xref: /openbmc/linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_framebuffer_helper.h>
27 #include <drm/drm_plane_helper.h>
28 #include <drm/drm_probe_helper.h>
29 #include <drm/drm_self_refresh_helper.h>
30 #include <drm/drm_vblank.h>
31 
32 #ifdef CONFIG_DRM_ANALOGIX_DP
33 #include <drm/bridge/analogix_dp.h>
34 #endif
35 
36 #include "rockchip_drm_drv.h"
37 #include "rockchip_drm_gem.h"
38 #include "rockchip_drm_fb.h"
39 #include "rockchip_drm_vop.h"
40 #include "rockchip_rgb.h"
41 
42 #define VOP_WIN_SET(vop, win, name, v) \
43 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
44 #define VOP_SCL_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET_EXT(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->ext->name, \
48 			    win->base, ~0, v, #name)
49 
50 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
51 	do { \
52 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
53 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
54 	} while (0)
55 
56 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
57 	do { \
58 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
59 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
60 	} while (0)
61 
62 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
63 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
64 
65 #define VOP_REG_SET(vop, group, name, v) \
66 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
67 
68 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
69 	do { \
70 		int i, reg = 0, mask = 0; \
71 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
72 			if (vop->data->intr->intrs[i] & type) { \
73 				reg |= (v) << i; \
74 				mask |= 1 << i; \
75 			} \
76 		} \
77 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
78 	} while (0)
79 #define VOP_INTR_GET_TYPE(vop, name, type) \
80 		vop_get_intr_type(vop, &vop->data->intr->name, type)
81 
82 #define VOP_WIN_GET(vop, win, name) \
83 		vop_read_reg(vop, win->base, &win->phy->name)
84 
85 #define VOP_WIN_HAS_REG(win, name) \
86 	(!!(win->phy->name.mask))
87 
88 #define VOP_WIN_GET_YRGBADDR(vop, win) \
89 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
90 
91 #define VOP_WIN_TO_INDEX(vop_win) \
92 	((vop_win) - (vop_win)->vop->win)
93 
94 #define VOP_AFBC_SET(vop, name, v) \
95 	do { \
96 		if ((vop)->data->afbc) \
97 			vop_reg_set((vop), &(vop)->data->afbc->name, \
98 				    0, ~0, v, #name); \
99 	} while (0)
100 
101 #define to_vop(x) container_of(x, struct vop, crtc)
102 #define to_vop_win(x) container_of(x, struct vop_win, base)
103 
104 #define AFBC_FMT_RGB565		0x0
105 #define AFBC_FMT_U8U8U8U8	0x5
106 #define AFBC_FMT_U8U8U8		0x4
107 
108 #define AFBC_TILE_16x16		BIT(4)
109 
110 /*
111  * The coefficients of the following matrix are all fixed points.
112  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
113  * They are all represented in two's complement.
114  */
115 static const uint32_t bt601_yuv2rgb[] = {
116 	0x4A8, 0x0,    0x662,
117 	0x4A8, 0x1E6F, 0x1CBF,
118 	0x4A8, 0x812,  0x0,
119 	0x321168, 0x0877CF, 0x2EB127
120 };
121 
122 enum vop_pending {
123 	VOP_PENDING_FB_UNREF,
124 };
125 
126 struct vop_win {
127 	struct drm_plane base;
128 	const struct vop_win_data *data;
129 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
130 	struct vop *vop;
131 };
132 
133 struct rockchip_rgb;
134 struct vop {
135 	struct drm_crtc crtc;
136 	struct device *dev;
137 	struct drm_device *drm_dev;
138 	bool is_enabled;
139 
140 	struct completion dsp_hold_completion;
141 	unsigned int win_enabled;
142 
143 	/* protected by dev->event_lock */
144 	struct drm_pending_vblank_event *event;
145 
146 	struct drm_flip_work fb_unref_work;
147 	unsigned long pending;
148 
149 	struct completion line_flag_completion;
150 
151 	const struct vop_data *data;
152 
153 	uint32_t *regsbak;
154 	void __iomem *regs;
155 	void __iomem *lut_regs;
156 
157 	/* physical map length of vop register */
158 	uint32_t len;
159 
160 	/* one time only one process allowed to config the register */
161 	spinlock_t reg_lock;
162 	/* lock vop irq reg */
163 	spinlock_t irq_lock;
164 	/* protects crtc enable/disable */
165 	struct mutex vop_lock;
166 
167 	unsigned int irq;
168 
169 	/* vop AHP clk */
170 	struct clk *hclk;
171 	/* vop dclk */
172 	struct clk *dclk;
173 	/* vop share memory frequency */
174 	struct clk *aclk;
175 
176 	/* vop dclk reset */
177 	struct reset_control *dclk_rst;
178 
179 	/* optional internal rgb encoder */
180 	struct rockchip_rgb *rgb;
181 
182 	struct vop_win win[];
183 };
184 
185 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
186 {
187 	writel(v, vop->regs + offset);
188 	vop->regsbak[offset >> 2] = v;
189 }
190 
191 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
192 {
193 	return readl(vop->regs + offset);
194 }
195 
196 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
197 				    const struct vop_reg *reg)
198 {
199 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
200 }
201 
202 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
203 			uint32_t _offset, uint32_t _mask, uint32_t v,
204 			const char *reg_name)
205 {
206 	int offset, mask, shift;
207 
208 	if (!reg || !reg->mask) {
209 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
210 		return;
211 	}
212 
213 	offset = reg->offset + _offset;
214 	mask = reg->mask & _mask;
215 	shift = reg->shift;
216 
217 	if (reg->write_mask) {
218 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
219 	} else {
220 		uint32_t cached_val = vop->regsbak[offset >> 2];
221 
222 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
223 		vop->regsbak[offset >> 2] = v;
224 	}
225 
226 	if (reg->relaxed)
227 		writel_relaxed(v, vop->regs + offset);
228 	else
229 		writel(v, vop->regs + offset);
230 }
231 
232 static inline uint32_t vop_get_intr_type(struct vop *vop,
233 					 const struct vop_reg *reg, int type)
234 {
235 	uint32_t i, ret = 0;
236 	uint32_t regs = vop_read_reg(vop, 0, reg);
237 
238 	for (i = 0; i < vop->data->intr->nintrs; i++) {
239 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
240 			ret |= vop->data->intr->intrs[i];
241 	}
242 
243 	return ret;
244 }
245 
246 static inline void vop_cfg_done(struct vop *vop)
247 {
248 	VOP_REG_SET(vop, common, cfg_done, 1);
249 }
250 
251 static bool has_rb_swapped(uint32_t format)
252 {
253 	switch (format) {
254 	case DRM_FORMAT_XBGR8888:
255 	case DRM_FORMAT_ABGR8888:
256 	case DRM_FORMAT_BGR888:
257 	case DRM_FORMAT_BGR565:
258 		return true;
259 	default:
260 		return false;
261 	}
262 }
263 
264 static enum vop_data_format vop_convert_format(uint32_t format)
265 {
266 	switch (format) {
267 	case DRM_FORMAT_XRGB8888:
268 	case DRM_FORMAT_ARGB8888:
