xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 76178cc7d5eb6dc881c3fccab882802e5d16f790)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30 
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 					    struct drm_crtc_state *state);
33 
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 	stats->frames = 0;
37 	stats->vblank = 0;
38 	stats->underflow = 0;
39 	stats->overflow = 0;
40 }
41 
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 	u32 value;
46 
47 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 	value = tegra_dc_readl(dc, offset);
49 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50 
51 	return value;
52 }
53 
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 					      unsigned int offset)
56 {
57 	if (offset >= 0x500 && offset <= 0x638) {
58 		offset = 0x000 + (offset - 0x500);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x700 && offset <= 0x719) {
63 		offset = 0x180 + (offset - 0x700);
64 		return plane->offset + offset;
65 	}
66 
67 	if (offset >= 0x800 && offset <= 0x839) {
68 		offset = 0x1c0 + (offset - 0x800);
69 		return plane->offset + offset;
70 	}
71 
72 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73 
74 	return plane->offset + offset;
75 }
76 
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 				    unsigned int offset)
79 {
80 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82 
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 				      unsigned int offset)
85 {
86 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88 
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 	struct device_node *np = dc->dev->of_node;
92 	struct of_phandle_iterator it;
93 	int err;
94 
95 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 		if (it.node == dev->of_node)
97 			return true;
98 
99 	return false;
100 }
101 
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119 
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 				  unsigned int bpp)
122 {
123 	fixed20_12 outf = dfixed_init(out);
124 	fixed20_12 inf = dfixed_init(in);
125 	u32 dda_inc;
126 	int max;
127 
128 	if (v)
129 		max = 15;
130 	else {
131 		switch (bpp) {
132 		case 2:
133 			max = 8;
134 			break;
135 
136 		default:
137 			WARN_ON_ONCE(1);
138 			/* fallthrough */
139 		case 4:
140 			max = 4;
141 			break;
142 		}
143 	}
144 
145 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 	inf.full -= dfixed_const(1);
147 
148 	dda_inc = dfixed_div(inf, outf);
149 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150 
151 	return dda_inc;
152 }
153 
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 	fixed20_12 inf = dfixed_init(in);
157 	return dfixed_frac(inf);
158 }
159 
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 	u32 background[3] = {
163 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 	};
167 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 			 BLEND_COLOR_KEY_NONE;
169 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 	struct tegra_plane_state *state;
171 	u32 blending[2];
172 	unsigned int i;
173 
174 	/* disable blending for non-overlapping case */
175 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177 
178 	state = to_tegra_plane_state(plane->base.state);
179 
180 	if (state->opaque) {
181 		/*
182 		 * Since custom fix-weight blending isn't utilized and weight
183 		 * of top window is set to max, we can enforce dependent
184 		 * blending which in this case results in transparent bottom
185 		 * window if top window is opaque and if top window enables
186 		 * alpha blending, then bottom window is getting alpha value
187 		 * of 1 minus the sum of alpha components of the overlapping
188 		 * plane.
189 		 */
190 		background[0] |= BLEND_CONTROL_DEPENDENT;
191 		background[1] |= BLEND_CONTROL_DEPENDENT;
192 
193 		/*
194 		 * The region where three windows overlap is the intersection
195 		 * of the two regions where two windows overlap. It contributes
196 		 * to the area if all of the windows on top of it have an alpha
197 		 * component.
198 		 */
199 		switch (state->base.normalized_zpos) {
200 		case 0:
201 			if (state->blending[0].alpha &&
202 			    state->blending[1].alpha)
203 				background[2] |= BLEND_CONTROL_DEPENDENT;
204 			break;
205 
206 		case 1:
207 			background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 		}
210 	} else {
211 		/*
212 		 * Enable alpha blending if pixel format has an alpha
213 		 * component.
214 		 */
215 		foreground |= BLEND_CONTROL_ALPHA;
216 
217 		/*
218 		 * If any of the windows on top of this window is opaque, it
219 		 * will completely conceal this window within that area. If
220 		 * top window has an alpha component, it is blended over the
221 		 * bottom window.
222 		 */
223 		for (i = 0; i < 2; i++) {
224 			if (state->blending[i].alpha &&
225 			    state->blending[i].top)
226 				background[i] |= BLEND_CONTROL_DEPENDENT;
227 		}
228 
229 		switch (state->base.normalized_zpos) {
230 		case 0:
231 			if (state->blending[0].alpha &&
232 			    state->blending[1].alpha)
233 				background[2] |= BLEND_CONTROL_DEPENDENT;
234 			break;
235 
236 		case 1:
237 			/*
238 			 * When both middle and topmost windows have an alpha,
239 			 * these windows a mixed together and then the result
240 			 * is blended over the bottom window.
241 			 */
242 			if (state->blending[0].alpha &&
243 			    state->blending[0].top)
244 				background[2] |= BLEND_CONTROL_ALPHA;
245 
246 			if (state->blending[1].alpha &&
247 			    state->blending[1].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 			break;
250 		}
251 	}
252 
253 	switch (state->base.normalized_zpos) {
254 	case 0:
255 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 		break;
259 
260 	case 1:
261 		/*
262 		 * If window B / C is topmost, then X / Y registers are
263 		 * matching the order of blending[...] state indices,
264 		 * otherwise a swap is required.
265 		 */
266 		if (!state->blending[0].top && state->blending[1].top) {
267 			blending[0] = foreground;
268 			blending[1] = background[1];
269 		} else {
270 			blending[0] = background[0];
271 			blending[1] = foreground;
272 		}
273 
274 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 		break;
278 
279 	case 2:
280 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 		break;
284 	}
285 }
286 
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 				       const struct tegra_dc_window *window)
289 {
290 	u32 value;
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296 
297 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301 
302 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305 
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 				     const struct tegra_dc_window *window)
309 {
310 	struct tegra_dc *dc = plane->dc;
311 
312 	if (window->src.w == window->dst.w)
313 		return false;
314 
315 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 		return false;
317 
318 	return true;
319 }
320 
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 				   const struct tegra_dc_window *window)
324 {
325 	struct tegra_dc *dc = plane->dc;
326 
327 	if (window->src.h == window->dst.h)
328 		return false;
329 
330 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 		return false;
332 
333 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 		return false;
335 
336 	return true;
337 }
338 
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 				  const struct tegra_dc_window *window)
341 {
342 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 	struct tegra_dc *dc = plane->dc;
344 	bool yuv, planar;
345 	u32 value;
346 
347 	/*
348 	 * For YUV planar modes, the number of bytes per pixel takes into
349 	 * account only the luma component and therefore is 1.
350 	 */
351 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 	if (!yuv)
353 		bpp = window->bits_per_pixel / 8;
354 	else
355 		bpp = planar ? 1 : 2;
356 
357 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359 
360 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362 
363 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365 
366 	h_offset = window->src.x * bpp;
367 	v_offset = window->src.y;
368 	h_size = window->src.w * bpp;
369 	v_size = window->src.h;
370 
371 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
372 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
373 
374 	/*
375 	 * For DDA computations the number of bytes per pixel for YUV planar
376 	 * modes needs to take into account all Y, U and V components.
377 	 */
378 	if (yuv && planar)
379 		bpp = 2;
380 
381 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
382 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
383 
384 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
385 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
386 
387 	h_dda = compute_initial_dda(window->src.x);
388 	v_dda = compute_initial_dda(window->src.y);
389 
390 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
391 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
392 
393 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
394 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
395 
396 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
397 
398 	if (yuv && planar) {
399 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
400 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
401 		value = window->stride[1] << 16 | window->stride[0];
402 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
403 	} else {
404 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
405 	}
406 
407 	if (window->bottom_up)
408 		v_offset += window->src.h - 1;
409 
410 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
411 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
412 
413 	if (dc->soc->supports_block_linear) {
414 		unsigned long height = window->tiling.value;
415 
416 		switch (window->tiling.mode) {
417 		case TEGRA_BO_TILING_MODE_PITCH:
418 			value = DC_WINBUF_SURFACE_KIND_PITCH;
419 			break;
420 
421 		case TEGRA_BO_TILING_MODE_TILED:
422 			value = DC_WINBUF_SURFACE_KIND_TILED;
423 			break;
424 
425 		case TEGRA_BO_TILING_MODE_BLOCK:
426 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
427 				DC_WINBUF_SURFACE_KIND_BLOCK;
428 			break;
429 		}
430 
431 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
432 	} else {
433 		switch (window->tiling.mode) {
434 		case TEGRA_BO_TILING_MODE_PITCH:
435 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
436 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
437 			break;
438 
439 		case TEGRA_BO_TILING_MODE_TILED:
440 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
441 				DC_WIN_BUFFER_ADDR_MODE_TILE;
442 			break;
443 
444 		case TEGRA_BO_TILING_MODE_BLOCK:
445 			/*
446 			 * No need to handle this here because ->atomic_check
447 			 * will already have filtered it out.
