->atomic_check
458 			 * will already have filtered it out.
459 			 */
460 			break;
461 		}
462 
463 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
464 	}
465 
466 	value = WIN_ENABLE;
467 
468 	if (yuv) {
469 		/* setup default colorspace conversion coefficients */
470 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
471 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
472 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
473 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
474 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
475 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
476 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
477 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
478 
479 		value |= CSC_ENABLE;
480 	} else if (window->bits_per_pixel < 24) {
481 		value |= COLOR_EXPAND;
482 	}
483 
484 	if (window->reflect_x)
485 		value |= H_DIRECTION;
486 
487 	if (window->reflect_y)
488 		value |= V_DIRECTION;
489 
490 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
491 		/*
492 		 * Enable horizontal 6-tap filter and set filtering
493 		 * coefficients to the default values defined in TRM.
494 		 */
495 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
496 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
497 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
498 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
499 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
500 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
501 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
502 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
503 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
504 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
505 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
506 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
507 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
508 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
509 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
510 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
511 
512 		value |= H_FILTER;
513 	}
514 
515 	if (tegra_plane_use_vertical_filtering(plane, window)) {
516 		unsigned int i, k;
517 
518 		/*
519 		 * Enable vertical 2-tap filter and set filtering
520 		 * coefficients to the default values defined in TRM.
521 		 */
522 		for (i = 0, k = 128; i < 16; i++, k -= 8)
523 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
524 
525 		value |= V_FILTER;
526 	}
527 
528 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
529 
530 	if (dc->soc->has_legacy_blending)
531 		tegra_plane_setup_blending_legacy(plane);
532 	else
533 		tegra_plane_setup_blending(plane, window);
534 }
535 
536 static const u32 tegra20_primary_formats[] = {
537 	DRM_FORMAT_ARGB4444,
538 	DRM_FORMAT_ARGB1555,
539 	DRM_FORMAT_RGB565,
540 	DRM_FORMAT_RGBA5551,
541 	DRM_FORMAT_ABGR8888,
542 	DRM_FORMAT_ARGB8888,
543 	/* non-native formats */
544 	DRM_FORMAT_XRGB1555,
545 	DRM_FORMAT_RGBX5551,
546 	DRM_FORMAT_XBGR8888,
547 	DRM_FORMAT_XRGB8888,
548 };
549 
550 static const u64 tegra20_modifiers[] = {
551 	DRM_FORMAT_MOD_LINEAR,
552 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
553 	DRM_FORMAT_MOD_INVALID
554 };
555 
556 static const u32 tegra114_primary_formats[] = {
557 	DRM_FORMAT_ARGB4444,
558 	DRM_FORMAT_ARGB1555,
559 	DRM_FORMAT_RGB565,
560 	DRM_FORMAT_RGBA5551,
561 	DRM_FORMAT_ABGR8888,
562 	DRM_FORMAT_ARGB8888,
563 	/* new on Tegra114 */
564 	DRM_FORMAT_ABGR4444,
565 	DRM_FORMAT_ABGR1555,
566 	DRM_FORMAT_BGRA5551,
567 	DRM_FORMAT_XRGB1555,
568 	DRM_FORMAT_RGBX5551,
569 	DRM_FORMAT_XBGR1555,
570 	DRM_FORMAT_BGRX5551,
571 	DRM_FORMAT_BGR565,
572 	DRM_FORMAT_BGRA8888,
573 	DRM_FORMAT_RGBA8888,
574 	DRM_FORMAT_XRGB8888,
575 	DRM_FORMAT_XBGR8888,
576 };
577 
578 static const u32 tegra124_primary_formats[] = {
579 	DRM_FORMAT_ARGB4444,
580 	DRM_FORMAT_ARGB1555,
581 	DRM_FORMAT_RGB565,
582 	DRM_FORMAT_RGBA5551,
583 	DRM_FORMAT_ABGR8888,
584 	DRM_FORMAT_ARGB8888,
585 	/* new on Tegra114 */
586 	DRM_FORMAT_ABGR4444,
587 	DRM_FORMAT_ABGR1555,
588 	DRM_FORMAT_BGRA5551,
589 	DRM_FORMAT_XRGB1555,
590 	DRM_FORMAT_RGBX5551,
591 	DRM_FORMAT_XBGR1555,
592 	DRM_FORMAT_BGRX5551,
593 	DRM_FORMAT_BGR565,
594 	DRM_FORMAT_BGRA8888,
595 	DRM_FORMAT_RGBA8888,
596 	DRM_FORMAT_XRGB8888,
597 	DRM_FORMAT_XBGR8888,
598 	/* new on Tegra124 */
599 	DRM_FORMAT_RGBX8888,
600 	DRM_FORMAT_BGRX8888,
601 };
602 
603 static const u64 tegra124_modifiers[] = {
604 	DRM_FORMAT_MOD_LINEAR,
605 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
606 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
607 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
608 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
609 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
610 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
611 	DRM_FORMAT_MOD_INVALID
612 };
613 
614 static int tegra_plane_atomic_check(struct drm_plane *plane,
615 				    struct drm_atomic_state *state)
616 {
617 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
618 										 plane);
619 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
620 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
621 					  DRM_MODE_REFLECT_X |
622 					  DRM_MODE_REFLECT_Y;
623 	unsigned int rotation = new_plane_state->rotation;
624 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
625 	struct tegra_plane *tegra = to_tegra_plane(plane);
626 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
627 	int err;
628 
629 	plane_state->peak_memory_bandwidth = 0;
630 	plane_state->avg_memory_bandwidth = 0;
631 
632 	/* no need for further checks if the plane is being disabled */
633 	if (!new_plane_state->crtc) {
634 		plane_state->total_peak_memory_bandwidth = 0;
635 		return 0;
636 	}
637 
638 	err = tegra_plane_format(new_plane_state->fb->format->format,
639 				 &plane_state->format,
640 				 &plane_state->swap);
641 	if (err < 0)
642 		return err;
643 
644 	/*
645 	 * Tegra20 and Tegra30 are special cases here because they support
646 	 * only variants of specific formats with an alpha component, but not
647 	 * the corresponding opaque formats. However, the opaque formats can
648 	 * be emulated by disabling alpha blending for the plane.
649 	 */
650 	if (dc->soc->has_legacy_blending) {
651 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
652 		if (err < 0)
653 			return err;
654 	}
655 
656 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
657 	if (err < 0)
658 		return err;
659 
660 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
661 	    !dc->soc->supports_block_linear) {
662 		DRM_ERROR("hardware doesn't support block linear mode\n");
663 		return -EINVAL;
664 	}
665 
666 	/*
667 	 * Older userspace used custom BO flag in order to specify the Y
668 	 * reflection, while modern userspace uses the generic DRM rotation
669 	 * property in order to achieve the same result.  The legacy BO flag
670 	 * duplicates the DRM rotation property when both are set.
671 	 */
672 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
673 		rotation |= DRM_MODE_REFLECT_Y;
674 
675 	rotation = drm_rotation_simplify(rotation, supported_rotation);
676 
677 	if (rotation & DRM_MODE_REFLECT_X)
678 		plane_state->reflect_x = true;
679 	else
680 		plane_state->reflect_x = false;
681 
682 	if (rotation & DRM_MODE_REFLECT_Y)
683 		plane_state->reflect_y = true;
684 	else
685 		plane_state->reflect_y = false;
686 
687 	/*
688 	 * Tegra doesn't support different strides for U and V planes so we
689 	 * error out if the user tries to display a framebuffer with such a
690 	 * configuration.
691 	 */
692 	if (new_plane_state->fb->format->num_planes > 2) {
693 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
694 			DRM_ERROR("unsupported UV-plane configuration\n");
695 			return -EINVAL;
696 		}
697 	}
698 
699 	err = tegra_plane_state_add(tegra, new_plane_state);
700 	if (err < 0)
701 		return err;
702 
703 	return 0;
704 }
705 
706 static void tegra_plane_atomic_disable(struct drm_plane *plane,
707 				       struct drm_atomic_state *state)
708 {
709 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
710 									   plane);
711 	struct tegra_plane *p = to_tegra_plane(plane);
712 	u32 value;
713 
714 	/* rien ne va plus */
715 	if (!old_state || !old_state->crtc)
716 		return;
717 
718 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
719 	value &= ~WIN_ENABLE;
720 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
721 }
722 
723 static void tegra_plane_atomic_update(struct drm_plane *plane,
724 				      struct drm_atomic_state *state)
725 {
726 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
727 									   plane);
728 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
729 	struct drm_framebuffer *fb = new_state->fb;
730 	struct tegra_plane *p = to_tegra_plane(plane);
731 	struct tegra_dc_window window;
732 	unsigned int i;
733 
734 	/* rien ne va plus */
735 	if (!new_state->crtc || !new_state->fb)
736 		return;
737 
738 	if (!new_state->visible)
739 		return tegra_plane_atomic_disable(plane, state);
740 
741 	memset(&window, 0, sizeof(window));
742 	window.src.x = new_state->src.x1 >> 16;
743 	window.src.y = new_state->src.y1 >> 16;
744 	window.src.w = drm_rect_width(&new_state->src) >> 16;
745 	window.src.h = drm_rect_height(&new_state->src) >> 16;
746 	window.dst.x = new_state->dst.x1;
747 	window.dst.y = new_state->dst.y1;
748 	window.dst.w = drm_rect_width(&new_state->dst);
749 	window.dst.h = drm_rect_height(&new_state->dst);
750 	window.bits_per_pixel = fb->format->cpp[0] * 8;
751 	window.reflect_x = tegra_plane_state->reflect_x;
752 	window.reflect_y = tegra_plane_state->reflect_y;
753 
754 	/* copy from state */
755 	window.zpos = new_state->normalized_zpos;
756 	window.tiling = tegra_plane_state->tiling;
757 	window.format = tegra_plane_state->format;
758 	window.swap = tegra_plane_state->swap;
759 
760 	for (i = 0; i < fb->format->num_planes; i++) {
761 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
762 
763 		/*
764 		 * Tegra uses a shared stride for UV planes. Framebuffers are
765 		 * already checked for this in the tegra_plane_atomic_check()
766 		 * function, so it's safe to ignore the V-plane pitch here.