269 	case DRM_FORMAT_XBGR8888:
270 	case DRM_FORMAT_ABGR8888:
271 		return VOP_FMT_ARGB8888;
272 	case DRM_FORMAT_RGB888:
273 	case DRM_FORMAT_BGR888:
274 		return VOP_FMT_RGB888;
275 	case DRM_FORMAT_RGB565:
276 	case DRM_FORMAT_BGR565:
277 		return VOP_FMT_RGB565;
278 	case DRM_FORMAT_NV12:
279 		return VOP_FMT_YUV420SP;
280 	case DRM_FORMAT_NV16:
281 		return VOP_FMT_YUV422SP;
282 	case DRM_FORMAT_NV24:
283 		return VOP_FMT_YUV444SP;
284 	default:
285 		DRM_ERROR("unsupported format[%08x]\n", format);
286 		return -EINVAL;
287 	}
288 }
289 
290 static int vop_convert_afbc_format(uint32_t format)
291 {
292 	switch (format) {
293 	case DRM_FORMAT_XRGB8888:
294 	case DRM_FORMAT_ARGB8888:
295 	case DRM_FORMAT_XBGR8888:
296 	case DRM_FORMAT_ABGR8888:
297 		return AFBC_FMT_U8U8U8U8;
298 	case DRM_FORMAT_RGB888:
299 	case DRM_FORMAT_BGR888:
300 		return AFBC_FMT_U8U8U8;
301 	case DRM_FORMAT_RGB565:
302 	case DRM_FORMAT_BGR565:
303 		return AFBC_FMT_RGB565;
304 	/* either of the below should not be reachable */
305 	default:
306 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
307 		return -EINVAL;
308 	}
309 
310 	return -EINVAL;
311 }
312 
313 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
314 				  uint32_t dst, bool is_horizontal,
315 				  int vsu_mode, int *vskiplines)
316 {
317 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
318 
319 	if (vskiplines)
320 		*vskiplines = 0;
321 
322 	if (is_horizontal) {
323 		if (mode == SCALE_UP)
324 			val = GET_SCL_FT_BIC(src, dst);
325 		else if (mode == SCALE_DOWN)
326 			val = GET_SCL_FT_BILI_DN(src, dst);
327 	} else {
328 		if (mode == SCALE_UP) {
329 			if (vsu_mode == SCALE_UP_BIL)
330 				val = GET_SCL_FT_BILI_UP(src, dst);
331 			else
332 				val = GET_SCL_FT_BIC(src, dst);
333 		} else if (mode == SCALE_DOWN) {
334 			if (vskiplines) {
335 				*vskiplines = scl_get_vskiplines(src, dst);
336 				val = scl_get_bili_dn_vskip(src, dst,
337 							    *vskiplines);
338 			} else {
339 				val = GET_SCL_FT_BILI_DN(src, dst);
340 			}
341 		}
342 	}
343 
344 	return val;
345 }
346 
347 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
348 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
349 			     uint32_t dst_h, const struct drm_format_info *info)
350 {
351 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
352 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
353 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
354 	bool is_yuv = false;
355 	uint16_t cbcr_src_w = src_w / info->hsub;
356 	uint16_t cbcr_src_h = src_h / info->vsub;
357 	uint16_t vsu_mode;
358 	uint16_t lb_mode;
359 	uint32_t val;
360 	int vskiplines;
361 
362 	if (info->is_yuv)
363 		is_yuv = true;
364 
365 	if (dst_w > 3840) {
366 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
367 		return;
368 	}
369 
370 	if (!win->phy->scl->ext) {
371 		VOP_SCL_SET(vop, win, scale_yrgb_x,
372 			    scl_cal_scale2(src_w, dst_w));
373 		VOP_SCL_SET(vop, win, scale_yrgb_y,
374 			    scl_cal_scale2(src_h, dst_h));
375 		if (is_yuv) {
376 			VOP_SCL_SET(vop, win, scale_cbcr_x,
377 				    scl_cal_scale2(cbcr_src_w, dst_w));
378 			VOP_SCL_SET(vop, win, scale_cbcr_y,
379 				    scl_cal_scale2(cbcr_src_h, dst_h));
380 		}
381 		return;
382 	}
383 
384 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
385 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
386 
387 	if (is_yuv) {
388 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
389 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
390 		if (cbcr_hor_scl_mode == SCALE_DOWN)
391 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
392 		else
393 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
394 	} else {
395 		if (yrgb_hor_scl_mode == SCALE_DOWN)
396 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
397 		else
398 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
399 	}
400 
401 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
402 	if (lb_mode == LB_RGB_3840X2) {
403 		if (yrgb_ver_scl_mode != SCALE_NONE) {
404 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
405 			return;
406 		}
407 		if (cbcr_ver_scl_mode != SCALE_NONE) {
408 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
409 			return;
410 		}
411 		vsu_mode = SCALE_UP_BIL;
412 	} else if (lb_mode == LB_RGB_2560X4) {
413 		vsu_mode = SCALE_UP_BIL;
414 	} else {
415 		vsu_mode = SCALE_UP_BIC;
416 	}
417 
418 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
419 				true, 0, NULL);
420 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
421 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
422 				false, vsu_mode, &vskiplines);
423 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
424 
425 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
426 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
427 
428 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
429 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
430 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
431 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
432 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
433 	if (is_yuv) {
434 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
435 					dst_w, true, 0, NULL);
436 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
437 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
438 					dst_h, false, vsu_mode, &vskiplines);
439 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
440 
441 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
442 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
443 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
444 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
445 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
446 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
447 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
448 	}
449 }
450 
451 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
452 {
453 	unsigned long flags;
454 
455 	if (WARN_ON(!vop->is_enabled))
456 		return;
457 
458 	spin_lock_irqsave(&vop->irq_lock, flags);
459 
460 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
461 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
462 
463 	spin_unlock_irqrestore(&vop->irq_lock, flags);
464 }
465 
466 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
467 {
468 	unsigned long flags;
469 
470 	if (WARN_ON(!vop->is_enabled))
471 		return;
472 
473 	spin_lock_irqsave(&vop->irq_lock, flags);
474 
475 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
476 
477 	spin_unlock_irqrestore(&vop->irq_lock, flags);
478 }
479 
480 /*
481  * (1) each frame starts at the start of the Vsync pulse which is signaled by
482  *     the "FRAME_SYNC" interrupt.