448 			 */
449 			break;
450 		}
451 
452 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
453 	}
454 
455 	value = WIN_ENABLE;
456 
457 	if (yuv) {
458 		/* setup default colorspace conversion coefficients */
459 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
460 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
461 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
462 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
463 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
464 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
465 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
466 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
467 
468 		value |= CSC_ENABLE;
469 	} else if (window->bits_per_pixel < 24) {
470 		value |= COLOR_EXPAND;
471 	}
472 
473 	if (window->bottom_up)
474 		value |= V_DIRECTION;
475 
476 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
477 		/*
478 		 * Enable horizontal 6-tap filter and set filtering
479 		 * coefficients to the default values defined in TRM.
480 		 */
481 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
482 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
483 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
484 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
485 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
486 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
487 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
488 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
489 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
490 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
491 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
492 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
493 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
494 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
495 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
496 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
497 
498 		value |= H_FILTER;
499 	}
500 
501 	if (tegra_plane_use_vertical_filtering(plane, window)) {
502 		unsigned int i, k;
503 
504 		/*
505 		 * Enable vertical 2-tap filter and set filtering
506 		 * coefficients to the default values defined in TRM.
507 		 */
508 		for (i = 0, k = 128; i < 16; i++, k -= 8)
509 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
510 
511 		value |= V_FILTER;
512 	}
513 
514 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
515 
516 	if (dc->soc->has_legacy_blending)
517 		tegra_plane_setup_blending_legacy(plane);
518 	else
519 		tegra_plane_setup_blending(plane, window);
520 }
521 
522 static const u32 tegra20_primary_formats[] = {
523 	DRM_FORMAT_ARGB4444,
524 	DRM_FORMAT_ARGB1555,
525 	DRM_FORMAT_RGB565,
526 	DRM_FORMAT_RGBA5551,
527 	DRM_FORMAT_ABGR8888,
528 	DRM_FORMAT_ARGB8888,
529 	/* non-native formats */
530 	DRM_FORMAT_XRGB1555,
531 	DRM_FORMAT_RGBX5551,
532 	DRM_FORMAT_XBGR8888,
533 	DRM_FORMAT_XRGB8888,
534 };
535 
536 static const u64 tegra20_modifiers[] = {
537 	DRM_FORMAT_MOD_LINEAR,
538 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
539 	DRM_FORMAT_MOD_INVALID
540 };
541 
542 static const u32 tegra114_primary_formats[] = {
543 	DRM_FORMAT_ARGB4444,
544 	DRM_FORMAT_ARGB1555,
545 	DRM_FORMAT_RGB565,
546 	DRM_FORMAT_RGBA5551,
547 	DRM_FORMAT_ABGR8888,
548 	DRM_FORMAT_ARGB8888,
549 	/* new on Tegra114 */
550 	DRM_FORMAT_ABGR4444,
551 	DRM_FORMAT_ABGR1555,
552 	DRM_FORMAT_BGRA5551,
553 	DRM_FORMAT_XRGB1555,
554 	DRM_FORMAT_RGBX5551,
555 	DRM_FORMAT_XBGR1555,
556 	DRM_FORMAT_BGRX5551,
557 	DRM_FORMAT_BGR565,
558 	DRM_FORMAT_BGRA8888,
559 	DRM_FORMAT_RGBA8888,
560 	DRM_FORMAT_XRGB8888,
561 	DRM_FORMAT_XBGR8888,
562 };
563 
564 static const u32 tegra124_primary_formats[] = {
565 	DRM_FORMAT_ARGB4444,
566 	DRM_FORMAT_ARGB1555,
567 	DRM_FORMAT_RGB565,
568 	DRM_FORMAT_RGBA5551,
569 	DRM_FORMAT_ABGR8888,
570 	DRM_FORMAT_ARGB8888,
571 	/* new on Tegra114 */
572 	DRM_FORMAT_ABGR4444,
573 	DRM_FORMAT_ABGR1555,
574 	DRM_FORMAT_BGRA5551,
575 	DRM_FORMAT_XRGB1555,
576 	DRM_FORMAT_RGBX5551,
577 	DRM_FORMAT_XBGR1555,
578 	DRM_FORMAT_BGRX5551,
579 	DRM_FORMAT_BGR565,
580 	DRM_FORMAT_BGRA8888,
581 	DRM_FORMAT_RGBA8888,
582 	DRM_FORMAT_XRGB8888,
583 	DRM_FORMAT_XBGR8888,
584 	/* new on Tegra124 */
585 	DRM_FORMAT_RGBX8888,
586 	DRM_FORMAT_BGRX8888,
587 };
588 
589 static const u64 tegra124_modifiers[] = {
590 	DRM_FORMAT_MOD_LINEAR,
591 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
592 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
593 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
594 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
595 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
596 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
597 	DRM_FORMAT_MOD_INVALID
598 };
599 
600 static int tegra_plane_atomic_check(struct drm_plane *plane,
601 				    struct drm_plane_state *state)
602 {
603 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
604 	unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
605 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
606 	struct tegra_plane *tegra = to_tegra_plane(plane);
607 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
608 	int err;
609 
610 	/* no need for further checks if the plane is being disabled */
611 	if (!state->crtc)
612 		return 0;
613 
614 	err = tegra_plane_format(state->fb->format->format,
615 				 &plane_state->format,
616 				 &plane_state->swap);
617 	if (err < 0)
618 		return err;
619 
620 	/*
621 	 * Tegra20 and Tegra30 are special cases here because they support
622 	 * only variants of specific formats with an alpha component, but not
623 	 * the corresponding opaque formats. However, the opaque formats can
624 	 * be emulated by disabling alpha blending for the plane.
625 	 */
626 	if (dc->soc->has_legacy_blending) {
627 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
628 		if (err < 0)
629 			return err;
630 	}
631 
632 	err = tegra_fb_get_tiling(state->fb, tiling);
633 	if (err < 0)
634 		return err;
635 
636 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
637 	    !dc->soc->supports_block_linear) {
638 		DRM_ERROR("hardware doesn't support block linear mode\n");
639 		return -EINVAL;
640 	}
641 
642 	rotation = drm_rotation_simplify(state->rotation, rotation);
643 
644 	if (rotation & DRM_MODE_REFLECT_Y)
645 		plane_state->bottom_up = true;
646 	else
647 		plane_state->bottom_up = false;
648 
649 	/*
650 	 * Tegra doesn't support different strides for U and V planes so we
651 	 * error out if the user tries to display a framebuffer with such a
652 	 * configuration.
653 	 */
654 	if (state->fb->format->num_planes > 2) {
655 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
656 			DRM_ERROR("unsupported UV-plane configuration\n");
657 			return -EINVAL;
658 		}
659 	}
660 
661 	err = tegra_plane_state_add(tegra, state);
662 	if (err < 0)
663 		return err;
664 
665 	return 0;
666 }
667 
668 static void tegra_plane_atomic_disable(struct drm_plane *plane,
669 				       struct drm_plane_state *old_state)
670 {
671 	struct tegra_plane *p = to_tegra_plane(plane);
672 	u32 value;
673 
674 	/* rien ne va plus */
675 	if (!old_state || !old_state->crtc)
676 		return;
677 
678 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
679 	value &= ~WIN_ENABLE;
680 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
681 }
682 
683 static void tegra_plane_atomic_update(struct drm_plane *plane,
684 				      struct drm_plane_state *old_state)
685 {
686 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
687 	struct drm_framebuffer *fb = plane->state->fb;
688 	struct tegra_plane *p = to_tegra_plane(plane);
689 	struct tegra_dc_window window;
690 	unsigned int i;
691 
692 	/* rien ne va plus */
693 	if (!plane->state->crtc || !plane->state->fb)
694 		return;
695 
696 	if (!plane->state->visible)
697 		return tegra_plane_atomic_disable(plane, old_state);
698 
699 	memset(&window, 0, sizeof(window));
700 	window.src.x = plane->state->src.x1 >> 16;
701 	window.src.y = plane->state->src.y1 >> 16;
702 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
703 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
704 	window.dst.x = plane->state->dst.x1;
705 	window.dst.y = plane->state->dst.y1;
706 	window.dst.w = drm_rect_width(&plane->state->dst);
707 	window.dst.h = drm_rect_height(&plane->state->dst);
708 	window.bits_per_pixel = fb->format->cpp[0] * 8;
709 	window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
710 
711 	/* copy from state */
712 	window.zpos = plane->state->normalized_zpos;
713 	window.tiling = state->tiling;
714 	window.format = state->format;
715 	window.swap = state->swap;
716 
717 	for (i = 0; i < fb->format->num_planes; i++) {
718 		window.base[i] = state->iova[i] + fb->offsets[i];
719 
720 		/*
721 		 * Tegra uses a shared stride for UV planes. Framebuffers are
722 		 * already checked for this in the tegra_plane_atomic_check()
723 		 * function, so it's safe to ignore the V-plane pitch here.