767 		 */
768 		if (i < 2)
769 			window.stride[i] = fb->pitches[i];
770 	}
771 
772 	tegra_dc_setup_window(p, &window);
773 }
774 
775 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
776 	.prepare_fb = tegra_plane_prepare_fb,
777 	.cleanup_fb = tegra_plane_cleanup_fb,
778 	.atomic_check = tegra_plane_atomic_check,
779 	.atomic_disable = tegra_plane_atomic_disable,
780 	.atomic_update = tegra_plane_atomic_update,
781 };
782 
783 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
784 {
785 	/*
786 	 * Ideally this would use drm_crtc_mask(), but that would require the
787 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
788 	 * will only be added to that list in the drm_crtc_init_with_planes()
789 	 * (in tegra_dc_init()), which in turn requires registration of these
790 	 * planes. So we have ourselves a nice little chicken and egg problem
791 	 * here.
792 	 *
793 	 * We work around this by manually creating the mask from the number
794 	 * of CRTCs that have been registered, and should therefore always be
795 	 * the same as drm_crtc_index() after registration.
796 	 */
797 	return 1 << drm->mode_config.num_crtc;
798 }
799 
800 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
801 						    struct tegra_dc *dc)
802 {
803 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
804 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
805 	struct tegra_plane *plane;
806 	unsigned int num_formats;
807 	const u64 *modifiers;
808 	const u32 *formats;
809 	int err;
810 
811 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
812 	if (!plane)
813 		return ERR_PTR(-ENOMEM);
814 
815 	/* Always use window A as primary window */
816 	plane->offset = 0xa00;
817 	plane->index = 0;
818 	plane->dc = dc;
819 
820 	num_formats = dc->soc->num_primary_formats;
821 	formats = dc->soc->primary_formats;
822 	modifiers = dc->soc->modifiers;
823 
824 	err = tegra_plane_interconnect_init(plane);
825 	if (err) {
826 		kfree(plane);
827 		return ERR_PTR(err);
828 	}
829 
830 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
831 				       &tegra_plane_funcs, formats,
832 				       num_formats, modifiers, type, NULL);
833 	if (err < 0) {
834 		kfree(plane);
835 		return ERR_PTR(err);
836 	}
837 
838 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
839 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
840 
841 	err = drm_plane_create_rotation_property(&plane->base,
842 						 DRM_MODE_ROTATE_0,
843 						 DRM_MODE_ROTATE_0 |
844 						 DRM_MODE_ROTATE_180 |
845 						 DRM_MODE_REFLECT_X |
846 						 DRM_MODE_REFLECT_Y);
847 	if (err < 0)
848 		dev_err(dc->dev, "failed to create rotation property: %d\n",
849 			err);
850 
851 	return &plane->base;
852 }
853 
854 static const u32 tegra_legacy_cursor_plane_formats[] = {
855 	DRM_FORMAT_RGBA8888,
856 };
857 
858 static const u32 tegra_cursor_plane_formats[] = {
859 	DRM_FORMAT_ARGB8888,
860 };
861 
862 static int tegra_cursor_atomic_check(struct drm_plane *plane,
863 				     struct drm_atomic_state *state)
864 {
865 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
866 										 plane);
867 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
868 	struct tegra_plane *tegra = to_tegra_plane(plane);
869 	int err;
870 
871 	plane_state->peak_memory_bandwidth = 0;
872 	plane_state->avg_memory_bandwidth = 0;
873 
874 	/* no need for further checks if the plane is being disabled */
875 	if (!new_plane_state->crtc) {
876 		plane_state->total_peak_memory_bandwidth = 0;
877 		return 0;
878 	}
879 
880 	/* scaling not supported for cursor */
881 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
882 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
883 		return -EINVAL;
884 
885 	/* only square cursors supported */
886 	if (new_plane_state->src_w != new_plane_state->src_h)
887 		return -EINVAL;
888 
889 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
890 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
891 		return -EINVAL;
892 
893 	err = tegra_plane_state_add(tegra, new_plane_state);
894 	if (err < 0)
895 		return err;
896 
897 	return 0;
898 }
899 
900 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
901 					 struct drm_plane_state *new_state)
902 {
903 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
904 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
905 	struct tegra_drm *tegra = plane->dev->dev_private;
906 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
907 	u64 dma_mask = *dc->dev->dma_mask;
908 #endif
909 	unsigned int x, y;
910 	u32 value = 0;
911 
912 	/* rien ne va plus */
913 	if (!new_state->crtc || !new_state->fb)
914 		return;
915 
916 	/*
917 	 * Legacy display supports hardware clipping of the cursor, but
918 	 * nvdisplay relies on software to clip the cursor to the screen.
919 	 */
920 	if (!dc->soc->has_nvdisplay)
921 		value |= CURSOR_CLIP_DISPLAY;
922 
923 	switch (new_state->crtc_w) {
924 	case 32:
925 		value |= CURSOR_SIZE_32x32;
926 		break;
927 
928 	case 64:
929 		value |= CURSOR_SIZE_64x64;
930 		break;
931 
932 	case 128:
933 		value |= CURSOR_SIZE_128x128;
934 		break;
935 
936 	case 256:
937 		value |= CURSOR_SIZE_256x256;
938 		break;
939 
940 	default:
941 		WARN(1, "cursor size %ux%u not supported\n",
942 		     new_state->crtc_w, new_state->crtc_h);
943 		return;
944 	}
945 
946 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
947 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
948 
949 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
950 	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
951 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
952 #endif
953 
954 	/* enable cursor and set blend mode */
955 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
956 	value |= CURSOR_ENABLE;
957 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
958 
959 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
960 	value &= ~CURSOR_DST_BLEND_MASK;
961 	value &= ~CURSOR_SRC_BLEND_MASK;
962 
963 	if (dc->soc->has_nvdisplay)
964 		value &= ~CURSOR_COMPOSITION_MODE_XOR;
965 	else
966 		value |= CURSOR_MODE_NORMAL;
967 
968 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
969 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
970 	value |= CURSOR_ALPHA;
971 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
972 
973 	/* nvdisplay relies on software for clipping */
974 	if (dc->soc->has_nvdisplay) {
975 		struct drm_rect src;
976 
977 		x = new_state->dst.x1;
978 		y = new_state->dst.y1;
979 
980 		drm_rect_fp_to_int(&src, &new_state->src);
981 
982 		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
983 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
984 
985 		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
986 			(drm_rect_width(&src) & tegra->hmask);
987 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
988 	} else {
989 		x = new_state->crtc_x;
990 		y = new_state->crtc_y;
991 	}
992 
993 	/* position the cursor */
994 	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
995 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
996 }
997 
998 static void tegra_cursor_atomic_update(struct drm_plane *plane,
999 				       struct drm_atomic_state *state)
1000 {
1001 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1002 
1003 	__tegra_cursor_atomic_update(plane, new_state);
1004 }
1005 
1006 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1007 					struct drm_atomic_state *state)
1008 {
1009 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1010 									   plane);
1011 	struct tegra_dc *dc;
1012 	u32 value;
1013 
1014 	/* rien ne va plus */
1015 	if (!old_state || !old_state->crtc)
1016 		return;
1017 
1018 	dc = to_tegra_dc(old_state->crtc);
1019 
1020 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1021 	value &= ~CURSOR_ENABLE;
1022 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1023 }
1024 
1025 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1026 {
1027 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1028 	struct drm_crtc_state *crtc_state;
1029 	int min_scale, max_scale;
1030 	int err;
1031 
1032 	crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1033 	if (WARN_ON(!crtc_state))
1034 		return -EINVAL;
1035 
1036 	if (!crtc_state->active)
1037 		return -EINVAL;
1038 
1039 	if (plane->state->crtc != new_state->crtc ||
1040 	    plane->state->src_w != new_state->src_w ||
1041 	    plane->state->src_h != new_state->src_h ||
1042 	    plane->state->crtc_w != new_state->crtc_w ||
1043 	    plane->state->crtc_h != new_state->crtc_h ||
1044 	    plane->state->fb != new_state->fb ||
1045 	    plane->state->fb == NULL)
1046 		return -EINVAL;
1047 
1048 	min_scale = (1 << 16) / 8;
1049 	max_scale = (8 << 16) / 1;
1050 
1051 	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1052 						  true, true);
1053 	if (err < 0)
1054 		return err;
1055 
1056 	if (new_state->visible != plane->state->visible)
1057 		return -EINVAL;
1058 
1059 	return 0;
1060 }
1061 
1062 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1063 					     struct drm_atomic_state *state)
1064 {
1065 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1066 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1067 
1068 	plane->state->src_x = new_state->src_x;
1069 	plane->state->src_y = new_state->src_y;
1070 	plane->state->crtc_x = new_state->crtc_x;
1071 	plane->state->crtc_y = new_state->crtc_y;
1072 
1073 	if (new_state->visible) {
1074 		struct tegra_plane *p = to_tegra_plane(plane);
1075 		u32 value;
1076 
1077 		__tegra_cursor_atomic_update(plane, new_state);
1078 
1079 		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1080 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1081 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1082 
1083 		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1084 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1085 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1086 	}
1087 }
1088 
1089 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1090 	.prepare_fb = tegra_plane_prepare_fb,
1091 	.cleanup_fb = tegra_plane_cleanup_fb,
1092 	.atomic_check = tegra_cursor_atomic_check,
1093 	.atomic_update = tegra_cursor_atomic_update,
1094 	.atomic_disable = tegra_cursor_atomic_disable,
1095 	.atomic_async_check = tegra_cursor_atomic_async_check,
1096 	.atomic_async_update = tegra_cursor_atomic_async_update,
1097 };
1098 
1099 static const uint64_t linear_modifiers[] = {
1100 	DRM_FORMAT_MOD_LINEAR,
1101 	DRM_FORMAT_MOD_INVALID
1102 };
1103 
1104 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1105 						      struct tegra_dc *dc)
1106 {
1107 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1108 	struct tegra_plane *plane;
1109 	unsigned int num_formats;
1110 	const u32 *formats;
1111 	int err;
1112 
1113 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1114 	if (!plane)
1115 		return ERR_PTR(-ENOMEM);
1116 
1117 	/*
1118 	 * This index is kind of fake. The cursor isn't a regular plane, but
1119 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1120 	 * use the same programming. Setting this fake index here allows the
1121 	 * code in tegra_add_plane_state() to do the right thing without the
1122 	 * need to special-casing the cursor plane.