483  * (2) the active data region of each frame ends at dsp_vact_end
484  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
485  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
486  *
487  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
488  * Interrupts
489  * LINE_FLAG -------------------------------+
490  * FRAME_SYNC ----+                         |
491  *                |                         |
492  *                v                         v
493  *                | Vsync | Vbp |  Vactive  | Vfp |
494  *                        ^     ^           ^     ^
495  *                        |     |           |     |
496  *                        |     |           |     |
497  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
498  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
499  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
500  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
501  */
502 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
503 {
504 	uint32_t line_flag_irq;
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&vop->irq_lock, flags);
508 
509 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
510 
511 	spin_unlock_irqrestore(&vop->irq_lock, flags);
512 
513 	return !!line_flag_irq;
514 }
515 
516 static void vop_line_flag_irq_enable(struct vop *vop)
517 {
518 	unsigned long flags;
519 
520 	if (WARN_ON(!vop->is_enabled))
521 		return;
522 
523 	spin_lock_irqsave(&vop->irq_lock, flags);
524 
525 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
526 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
527 
528 	spin_unlock_irqrestore(&vop->irq_lock, flags);
529 }
530 
531 static void vop_line_flag_irq_disable(struct vop *vop)
532 {
533 	unsigned long flags;
534 
535 	if (WARN_ON(!vop->is_enabled))
536 		return;
537 
538 	spin_lock_irqsave(&vop->irq_lock, flags);
539 
540 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
541 
542 	spin_unlock_irqrestore(&vop->irq_lock, flags);
543 }
544 
545 static int vop_core_clks_enable(struct vop *vop)
546 {
547 	int ret;
548 
549 	ret = clk_enable(vop->hclk);
550 	if (ret < 0)
551 		return ret;
552 
553 	ret = clk_enable(vop->aclk);
554 	if (ret < 0)
555 		goto err_disable_hclk;
556 
557 	return 0;
558 
559 err_disable_hclk:
560 	clk_disable(vop->hclk);
561 	return ret;
562 }
563 
564 static void vop_core_clks_disable(struct vop *vop)
565 {
566 	clk_disable(vop->aclk);
567 	clk_disable(vop->hclk);
568 }
569 
570 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
571 {
572 	const struct vop_win_data *win = vop_win->data;
573 
574 	if (win->phy->scl && win->phy->scl->ext) {
575 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
576 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
577 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
578 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
579 	}
580 
581 	VOP_WIN_SET(vop, win, enable, 0);
582 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
583 }
584 
585 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
586 {
587 	struct vop *vop = to_vop(crtc);
588 	int ret, i;
589 
590 	ret = pm_runtime_get_sync(vop->dev);
591 	if (ret < 0) {
592 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
593 		return ret;
594 	}
595 
596 	ret = vop_core_clks_enable(vop);
597 	if (WARN_ON(ret < 0))
598 		goto err_put_pm_runtime;
599 
600 	ret = clk_enable(vop->dclk);
601 	if (WARN_ON(ret < 0))
602 		goto err_disable_core;
603 
604 	/*
605 	 * Slave iommu shares power, irq and clock with vop.  It was associated
606 	 * automatically with this master device via common driver code.
607 	 * Now that we have enabled the clock we attach it to the shared drm
608 	 * mapping.
609 	 */
610 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
611 	if (ret) {
612 		DRM_DEV_ERROR(vop->dev,
613 			      "failed to attach dma mapping, %d\n", ret);
614 		goto err_disable_dclk;
615 	}
616 
617 	spin_lock(&vop->reg_lock);
618 	for (i = 0; i < vop->len; i += 4)
619 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
620 
621 	/*
622 	 * We need to make sure that all windows are disabled before we
623 	 * enable the crtc. Otherwise we might try to scan from a destroyed
624 	 * buffer later.
625 	 *
626 	 * In the case of enable-after-PSR, we don't need to worry about this
627 	 * case since the buffer is guaranteed to be valid and disabling the
628 	 * window will result in screen glitches on PSR exit.