724 		 */
725 		if (i < 2)
726 			window.stride[i] = fb->pitches[i];
727 	}
728 
729 	tegra_dc_setup_window(p, &window);
730 }
731 
732 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
733 	.prepare_fb = tegra_plane_prepare_fb,
734 	.cleanup_fb = tegra_plane_cleanup_fb,
735 	.atomic_check = tegra_plane_atomic_check,
736 	.atomic_disable = tegra_plane_atomic_disable,
737 	.atomic_update = tegra_plane_atomic_update,
738 };
739 
740 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
741 {
742 	/*
743 	 * Ideally this would use drm_crtc_mask(), but that would require the
744 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
745 	 * will only be added to that list in the drm_crtc_init_with_planes()
746 	 * (in tegra_dc_init()), which in turn requires registration of these
747 	 * planes. So we have ourselves a nice little chicken and egg problem
748 	 * here.
749 	 *
750 	 * We work around this by manually creating the mask from the number
751 	 * of CRTCs that have been registered, and should therefore always be
752 	 * the same as drm_crtc_index() after registration.
753 	 */
754 	return 1 << drm->mode_config.num_crtc;
755 }
756 
757 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
758 						    struct tegra_dc *dc)
759 {
760 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
761 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
762 	struct tegra_plane *plane;
763 	unsigned int num_formats;
764 	const u64 *modifiers;
765 	const u32 *formats;
766 	int err;
767 
768 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
769 	if (!plane)
770 		return ERR_PTR(-ENOMEM);
771 
772 	/* Always use window A as primary window */
773 	plane->offset = 0xa00;
774 	plane->index = 0;
775 	plane->dc = dc;
776 
777 	num_formats = dc->soc->num_primary_formats;
778 	formats = dc->soc->primary_formats;
779 	modifiers = dc->soc->modifiers;
780 
781 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
782 				       &tegra_plane_funcs, formats,
783 				       num_formats, modifiers, type, NULL);
784 	if (err < 0) {
785 		kfree(plane);
786 		return ERR_PTR(err);
787 	}
788 
789 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
790 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
791 
792 	err = drm_plane_create_rotation_property(&plane->base,
793 						 DRM_MODE_ROTATE_0,
794 						 DRM_MODE_ROTATE_0 |
795 						 DRM_MODE_REFLECT_Y);
796 	if (err < 0)
797 		dev_err(dc->dev, "failed to create rotation property: %d\n",
798 			err);
799 
800 	return &plane->base;
801 }
802 
803 static const u32 tegra_cursor_plane_formats[] = {
804 	DRM_FORMAT_RGBA8888,
805 };
806 
807 static int tegra_cursor_atomic_check(struct drm_plane *plane,
808 				     struct drm_plane_state *state)
809 {
810 	struct tegra_plane *tegra = to_tegra_plane(plane);
811 	int err;
812 
813 	/* no need for further checks if the plane is being disabled */
814 	if (!state->crtc)
815 		return 0;
816 
817 	/* scaling not supported for cursor */
818 	if ((state->src_w >> 16 != state->crtc_w) ||
819 	    (state->src_h >> 16 != state->crtc_h))
820 		return -EINVAL;
821 
822 	/* only square cursors supported */
823 	if (state->src_w != state->src_h)
824 		return -EINVAL;
825 
826 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
827 	    state->crtc_w != 128 && state->crtc_w != 256)
828 		return -EINVAL;
829 
830 	err = tegra_plane_state_add(tegra, state);
831 	if (err < 0)
832 		return err;
833 
834 	return 0;
835 }
836 
837 static void tegra_cursor_atomic_update(struct drm_plane *plane,
838 				       struct drm_plane_state *old_state)
839 {
840 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
841 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
842 	u32 value = CURSOR_CLIP_DISPLAY;
843 
844 	/* rien ne va plus */
845 	if (!plane->state->crtc || !plane->state->fb)
846 		return;
847 
848 	switch (plane->state->crtc_w) {
849 	case 32:
850 		value |= CURSOR_SIZE_32x32;
851 		break;
852 
853 	case 64:
854 		value |= CURSOR_SIZE_64x64;
855 		break;
856 
857 	case 128:
858 		value |= CURSOR_SIZE_128x128;
859 		break;
860 
861 	case 256:
862 		value |= CURSOR_SIZE_256x256;
863 		break;
864 
865 	default:
866 		WARN(1, "cursor size %ux%u not supported\n",
867 		     plane->state->crtc_w, plane->state->crtc_h);
868 		return;
869 	}
870 
871 	value |= (state->iova[0] >> 10) & 0x3fffff;
872 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
873 
874 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
875 	value = (state->iova[0] >> 32) & 0x3;
876 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
877 #endif
878 
879 	/* enable cursor and set blend mode */
880 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
881 	value |= CURSOR_ENABLE;
882 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
883 
884 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
885 	value &= ~CURSOR_DST_BLEND_MASK;
886 	value &= ~CURSOR_SRC_BLEND_MASK;
887 	value |= CURSOR_MODE_NORMAL;
888 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
889 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
890 	value |= CURSOR_ALPHA;
891 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
892 
893 	/* position the cursor */
894 	value = (plane->state->crtc_y & 0x3fff) << 16 |
895 		(plane->state->crtc_x & 0x3fff);
896 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
897 }
898 
899 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
900 					struct drm_plane_state *old_state)
901 {
902 	struct tegra_dc *dc;
903 	u32 value;
904 
905 	/* rien ne va plus */
906 	if (!old_state || !old_state->crtc)
907 		return;
908 
909 	dc = to_tegra_dc(old_state->crtc);
910 
911 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
912 	value &= ~CURSOR_ENABLE;
913 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
914 }
915 
916 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
917 	.prepare_fb = tegra_plane_prepare_fb,
918 	.cleanup_fb = tegra_plane_cleanup_fb,
919 	.atomic_check = tegra_cursor_atomic_check,
920 	.atomic_update = tegra_cursor_atomic_update,
921 	.atomic_disable = tegra_cursor_atomic_disable,
922 };
923 
924 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
925 						      struct tegra_dc *dc)
926 {
927 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
928 	struct tegra_plane *plane;
929 	unsigned int num_formats;
930 	const u32 *formats;
931 	int err;
932 
933 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
934 	if (!plane)
935 		return ERR_PTR(-ENOMEM);
936 
937 	/*
938 	 * This index is kind of fake. The cursor isn't a regular plane, but
939 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
940 	 * use the same programming. Setting this fake index here allows the
941 	 * code in tegra_add_plane_state() to do the right thing without the
942 	 * need to special-casing the cursor plane.