1123 	 */
1124 	plane->index = 6;
1125 	plane->dc = dc;
1126 
1127 	if (!dc->soc->has_nvdisplay) {
1128 		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1129 		formats = tegra_legacy_cursor_plane_formats;
1130 
1131 		err = tegra_plane_interconnect_init(plane);
1132 		if (err) {
1133 			kfree(plane);
1134 			return ERR_PTR(err);
1135 		}
1136 	} else {
1137 		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1138 		formats = tegra_cursor_plane_formats;
1139 	}
1140 
1141 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1142 				       &tegra_plane_funcs, formats,
1143 				       num_formats, linear_modifiers,
1144 				       DRM_PLANE_TYPE_CURSOR, NULL);
1145 	if (err < 0) {
1146 		kfree(plane);
1147 		return ERR_PTR(err);
1148 	}
1149 
1150 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1151 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1152 
1153 	return &plane->base;
1154 }
1155 
1156 static const u32 tegra20_overlay_formats[] = {
1157 	DRM_FORMAT_ARGB4444,
1158 	DRM_FORMAT_ARGB1555,
1159 	DRM_FORMAT_RGB565,
1160 	DRM_FORMAT_RGBA5551,
1161 	DRM_FORMAT_ABGR8888,
1162 	DRM_FORMAT_ARGB8888,
1163 	/* non-native formats */
1164 	DRM_FORMAT_XRGB1555,
1165 	DRM_FORMAT_RGBX5551,
1166 	DRM_FORMAT_XBGR8888,
1167 	DRM_FORMAT_XRGB8888,
1168 	/* planar formats */
1169 	DRM_FORMAT_UYVY,
1170 	DRM_FORMAT_YUYV,
1171 	DRM_FORMAT_YUV420,
1172 	DRM_FORMAT_YUV422,
1173 };
1174 
1175 static const u32 tegra114_overlay_formats[] = {
1176 	DRM_FORMAT_ARGB4444,
1177 	DRM_FORMAT_ARGB1555,
1178 	DRM_FORMAT_RGB565,
1179 	DRM_FORMAT_RGBA5551,
1180 	DRM_FORMAT_ABGR8888,
1181 	DRM_FORMAT_ARGB8888,
1182 	/* new on Tegra114 */
1183 	DRM_FORMAT_ABGR4444,
1184 	DRM_FORMAT_ABGR1555,
1185 	DRM_FORMAT_BGRA5551,
1186 	DRM_FORMAT_XRGB1555,
1187 	DRM_FORMAT_RGBX5551,
1188 	DRM_FORMAT_XBGR1555,
1189 	DRM_FORMAT_BGRX5551,
1190 	DRM_FORMAT_BGR565,
1191 	DRM_FORMAT_BGRA8888,
1192 	DRM_FORMAT_RGBA8888,
1193 	DRM_FORMAT_XRGB8888,
1194 	DRM_FORMAT_XBGR8888,
1195 	/* planar formats */
1196 	DRM_FORMAT_UYVY,
1197 	DRM_FORMAT_YUYV,
1198 	DRM_FORMAT_YUV420,
1199 	DRM_FORMAT_YUV422,
1200 	/* semi-planar formats */
1201 	DRM_FORMAT_NV12,
1202 	DRM_FORMAT_NV21,
1203 	DRM_FORMAT_NV16,
1204 	DRM_FORMAT_NV61,
1205 	DRM_FORMAT_NV24,
1206 	DRM_FORMAT_NV42,
1207 };
1208 
1209 static const u32 tegra124_overlay_formats[] = {
1210 	DRM_FORMAT_ARGB4444,
1211 	DRM_FORMAT_ARGB1555,
1212 	DRM_FORMAT_RGB565,
1213 	DRM_FORMAT_RGBA5551,
1214 	DRM_FORMAT_ABGR8888,
1215 	DRM_FORMAT_ARGB8888,
1216 	/* new on Tegra114 */
1217 	DRM_FORMAT_ABGR4444,
1218 	DRM_FORMAT_ABGR1555,
1219 	DRM_FORMAT_BGRA5551,
1220 	DRM_FORMAT_XRGB1555,
1221 	DRM_FORMAT_RGBX5551,
1222 	DRM_FORMAT_XBGR1555,
1223 	DRM_FORMAT_BGRX5551,
1224 	DRM_FORMAT_BGR565,
1225 	DRM_FORMAT_BGRA8888,
1226 	DRM_FORMAT_RGBA8888,
1227 	DRM_FORMAT_XRGB8888,
1228 	DRM_FORMAT_XBGR8888,
1229 	/* new on Tegra124 */
1230 	DRM_FORMAT_RGBX8888,
1231 	DRM_FORMAT_BGRX8888,
1232 	/* planar formats */
1233 	DRM_FORMAT_UYVY,
1234 	DRM_FORMAT_YUYV,
1235 	DRM_FORMAT_YUV420,
1236 	DRM_FORMAT_YUV422,
1237 	/* semi-planar formats */
1238 	DRM_FORMAT_NV12,
1239 	DRM_FORMAT_NV21,
1240 	DRM_FORMAT_NV16,
1241 	DRM_FORMAT_NV61,
1242 	DRM_FORMAT_NV24,
1243 	DRM_FORMAT_NV42,
1244 };
1245 
1246 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1247 						       struct tegra_dc *dc,
1248 						       unsigned int index,
1249 						       bool cursor)
1250 {
1251 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1252 	struct tegra_plane *plane;
1253 	unsigned int num_formats;
1254 	enum drm_plane_type type;
1255 	const u32 *formats;
1256 	int err;
1257 
1258 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1259 	if (!plane)
1260 		return ERR_PTR(-ENOMEM);
1261 
1262 	plane->offset = 0xa00 + 0x200 * index;
1263 	plane->index = index;
1264 	plane->dc = dc;
1265 
1266 	num_formats = dc->soc->num_overlay_formats;
1267 	formats = dc->soc->overlay_formats;
1268 
1269 	err = tegra_plane_interconnect_init(plane);
1270 	if (err) {
1271 		kfree(plane);
1272 		return ERR_PTR(err);
1273 	}
1274 
1275 	if (!cursor)
1276 		type = DRM_PLANE_TYPE_OVERLAY;
1277 	else
1278 		type = DRM_PLANE_TYPE_CURSOR;
1279 
1280 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1281 				       &tegra_plane_funcs, formats,
1282 				       num_formats, linear_modifiers,
1283 				       type, NULL);
1284 	if (err < 0) {
1285 		kfree(plane);
1286 		return ERR_PTR(err);
1287 	}
1288 
1289 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1290 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1291 
1292 	err = drm_plane_create_rotation_property(&plane->base,
1293 						 DRM_MODE_ROTATE_0,
1294 						 DRM_MODE_ROTATE_0 |
1295 						 DRM_MODE_ROTATE_180 |
1296 						 DRM_MODE_REFLECT_X |
1297 						 DRM_MODE_REFLECT_Y);
1298 	if (err < 0)
1299 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1300 			err);
1301 
1302 	return &plane->base;
1303 }
1304 
1305 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1306 						    struct tegra_dc *dc)
1307 {
1308 	struct drm_plane *plane, *primary = NULL;
1309 	unsigned int i, j;
1310 
1311 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1312 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1313 
1314 		if (wgrp->dc == dc->pipe) {
1315 			for (j = 0; j < wgrp->num_windows; j++) {
1316 				unsigned int index = wgrp->windows[j];
1317 
1318 				plane = tegra_shared_plane_create(drm, dc,
1319 								  wgrp->index,
1320 								  index);
1321 				if (IS_ERR(plane))
1322 					return plane;
1323 
1324 				/*
1325 				 * Choose the first shared plane owned by this
1326 				 * head as the primary plane.