629 	 */
630 	if (!old_state || !old_state->self_refresh_active) {
631 		for (i = 0; i < vop->data->win_size; i++) {
632 			struct vop_win *vop_win = &vop->win[i];
633 
634 			vop_win_disable(vop, vop_win);
635 		}
636 	}
637 
638 	if (vop->data->afbc) {
639 		struct rockchip_crtc_state *s;
640 		/*
641 		 * Disable AFBC and forget there was a vop window with AFBC
642 		 */
643 		VOP_AFBC_SET(vop, enable, 0);
644 		s = to_rockchip_crtc_state(crtc->state);
645 		s->enable_afbc = false;
646 	}
647 
648 	vop_cfg_done(vop);
649 
650 	spin_unlock(&vop->reg_lock);
651 
652 	/*
653 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
654 	 */
655 	vop->is_enabled = true;
656 
657 	spin_lock(&vop->reg_lock);
658 
659 	VOP_REG_SET(vop, common, standby, 1);
660 
661 	spin_unlock(&vop->reg_lock);
662 
663 	drm_crtc_vblank_on(crtc);
664 
665 	return 0;
666 
667 err_disable_dclk:
668 	clk_disable(vop->dclk);
669 err_disable_core:
670 	vop_core_clks_disable(vop);
671 err_put_pm_runtime:
672 	pm_runtime_put_sync(vop->dev);
673 	return ret;
674 }
675 
676 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
677 {
678         struct vop *vop = to_vop(crtc);
679         int i;
680 
681         spin_lock(&vop->reg_lock);
682 
683         for (i = 0; i < vop->data->win_size; i++) {
684                 struct vop_win *vop_win = &vop->win[i];
685                 const struct vop_win_data *win = vop_win->data;
686 
687                 VOP_WIN_SET(vop, win, enable,
688                             enabled && (vop->win_enabled & BIT(i)));
689         }
690         vop_cfg_done(vop);
691 
692         spin_unlock(&vop->reg_lock);
693 }
694 
695 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
696 				    struct drm_atomic_state *state)
697 {
698 	struct vop *vop = to_vop(crtc);
699 
700 	WARN_ON(vop->event);
701 
702 	if (crtc->state->self_refresh_active)
703 		rockchip_drm_set_win_enabled(crtc, false);
704 
705 	mutex_lock(&vop->vop_lock);
706 
707 	drm_crtc_vblank_off(crtc);
708 
709 	if (crtc->state->self_refresh_active)
710 		goto out;
711 
712 	/*
713 	 * Vop standby will take effect at end of current frame,
714 	 * if dsp hold valid irq happen, it means standby complete.
715 	 *
716 	 * we must wait standby complete when we want to disable aclk,
717 	 * if not, memory bus maybe dead.
718 	 */
719 	reinit_completion(&vop->dsp_hold_completion);
720 	vop_dsp_hold_valid_irq_enable(vop);
721 
722 	spin_lock(&vop->reg_lock);
723 
724 	VOP_REG_SET(vop, common, standby, 1);
725 
726 	spin_unlock(&vop->reg_lock);
727 
728 	wait_for_completion(&vop->dsp_hold_completion);
729 
730 	vop_dsp_hold_valid_irq_disable(vop);
731 
732 	vop->is_enabled = false;
733 
734 	/*
735 	 * vop standby complete, so iommu detach is safe.
736 	 */
737 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
738 
739 	clk_disable(vop->dclk);
740 	vop_core_clks_disable(vop);
741 	pm_runtime_put(vop->dev);
742 
743 out:
744 	mutex_unlock(&vop->vop_lock);
745 
746 	if (crtc->state->event && !crtc->state->active) {
747 		spin_lock_irq(&crtc->dev->event_lock);
748 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
749 		spin_unlock_irq(&crtc->dev->event_lock);
750 
751 		crtc->state->event = NULL;
752 	}
753 }
754 
755 static void vop_plane_destroy(struct drm_plane *plane)
756 {
757 	drm_plane_cleanup(plane);
758 }
759 
760 static inline bool rockchip_afbc(u64 modifier)
761 {
762 	return modifier == ROCKCHIP_AFBC_MOD;
763 }
764 
765 static bool rockchip_mod_supported(struct drm_plane *plane,
766 				   u32 format, u64 modifier)
767 {
768 	if (modifier == DRM_FORMAT_MOD_LINEAR)
769 		return true;
770 
771 	if (!rockchip_afbc(modifier)) {
772 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
773 
774 		return false;
775 	}
776 
777 	return vop_convert_afbc_format(format) >= 0;
778 }
779 
780 static int vop_plane_atomic_check(struct drm_plane *plane,
781 			   struct drm_plane_state *state)
782 {
783 	struct drm_crtc *crtc = state->crtc;
784 	struct drm_crtc_state *crtc_state;
785 	struct drm_framebuffer *fb = state->fb;
786 	struct vop_win *vop_win = to_vop_win(plane);
787 	const struct vop_win_data *win = vop_win->data;
788 	int ret;
789 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
790 					DRM_PLANE_HELPER_NO_SCALING;
791 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
792 					DRM_PLANE_HELPER_NO_SCALING;
793 
794 	if (!crtc || WARN_ON(!fb))
795 		return 0;
796 
797 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
798 	if (WARN_ON(!crtc_state))
799 		return -EINVAL;
800 
801 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
802 						  min_scale, max_scale,
803 						  true, true);
804 	if (ret)
805 		return ret;
806 
807 	if (!state->visible)
808 		return 0;
809 
810 	ret = vop_convert_format(fb->format->format);
811 	if (ret < 0)
812 		return ret;
813 
814 	/*
815 	 * Src.x1 can be odd when do clip, but yuv plane start point
816 	 * need align with 2 pixel.
817 	 */
818 	if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
819 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
820 		return -EINVAL;
821 	}
822 
823 	if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
824 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
825 		return -EINVAL;
826 	}
827 
828 	if (rockchip_afbc(fb->modifier)) {
829 		struct vop *vop = to_vop(crtc);
830 
831 		if (!vop->data->afbc) {
832 			DRM_ERROR("vop does not support AFBC\n");
833 			return -EINVAL;
834 		}
835 
836 		ret = vop_convert_afbc_format(fb->format->format);
837 		if (ret < 0)
838 			return ret;
839 
840 		if (state->src.x1 || state->src.y1) {
841 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n", state->src.x1, state->src.y1, fb->offsets[0]);
842 			return -EINVAL;
843 		}
844 
845 		if (state->rotation && state->rotation != DRM_MODE_ROTATE_0) {
846 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
847 				  state->rotation);
848 			return -EINVAL;
849 		}
850 	}
851 
852 	return 0;
853 }
854 
855 static void vop_plane_atomic_disable(struct drm_plane *plane,
856 				     struct drm_plane_state *old_state)
857 {
858 	struct vop_win *vop_win = to_vop_win(plane);
859 	struct vop *vop = to_vop(old_state->crtc);
860 
861 	if (!old_state->crtc)
862 		return;
863 
864 	spin_lock(&vop->reg_lock);
865 
866 	vop_win_disable(vop, vop_win);
867 
868 	spin_unlock(&vop->reg_lock);
869 }
870 
871 static void vop_plane_atomic_update(struct drm_plane *plane,
872 		struct drm_plane_state *old_state)
873 {
874 	struct drm_plane_state *state = plane->state;
875 	struct drm_crtc *crtc = state->crtc;
876 	struct vop_win *vop_win = to_vop_win(plane);
877 	const struct vop_win_data *win = vop_win->data;
878 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
879 	struct vop *vop = to_vop(state->crtc);
880 	struct drm_framebuffer *fb = state->fb;
881 	unsigned int actual_w, actual_h;
882 	unsigned int dsp_stx, dsp_sty;
883 	uint32_t act_info, dsp_info, dsp_st;
884 	struct drm_rect *src = &state->src;
885 	struct drm_rect *dest = &state->dst;
886 	struct drm_gem_object *obj, *uv_obj;
887 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
888 	unsigned long offset;
889 	dma_addr_t dma_addr;
890 	uint32_t val;
891 	bool rb_swap;
892 	int win_index = VOP_WIN_TO_INDEX(vop_win);
893 	int format;
894 	int is_yuv = fb->format->is_yuv;
895 	int i;
896 
897 	/*
898 	 * can't update plane when vop is disabled.