943 	 */
944 	plane->index = 6;
945 	plane->dc = dc;
946 
947 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
948 	formats = tegra_cursor_plane_formats;
949 
950 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
951 				       &tegra_plane_funcs, formats,
952 				       num_formats, NULL,
953 				       DRM_PLANE_TYPE_CURSOR, NULL);
954 	if (err < 0) {
955 		kfree(plane);
956 		return ERR_PTR(err);
957 	}
958 
959 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
960 
961 	return &plane->base;
962 }
963 
964 static const u32 tegra20_overlay_formats[] = {
965 	DRM_FORMAT_ARGB4444,
966 	DRM_FORMAT_ARGB1555,
967 	DRM_FORMAT_RGB565,
968 	DRM_FORMAT_RGBA5551,
969 	DRM_FORMAT_ABGR8888,
970 	DRM_FORMAT_ARGB8888,
971 	/* non-native formats */
972 	DRM_FORMAT_XRGB1555,
973 	DRM_FORMAT_RGBX5551,
974 	DRM_FORMAT_XBGR8888,
975 	DRM_FORMAT_XRGB8888,
976 	/* planar formats */
977 	DRM_FORMAT_UYVY,
978 	DRM_FORMAT_YUYV,
979 	DRM_FORMAT_YUV420,
980 	DRM_FORMAT_YUV422,
981 };
982 
983 static const u32 tegra114_overlay_formats[] = {
984 	DRM_FORMAT_ARGB4444,
985 	DRM_FORMAT_ARGB1555,
986 	DRM_FORMAT_RGB565,
987 	DRM_FORMAT_RGBA5551,
988 	DRM_FORMAT_ABGR8888,
989 	DRM_FORMAT_ARGB8888,
990 	/* new on Tegra114 */
991 	DRM_FORMAT_ABGR4444,
992 	DRM_FORMAT_ABGR1555,
993 	DRM_FORMAT_BGRA5551,
994 	DRM_FORMAT_XRGB1555,
995 	DRM_FORMAT_RGBX5551,
996 	DRM_FORMAT_XBGR1555,
997 	DRM_FORMAT_BGRX5551,
998 	DRM_FORMAT_BGR565,
999 	DRM_FORMAT_BGRA8888,
1000 	DRM_FORMAT_RGBA8888,
1001 	DRM_FORMAT_XRGB8888,
1002 	DRM_FORMAT_XBGR8888,
1003 	/* planar formats */
1004 	DRM_FORMAT_UYVY,
1005 	DRM_FORMAT_YUYV,
1006 	DRM_FORMAT_YUV420,
1007 	DRM_FORMAT_YUV422,
1008 };
1009 
1010 static const u32 tegra124_overlay_formats[] = {
1011 	DRM_FORMAT_ARGB4444,
1012 	DRM_FORMAT_ARGB1555,
1013 	DRM_FORMAT_RGB565,
1014 	DRM_FORMAT_RGBA5551,
1015 	DRM_FORMAT_ABGR8888,
1016 	DRM_FORMAT_ARGB8888,
1017 	/* new on Tegra114 */
1018 	DRM_FORMAT_ABGR4444,
1019 	DRM_FORMAT_ABGR1555,
1020 	DRM_FORMAT_BGRA5551,
1021 	DRM_FORMAT_XRGB1555,
1022 	DRM_FORMAT_RGBX5551,
1023 	DRM_FORMAT_XBGR1555,
1024 	DRM_FORMAT_BGRX5551,
1025 	DRM_FORMAT_BGR565,
1026 	DRM_FORMAT_BGRA8888,
1027 	DRM_FORMAT_RGBA8888,
1028 	DRM_FORMAT_XRGB8888,
1029 	DRM_FORMAT_XBGR8888,
1030 	/* new on Tegra124 */
1031 	DRM_FORMAT_RGBX8888,
1032 	DRM_FORMAT_BGRX8888,
1033 	/* planar formats */
1034 	DRM_FORMAT_UYVY,
1035 	DRM_FORMAT_YUYV,
1036 	DRM_FORMAT_YUV420,
1037 	DRM_FORMAT_YUV422,
1038 };
1039 
1040 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1041 						       struct tegra_dc *dc,
1042 						       unsigned int index,
1043 						       bool cursor)
1044 {
1045 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1046 	struct tegra_plane *plane;
1047 	unsigned int num_formats;
1048 	enum drm_plane_type type;
1049 	const u32 *formats;
1050 	int err;
1051 
1052 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1053 	if (!plane)
1054 		return ERR_PTR(-ENOMEM);
1055 
1056 	plane->offset = 0xa00 + 0x200 * index;
1057 	plane->index = index;
1058 	plane->dc = dc;
1059 
1060 	num_formats = dc->soc->num_overlay_formats;
1061 	formats = dc->soc->overlay_formats;
1062 
1063 	if (!cursor)
1064 		type = DRM_PLANE_TYPE_OVERLAY;
1065 	else
1066 		type = DRM_PLANE_TYPE_CURSOR;
1067 
1068 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1069 				       &tegra_plane_funcs, formats,
1070 				       num_formats, NULL, type, NULL);
1071 	if (err < 0) {
1072 		kfree(plane);
1073 		return ERR_PTR(err);
1074 	}
1075 
1076 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1077 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1078 
1079 	err = drm_plane_create_rotation_property(&plane->base,
1080 						 DRM_MODE_ROTATE_0,
1081 						 DRM_MODE_ROTATE_0 |
1082 						 DRM_MODE_REFLECT_Y);
1083 	if (err < 0)
1084 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1085 			err);
1086 
1087 	return &plane->base;
1088 }
1089 
1090 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1091 						    struct tegra_dc *dc)
1092 {
1093 	struct drm_plane *plane, *primary = NULL;
1094 	unsigned int i, j;
1095 
1096 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1097 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1098 
1099 		if (wgrp->dc == dc->pipe) {
1100 			for (j = 0; j < wgrp->num_windows; j++) {
1101 				unsigned int index = wgrp->windows[j];
1102 
1103 				plane = tegra_shared_plane_create(drm, dc,
1104 								  wgrp->index,
1105 								  index);
1106 				if (IS_ERR(plane))
1107 					return plane;
1108 
1109 				/*
1110 				 * Choose the first shared plane owned by this
1111 				 * head as the primary plane.
1112 				 */
1113 				if (!primary) {
1114 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1115 					primary = plane;
1116 				}
1117 			}
1118 		}
1119 	}
1120 
1121 	return primary;
1122 }
1123 
1124 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1125 					     struct tegra_dc *dc)
1126 {
1127 	struct drm_plane *planes[2], *primary;
1128 	unsigned int planes_num;
1129 	unsigned int i;
1130 	int err;
1131 
1132 	primary = tegra_primary_plane_create(drm, dc);
1133 	if (IS_ERR(primary))
1134 		return primary;
1135 
1136 	if (dc->soc->supports_cursor)
1137 		planes_num = 2;
1138 	else
1139 		planes_num = 1;
1140 
1141 	for (i = 0; i < planes_num; i++) {
1142 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1143 							  false);
1144 		if (IS_ERR(planes[i])) {
1145 			err = PTR_ERR(planes[i]);
1146 
1147 			while (i--)
1148 				tegra_plane_funcs.destroy(planes[i]);
1149 
1150 			tegra_plane_funcs.destroy(primary);
1151 			return ERR_PTR(err);
1152 		}
1153 	}
1154 
1155 	return primary;
1156 }
1157 
1158 static void tegra_dc_destroy(struct drm_crtc *crtc)
1159 {
1160 	drm_crtc_cleanup(crtc);
1161 }
1162 
1163 static void tegra_crtc_reset(struct drm_crtc *crtc)
1164 {
1165 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1166 
1167 	if (crtc->state)
1168 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1169 
1170 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1171 	drm_crtc_vblank_reset(crtc);
1172 }
1173 
1174 static struct drm_crtc_state *
1175 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1176 {
1177 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1178 	struct tegra_dc_state *copy;
1179 
1180 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1181 	if (!copy)
1182 		return NULL;
1183 
1184 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1185 	copy->clk = state->clk;
1186 	copy->pclk = state->pclk;
1187 	copy->div = state->div;
1188 	copy->planes = state->planes;
1189 
1190 	return &copy->base;
1191 }
1192 
1193 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1194 					    struct drm_crtc_state *state)
1195 {
1196 	__drm_atomic_helper_crtc_destroy_state(state);
1197 	kfree(state);
1198 }
1199 
1200 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1201 
1202 static const struct debugfs_reg32 tegra_dc_regs[] = {
1203 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1204 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1205 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1206 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1207 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1208 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1209 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1210 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1211 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1212 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1213 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1214 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1215 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1216 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1217 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1218 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1219 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1220 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1221 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1222 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1223 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1224 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1225 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1226 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1227 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1228 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1229 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1230 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1231 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1232 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1233 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1234 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1235 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1236 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1237 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1238 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1239 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1240 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1241 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1242 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1243 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1244 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1245 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1246 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1247 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1248 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1249 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1250 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1251 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1252 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1253 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1254 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1255 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1256 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1257 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1258 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1259 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1260 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1261 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1262 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1263 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1264 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1265 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1266 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1267 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1268 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1269 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1270 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1271 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1272 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1273 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1274 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1275 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1276 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1277 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1278 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1279 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1280 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1281 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1282 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1283 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1284 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1285 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1286 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1287 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1288 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1289 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1290 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1291 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1292 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1293 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1294 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1295 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1296 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1297 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1298 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1299 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1300 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1301 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1302 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1303 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1304 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1305 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1306 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1307 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1308 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1309 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1310 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1311 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1312 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1313 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1314 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1315 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1316 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1317 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1318 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1319 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1320 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1321 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1322 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1323 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1324 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1325 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1326 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1327 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1328 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1329 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1330 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1331 