1327 				 */
1328 				if (!primary) {
1329 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1330 					primary = plane;
1331 				}
1332 			}
1333 		}
1334 	}
1335 
1336 	return primary;
1337 }
1338 
1339 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1340 					     struct tegra_dc *dc)
1341 {
1342 	struct drm_plane *planes[2], *primary;
1343 	unsigned int planes_num;
1344 	unsigned int i;
1345 	int err;
1346 
1347 	primary = tegra_primary_plane_create(drm, dc);
1348 	if (IS_ERR(primary))
1349 		return primary;
1350 
1351 	if (dc->soc->supports_cursor)
1352 		planes_num = 2;
1353 	else
1354 		planes_num = 1;
1355 
1356 	for (i = 0; i < planes_num; i++) {
1357 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1358 							  false);
1359 		if (IS_ERR(planes[i])) {
1360 			err = PTR_ERR(planes[i]);
1361 
1362 			while (i--)
1363 				planes[i]->funcs->destroy(planes[i]);
1364 
1365 			primary->funcs->destroy(primary);
1366 			return ERR_PTR(err);
1367 		}
1368 	}
1369 
1370 	return primary;
1371 }
1372 
1373 static void tegra_dc_destroy(struct drm_crtc *crtc)
1374 {
1375 	drm_crtc_cleanup(crtc);
1376 }
1377 
1378 static void tegra_crtc_reset(struct drm_crtc *crtc)
1379 {
1380 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1381 
1382 	if (crtc->state)
1383 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1384 
1385 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1386 }
1387 
1388 static struct drm_crtc_state *
1389 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1390 {
1391 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1392 	struct tegra_dc_state *copy;
1393 
1394 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1395 	if (!copy)
1396 		return NULL;
1397 
1398 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1399 	copy->clk = state->clk;
1400 	copy->pclk = state->pclk;
1401 	copy->div = state->div;
1402 	copy->planes = state->planes;
1403 
1404 	return &copy->base;
1405 }
1406 
1407 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1408 					    struct drm_crtc_state *state)
1409 {
1410 	__drm_atomic_helper_crtc_destroy_state(state);
1411 	kfree(state);
1412 }
1413 
1414 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1415 
1416 static const struct debugfs_reg32 tegra_dc_regs[] = {
1417 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1418 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1419 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1420 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1421 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1422 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1423 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1424 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1425 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1426 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1427 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1428 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1429 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1430 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1431 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1432 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1433 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1434 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1435 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1436 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1437 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1438 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1439 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1440 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1441 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1442 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1443 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1444 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1445 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1446 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1447 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1448 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1449 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1450 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1451 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1452 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1453 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1454 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1455 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1456 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1457 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1458 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1459 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1460 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1461 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1462 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1463 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1464 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1465 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1466 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1467 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1468 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1469 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1470 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1471 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1472 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1473 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1474 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1475 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1476 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1477 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1478 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1479 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1480 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1481 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1482 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1483 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1484 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1485 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1486 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1487 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1488 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1489 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1490 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1491 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1492 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1493 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1494 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1495 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1496 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1497 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1498 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1499 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1500 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1501 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1502 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1503 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1504 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1505 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1506 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1507 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1508 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1509 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1510 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1511 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1512 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1513 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1514 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1515 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1516 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1517 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1518 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1519 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1520 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1521 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1522 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1523 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1524 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1525 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1526 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1527 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1528 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1529 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1530 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1531 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1532 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1533 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1534 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1535 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1536 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1537 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1538 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1539 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1540 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1541 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1542 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1543 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1544 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1545 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1546 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1547 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1548 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1549 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1550 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1551 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1552 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1553 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1554 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1555 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1556 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1557 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1558 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1559 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1560 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1561 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1562 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1563 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1564 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1565 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1566 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1567 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1568 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1569 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1570 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1571 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1572 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1573 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1574 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1575 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1576 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1577 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1578 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1579 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1580 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1581 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1582 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1583 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1584 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1585 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1586 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1587 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1588 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1589 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1590 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1591 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1592 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1593 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1594 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1595 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1596 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1597 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1598 	DEBUGFS_REG32(DC_WIN_POSITION),
1599 	DEBUGFS_REG32(DC_WIN_SIZE),
1600 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1601 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1602 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1603 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1604 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1605 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1606 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1607 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1608 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1609 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1610 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1611 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1612 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1613 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1614 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1615 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1616 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1617 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1618 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1619 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1620 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1621 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1622 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1623 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1624 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1625 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1626 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1627 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1628 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1629 };
1630 
1631 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1632 {
1633 	struct drm_info_node *node = s->private;
1634 	struct tegra_dc *dc = node->info_ent->data;
1635 	unsigned int i;
1636 	int err = 0;
1637 
1638 	drm_modeset_lock(&dc->base.mutex, NULL);
1639 
1640 	if (!dc->base.state->active) {
1641 		err = -EBUSY;
1642 		goto unlock;
1643 	}
1644 
1645 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1646 		unsigned int offset = tegra_dc_regs[i].offset;
1647 
1648 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1649 			   offset, tegra_dc_readl(dc, offset));
1650 	}
1651 
1652 unlock:
1653 	drm_modeset_unlock(&dc->base.mutex);
1654 	return err;
1655 }
1656 
1657 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1658 {
1659 	struct drm_info_node *node = s->private;
1660 	struct tegra_dc *dc = node->info_ent->data;
1661 	int err = 0;
1662 	u32 value;
1663 
1664 	drm_modeset_lock(&dc->base.mutex, NULL);
1665 
1666 	if (!dc->base.state->active) {
1667 		err = -EBUSY;
1668 		goto unlock;
1669 	}
1670 
1671 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1672 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1673 	tegra_dc_commit(dc);
1674 
1675 	drm_crtc_wait_one_vblank(&dc->base);
1676 	drm_crtc_wait_one_vblank(&dc->base);
1677 
1678 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1679 	seq_printf(s, "%08x\n", value);
1680 
1681 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1682 
1683 unlock:
1684 	drm_modeset_unlock(&dc->base.mutex);
1685 	return err;
1686 }
1687 
1688 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1689 {
1690 	struct drm_info_node *node = s->private;
1691 	struct tegra_dc *dc = node->info_ent->data;
1692 
1693 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1694 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1695 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1696 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1697 
1698 	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1699 	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1700 	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1701 	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1702 
1703 	return 0;
1704 }
1705 
1706 static struct drm_info_list debugfs_files[] = {
1707 	{ "regs", tegra_dc_show_regs, 0, NULL },
1708 	{ "crc", tegra_dc_show_crc, 0, NULL },
1709 	{ "stats", tegra_dc_show_stats, 0, NULL },
1710 };
1711 
1712 static int tegra_dc_late_register(struct drm_crtc *crtc)
1713 {
1714 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1715 	struct drm_minor *minor = crtc->dev->primary;
1716 	struct dentry *root;
1717 	struct tegra_dc *dc = to_tegra_dc(crtc);
1718 
1719 #ifdef CONFIG_DEBUG_FS
1720 	root = crtc->debugfs_entry;
1721 #else
1722 	root = NULL;
1723 #endif
1724 
1725 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1726 				    GFP_KERNEL);
1727 	if (!dc->debugfs_files)
1728 		return -ENOMEM;
1729 
1730 	for (i = 0; i < count; i++)
1731 		dc->debugfs_files[i].data = dc;
1732 
1733 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1734 
1735 	return 0;
1736 }
1737 
1738 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1739 {
1740 	unsigned int count = ARRAY_SIZE(debugfs_files);
1741 	struct drm_minor *minor = crtc->dev->primary;
1742 	struct tegra_dc *dc = to_tegra_dc(crtc);
1743 
1744 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1745 	kfree(dc->debugfs_files);
1746 	dc->debugfs_files = NULL;
1747 }
1748 
1749 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1750 {
1751 	struct tegra_dc *dc = to_tegra_dc(crtc);
1752 
1753 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1754 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1755 		return host1x_syncpt_read(dc->syncpt);
1756 
1757 	/* fallback to software emulated VBLANK counter */
1758 	return (u32)drm_crtc_vblank_count(&dc->base);
1759 }
1760 
1761 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1762 {
1763 	struct tegra_dc *dc = to_tegra_dc(crtc);
1764 	u32 value;
1765 
1766 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1767 	value |= VBLANK_INT;
1768 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1769 
1770 	return 0;
1771 }
1772 
1773 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1774 {
1775 	struct tegra_dc *dc = to_tegra_dc(crtc);
1776 	u32 value;
1777 
1778 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1779 	value &= ~VBLANK_INT;
1780 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1781 }
1782 
1783 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1784 	.page_flip = drm_atomic_helper_page_flip,
1785 	.set_config = drm_atomic_helper_set_config,
1786 	.destroy = tegra_dc_destroy,
1787 	.reset = tegra_crtc_reset,
1788 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1789 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1790 	.late_register = tegra_dc_late_register,
1791 	.early_unregister = tegra_dc_early_unregister,
1792 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1793 	.enable_vblank = tegra_dc_enable_vblank,
1794 	.disable_vblank = tegra_dc_disable_vblank,
1795 };
1796 
1797 static int tegra_dc_set_timings(struct tegra_dc *dc,
1798 				struct drm_display_mode *mode)
1799 {
1800 	unsigned int h_ref_to_sync = 1;
1801 	unsigned int v_ref_to_sync = 1;
1802 	unsigned long value;
1803 
1804 	if (!dc->soc->has_nvdisplay) {
1805 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1806 
1807 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1808 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1809 	}
1810 
1811 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1812 		((mode->hsync_end - mode->hsync_start) <<  0);
1813 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1814 
1815 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1816 		((mode->htotal - mode->hsync_end) <<  0);
1817 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1818 
1819 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1820 		((mode->hsync_start - mode->hdisplay) <<  0);
1821 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1822 
1823 	value = (mode->vdisplay << 16) | mode->hdisplay;
1824 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1831  *     state
1832  * @dc: display controller
1833  * @crtc_state: CRTC atomic state
1834  * @clk: parent clock for display controller
1835  * @pclk: pixel clock
1836  * @div: shift clock divider
1837  *
1838  * Returns:
1839  * 0 on success or a negative error-code on failure.
1840  */
1841 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1842 			       struct drm_crtc_state *crtc_state,
1843 			       struct clk *clk, unsigned long pclk,
1844 			       unsigned int div)
1845 {
1846 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1847 
1848 	if (!clk_has_parent(dc->clk, clk))
1849 		return -EINVAL;
1850 
1851 	state->clk = clk;
1852 	state->pclk = pclk;
1853 	state->div = div;
1854 
1855 	return 0;
1856 }
1857 
1858 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1859 					  struct tegra_dc_state *state)
1860 {
1861 	unsigned long rate, pstate;
1862 	struct dev_pm_opp *opp;
1863 	int err;
1864 
1865 	if (!dc->has_opp_table)
1866 		return;
1867 
1868 	/* calculate actual pixel clock rate which depends on internal divider */
1869 	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1870 
1871 	/* find suitable OPP for the rate */
1872 	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1873 
1874 	/*
1875 	 * Very high resolution modes may results in a clock rate that is
1876 	 * above the characterized maximum. In this case it's okay to fall
1877 	 * back to the characterized maximum.
1878 	 */
1879 	if (opp == ERR_PTR(-ERANGE))
1880 		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1881 
1882 	if (IS_ERR(opp)) {
1883 		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1884 			rate, opp);
1885 		return;
1886 	}
1887 
1888 	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1889 	dev_pm_opp_put(opp);
1890 
1891 	/*
1892 	 * The minimum core voltage depends on the pixel clock rate (which
1893 	 * depends on internal clock divider of the CRTC) and not on the
1894 	 * rate of the display controller clock. This is why we're not using
1895 	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1896 	 * directly.
1897 	 */
1898 	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1899 	if (err)
1900 		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1901 			pstate, err);
1902 }
1903 
1904 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1905 				    struct tegra_dc_state *state)
1906 {
1907 	int err;
1908 
1909 	err = clk_set_parent(dc->clk, state->clk);
1910 	if (err < 0)
1911 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1912 
1913 	/*
1914 	 * Outputs may not want to change the parent clock rate. This is only
1915 	 * relevant to Tegra20 where only a single display PLL is available.
1916 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1917 	 * panel would need to be driven by some other clock such as PLL_P
1918 	 * which is shared with other peripherals. Changing the clock rate
1919 	 * should therefore be avoided.