899 	 */
900 	if (WARN_ON(!crtc))
901 		return;
902 
903 	if (WARN_ON(!vop->is_enabled))
904 		return;
905 
906 	if (!state->visible) {
907 		vop_plane_atomic_disable(plane, old_state);
908 		return;
909 	}
910 
911 	obj = fb->obj[0];
912 	rk_obj = to_rockchip_obj(obj);
913 
914 	actual_w = drm_rect_width(src) >> 16;
915 	actual_h = drm_rect_height(src) >> 16;
916 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
917 
918 	dsp_info = (drm_rect_height(dest) - 1) << 16;
919 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
920 
921 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
922 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
923 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
924 
925 	offset = (src->x1 >> 16) * fb->format->cpp[0];
926 	offset += (src->y1 >> 16) * fb->pitches[0];
927 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
928 
929 	/*
930 	 * For y-mirroring we need to move address
931 	 * to the beginning of the last line.
932 	 */
933 	if (state->rotation & DRM_MODE_REFLECT_Y)
934 		dma_addr += (actual_h - 1) * fb->pitches[0];
935 
936 	format = vop_convert_format(fb->format->format);
937 
938 	spin_lock(&vop->reg_lock);
939 
940 	if (rockchip_afbc(fb->modifier)) {
941 		int afbc_format = vop_convert_afbc_format(fb->format->format);
942 
943 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
944 		VOP_AFBC_SET(vop, hreg_block_split, 0);
945 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
946 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
947 		VOP_AFBC_SET(vop, pic_size, act_info);
948 	}
949 
950 	VOP_WIN_SET(vop, win, format, format);
951 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
952 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
953 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
954 	VOP_WIN_SET(vop, win, y_mir_en,
955 		    (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
956 	VOP_WIN_SET(vop, win, x_mir_en,
957 		    (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
958 
959 	if (is_yuv) {
960 		int hsub = fb->format->hsub;
961 		int vsub = fb->format->vsub;
962 		int bpp = fb->format->cpp[1];
963 
964 		uv_obj = fb->obj[1];
965 		rk_uv_obj = to_rockchip_obj(uv_obj);
966 
967 		offset = (src->x1 >> 16) * bpp / hsub;
968 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
969 
970 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
971 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
972 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
973 
974 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
975 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
976 							win_yuv2yuv,
977 							y2r_coefficients[i],
978 							bt601_yuv2rgb[i]);
979 		}
980 	}
981 
982 	if (win->phy->scl)
983 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
984 				    drm_rect_width(dest), drm_rect_height(dest),
985 				    fb->format);
986 
987 	VOP_WIN_SET(vop, win, act_info, act_info);
988 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
989 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
990 
991 	rb_swap = has_rb_swapped(fb->format->format);
992 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
993 
994 	/*
995 	 * Blending win0 with the background color doesn't seem to work
996 	 * correctly. We only get the background color, no matter the contents
997 	 * of the win0 framebuffer.  However, blending pre-multiplied color
998 	 * with the default opaque black default background color is a no-op,
999 	 * so we can just disable blending to get the correct result.
1000 	 */
1001 	if (fb->format->has_alpha && win_index > 0) {
1002 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1003 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1004 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1005 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1006 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1007 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1008 			SRC_FACTOR_M0(ALPHA_ONE);
1009 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1010 
1011 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1012 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1013 		VOP_WIN_SET(vop, win, alpha_en, 1);
1014 	} else {
1015 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1016 	}
1017 
1018 	VOP_WIN_SET(vop, win, enable, 1);
1019 	vop->win_enabled |= BIT(win_index);
1020 	spin_unlock(&vop->reg_lock);
1021 }
1022 
1023 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1024 					struct drm_plane_state *state)
1025 {
1026 	struct vop_win *vop_win = to_vop_win(plane);
1027 	const struct vop_win_data *win = vop_win->data;
1028 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1029 					DRM_PLANE_HELPER_NO_SCALING;
1030 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1031 					DRM_PLANE_HELPER_NO_SCALING;
1032 	struct drm_crtc_state *crtc_state;
1033 
1034 	if (plane != state->crtc->cursor)
1035 		return -EINVAL;
1036 
1037 	if (!plane->state)
1038 		return -EINVAL;
1039 
1040 	if (!plane->state->fb)
1041 		return -EINVAL;
1042 
1043 	if (state->state)
1044 		crtc_state = drm_atomic_get_existing_crtc_state(state->state,
1045 								state->crtc);
1046 	else /* Special case for asynchronous cursor updates. */
1047 		crtc_state = plane->crtc->state;
1048 
1049 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1050 						   min_scale, max_scale,
1051 						   true, true);
1052 }
1053 
1054 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1055 					  struct drm_plane_state *new_state)
1056 {
1057 	struct vop *vop = to_vop(plane->state->crtc);
1058 	struct drm_framebuffer *old_fb = plane->state->fb;
1059 
1060 	plane->state->crtc_x = new_state->crtc_x;
1061 	plane->state->crtc_y = new_state->crtc_y;
1062 	plane->state->crtc_h = new_state->crtc_h;
1063 	plane->state->crtc_w = new_state->crtc_w;
1064 	plane->state->src_x = new_state->src_x;
1065 	plane->state->src_y = new_state->src_y;
1066 	plane->state->src_h = new_state->src_h;
1067 	plane->state->src_w = new_state->src_w;
1068 	swap(plane->state->fb, new_state->fb);
1069 
1070 	if (vop->is_enabled) {
1071 		vop_plane_atomic_update(plane, plane->state);
1072 		spin_lock(&vop->reg_lock);
1073 		vop_cfg_done(vop);
1074 		spin_unlock(&vop->reg_lock);
1075 
1076 		/*
1077 		 * A scanout can still be occurring, so we can't drop the
1078 		 * reference to the old framebuffer. To solve this we get a
1079 		 * reference to old_fb and set a worker to release it later.