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1332 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1333 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1334 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1335 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1336 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1337 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1338 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1339 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1340 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1341 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1342 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1343 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1344 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1345 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1346 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1347 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1348 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1349 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1350 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1351 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1352 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1353 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1354 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1355 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1356 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1357 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1358 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1359 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1360 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1361 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1362 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1363 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1364 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1365 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1366 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1367 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1368 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1369 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1370 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1371 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1372 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1373 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1374 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1375 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1376 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1377 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1378 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1379 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1380 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1381 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1382 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1383 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1384 	DEBUGFS_REG32(DC_WIN_POSITION),
1385 	DEBUGFS_REG32(DC_WIN_SIZE),
1386 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1387 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1388 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1389 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1390 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1391 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1392 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1393 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1394 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1395 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1396 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1397 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1398 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1399 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1400 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1401 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1402 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1403 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1404 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1405 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1406 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1407 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1408 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1409 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1410 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1411 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1412 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1413 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1414 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1415 };
1416 
1417 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1418 {
1419 	struct drm_info_node *node = s->private;
1420 	struct tegra_dc *dc = node->info_ent->data;
1421 	unsigned int i;
1422 	int err = 0;
1423 
1424 	drm_modeset_lock(&dc->base.mutex, NULL);
1425 
1426 	if (!dc->base.state->active) {
1427 		err = -EBUSY;
1428 		goto unlock;
1429 	}
1430 
1431 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1432 		unsigned int offset = tegra_dc_regs[i].offset;
1433 
1434 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1435 			   offset, tegra_dc_readl(dc, offset));
1436 	}
1437 
1438 unlock:
1439 	drm_modeset_unlock(&dc->base.mutex);
1440 	return err;
1441 }
1442 
1443 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1444 {
1445 	struct drm_info_node *node = s->private;
1446 	struct tegra_dc *dc = node->info_ent->data;
1447 	int err = 0;
1448 	u32 value;
1449 
1450 	drm_modeset_lock(&dc->base.mutex, NULL);
1451 
1452 	if (!dc->base.state->active) {
1453 		err = -EBUSY;
1454 		goto unlock;
1455 	}
1456 
1457 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1458 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1459 	tegra_dc_commit(dc);
1460 
1461 	drm_crtc_wait_one_vblank(&dc->base);
1462 	drm_crtc_wait_one_vblank(&dc->base);
1463 
1464 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1465 	seq_printf(s, "%08x\n", value);
1466 
1467 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1468 
1469 unlock:
1470 	drm_modeset_unlock(&dc->base.mutex);
1471 	return err;
1472 }
1473 
1474 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1475 {
1476 	struct drm_info_node *node = s->private;
1477 	struct tegra_dc *dc = node->info_ent->data;
1478 
1479 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1480 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1481 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1482 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1483 
1484 	return 0;
1485 }
1486 
1487 static struct drm_info_list debugfs_files[] = {
1488 	{ "regs", tegra_dc_show_regs, 0, NULL },
1489 	{ "crc", tegra_dc_show_crc, 0, NULL },
1490 	{ "stats", tegra_dc_show_stats, 0, NULL },
1491 };
1492 
1493 static int tegra_dc_late_register(struct drm_crtc *crtc)
1494 {
1495 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1496 	struct drm_minor *minor = crtc->dev->primary;
1497 	struct dentry *root;
1498 	struct tegra_dc *dc = to_tegra_dc(crtc);
1499 	int err;
1500 
1501 #ifdef CONFIG_DEBUG_FS
1502 	root = crtc->debugfs_entry;
1503 #else
1504 	root = NULL;
1505 #endif
1506 
1507 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1508 				    GFP_KERNEL);
1509 	if (!dc->debugfs_files)
1510 		return -ENOMEM;
1511 
1512 	for (i = 0; i < count; i++)
1513 		dc->debugfs_files[i].data = dc;
1514 
1515 	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1516 	if (err < 0)
1517 		goto free;
1518 
1519 	return 0;
1520 
1521 free:
1522 	kfree(dc->debugfs_files);
1523 	dc->debugfs_files = NULL;
1524 
1525 	return err;
1526 }
1527 
1528 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1529 {
1530 	unsigned int count = ARRAY_SIZE(debugfs_files);
1531 	struct drm_minor *minor = crtc->dev->primary;
1532 	struct tegra_dc *dc = to_tegra_dc(crtc);
1533 
1534 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1535 	kfree(dc->debugfs_files);
1536 	dc->debugfs_files = NULL;
1537 }
1538 
1539 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1540 {
1541 	struct tegra_dc *dc = to_tegra_dc(crtc);
1542 
1543 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1544 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1545 		return host1x_syncpt_read(dc->syncpt);
1546 
1547 	/* fallback to software emulated VBLANK counter */
1548 	return (u32)drm_crtc_vblank_count(&dc->base);
1549 }
1550 
1551 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1552 {
1553 	struct tegra_dc *dc = to_tegra_dc(crtc);
1554 	u32 value;
1555 
1556 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1557 	value |= VBLANK_INT;
1558 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1559 
1560 	return 0;
1561 }
1562 
1563 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1564 {
1565 	struct tegra_dc *dc = to_tegra_dc(crtc);
1566 	u32 value;
1567 
1568 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1569 	value &= ~VBLANK_INT;
1570 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1571 }
1572 
1573 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1574 	.page_flip = drm_atomic_helper_page_flip,
1575 	.set_config = drm_atomic_helper_set_config,
1576 	.destroy = tegra_dc_destroy,
1577 	.reset = tegra_crtc_reset,
1578 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1579 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1580 	.late_register = tegra_dc_late_register,
1581 	.early_unregister = tegra_dc_early_unregister,
1582 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1583 	.enable_vblank = tegra_dc_enable_vblank,
1584 	.disable_vblank = tegra_dc_disable_vblank,
1585 };
1586 
1587 static int tegra_dc_set_timings(struct tegra_dc *dc,
1588 				struct drm_display_mode *mode)
1589 {
1590 	unsigned int h_ref_to_sync = 1;
1591 	unsigned int v_ref_to_sync = 1;
1592 	unsigned long value;
1593 
1594 	if (!dc->soc->has_nvdisplay) {
1595 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1596 
1597 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1598 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1599 	}
1600 
1601 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1602 		((mode->hsync_end - mode->hsync_start) <<  0);
1603 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1604 
1605 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1606 		((mode->htotal - mode->hsync_end) <<  0);
1607 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1608 
1609 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1610 		((mode->hsync_start - mode->hdisplay) <<  0);
1611 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1612 
1613 	value = (mode->vdisplay << 16) | mode->hdisplay;
1614 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1615 
1616 	return 0;
1617 }
1618 
1619 /**
1620  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1621  *     state
1622  * @dc: display controller
1623  * @crtc_state: CRTC atomic state
1624  * @clk: parent clock for display controller
1625  * @pclk: pixel clock
1626  * @div: shift clock divider
1627  *
1628  * Returns:
1629  * 0 on success or a negative error-code on failure.
1630  */
1631 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1632 			       struct drm_crtc_state *crtc_state,
1633 			       struct clk *clk, unsigned long pclk,
1634 			       unsigned int div)
1635 {
1636 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1637 
1638 	if (!clk_has_parent(dc->clk, clk))
1639 		return -EINVAL;
1640 
1641 	state->clk = clk;
1642 	state->pclk = pclk;
1643 	state->div = div;
1644 
1645 	return 0;
1646 }
1647 
1648 static void tegra_dc_commit_state(struct tegra_dc *dc,
1649 				  struct tegra_dc_state *state)
1650 {
1651 	u32 value;
1652 	int err;
1653 
1654 	err = clk_set_parent(dc->clk, state->clk);
1655 	if (err < 0)
1656 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1657 
1658 	/*
1659 	 * Outputs may not want to change the parent clock rate. This is only
1660 	 * relevant to Tegra20 where only a single display PLL is available.
1661 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1662 	 * panel would need to be driven by some other clock such as PLL_P
1663 	 * which is shared with other peripherals. Changing the clock rate
1664 	 * should therefore be avoided.
1665 	 */
1666 	if (state->pclk > 0) {
1667 		err = clk_set_rate(state->clk, state->pclk);
1668 		if (err < 0)
1669 			dev_err(dc->dev,
1670 				"failed to set clock rate to %lu Hz\n",
1671 				state->pclk);
1672 	}
1673 
1674 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1675 		      state->div);
1676 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1677 
1678 	if (!dc->soc->has_nvdisplay) {
1679 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1680 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1681 	}
1682 
1683 	err = clk_set_rate(dc->clk, state->pclk);
1684 	if (err < 0)
1685 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1686 			dc->clk, state->pclk, err);
1687 }
1688 
1689 static void tegra_dc_stop(struct tegra_dc *dc)
1690 {
1691 	u32 value;
1692 
1693 	/* stop the display controller */
1694 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1695 	value &= ~DISP_CTRL_MODE_MASK;
1696 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1697 
1698 	tegra_dc_commit(dc);
1699 }
1700 
1701 static bool tegra_dc_idle(struct tegra_dc *dc)
1702 {
1703 	u32 value;
1704 
1705 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1706 
1707 	return (value & DISP_CTRL_MODE_MASK) == 0;
1708 }
1709 
1710 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1711 {
1712 	timeout = jiffies + msecs_to_jiffies(timeout);
1713 
1714 	while (time_before(jiffies, timeout)) {
1715 		if (tegra_dc_idle(dc))
1716 			return 0;
1717 
1718 		usleep_range(1000, 2000);
1719 	}
1720 
1721 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1722 	return -ETIMEDOUT;
1723 }
1724 
1725 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1726 				      struct drm_crtc_state *old_state)
1727 {
1728 	struct tegra_dc *dc = to_tegra_dc(crtc);
1729 	u32 value;
1730 
1731 	if (!tegra_dc_idle(dc)) {
1732 		tegra_dc_stop(dc);
1733 
1734 		/*
1735 		 * Ignore the return value, there isn't anything useful to do
1736 		 * in case this fails.