1920 	 */
1921 	if (state->pclk > 0) {
1922 		err = clk_set_rate(state->clk, state->pclk);
1923 		if (err < 0)
1924 			dev_err(dc->dev,
1925 				"failed to set clock rate to %lu Hz\n",
1926 				state->pclk);
1927 
1928 		err = clk_set_rate(dc->clk, state->pclk);
1929 		if (err < 0)
1930 			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1931 				dc->clk, state->pclk, err);
1932 	}
1933 
1934 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1935 		      state->div);
1936 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1937 
1938 	tegra_dc_update_voltage_state(dc, state);
1939 }
1940 
1941 static void tegra_dc_stop(struct tegra_dc *dc)
1942 {
1943 	u32 value;
1944 
1945 	/* stop the display controller */
1946 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1947 	value &= ~DISP_CTRL_MODE_MASK;
1948 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1949 
1950 	tegra_dc_commit(dc);
1951 }
1952 
1953 static bool tegra_dc_idle(struct tegra_dc *dc)
1954 {
1955 	u32 value;
1956 
1957 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1958 
1959 	return (value & DISP_CTRL_MODE_MASK) == 0;
1960 }
1961 
1962 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1963 {
1964 	timeout = jiffies + msecs_to_jiffies(timeout);
1965 
1966 	while (time_before(jiffies, timeout)) {
1967 		if (tegra_dc_idle(dc))
1968 			return 0;
1969 
1970 		usleep_range(1000, 2000);
1971 	}
1972 
1973 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1974 	return -ETIMEDOUT;
1975 }
1976 
1977 static void
1978 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1979 				   struct drm_atomic_state *state,
1980 				   bool prepare_bandwidth_transition)
1981 {
1982 	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1983 	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1984 	const struct drm_plane_state *old_plane_state;
1985 	const struct drm_crtc_state *old_crtc_state;
1986 	struct tegra_dc_window window, old_window;
1987 	struct tegra_dc *dc = to_tegra_dc(crtc);
1988 	struct tegra_plane *tegra;
1989 	struct drm_plane *plane;
1990 
1991 	if (dc->soc->has_nvdisplay)
1992 		return;
1993 
1994 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1995 
1996 	if (!crtc->state->active) {
1997 		if (!old_crtc_state->active)
1998 			return;
1999 
2000 		/*
2001 		 * When CRTC is disabled on DPMS, the state of attached planes
2002 		 * is kept unchanged. Hence we need to enforce removal of the
2003 		 * bandwidths from the ICC paths.
2004 		 */
2005 		drm_atomic_crtc_for_each_plane(plane, crtc) {
2006 			tegra = to_tegra_plane(plane);
2007 
2008 			icc_set_bw(tegra->icc_mem, 0, 0);
2009 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2010 		}
2011 
2012 		return;
2013 	}
2014 
2015 	for_each_old_plane_in_state(old_crtc_state->state, plane,
2016 				    old_plane_state, i) {
2017 		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2018 		new_tegra_state = to_const_tegra_plane_state(plane->state);
2019 		tegra = to_tegra_plane(plane);
2020 
2021 		/*
2022 		 * We're iterating over the global atomic state and it contains
2023 		 * planes from another CRTC, hence we need to filter out the
2024 		 * planes unrelated to this CRTC.
2025 		 */
2026 		if (tegra->dc != dc)
2027 			continue;
2028 
2029 		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2030 		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2031 
2032 		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2033 		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2034 
2035 		/*
2036 		 * See the comment related to !crtc->state->active above,
2037 		 * which explains why bandwidths need to be updated when
2038 		 * CRTC is turning ON.
2039 		 */
2040 		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2041 		    old_crtc_state->active)
2042 			continue;
2043 
2044 		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2045 		window.dst.h = drm_rect_height(&plane->state->dst);
2046 
2047 		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2048 		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2049 
2050 		/*
2051 		 * During the preparation phase (atomic_begin), the memory
2052 		 * freq should go high before the DC changes are committed
2053 		 * if bandwidth requirement goes up, otherwise memory freq
2054 		 * should to stay high if BW requirement goes down.  The
2055 		 * opposite applies to the completion phase (post_commit).
2056 		 */
2057 		if (prepare_bandwidth_transition) {
2058 			new_avg_bw = max(old_avg_bw, new_avg_bw);
2059 			new_peak_bw = max(old_peak_bw, new_peak_bw);
2060 
2061 			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2062 				window = old_window;
2063 		}
2064 
2065 		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2066 
2067 		if (tegra_plane_use_vertical_filtering(tegra, &window))
2068 			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2069 		else
2070 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2071 	}
2072 }
2073 
2074 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2075 				      struct drm_atomic_state *state)
2076 {
2077 	struct tegra_dc *dc = to_tegra_dc(crtc);
2078 	u32 value;
2079 	int err;
2080 
2081 	if (!tegra_dc_idle(dc)) {
2082 		tegra_dc_stop(dc);
2083 
2084 		/*
2085 		 * Ignore the return value, there isn't anything useful to do
2086 		 * in case this fails.
2087 		 */
2088 		tegra_dc_wait_idle(dc, 100);
2089 	}
2090 
2091 	/*
2092 	 * This should really be part of the RGB encoder driver, but clearing
2093 	 * these bits has the side-effect of stopping the display controller.
2094 	 * When that happens no VBLANK interrupts will be raised. At the same
2095 	 * time the encoder is disabled before the display controller, so the
2096 	 * above code is always going to timeout waiting for the controller
2097 	 * to go idle.
2098 	 *
2099 	 * Given the close coupling between the RGB encoder and the display
2100 	 * controller doing it here is still kind of okay. None of the other
2101 	 * encoder drivers require these bits to be cleared.
2102 	 *
2103 	 * XXX: Perhaps given that the display controller is switched off at
2104 	 * this point anyway maybe clearing these bits isn't even useful for
2105 	 * the RGB encoder?
2106 	 */
2107 	if (dc->rgb) {
2108 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2109 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2110 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2111 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2112 	}
2113 
2114 	tegra_dc_stats_reset(&dc->stats);
2115 	drm_crtc_vblank_off(crtc);
2116 
2117 	spin_lock_irq(&crtc->dev->event_lock);
2118 
2119 	if (crtc->state->event) {
2120 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2121 		crtc->state->event = NULL;
2122 	}
2123 
2124 	spin_unlock_irq(&crtc->dev->event_lock);
2125 
2126 	err = host1x_client_suspend(&dc->client);
2127 	if (err < 0)
2128 		dev_err(dc->dev, "failed to suspend: %d\n", err);
2129 
2130 	if (dc->has_opp_table) {
2131 		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2132 		if (err)
2133 			dev_err(dc->dev,
2134 				"failed to clear power domain state: %d\n", err);
2135 	}
2136 }
2137 
2138 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2139 				     struct drm_atomic_state *state)
2140 {
2141 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2142 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2143 	struct tegra_dc *dc = to_tegra_dc(crtc);
2144 	u32 value;
2145 	int err;
2146 
2147 	/* apply PLL changes */
2148 	tegra_dc_set_clock_rate(dc, crtc_state);
2149 
2150 	err = host1x_client_resume(&dc->client);
2151 	if (err < 0) {
2152 		dev_err(dc->dev, "failed to resume: %d\n", err);
2153 		return;
2154 	}
2155 
2156 	/* initialize display controller */
2157 	if (dc->syncpt) {
2158 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2159 
2160 		if (dc->soc->has_nvdisplay)
2161 			enable = 1 << 31;
2162 		else
2163 			enable = 1 << 8;
2164 
2165 		value = SYNCPT_CNTRL_NO_STALL;
2166 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2167 
2168 		value = enable | syncpt;
2169 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2170 	}
2171 
2172 	if (dc->soc->has_nvdisplay) {
2173 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2174 			DSC_OBUF_UF_INT;
2175 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2176 
2177 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2178 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2179 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2180 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2181 			VBLANK_INT | FRAME_END_INT;
2182 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2183 
2184 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2185 			FRAME_END_INT;
2186 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2187 
2188 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2189 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2190 
2191 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2192 	} else {
2193 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2194 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2195 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2196 
2197 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2198 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2199 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2200 
2201 		/* initialize timer */
2202 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2203 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2204 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2205 
2206 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2207 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2208 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2209 
2210 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2211 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2212 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2213 
2214 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2215 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2216 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2217 	}
2218 
2219 	if (dc->soc->supports_background_color)
2220 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2221 	else
2222 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2223 
2224 	/* apply pixel clock changes */
2225 	if (!dc->soc->has_nvdisplay) {
2226 		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2227 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2228 	}
2229 
2230 	/* program display mode */
2231 	tegra_dc_set_timings(dc, mode);
2232 
2233 	/* interlacing isn't supported yet, so disable it */
2234 	if (dc->soc->supports_interlacing) {
2235 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2236 		value &= ~INTERLACE_ENABLE;
2237 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2238 	}
2239 
2240 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2241 	value &= ~DISP_CTRL_MODE_MASK;
2242 	value |= DISP_CTRL_MODE_C_DISPLAY;
2243 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2244 
2245 	if (!dc->soc->has_nvdisplay) {
2246 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2247 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2248 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2249 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2250 	}
2251 
2252 	/* enable underflow reporting and display red for missing pixels */
2253 	if (dc->soc->has_nvdisplay) {
2254 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2255 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2256 	}
2257 
2258 	if (dc->rgb) {
2259 		/* XXX: parameterize? */
2260 		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2261 		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2262 	}
2263 
2264 	tegra_dc_commit(dc);
2265 
2266 	drm_crtc_vblank_on(crtc);
2267 }
2268 
2269 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2270 				    struct drm_atomic_state *state)
2271 {
2272 	unsigned long flags;
2273 
2274 	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2275 
2276 	if (crtc->state->event) {
2277 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2278 
2279 		if (drm_crtc_vblank_get(crtc) != 0)
2280 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2281 		else
2282 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2283 
2284 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2285 
2286 		crtc->state->event = NULL;
2287 	}
2288 }
2289 
2290 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2291 				    struct drm_atomic_state *state)
2292 {
2293 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2294 									  crtc);
2295 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2296 	struct tegra_dc *dc = to_tegra_dc(crtc);
2297 	u32 value;
2298 
2299 	value = dc_state->planes << 8 | GENERAL_UPDATE;
2300 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2301 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2302 
2303 	value = dc_state->planes | GENERAL_ACT_REQ;
2304 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2305 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2306 }
2307 
2308 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2309 {
2310 	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2311 	const struct drm_format_info *fmt = state->fb->format;
2312 	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2313 	unsigned int dst_w = drm_rect_width(&state->dst);
2314 
2315 	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2316 		return false;
2317 
2318 	if (soc->supports_cursor)
2319 		return true;
2320 
2321 	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2322 		return false;
2323 
2324 	return true;
2325 }
2326 
2327 static unsigned long
2328 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2329 			 const struct drm_plane_state *plane_state)
2330 {
2331 	const struct drm_plane_state *other_state;
2332 	const struct tegra_plane *tegra;
2333 	unsigned long overlap_mask = 0;
2334 	struct drm_plane *plane;
2335 	struct drm_rect rect;
2336 
2337 	if (!plane_state->visible || !plane_state->fb)
2338 		return 0;
2339 
2340 	/*
2341 	 * Data-prefetch FIFO will easily help to overcome temporal memory
2342 	 * pressure if other plane overlaps with the cursor plane.