1080 		 * FIXME: if we perform 500 async_update calls before the
1081 		 * vblank, then we can have 500 different framebuffers waiting
1082 		 * to be released.
1083 		 */
1084 		if (old_fb && plane->state->fb != old_fb) {
1085 			drm_framebuffer_get(old_fb);
1086 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1087 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1088 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1089 		}
1090 	}
1091 }
1092 
1093 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1094 	.atomic_check = vop_plane_atomic_check,
1095 	.atomic_update = vop_plane_atomic_update,
1096 	.atomic_disable = vop_plane_atomic_disable,
1097 	.atomic_async_check = vop_plane_atomic_async_check,
1098 	.atomic_async_update = vop_plane_atomic_async_update,
1099 	.prepare_fb = drm_gem_fb_prepare_fb,
1100 };
1101 
1102 static const struct drm_plane_funcs vop_plane_funcs = {
1103 	.update_plane	= drm_atomic_helper_update_plane,
1104 	.disable_plane	= drm_atomic_helper_disable_plane,
1105 	.destroy = vop_plane_destroy,
1106 	.reset = drm_atomic_helper_plane_reset,
1107 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1108 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1109 	.format_mod_supported = rockchip_mod_supported,
1110 };
1111 
1112 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1113 {
1114 	struct vop *vop = to_vop(crtc);
1115 	unsigned long flags;
1116 
1117 	if (WARN_ON(!vop->is_enabled))
1118 		return -EPERM;
1119 
1120 	spin_lock_irqsave(&vop->irq_lock, flags);
1121 
1122 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1123 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1124 
1125 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1131 {
1132 	struct vop *vop = to_vop(crtc);
1133 	unsigned long flags;
1134 
1135 	if (WARN_ON(!vop->is_enabled))
1136 		return;
1137 
1138 	spin_lock_irqsave(&vop->irq_lock, flags);
1139 
1140 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1141 
1142 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1143 }
1144 
1145 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1146 				const struct drm_display_mode *mode,
1147 				struct drm_display_mode *adjusted_mode)
1148 {
1149 	struct vop *vop = to_vop(crtc);
1150 	unsigned long rate;
1151 
1152 	/*
1153 	 * Clock craziness.
1154 	 *
1155 	 * Key points:
1156 	 *
1157 	 * - DRM works in in kHz.
1158 	 * - Clock framework works in Hz.
1159 	 * - Rockchip's clock driver picks the clock rate that is the
1160 	 *   same _OR LOWER_ than the one requested.
1161 	 *
1162 	 * Action plan:
1163 	 *
1164 	 * 1. When DRM gives us a mode, we should add 999 Hz to it.  That way
1165 	 *    if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
1166 	 *    make 60000 kHz then the clock framework will actually give us
1167 	 *    the right clock.
1168 	 *
1169 	 *    NOTE: if the PLL (maybe through a divider) could actually make
1170 	 *    a clock rate 999 Hz higher instead of the one we want then this
1171 	 *    could be a problem.  Unfortunately there's not much we can do
1172 	 *    since it's baked into DRM to use kHz.  It shouldn't matter in
1173 	 *    practice since Rockchip PLLs are controlled by tables and
1174 	 *    even if there is a divider in the middle I wouldn't expect PLL
1175 	 *    rates in the table that are just a few kHz different.
1176 	 *
1177 	 * 2. Get the clock framework to round the rate for us to tell us
1178 	 *    what it will actually make.
1179 	 *
1180 	 * 3. Store the rounded up rate so that we don't need to worry about
1181 	 *    this in the actual clk_set_rate().
1182 	 */
1183 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
1184 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1185 
1186 	return true;
1187 }
1188 
1189 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1190 {
1191 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1192 }
1193 
1194 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1195 {
1196 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1197 	unsigned int i;
1198 
1199 	for (i = 0; i < crtc->gamma_size; i++) {
1200 		u32 word;
1201 
1202 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1203 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1204 			drm_color_lut_extract(lut[i].blue, 10);
1205 		writel(word, vop->lut_regs + i * 4);
1206 	}
1207 }
1208 
1209 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1210 			       struct drm_crtc_state *old_state)
1211 {
1212 	struct drm_crtc_state *state = crtc->state;
1213 	unsigned int idle;
1214 	int ret;
1215 
1216 	if (!vop->lut_regs)
1217 		return;
1218 	/*
1219 	 * To disable gamma (gamma_lut is null) or to write
1220 	 * an update to the LUT, clear dsp_lut_en.
1221 	 */
1222 	spin_lock(&vop->reg_lock);
1223 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1224 	vop_cfg_done(vop);
1225 	spin_unlock(&vop->reg_lock);
1226 
1227 	/*
1228 	 * In order to write the LUT to the internal memory,
1229 	 * we need to first make sure the dsp_lut_en bit is cleared.
1230 	 */
1231 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1232 				 idle, !idle, 5, 30 * 1000);
1233 	if (ret) {
1234 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1235 		return;
1236 	}
1237 
1238 	if (!state->gamma_lut)
1239 		return;
1240 
1241 	spin_lock(&vop->reg_lock);
1242 	vop_crtc_write_gamma_lut(vop, crtc);
1243 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1244 	vop_cfg_done(vop);
1245 	spin_unlock(&vop->reg_lock);
1246 }
1247 
1248 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1249 				  struct drm_atomic_state *state)
1250 {
1251 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1252 									  crtc);
1253 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1254 									      crtc);
1255 	struct vop *vop = to_vop(crtc);
1256 
1257 	/*
1258 	 * Only update GAMMA if the 'active' flag is not changed,
1259 	 * otherwise it's updated by .atomic_enable.