1737 		 */
1738 		tegra_dc_wait_idle(dc, 100);
1739 	}
1740 
1741 	/*
1742 	 * This should really be part of the RGB encoder driver, but clearing
1743 	 * these bits has the side-effect of stopping the display controller.
1744 	 * When that happens no VBLANK interrupts will be raised. At the same
1745 	 * time the encoder is disabled before the display controller, so the
1746 	 * above code is always going to timeout waiting for the controller
1747 	 * to go idle.
1748 	 *
1749 	 * Given the close coupling between the RGB encoder and the display
1750 	 * controller doing it here is still kind of okay. None of the other
1751 	 * encoder drivers require these bits to be cleared.
1752 	 *
1753 	 * XXX: Perhaps given that the display controller is switched off at
1754 	 * this point anyway maybe clearing these bits isn't even useful for
1755 	 * the RGB encoder?
1756 	 */
1757 	if (dc->rgb) {
1758 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1759 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1760 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1761 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1762 	}
1763 
1764 	tegra_dc_stats_reset(&dc->stats);
1765 	drm_crtc_vblank_off(crtc);
1766 
1767 	spin_lock_irq(&crtc->dev->event_lock);
1768 
1769 	if (crtc->state->event) {
1770 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1771 		crtc->state->event = NULL;
1772 	}
1773 
1774 	spin_unlock_irq(&crtc->dev->event_lock);
1775 
1776 	pm_runtime_put_sync(dc->dev);
1777 }
1778 
1779 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1780 				     struct drm_crtc_state *old_state)
1781 {
1782 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1783 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1784 	struct tegra_dc *dc = to_tegra_dc(crtc);
1785 	u32 value;
1786 
1787 	pm_runtime_get_sync(dc->dev);
1788 
1789 	/* initialize display controller */
1790 	if (dc->syncpt) {
1791 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1792 
1793 		if (dc->soc->has_nvdisplay)
1794 			enable = 1 << 31;
1795 		else
1796 			enable = 1 << 8;
1797 
1798 		value = SYNCPT_CNTRL_NO_STALL;
1799 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1800 
1801 		value = enable | syncpt;
1802 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1803 	}
1804 
1805 	if (dc->soc->has_nvdisplay) {
1806 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1807 			DSC_OBUF_UF_INT;
1808 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1809 
1810 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1811 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1812 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1813 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1814 			VBLANK_INT | FRAME_END_INT;
1815 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1816 
1817 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1818 			FRAME_END_INT;
1819 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1820 
1821 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1822 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1823 
1824 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1825 	} else {
1826 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1827 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1828 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1829 
1830 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1831 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1832 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1833 
1834 		/* initialize timer */
1835 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1836 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1837 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1838 
1839 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1840 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1841 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1842 
1843 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1844 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1845 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1846 
1847 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1848 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1849 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1850 	}
1851 
1852 	if (dc->soc->supports_background_color)
1853 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1854 	else
1855 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1856 
1857 	/* apply PLL and pixel clock changes */
1858 	tegra_dc_commit_state(dc, state);
1859 
1860 	/* program display mode */
1861 	tegra_dc_set_timings(dc, mode);
1862 
1863 	/* interlacing isn't supported yet, so disable it */
1864 	if (dc->soc->supports_interlacing) {
1865 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1866 		value &= ~INTERLACE_ENABLE;
1867 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1868 	}
1869 
1870 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1871 	value &= ~DISP_CTRL_MODE_MASK;
1872 	value |= DISP_CTRL_MODE_C_DISPLAY;
1873 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1874 
1875 	if (!dc->soc->has_nvdisplay) {
1876 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1877 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1878 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1879 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1880 	}
1881 
1882 	/* enable underflow reporting and display red for missing pixels */
1883 	if (dc->soc->has_nvdisplay) {
1884 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1885 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1886 	}
1887 
1888 	tegra_dc_commit(dc);
1889 
1890 	drm_crtc_vblank_on(crtc);
1891 }
1892 
1893 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1894 				    struct drm_crtc_state *old_crtc_state)
1895 {
1896 	unsigned long flags;
1897 
1898 	if (crtc->state->event) {
1899 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1900 
1901 		if (drm_crtc_vblank_get(crtc) != 0)
1902 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1903 		else
1904 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1905 
1906 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1907 
1908 		crtc->state->event = NULL;
1909 	}
1910 }
1911 
1912 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1913 				    struct drm_crtc_state *old_crtc_state)
1914 {
1915 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1916 	struct tegra_dc *dc = to_tegra_dc(crtc);
1917 	u32 value;
1918 
1919 	value = state->planes << 8 | GENERAL_UPDATE;
1920 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1921 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1922 
1923 	value = state->planes | GENERAL_ACT_REQ;
1924 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1925 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1926 }
1927 
1928 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1929 	.atomic_begin = tegra_crtc_atomic_begin,
1930 	.atomic_flush = tegra_crtc_atomic_flush,
1931 	.atomic_enable = tegra_crtc_atomic_enable,
1932 	.atomic_disable = tegra_crtc_atomic_disable,
1933 };
1934 
1935 static irqreturn_t tegra_dc_irq(int irq, void *data)
1936 {
1937 	struct tegra_dc *dc = data;
1938 	unsigned long status;
1939 
1940 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1941 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1942 
1943 	if (status & FRAME_END_INT) {
1944 		/*
1945 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1946 		*/
1947 		dc->stats.frames++;
1948 	}
1949 
1950 	if (status & VBLANK_INT) {
1951 		/*
1952 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1953 		*/
1954 		drm_crtc_handle_vblank(&dc->base);
1955 		dc->stats.vblank++;
1956 	}
1957 
1958 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1959 		/*
1960 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1961 		*/
1962 		dc->stats.underflow++;
1963 	}
1964 
1965 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1966 		/*
1967 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1968 		*/
1969 		dc->stats.overflow++;
1970 	}
1971 
1972 	if (status & HEAD_UF_INT) {
1973 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1974 		dc->stats.underflow++;
1975 	}
1976 
1977 	return IRQ_HANDLED;
1978 }
1979 
1980 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1981 {
1982 	unsigned int i;
1983 
1984 	if (!dc->soc->wgrps)
1985 		return true;
1986 
1987 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1988 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1989 
1990 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1991 			return true;
1992 	}
1993 
1994 	return false;
1995 }
1996 
1997 static int tegra_dc_init(struct host1x_client *client)
1998 {
1999 	struct drm_device *drm = dev_get_drvdata(client->parent);
2000 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2001 	struct tegra_dc *dc = host1x_client_to_dc(client);
2002 	struct tegra_drm *tegra = drm->dev_private;
2003 	struct drm_plane *primary = NULL;
2004 	struct drm_plane *cursor = NULL;
2005 	int err;
2006 
2007 	/*
2008 	 * XXX do not register DCs with no window groups because we cannot
2009 	 * assign a primary plane to them, which in turn will cause KMS to
2010 	 * crash.
2011 	 */
2012 	if (!tegra_dc_has_window_groups(dc))
2013 		return 0;
2014 
2015 	dc->syncpt = host1x_syncpt_request(client, flags);
2016 	if (!dc->syncpt)
2017 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2018 
2019 	err = host1x_client_iommu_attach(client);
2020 	if (err < 0 && err != -ENODEV) {
2021 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2022 		return err;
2023 	}
2024 
2025 	if (dc->soc->wgrps)
2026 		primary = tegra_dc_add_shared_planes(drm, dc);
2027 	else
2028 		primary = tegra_dc_add_planes(drm, dc);
2029 
2030 	if (IS_ERR(primary)) {
2031 		err = PTR_ERR(primary);
2032 		goto cleanup;
2033 	}
2034 
2035 	if (dc->soc->supports_cursor) {
2036 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2037 		if (IS_ERR(cursor)) {
2038 			err = PTR_ERR(cursor);
2039 			goto cleanup;
2040 		}
2041 	} else {
2042 		/* dedicate one overlay to mouse cursor */
2043 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2044 		if (IS_ERR(cursor)) {
2045 			err = PTR_ERR(cursor);
2046 			goto cleanup;
2047 		}
2048 	}
2049 
2050 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2051 					&tegra_crtc_funcs, NULL);
2052 	if (err < 0)
2053 		goto cleanup;
2054 
2055 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2056 
2057 	/*
2058 	 * Keep track of the minimum pitch alignment across all display
2059 	 * controllers.