2343 	 */
2344 	if (tegra_plane_is_cursor(plane_state))
2345 		return 0;
2346 
2347 	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2348 		rect = plane_state->dst;
2349 
2350 		tegra = to_tegra_plane(other_state->plane);
2351 
2352 		if (!other_state->visible || !other_state->fb)
2353 			continue;
2354 
2355 		/*
2356 		 * Ignore cursor plane overlaps because it's not practical to
2357 		 * assume that it contributes to the bandwidth in overlapping
2358 		 * area if window width is small.
2359 		 */
2360 		if (tegra_plane_is_cursor(other_state))
2361 			continue;
2362 
2363 		if (drm_rect_intersect(&rect, &other_state->dst))
2364 			overlap_mask |= BIT(tegra->index);
2365 	}
2366 
2367 	return overlap_mask;
2368 }
2369 
2370 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2371 						 struct drm_atomic_state *state)
2372 {
2373 	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2374 	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2375 	bool all_planes_overlap_simultaneously = true;
2376 	const struct tegra_plane_state *tegra_state;
2377 	const struct drm_plane_state *plane_state;
2378 	struct tegra_dc *dc = to_tegra_dc(crtc);
2379 	const struct drm_crtc_state *old_state;
2380 	struct drm_crtc_state *new_state;
2381 	struct tegra_plane *tegra;
2382 	struct drm_plane *plane;
2383 
2384 	/*
2385 	 * The nv-display uses shared planes.  The algorithm below assumes
2386 	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2387 	 * the nv-display.  Note that T124 support has additional windows,
2388 	 * but currently they aren't supported by the driver.
2389 	 */
2390 	if (dc->soc->has_nvdisplay)
2391 		return 0;
2392 
2393 	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2394 	old_state = drm_atomic_get_old_crtc_state(state, crtc);
2395 
2396 	/*
2397 	 * For overlapping planes pixel's data is fetched for each plane at
2398 	 * the same time, hence bandwidths are accumulated in this case.
2399 	 * This needs to be taken into account for calculating total bandwidth
2400 	 * consumed by all planes.
2401 	 *
2402 	 * Here we get the overlapping state of each plane, which is a
2403 	 * bitmask of plane indices telling with what planes there is an
2404 	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2405 	 * to make further code nicer and simpler.
2406 	 */
2407 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2408 		tegra_state = to_const_tegra_plane_state(plane_state);
2409 		tegra = to_tegra_plane(plane);
2410 
2411 		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2412 			return -EINVAL;
2413 
2414 		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2415 		mask = tegra_plane_overlap_mask(new_state, plane_state);
2416 		overlap_mask[tegra->index] = mask;
2417 
2418 		if (hweight_long(mask) != 3)
2419 			all_planes_overlap_simultaneously = false;
2420 	}
2421 
2422 	/*
2423 	 * Then we calculate maximum bandwidth of each plane state.
2424 	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2425 	 * overlapping planes, where "simultaneously" means areas where DC
2426 	 * fetches from the planes simultaneously during of scan-out process.
2427 	 *
2428 	 * For example, if plane A overlaps with planes B and C, but B and C
2429 	 * don't overlap, then the peak bandwidth will be either in area where
2430 	 * A-and-B or A-and-C planes overlap.
2431 	 *
2432 	 * The plane_peak_bw[] contains peak memory bandwidth values of
2433 	 * each plane, this information is needed by interconnect provider
2434 	 * in order to set up latency allowance based on the peak BW, see
2435 	 * tegra_crtc_update_memory_bandwidth().
2436 	 */
2437 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2438 		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2439 
2440 		/*
2441 		 * Note that plane's atomic check doesn't touch the
2442 		 * total_peak_memory_bandwidth of enabled plane, hence the
2443 		 * current state contains the old bandwidth state from the
2444 		 * previous CRTC commit.
2445 		 */
2446 		tegra_state = to_const_tegra_plane_state(plane_state);
2447 		tegra = to_tegra_plane(plane);
2448 
2449 		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2450 			if (i == tegra->index)
2451 				continue;
2452 
2453 			if (all_planes_overlap_simultaneously)
2454 				overlap_bw += plane_peak_bw[i];
2455 			else
2456 				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2457 		}
2458 
2459 		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2460 		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2461 
2462 		/*
2463 		 * If plane's peak bandwidth changed (for example plane isn't
2464 		 * overlapped anymore) and plane isn't in the atomic state,
2465 		 * then add plane to the state in order to have the bandwidth
2466 		 * updated.
2467 		 */
2468 		if (old_peak_bw != new_peak_bw) {
2469 			struct tegra_plane_state *new_tegra_state;
2470 			struct drm_plane_state *new_plane_state;
2471 
2472 			new_plane_state = drm_atomic_get_plane_state(state, plane);
2473 			if (IS_ERR(new_plane_state))
2474 				return PTR_ERR(new_plane_state);
2475 
2476 			new_tegra_state = to_tegra_plane_state(new_plane_state);
2477 			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2478 		}
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2485 				   struct drm_atomic_state *state)
2486 {
2487 	int err;
2488 
2489 	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2490 	if (err)
2491 		return err;
2492 
2493 	return 0;
2494 }
2495 
2496 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2497 				   struct drm_atomic_state *state)
2498 {
2499 	/*
2500 	 * Display bandwidth is allowed to go down only once hardware state
2501 	 * is known to be armed, i.e. state was committed and VBLANK event
2502 	 * received.
2503 	 */
2504 	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2505 }
2506 
2507 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2508 	.atomic_check = tegra_crtc_atomic_check,
2509 	.atomic_begin = tegra_crtc_atomic_begin,
2510 	.atomic_flush = tegra_crtc_atomic_flush,
2511 	.atomic_enable = tegra_crtc_atomic_enable,
2512 	.atomic_disable = tegra_crtc_atomic_disable,
2513 };
2514 
2515 static irqreturn_t tegra_dc_irq(int irq, void *data)
2516 {
2517 	struct tegra_dc *dc = data;
2518 	unsigned long status;
2519 
2520 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2521 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2522 
2523 	if (status & FRAME_END_INT) {
2524 		/*
2525 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2526 		*/
2527 		dc->stats.frames_total++;
2528 		dc->stats.frames++;
2529 	}
2530 
2531 	if (status & VBLANK_INT) {
2532 		/*
2533 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2534 		*/
2535 		drm_crtc_handle_vblank(&dc->base);
2536 		dc->stats.vblank_total++;
2537 		dc->stats.vblank++;
2538 	}
2539 
2540 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2541 		/*
2542 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2543 		*/
2544 		dc->stats.underflow_total++;
2545 		dc->stats.underflow++;
2546 	}
2547 
2548 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2549 		/*
2550 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2551 		*/
2552 		dc->stats.overflow_total++;
2553 		dc->stats.overflow++;
2554 	}
2555 
2556 	if (status & HEAD_UF_INT) {
2557 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2558 		dc->stats.underflow_total++;
2559 		dc->stats.underflow++;
2560 	}
2561 
2562 	return IRQ_HANDLED;
2563 }
2564 
2565 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2566 {
2567 	unsigned int i;
2568 
2569 	if (!dc->soc->wgrps)
2570 		return true;
2571 
2572 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2573 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2574 
2575 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2576 			return true;
2577 	}
2578 
2579 	return false;
2580 }
2581 
2582 static int tegra_dc_early_init(struct host1x_client *client)
2583 {
2584 	struct drm_device *drm = dev_get_drvdata(client->host);
2585 	struct tegra_drm *tegra = drm->dev_private;
2586 
2587 	tegra->num_crtcs++;
2588 
2589 	return 0;
2590 }
2591 
2592 static int tegra_dc_init(struct host1x_client *client)
2593 {
2594 	struct drm_device *drm = dev_get_drvdata(client->host);
2595 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2596 	struct tegra_dc *dc = host1x_client_to_dc(client);
2597 	struct tegra_drm *tegra = drm->dev_private;
2598 	struct drm_plane *primary = NULL;
2599 	struct drm_plane *cursor = NULL;
2600 	int err;
2601 
2602 	/*
2603 	 * DC has been reset by now, so VBLANK syncpoint can be released
2604 	 * for general use.
2605 	 */
2606 	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2607 
2608 	/*
2609 	 * XXX do not register DCs with no window groups because we cannot
2610 	 * assign a primary plane to them, which in turn will cause KMS to
2611 	 * crash.
2612 	 */
2613 	if (!tegra_dc_has_window_groups(dc))
2614 		return 0;
2615 
2616 	/*
2617 	 * Set the display hub as the host1x client parent for the display
2618 	 * controller. This is needed for the runtime reference counting that
2619 	 * ensures the display hub is always powered when any of the display
2620 	 * controllers are.
2621 	 */
2622 	if (dc->soc->has_nvdisplay)
2623 		client->parent = &tegra->hub->client;
2624 
2625 	dc->syncpt = host1x_syncpt_request(client, flags);
2626 	if (!dc->syncpt)
2627 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2628 
2629 	err = host1x_client_iommu_attach(client);
2630 	if (err < 0 && err != -ENODEV) {
2631 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2632 		return err;
2633 	}
2634 
2635 	if (dc->soc->wgrps)
2636 		primary = tegra_dc_add_shared_planes(drm, dc);
2637 	else
2638 		primary = tegra_dc_add_planes(drm, dc);
2639 
2640 	if (IS_ERR(primary)) {
2641 		err = PTR_ERR(primary);
2642 		goto cleanup;
2643 	}
2644 
2645 	if (dc->soc->supports_cursor) {
2646 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2647 		if (IS_ERR(cursor)) {
2648 			err = PTR_ERR(cursor);
2649 			goto cleanup;
2650 		}
2651 	} else {
2652 		/* dedicate one overlay to mouse cursor */
2653 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2654 		if (IS_ERR(cursor)) {
2655 			err = PTR_ERR(cursor);
2656 			goto cleanup;
2657 		}
2658 	}
2659 
2660 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2661 					&tegra_crtc_funcs, NULL);
2662 	if (err < 0)
2663 		goto cleanup;
2664 
2665 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2666 
2667 	/*
2668 	 * Keep track of the minimum pitch alignment across all display
2669 	 * controllers.