1260 	 */
1261 	if (crtc_state->color_mgmt_changed &&
1262 	    !crtc_state->active_changed)
1263 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1264 }
1265 
1266 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1267 				   struct drm_atomic_state *state)
1268 {
1269 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1270 									 crtc);
1271 	struct vop *vop = to_vop(crtc);
1272 	const struct vop_data *vop_data = vop->data;
1273 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1274 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1275 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1276 	u16 hdisplay = adjusted_mode->hdisplay;
1277 	u16 htotal = adjusted_mode->htotal;
1278 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1279 	u16 hact_end = hact_st + hdisplay;
1280 	u16 vdisplay = adjusted_mode->vdisplay;
1281 	u16 vtotal = adjusted_mode->vtotal;
1282 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1283 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1284 	u16 vact_end = vact_st + vdisplay;
1285 	uint32_t pin_pol, val;
1286 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1287 	int ret;
1288 
1289 	if (old_state && old_state->self_refresh_active) {
1290 		drm_crtc_vblank_on(crtc);
1291 		rockchip_drm_set_win_enabled(crtc, true);
1292 		return;
1293 	}
1294 
1295 	/*
1296 	 * If we have a GAMMA LUT in the state, then let's make sure
1297 	 * it's updated. We might be coming out of suspend,
1298 	 * which means the LUT internal memory needs to be re-written.
1299 	 */
1300 	if (crtc->state->gamma_lut)
1301 		vop_crtc_gamma_set(vop, crtc, old_state);
1302 
1303 	mutex_lock(&vop->vop_lock);
1304 
1305 	WARN_ON(vop->event);
1306 
1307 	ret = vop_enable(crtc, old_state);
1308 	if (ret) {
1309 		mutex_unlock(&vop->vop_lock);
1310 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1311 		return;
1312 	}
1313 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1314 		   BIT(HSYNC_POSITIVE) : 0;
1315 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1316 		   BIT(VSYNC_POSITIVE) : 0;
1317 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1318 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1319 
1320 	switch (s->output_type) {
1321 	case DRM_MODE_CONNECTOR_LVDS:
1322 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1323 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1324 		VOP_REG_SET(vop, output, rgb_en, 1);
1325 		break;
1326 	case DRM_MODE_CONNECTOR_eDP:
1327 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1328 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1329 		VOP_REG_SET(vop, output, edp_en, 1);
1330 		break;
1331 	case DRM_MODE_CONNECTOR_HDMIA:
1332 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1333 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1334 		VOP_REG_SET(vop, output, hdmi_en, 1);
1335 		break;
1336 	case DRM_MODE_CONNECTOR_DSI:
1337 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1338 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1339 		VOP_REG_SET(vop, output, mipi_en, 1);
1340 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1341 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1342 		break;
1343 	case DRM_MODE_CONNECTOR_DisplayPort:
1344 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1345 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1346 		VOP_REG_SET(vop, output, dp_en, 1);
1347 		break;
1348 	default:
1349 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1350 			      s->output_type);
1351 	}
1352 
1353 	/*
1354 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1355 	 */
1356 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1357 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1358 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1359 
1360 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1361 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1362 	else
1363 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1364 
1365 	if (dither_bpc == 6) {
1366 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1367 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1368 		VOP_REG_SET(vop, common, dither_down_en, 1);
1369 	} else {
1370 		VOP_REG_SET(vop, common, dither_down_en, 0);
1371 	}
1372 
1373 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1374 
1375 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1376 	val = hact_st << 16;
1377 	val |= hact_end;
1378 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1379 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1380 
1381 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1382 	val = vact_st << 16;
1383 	val |= vact_end;
1384 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1385 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1386 
1387 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1388 
1389 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1390 
1391 	VOP_REG_SET(vop, common, standby, 0);
1392 	mutex_unlock(&vop->vop_lock);
1393 }
1394 
1395 static bool vop_fs_irq_is_pending(struct vop *vop)
1396 {
1397 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1398 }
1399 
1400 static void vop_wait_for_irq_handler(struct vop *vop)
1401 {
1402 	bool pending;
1403 	int ret;
1404 
1405 	/*
1406 	 * Spin until frame start interrupt status bit goes low, which means
1407 	 * that interrupt handler was invoked and cleared it. The timeout of
1408 	 * 10 msecs is really too long, but it is just a safety measure if
1409 	 * something goes really wrong. The wait will only happen in the very
1410 	 * unlikely case of a vblank happening exactly at the same time and
1411 	 * shouldn't exceed microseconds range.
1412 	 */
1413 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1414 					!pending, 0, 10 * 1000);
1415 	if (ret)
1416 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1417 
1418 	synchronize_irq(vop->irq);
1419 }
1420 
1421 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1422 				 struct drm_atomic_state *state)
1423 {
1424 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1425 									  crtc);
1426 	struct vop *vop = to_vop(crtc);
1427 	struct drm_plane *plane;
1428 	struct drm_plane_state *plane_state;
1429 	struct rockchip_crtc_state *s;
1430 	int afbc_planes = 0;
1431 
1432 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1433 	    crtc_state->gamma_lut) {
1434 		unsigned int len;
1435 
1436 		len = drm_color_lut_size(crtc_state->gamma_lut);
1437 		if (len != crtc->gamma_size) {
1438 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1439 				      len, crtc->gamma_size);
1440 			return -EINVAL;
1441 		}
1442 	}
1443 
1444 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1445 		plane_state =
1446 			drm_atomic_get_plane_state(crtc_state->state, plane);
1447 		if (IS_ERR(plane_state)) {
1448 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1449 				      plane->name);
1450 			return PTR_ERR(plane_state);
1451 		}
1452 
1453 		if (drm_is_afbc(plane_state->fb->modifier))
1454 			++afbc_planes;
1455 	}
1456 
1457 	if (afbc_planes > 1) {
1458 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1459 		return -EINVAL;
1460 	}
1461 
1462 	s = to_rockchip_crtc_state(crtc_state);
1463 	s->enable_afbc = afbc_planes > 0;
1464 
1465 	return 0;
1466 }
1467 
1468 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1469 				  struct drm_atomic_state *state)
1470 {
1471 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1472 									      crtc);
1473 	struct drm_atomic_state *old_state = old_crtc_state->state;
1474 	struct drm_plane_state *old_plane_state, *new_plane_state;
1475 	struct vop *vop = to_vop(crtc);
1476 	struct drm_plane *plane;
1477 	struct rockchip_crtc_state *s;
1478 	int i;
1479 
1480 	if (WARN_ON(!vop->is_enabled))
1481 		return;
1482 
1483 	spin_lock(&vop->reg_lock);
1484 
1485 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1486 	s = to_rockchip_crtc_state(crtc->state);
1487 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1488 	vop_cfg_done(vop);
1489 
1490 	spin_unlock(&vop->reg_lock);
1491 
1492 	/*
1493 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1494 	 * fired before we set the cfg_done bit. To avoid spuriously
1495 	 * signalling flip completion we need to wait for it to finish.