2060 	 */
2061 	if (dc->soc->pitch_align > tegra->pitch_align)
2062 		tegra->pitch_align = dc->soc->pitch_align;
2063 
2064 	err = tegra_dc_rgb_init(drm, dc);
2065 	if (err < 0 && err != -ENODEV) {
2066 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2067 		goto cleanup;
2068 	}
2069 
2070 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2071 			       dev_name(dc->dev), dc);
2072 	if (err < 0) {
2073 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2074 			err);
2075 		goto cleanup;
2076 	}
2077 
2078 	/*
2079 	 * Inherit the DMA parameters (such as maximum segment size) from the
2080 	 * parent device.
2081 	 */
2082 	client->dev->dma_parms = client->parent->dma_parms;
2083 
2084 	return 0;
2085 
2086 cleanup:
2087 	if (!IS_ERR_OR_NULL(cursor))
2088 		drm_plane_cleanup(cursor);
2089 
2090 	if (!IS_ERR(primary))
2091 		drm_plane_cleanup(primary);
2092 
2093 	host1x_client_iommu_detach(client);
2094 	host1x_syncpt_free(dc->syncpt);
2095 
2096 	return err;
2097 }
2098 
2099 static int tegra_dc_exit(struct host1x_client *client)
2100 {
2101 	struct tegra_dc *dc = host1x_client_to_dc(client);
2102 	int err;
2103 
2104 	if (!tegra_dc_has_window_groups(dc))
2105 		return 0;
2106 
2107 	/* avoid a dangling pointer just in case this disappears */
2108 	client->dev->dma_parms = NULL;
2109 
2110 	devm_free_irq(dc->dev, dc->irq, dc);
2111 
2112 	err = tegra_dc_rgb_exit(dc);
2113 	if (err) {
2114 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2115 		return err;
2116 	}
2117 
2118 	host1x_client_iommu_detach(client);
2119 	host1x_syncpt_free(dc->syncpt);
2120 
2121 	return 0;
2122 }
2123 
2124 static const struct host1x_client_ops dc_client_ops = {
2125 	.init = tegra_dc_init,
2126 	.exit = tegra_dc_exit,
2127 };
2128 
2129 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2130 	.supports_background_color = false,
2131 	.supports_interlacing = false,
2132 	.supports_cursor = false,
2133 	.supports_block_linear = false,
2134 	.has_legacy_blending = true,
2135 	.pitch_align = 8,
2136 	.has_powergate = false,
2137 	.coupled_pm = true,
2138 	.has_nvdisplay = false,
2139 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2140 	.primary_formats = tegra20_primary_formats,
2141 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2142 	.overlay_formats = tegra20_overlay_formats,
2143 	.modifiers = tegra20_modifiers,
2144 	.has_win_a_without_filters = true,
2145 	.has_win_c_without_vert_filter = true,
2146 };
2147 
2148 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2149 	.supports_background_color = false,
2150 	.supports_interlacing = false,
2151 	.supports_cursor = false,
2152 	.supports_block_linear = false,
2153 	.has_legacy_blending = true,
2154 	.pitch_align = 8,
2155 	.has_powergate = false,
2156 	.coupled_pm = false,
2157 	.has_nvdisplay = false,
2158 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2159 	.primary_formats = tegra20_primary_formats,
2160 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2161 	.overlay_formats = tegra20_overlay_formats,
2162 	.modifiers = tegra20_modifiers,
2163 	.has_win_a_without_filters = false,
2164 	.has_win_c_without_vert_filter = false,
2165 };
2166 
2167 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2168 	.supports_background_color = false,
2169 	.supports_interlacing = false,
2170 	.supports_cursor = false,
2171 	.supports_block_linear = false,
2172 	.has_legacy_blending = true,
2173 	.pitch_align = 64,
2174 	.has_powergate = true,
2175 	.coupled_pm = false,
2176 	.has_nvdisplay = false,
2177 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2178 	.primary_formats = tegra114_primary_formats,
2179 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2180 	.overlay_formats = tegra114_overlay_formats,
2181 	.modifiers = tegra20_modifiers,
2182 	.has_win_a_without_filters = false,
2183 	.has_win_c_without_vert_filter = false,
2184 };
2185 
2186 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2187 	.supports_background_color = true,
2188 	.supports_interlacing = true,
2189 	.supports_cursor = true,
2190 	.supports_block_linear = true,
2191 	.has_legacy_blending = false,
2192 	.pitch_align = 64,
2193 	.has_powergate = true,
2194 	.coupled_pm = false,
2195 	.has_nvdisplay = false,
2196 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2197 	.primary_formats = tegra124_primary_formats,
2198 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2199 	.overlay_formats = tegra124_overlay_formats,
2200 	.modifiers = tegra124_modifiers,
2201 	.has_win_a_without_filters = false,
2202 	.has_win_c_without_vert_filter = false,
2203 };
2204 
2205 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2206 	.supports_background_color = true,
2207 	.supports_interlacing = true,
2208 	.supports_cursor = true,
2209 	.supports_block_linear = true,
2210 	.has_legacy_blending = false,
2211 	.pitch_align = 64,
2212 	.has_powergate = true,
2213 	.coupled_pm = false,
2214 	.has_nvdisplay = false,
2215 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2216 	.primary_formats = tegra114_primary_formats,
2217 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2218 	.overlay_formats = tegra114_overlay_formats,
2219 	.modifiers = tegra124_modifiers,
2220 	.has_win_a_without_filters = false,
2221 	.has_win_c_without_vert_filter = false,
2222 };
2223 
2224 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2225 	{
2226 		.index = 0,
2227 		.dc = 0,
2228 		.windows = (const unsigned int[]) { 0 },
2229 		.num_windows = 1,
2230 	}, {
2231 		.index = 1,
2232 		.dc = 1,
2233 		.windows = (const unsigned int[]) { 1 },
2234 		.num_windows = 1,
2235 	}, {
2236 		.index = 2,
2237 		.dc = 1,
2238 		.windows = (const unsigned int[]) { 2 },
2239 		.num_windows = 1,
2240 	}, {
2241 		.index = 3,
2242 		.dc = 2,
2243 		.windows = (const unsigned int[]) { 3 },
2244 		.num_windows = 1,
2245 	}, {
2246 		.index = 4,
2247 		.dc = 2,
2248 		.windows = (const unsigned int[]) { 4 },
2249 		.num_windows = 1,
2250 	}, {
2251 		.index = 5,
2252 		.dc = 2,
2253 		.windows = (const unsigned int[]) { 5 },
2254 		.num_windows = 1,
2255 	},
2256 };
2257 
2258 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2259 	.supports_background_color = true,
2260 	.supports_interlacing = true,
2261 	.supports_cursor = true,
2262 	.supports_block_linear = true,
2263 	.has_legacy_blending = false,
2264 	.pitch_align = 64,
2265 	.has_powergate = false,
2266 	.coupled_pm = false,
2267 	.has_nvdisplay = true,
2268 	.wgrps = tegra186_dc_wgrps,
2269 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2270 };
2271 
2272 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2273 	{
2274 		.index = 0,
2275 		.dc = 0,
2276 		.windows = (const unsigned int[]) { 0 },
2277 		.num_windows = 1,
2278 	}, {
2279 		.index = 1,
2280 		.dc = 1,
2281 		.windows = (const unsigned int[]) { 1 },
2282 		.num_windows = 1,
2283 	}, {
2284 		.index = 2,
2285 		.dc = 1,
2286 		.windows = (const unsigned int[]) { 2 },
2287 		.num_windows = 1,
2288 	}, {
2289 		.index = 3,
2290 		.dc = 2,
2291 		.windows = (const unsigned int[]) { 3 },
2292 		.num_windows = 1,
2293 	}, {
2294 		.index = 4,
2295 		.dc = 2,
2296 		.windows = (const unsigned int[]) { 4 },
2297 		.num_windows = 1,
2298 	}, {
2299 		.index = 5,
2300 		.dc = 2,
2301 		.windows = (const unsigned int[]) { 5 },
2302 		.num_windows = 1,
2303 	},
2304 };
2305 
2306 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2307 	.supports_background_color = true,
2308 	.supports_interlacing = true,
2309 	.supports_cursor = true,
2310 	.supports_block_linear = true,
2311 	.has_legacy_blending = false,
2312 	.pitch_align = 64,
2313 	.has_powergate = false,
2314 	.coupled_pm = false,
2315 	.has_nvdisplay = true,
2316 	.wgrps = tegra194_dc_wgrps,
2317 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2318 };
2319 
2320 static const struct of_device_id tegra_dc_of_match[] = {
2321 	{
2322 		.compatible = "nvidia,tegra194-dc",
2323 		.data = &tegra194_dc_soc_info,
2324 	}, {
2325 		.compatible = "nvidia,tegra186-dc",
2326 		.data = &tegra186_dc_soc_info,
2327 	}, {
2328 		.compatible = "nvidia,tegra210-dc",
2329 		.data = &tegra210_dc_soc_info,
2330 	}, {
2331 		.compatible = "nvidia,tegra124-dc",
2332 		.data = &tegra124_dc_soc_info,
2333 	}, {
2334 		.compatible = "nvidia,tegra114-dc",
2335 		.data = &tegra114_dc_soc_info,
2336 	}, {
2337 		.compatible = "nvidia,tegra30-dc",
2338 		.data = &tegra30_dc_soc_info,
2339 	}, {
2340 		.compatible = "nvidia,tegra20-dc",
2341 		.data = &tegra20_dc_soc_info,
2342 	}, {
2343 		/* sentinel */
2344 	}
2345 };
2346 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2347 
2348 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2349 {
2350 	struct device_node *np;
2351 	u32 value = 0;
2352 	int err;
2353 
2354 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2355 	if (err < 0) {
2356 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2357 
2358 		/*
2359 		 * If the nvidia,head property isn't present, try to find the
2360 		 * correct head number by looking up the position of this
2361 		 * display controller's node within the device tree. Assuming
2362 		 * that the nodes are ordered properly in the DTS file and
2363 		 * that the translation into a flattened device tree blob
2364 		 * preserves that ordering this will actually yield the right
2365 		 * head number.