2670 	 */
2671 	if (dc->soc->pitch_align > tegra->pitch_align)
2672 		tegra->pitch_align = dc->soc->pitch_align;
2673 
2674 	/* track maximum resolution */
2675 	if (dc->soc->has_nvdisplay)
2676 		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2677 	else
2678 		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2679 
2680 	err = tegra_dc_rgb_init(drm, dc);
2681 	if (err < 0 && err != -ENODEV) {
2682 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2683 		goto cleanup;
2684 	}
2685 
2686 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2687 			       dev_name(dc->dev), dc);
2688 	if (err < 0) {
2689 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2690 			err);
2691 		goto cleanup;
2692 	}
2693 
2694 	/*
2695 	 * Inherit the DMA parameters (such as maximum segment size) from the
2696 	 * parent host1x device.
2697 	 */
2698 	client->dev->dma_parms = client->host->dma_parms;
2699 
2700 	return 0;
2701 
2702 cleanup:
2703 	if (!IS_ERR_OR_NULL(cursor))
2704 		drm_plane_cleanup(cursor);
2705 
2706 	if (!IS_ERR(primary))
2707 		drm_plane_cleanup(primary);
2708 
2709 	host1x_client_iommu_detach(client);
2710 	host1x_syncpt_put(dc->syncpt);
2711 
2712 	return err;
2713 }
2714 
2715 static int tegra_dc_exit(struct host1x_client *client)
2716 {
2717 	struct tegra_dc *dc = host1x_client_to_dc(client);
2718 	int err;
2719 
2720 	if (!tegra_dc_has_window_groups(dc))
2721 		return 0;
2722 
2723 	/* avoid a dangling pointer just in case this disappears */
2724 	client->dev->dma_parms = NULL;
2725 
2726 	devm_free_irq(dc->dev, dc->irq, dc);
2727 
2728 	err = tegra_dc_rgb_exit(dc);
2729 	if (err) {
2730 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2731 		return err;
2732 	}
2733 
2734 	host1x_client_iommu_detach(client);
2735 	host1x_syncpt_put(dc->syncpt);
2736 
2737 	return 0;
2738 }
2739 
2740 static int tegra_dc_late_exit(struct host1x_client *client)
2741 {
2742 	struct drm_device *drm = dev_get_drvdata(client->host);
2743 	struct tegra_drm *tegra = drm->dev_private;
2744 
2745 	tegra->num_crtcs--;
2746 
2747 	return 0;
2748 }
2749 
2750 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2751 {
2752 	struct tegra_dc *dc = host1x_client_to_dc(client);
2753 	struct device *dev = client->dev;
2754 	int err;
2755 
2756 	err = reset_control_assert(dc->rst);
2757 	if (err < 0) {
2758 		dev_err(dev, "failed to assert reset: %d\n", err);
2759 		return err;
2760 	}
2761 
2762 	if (dc->soc->has_powergate)
2763 		tegra_powergate_power_off(dc->powergate);
2764 
2765 	clk_disable_unprepare(dc->clk);
2766 	pm_runtime_put_sync(dev);
2767 
2768 	return 0;
2769 }
2770 
2771 static int tegra_dc_runtime_resume(struct host1x_client *client)
2772 {
2773 	struct tegra_dc *dc = host1x_client_to_dc(client);
2774 	struct device *dev = client->dev;
2775 	int err;
2776 
2777 	err = pm_runtime_resume_and_get(dev);
2778 	if (err < 0) {
2779 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2780 		return err;
2781 	}
2782 
2783 	if (dc->soc->has_powergate) {
2784 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2785 							dc->rst);
2786 		if (err < 0) {
2787 			dev_err(dev, "failed to power partition: %d\n", err);
2788 			goto put_rpm;
2789 		}
2790 	} else {
2791 		err = clk_prepare_enable(dc->clk);
2792 		if (err < 0) {
2793 			dev_err(dev, "failed to enable clock: %d\n", err);
2794 			goto put_rpm;
2795 		}
2796 
2797 		err = reset_control_deassert(dc->rst);
2798 		if (err < 0) {
2799 			dev_err(dev, "failed to deassert reset: %d\n", err);
2800 			goto disable_clk;
2801 		}
2802 	}
2803 
2804 	return 0;
2805 
2806 disable_clk:
2807 	clk_disable_unprepare(dc->clk);
2808 put_rpm:
2809 	pm_runtime_put_sync(dev);
2810 	return err;
2811 }
2812 
2813 static const struct host1x_client_ops dc_client_ops = {
2814 	.early_init = tegra_dc_early_init,
2815 	.init = tegra_dc_init,
2816 	.exit = tegra_dc_exit,
2817 	.late_exit = tegra_dc_late_exit,
2818 	.suspend = tegra_dc_runtime_suspend,
2819 	.resume = tegra_dc_runtime_resume,
2820 };
2821 
2822 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2823 	.supports_background_color = false,
2824 	.supports_interlacing = false,
2825 	.supports_cursor = false,
2826 	.supports_block_linear = false,
2827 	.supports_sector_layout = false,
2828 	.has_legacy_blending = true,
2829 	.pitch_align = 8,
2830 	.has_powergate = false,
2831 	.coupled_pm = true,
2832 	.has_nvdisplay = false,
2833 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2834 	.primary_formats = tegra20_primary_formats,
2835 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2836 	.overlay_formats = tegra20_overlay_formats,
2837 	.modifiers = tegra20_modifiers,
2838 	.has_win_a_without_filters = true,
2839 	.has_win_b_vfilter_mem_client = true,
2840 	.has_win_c_without_vert_filter = true,
2841 	.plane_tiled_memory_bandwidth_x2 = false,
2842 	.has_pll_d2_out0 = false,
2843 };
2844 
2845 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2846 	.supports_background_color = false,
2847 	.supports_interlacing = false,
2848 	.supports_cursor = false,
2849 	.supports_block_linear = false,
2850 	.supports_sector_layout = false,
2851 	.has_legacy_blending = true,
2852 	.pitch_align = 8,
2853 	.has_powergate = false,
2854 	.coupled_pm = false,
2855 	.has_nvdisplay = false,
2856 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2857 	.primary_formats = tegra20_primary_formats,
2858 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2859 	.overlay_formats = tegra20_overlay_formats,
2860 	.modifiers = tegra20_modifiers,
2861 	.has_win_a_without_filters = false,
2862 	.has_win_b_vfilter_mem_client = true,
2863 	.has_win_c_without_vert_filter = false,
2864 	.plane_tiled_memory_bandwidth_x2 = true,
2865 	.has_pll_d2_out0 = true,
2866 };
2867 
2868 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2869 	.supports_background_color = false,
2870 	.supports_interlacing = false,
2871 	.supports_cursor = false,
2872 	.supports_block_linear = false,
2873 	.supports_sector_layout = false,
2874 	.has_legacy_blending = true,
2875 	.pitch_align = 64,
2876 	.has_powergate = true,
2877 	.coupled_pm = false,
2878 	.has_nvdisplay = false,
2879 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2880 	.primary_formats = tegra114_primary_formats,
2881 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2882 	.overlay_formats = tegra114_overlay_formats,
2883 	.modifiers = tegra20_modifiers,
2884 	.has_win_a_without_filters = false,
2885 	.has_win_b_vfilter_mem_client = false,
2886 	.has_win_c_without_vert_filter = false,
2887 	.plane_tiled_memory_bandwidth_x2 = true,
2888 	.has_pll_d2_out0 = true,
2889 };
2890 
2891 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2892 	.supports_background_color = true,
2893 	.supports_interlacing = true,
2894 	.supports_cursor = true,
2895 	.supports_block_linear = true,
2896 	.supports_sector_layout = false,
2897 	.has_legacy_blending = false,
2898 	.pitch_align = 64,
2899 	.has_powergate = true,
2900 	.coupled_pm = false,
2901 	.has_nvdisplay = false,
2902 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2903 	.primary_formats = tegra124_primary_formats,
2904 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2905 	.overlay_formats = tegra124_overlay_formats,
2906 	.modifiers = tegra124_modifiers,
2907 	.has_win_a_without_filters = false,
2908 	.has_win_b_vfilter_mem_client = false,
2909 	.has_win_c_without_vert_filter = false,
2910 	.plane_tiled_memory_bandwidth_x2 = false,
2911 	.has_pll_d2_out0 = true,
2912 };
2913 
2914 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2915 	.supports_background_color = true,
2916 	.supports_interlacing = true,
2917 	.supports_cursor = true,
2918 	.supports_block_linear = true,
2919 	.supports_sector_layout = false,
2920 	.has_legacy_blending = false,
2921 	.pitch_align = 64,
2922 	.has_powergate = true,
2923 	.coupled_pm = false,
2924 	.has_nvdisplay = false,
2925 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2926 	.primary_formats = tegra114_primary_formats,
2927 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2928 	.overlay_formats = tegra114_overlay_formats,
2929 	.modifiers = tegra124_modifiers,
2930 	.has_win_a_without_filters = false,
2931 	.has_win_b_vfilter_mem_client = false,
2932 	.has_win_c_without_vert_filter = false,
2933 	.plane_tiled_memory_bandwidth_x2 = false,
2934 	.has_pll_d2_out0 = true,
2935 };
2936 
2937 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2938 	{
2939 		.index = 0,
2940 		.dc = 0,
2941 		.windows = (const unsigned int[]) { 0 },
2942 		.num_windows = 1,
2943 	}, {
2944 		.index = 1,
2945 		.dc = 1,
2946 		.windows = (const unsigned int[]) { 1 },
2947 		.num_windows = 1,
2948 	}, {
2949 		.index = 2,
2950 		.dc = 1,
2951 		.windows = (const unsigned int[]) { 2 },
2952 		.num_windows = 1,
2953 	}, {
2954 		.index = 3,
2955 		.dc = 2,
2956 		.windows = (const unsigned int[]) { 3 },
2957 		.num_windows = 1,
2958 	}, {
2959 		.index = 4,
2960 		.dc = 2,
2961 		.windows = (const unsigned int[]) { 4 },
2962 		.num_windows = 1,
2963 	}, {
2964 		.index = 5,
2965 		.dc = 2,
2966 		.windows = (const unsigned int[]) { 5 },
2967 		.num_windows = 1,
2968 	},
2969 };
2970 
2971 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2972 	.supports_background_color = true,
2973 	.supports_interlacing = true,
2974 	.supports_cursor = true,
2975 	.supports_block_linear = true,
2976 	.supports_sector_layout = false,
2977 	.has_legacy_blending = false,
2978 	.pitch_align = 64,
2979 	.has_powergate = false,
2980 	.coupled_pm = false,
2981 	.has_nvdisplay = true,
2982 	.wgrps = tegra186_dc_wgrps,
2983 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2984 	.plane_tiled_memory_bandwidth_x2 = false,
2985 	.has_pll_d2_out0 = false,
2986 };
2987 
2988 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2989 	{
2990 		.index = 0,
2991 		.dc = 0,
2992 		.windows = (const unsigned int[]) { 0 },
2993 		.num_windows = 1,
2994 	}, {
2995 		.index = 1,
2996 		.dc = 1,
2997 		.windows = (const unsigned int[]) { 1 },
2998 		.num_windows = 1,
2999 	}, {
3000 		.index = 2,
3001 		.dc = 1,
3002 		.windows = (const unsigned int[]) { 2 },
3003 		.num_windows = 1,
3004 	}, {
3005 		.index = 3,
3006 		.dc = 2,
3007 		.windows = (const unsigned int[]) { 3 },
3008 		.num_windows = 1,
3009 	}, {
3010 		.index = 4,
3011 		.dc = 2,
3012 		.windows = (const unsigned int[]) { 4 },
3013 		.num_windows = 1,
3014 	}, {
3015 		.index = 5,
3016 		.dc = 2,
3017 		.windows = (const unsigned int[]) { 5 },
3018 		.num_windows = 1,
3019 	},
3020 };
3021 
3022 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3023 	.supports_background_color = true,
3024 	.supports_interlacing = true,
3025 	.supports_cursor = true,
3026 	.supports_block_linear = true,
3027 	.supports_sector_layout = true,
3028 	.has_legacy_blending = false,
3029 	.pitch_align = 64,
3030 	.has_powergate = false,
3031 	.coupled_pm = false,
3032 	.has_nvdisplay = true,
3033 	.wgrps = tegra194_dc_wgrps,
3034 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3035 	.plane_tiled_memory_bandwidth_x2 = false,
3036 	.has_pll_d2_out0 = false,
3037 };
3038 
3039 static const struct of_device_id tegra_dc_of_match[] = {
3040 	{
3041 		.compatible = "nvidia,tegra194-dc",
3042 		.data = &tegra194_dc_soc_info,
3043 	}, {
3044 		.compatible = "nvidia,tegra186-dc",
3045 		.data = &tegra186_dc_soc_info,
3046 	}, {
3047 		.compatible = "nvidia,tegra210-dc",
3048 		.data = &tegra210_dc_soc_info,
3049 	}, {
3050 		.compatible = "nvidia,tegra124-dc",
3051 		.data = &tegra124_dc_soc_info,
3052 	}, {
3053 		.compatible = "nvidia,tegra114-dc",
3054 		.data = &tegra114_dc_soc_info,
3055 	}, {
3056 		.compatible = "nvidia,tegra30-dc",
3057 		.data = &tegra30_dc_soc_info,
3058 	}, {
3059 		.compatible = "nvidia,tegra20-dc",
3060 		.data = &tegra20_dc_soc_info,
3061 	}, {
3062 		/* sentinel */
3063 	}
3064 };
3065 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3066 
3067 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3068 {
3069 	struct device_node *np;
3070 	u32 value = 0;
3071 	int err;
3072 
3073 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3074 	if (err < 0) {
3075 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3076 
3077 		/*
3078 		 * If the nvidia,head property isn't present, try to find the
3079 		 * correct head number by looking up the position of this
3080 		 * display controller's node within the device tree. Assuming
3081 		 * that the nodes are ordered properly in the DTS file and
3082 		 * that the translation into a flattened device tree blob
3083 		 * preserves that ordering this will actually yield the right
3084 		 * head number.
3085 		 *
3086 		 * If those assumptions don't hold, this will still work for
3087 		 * cases where only a single display controller is used.
3088 		 */
3089 		for_each_matching_node(np, tegra_dc_of_match) {
3090 			if (np == dc->dev->of_node) {
3091 				of_node_put(np);
3092 				break;
3093 			}
3094 
3095 			value++;
3096 		}
3097 	}
3098 
3099 	dc->pipe = value;
3100 
3101 	return 0;
3102 }
3103 
3104 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3105 {
3106 	struct tegra_dc *dc = dev_get_drvdata(dev);
3107 	unsigned int pipe = (unsigned long)(void *)data;
3108 
3109 	return dc->pipe == pipe;
3110 }
3111 
3112 static int tegra_dc_couple(struct tegra_dc *dc)
3113 {
3114 	/*
3115 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3116 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3117 	 * POWER_CONTROL registers during CRTC enabling.
3118 	 */
3119 	if (dc->soc->coupled_pm && dc->pipe == 1) {
3120 		struct device *companion;
3121 		struct tegra_dc *parent;
3122 
3123 		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3124 					       tegra_dc_match_by_pipe);
3125 		if (!companion)
3126 			return -EPROBE_DEFER;
3127 
3128 		parent = dev_get_drvdata(companion);
3129 		dc->client.parent = &parent->client;
3130 
3131 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3132 	}
3133 
3134 	return 0;
3135 }
3136 
3137 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3138 {
3139 	struct tegra_core_opp_params opp_params = {};
3140 	int err;
3141 
3142 	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3143 	if (err && err != -ENODEV)
3144 		return err;
3145 
3146 	if (err)
3147 		dc->has_opp_table = false;
3148 	else
3149 		dc->has_opp_table = true;
3150 
3151 	return 0;
3152 }
3153 
3154 static int tegra_dc_probe(struct platform_device *pdev)
3155 {
3156 	u64 dma_mask = dma_get_mask(pdev->dev.parent);
3157 	struct tegra_dc *dc;
3158 	int err;
3159 
3160 	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3161 	if (err < 0) {
3162 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3163 		return err;
3164 	}
3165 
3166 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3167 	if (!dc)
3168 		return -ENOMEM;
3169 
3170 	dc->soc = of_device_get_match_data(&pdev->dev);
3171 
3172 	INIT_LIST_HEAD(&dc->list);
3173 	dc->dev = &pdev->dev;
3174 
3175 	err = tegra_dc_parse_dt(dc);
3176 	if (err < 0)
3177 		return err;
3178 
3179 	err = tegra_dc_couple(dc);
3180 	if (err < 0)
3181 		return err;
3182 
3183 	dc->clk = devm_clk_get(&pdev->dev, NULL);
3184 	if (IS_ERR(dc->clk)) {
3185 		dev_err(&pdev->dev, "failed to get clock\n");
3186 		return PTR_ERR(dc->clk);
3187 	}
3188 
3189 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3190 	if (IS_ERR(dc->rst)) {
3191 		dev_err(&pdev->dev, "failed to get reset\n");
3192 		return PTR_ERR(dc->rst);
3193 	}
3194 
3195 	/* assert reset and disable clock */
3196 	err = clk_prepare_enable(dc->clk);
3197 	if (err < 0)
3198 		return err;
3199 
3200 	usleep_range(2000, 4000);
3201 
3202 	err = reset_control_assert(dc->rst);
3203 	if (err < 0)
3204 		return err;
3205 
3206 	usleep_range(2000, 4000);
3207 
3208 	clk_disable_unprepare(dc->clk);
3209 
3210 	if (dc->soc->has_powergate) {
3211 		if (dc->pipe == 0)
3212 			dc->powergate = TEGRA_POWERGATE_DIS;
3213 		else
3214 			dc->powergate = TEGRA_POWERGATE_DISB;
3215 
3216 		tegra_powergate_power_off(dc->powergate);
3217 	}
3218 
3219 	err = tegra_dc_init_opp_table(dc);
3220 	if (err < 0)
3221 		return err;
3222 
3223 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3224 	if (IS_ERR(dc->regs))
3225 		return PTR_ERR(dc->regs);
3226 
3227 	dc->irq = platform_get_irq(pdev, 0);
3228 	if (dc->irq < 0)
3229 		return -ENXIO;
3230 
3231 	err = tegra_dc_rgb_probe(dc);
3232 	if (err < 0 && err != -ENODEV)
3233 		return dev_err_probe(&pdev->dev, err,
3234 				     "failed to probe RGB output\n");
3235 
3236 	platform_set_drvdata(pdev, dc);
3237 	pm_runtime_enable(&pdev->dev);
3238 
3239 	INIT_LIST_HEAD(&dc->client.list);
3240 	dc->client.ops = &dc_client_ops;
3241 	dc->client.dev = &pdev->dev;
3242 
3243 	err = host1x_client_register(&dc->client);
3244 	if (err < 0) {
3245 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3246 			err);
3247 		goto disable_pm;
3248 	}
3249 
3250 	return 0;
3251 
3252 disable_pm:
3253 	pm_runtime_disable(&pdev->dev);
3254 	tegra_dc_rgb_remove(dc);
3255 
3256 	return err;
3257 }
3258 
3259 static int tegra_dc_remove(struct platform_device *pdev)
3260 {
3261 	struct tegra_dc *dc = platform_get_drvdata(pdev);
3262 	int err;
3263 
3264 	err = host1x_client_unregister(&dc->client);
3265 	if (err < 0) {
3266 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3267 			err);
3268 		return err;
3269 	}
3270 
3271 	err = tegra_dc_rgb_remove(dc);
3272 	if (err < 0) {
3273 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3274 		return err;
3275 	}
3276 
3277 	pm_runtime_disable(&pdev->dev);
3278 
3279 	return 0;
3280 }
3281 
3282 struct platform_driver tegra_dc_driver = {
3283 	.driver = {
3284 		.name = "tegra-dc",
3285 		.of_match_table = tegra_dc_of_match,
3286 	},
3287 	.probe = tegra_dc_probe,
3288 	.remove = tegra_dc_remove,
3289 };
3290