2366 		 *
2367 		 * If those assumptions don't hold, this will still work for
2368 		 * cases where only a single display controller is used.
2369 		 */
2370 		for_each_matching_node(np, tegra_dc_of_match) {
2371 			if (np == dc->dev->of_node) {
2372 				of_node_put(np);
2373 				break;
2374 			}
2375 
2376 			value++;
2377 		}
2378 	}
2379 
2380 	dc->pipe = value;
2381 
2382 	return 0;
2383 }
2384 
2385 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2386 {
2387 	struct tegra_dc *dc = dev_get_drvdata(dev);
2388 	unsigned int pipe = (unsigned long)(void *)data;
2389 
2390 	return dc->pipe == pipe;
2391 }
2392 
2393 static int tegra_dc_couple(struct tegra_dc *dc)
2394 {
2395 	/*
2396 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2397 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2398 	 * POWER_CONTROL registers during CRTC enabling.
2399 	 */
2400 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2401 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2402 		struct device_link *link;
2403 		struct device *partner;
2404 
2405 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2406 					     tegra_dc_match_by_pipe);
2407 		if (!partner)
2408 			return -EPROBE_DEFER;
2409 
2410 		link = device_link_add(dc->dev, partner, flags);
2411 		if (!link) {
2412 			dev_err(dc->dev, "failed to link controllers\n");
2413 			return -EINVAL;
2414 		}
2415 
2416 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int tegra_dc_probe(struct platform_device *pdev)
2423 {
2424 	struct resource *regs;
2425 	struct tegra_dc *dc;
2426 	int err;
2427 
2428 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2429 	if (!dc)
2430 		return -ENOMEM;
2431 
2432 	dc->soc = of_device_get_match_data(&pdev->dev);
2433 
2434 	INIT_LIST_HEAD(&dc->list);
2435 	dc->dev = &pdev->dev;
2436 
2437 	err = tegra_dc_parse_dt(dc);
2438 	if (err < 0)
2439 		return err;
2440 
2441 	err = tegra_dc_couple(dc);
2442 	if (err < 0)
2443 		return err;
2444 
2445 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2446 	if (IS_ERR(dc->clk)) {
2447 		dev_err(&pdev->dev, "failed to get clock\n");
2448 		return PTR_ERR(dc->clk);
2449 	}
2450 
2451 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2452 	if (IS_ERR(dc->rst)) {
2453 		dev_err(&pdev->dev, "failed to get reset\n");
2454 		return PTR_ERR(dc->rst);
2455 	}
2456 
2457 	/* assert reset and disable clock */
2458 	err = clk_prepare_enable(dc->clk);
2459 	if (err < 0)
2460 		return err;
2461 
2462 	usleep_range(2000, 4000);
2463 
2464 	err = reset_control_assert(dc->rst);
2465 	if (err < 0)
2466 		return err;
2467 
2468 	usleep_range(2000, 4000);
2469 
2470 	clk_disable_unprepare(dc->clk);
2471 
2472 	if (dc->soc->has_powergate) {
2473 		if (dc->pipe == 0)
2474 			dc->powergate = TEGRA_POWERGATE_DIS;
2475 		else
2476 			dc->powergate = TEGRA_POWERGATE_DISB;
2477 
2478 		tegra_powergate_power_off(dc->powergate);
2479 	}
2480 
2481 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2482 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2483 	if (IS_ERR(dc->regs))
2484 		return PTR_ERR(dc->regs);
2485 
2486 	dc->irq = platform_get_irq(pdev, 0);
2487 	if (dc->irq < 0) {
2488 		dev_err(&pdev->dev, "failed to get IRQ\n");
2489 		return -ENXIO;
2490 	}
2491 
2492 	err = tegra_dc_rgb_probe(dc);
2493 	if (err < 0 && err != -ENODEV) {
2494 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2495 		return err;
2496 	}
2497 
2498 	platform_set_drvdata(pdev, dc);
2499 	pm_runtime_enable(&pdev->dev);
2500 
2501 	INIT_LIST_HEAD(&dc->client.list);
2502 	dc->client.ops = &dc_client_ops;
2503 	dc->client.dev = &pdev->dev;
2504 
2505 	err = host1x_client_register(&dc->client);
2506 	if (err < 0) {
2507 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2508 			err);
2509 		return err;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static int tegra_dc_remove(struct platform_device *pdev)
2516 {
2517 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2518 	int err;
2519 
2520 	err = host1x_client_unregister(&dc->client);
2521 	if (err < 0) {
2522 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2523 			err);
2524 		return err;
2525 	}
2526 
2527 	err = tegra_dc_rgb_remove(dc);
2528 	if (err < 0) {
2529 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2530 		return err;
2531 	}
2532 
2533 	pm_runtime_disable(&pdev->dev);
2534 
2535 	return 0;
2536 }
2537 
2538 #ifdef CONFIG_PM
2539 static int tegra_dc_suspend(struct device *dev)
2540 {
2541 	struct tegra_dc *dc = dev_get_drvdata(dev);
2542 	int err;
2543 
2544 	err = reset_control_assert(dc->rst);
2545 	if (err < 0) {
2546 		dev_err(dev, "failed to assert reset: %d\n", err);
2547 		return err;
2548 	}
2549 
2550 	if (dc->soc->has_powergate)
2551 		tegra_powergate_power_off(dc->powergate);
2552 
2553 	clk_disable_unprepare(dc->clk);
2554 
2555 	return 0;
2556 }
2557 
2558 static int tegra_dc_resume(struct device *dev)
2559 {
2560 	struct tegra_dc *dc = dev_get_drvdata(dev);
2561 	int err;
2562 
2563 	if (dc->soc->has_powergate) {
2564 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2565 							dc->rst);
2566 		if (err < 0) {
2567 			dev_err(dev, "failed to power partition: %d\n", err);
2568 			return err;
2569 		}
2570 	} else {
2571 		err = clk_prepare_enable(dc->clk);
2572 		if (err < 0) {
2573 			dev_err(dev, "failed to enable clock: %d\n", err);
2574 			return err;
2575 		}
2576 
2577 		err = reset_control_deassert(dc->rst);
2578 		if (err < 0) {
2579 			dev_err(dev, "failed to deassert reset: %d\n", err);
2580 			return err;
2581 		}
2582 	}
2583 
2584 	return 0;
2585 }
2586 #endif
2587 
2588 static const struct dev_pm_ops tegra_dc_pm_ops = {
2589 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2590 };
2591 
2592 struct platform_driver tegra_dc_driver = {
2593 	.driver = {
2594 		.name = "tegra-dc",
2595 		.of_match_table = tegra_dc_of_match,
2596 		.pm = &tegra_dc_pm_ops,
2597 	},
2598 	.probe = tegra_dc_probe,
2599 	.remove = tegra_dc_remove,
2600 };
2601