1496 	 */
1497 	vop_wait_for_irq_handler(vop);
1498 
1499 	spin_lock_irq(&crtc->dev->event_lock);
1500 	if (crtc->state->event) {
1501 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1502 		WARN_ON(vop->event);
1503 
1504 		vop->event = crtc->state->event;
1505 		crtc->state->event = NULL;
1506 	}
1507 	spin_unlock_irq(&crtc->dev->event_lock);
1508 
1509 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1510 				       new_plane_state, i) {
1511 		if (!old_plane_state->fb)
1512 			continue;
1513 
1514 		if (old_plane_state->fb == new_plane_state->fb)
1515 			continue;
1516 
1517 		drm_framebuffer_get(old_plane_state->fb);
1518 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1519 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1520 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1521 	}
1522 }
1523 
1524 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1525 	.mode_fixup = vop_crtc_mode_fixup,
1526 	.atomic_check = vop_crtc_atomic_check,
1527 	.atomic_begin = vop_crtc_atomic_begin,
1528 	.atomic_flush = vop_crtc_atomic_flush,
1529 	.atomic_enable = vop_crtc_atomic_enable,
1530 	.atomic_disable = vop_crtc_atomic_disable,
1531 };
1532 
1533 static void vop_crtc_destroy(struct drm_crtc *crtc)
1534 {
1535 	drm_crtc_cleanup(crtc);
1536 }
1537 
1538 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1539 {
1540 	struct rockchip_crtc_state *rockchip_state;
1541 
1542 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1543 	if (!rockchip_state)
1544 		return NULL;
1545 
1546 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1547 	return &rockchip_state->base;
1548 }
1549 
1550 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1551 				   struct drm_crtc_state *state)
1552 {
1553 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1554 
1555 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1556 	kfree(s);
1557 }
1558 
1559 static void vop_crtc_reset(struct drm_crtc *crtc)
1560 {
1561 	struct rockchip_crtc_state *crtc_state =
1562 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1563 
1564 	if (crtc->state)
1565 		vop_crtc_destroy_state(crtc, crtc->state);
1566 
1567 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1568 }
1569 
1570 #ifdef CONFIG_DRM_ANALOGIX_DP
1571 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1572 {
1573 	struct drm_connector *connector;
1574 	struct drm_connector_list_iter conn_iter;
1575 
1576 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1577 	drm_for_each_connector_iter(connector, &conn_iter) {
1578 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1579 			drm_connector_list_iter_end(&conn_iter);
1580 			return connector;
1581 		}
1582 	}
1583 	drm_connector_list_iter_end(&conn_iter);
1584 
1585 	return NULL;
1586 }
1587 
1588 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1589 				   const char *source_name)
1590 {
1591 	struct vop *vop = to_vop(crtc);
1592 	struct drm_connector *connector;
1593 	int ret;
1594 
1595 	connector = vop_get_edp_connector(vop);
1596 	if (!connector)
1597 		return -EINVAL;
1598 
1599 	if (source_name && strcmp(source_name, "auto") == 0)
1600 		ret = analogix_dp_start_crc(connector);
1601 	else if (!source_name)
1602 		ret = analogix_dp_stop_crc(connector);
1603 	else
1604 		ret = -EINVAL;
1605 
1606 	return ret;
1607 }
1608 
1609 static int
1610 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1611 			   size_t *values_cnt)
1612 {
1613 	if (source_name && strcmp(source_name, "auto") != 0)
1614 		return -EINVAL;
1615 
1616 	*values_cnt = 3;
1617 	return 0;
1618 }
1619 
1620 #else
1621 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1622 				   const char *source_name)
1623 {
1624 	return -ENODEV;
1625 }
1626 
1627 static int
1628 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1629 			   size_t *values_cnt)
1630 {
1631 	return -ENODEV;
1632 }
1633 #endif
1634 
1635 static const struct drm_crtc_funcs vop_crtc_funcs = {
1636 	.set_config = drm_atomic_helper_set_config,
1637 	.page_flip = drm_atomic_helper_page_flip,
1638 	.destroy = vop_crtc_destroy,
1639 	.reset = vop_crtc_reset,
1640 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1641 	.atomic_destroy_state = vop_crtc_destroy_state,
1642 	.enable_vblank = vop_crtc_enable_vblank,
1643 	.disable_vblank = vop_crtc_disable_vblank,
1644 	.set_crc_source = vop_crtc_set_crc_source,
1645 	.verify_crc_source = vop_crtc_verify_crc_source,
1646 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1647 };
1648 
1649 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1650 {
1651 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1652 	struct drm_framebuffer *fb = val;
1653 
1654 	drm_crtc_vblank_put(&vop->crtc);
1655 	drm_framebuffer_put(fb);
1656 }
1657 
1658 static void vop_handle_vblank(struct vop *vop)
1659 {
1660 	struct drm_device *drm = vop->drm_dev;
1661 	struct drm_crtc *crtc = &vop->crtc;
1662 
1663 	spin_lock(&drm->event_lock);
1664 	if (vop->event) {
1665 		drm_crtc_send_vblank_event(crtc, vop->event);
1666 		drm_crtc_vblank_put(crtc);
1667 		vop->event = NULL;
1668 	}
1669 	spin_unlock(&drm->event_lock);
1670 
1671 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1672 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1673 }
1674 
1675 static irqreturn_t vop_isr(int irq, void *data)
1676 {
1677 	struct vop *vop = data;
1678 	struct drm_crtc *crtc = &vop->crtc;
1679 	uint32_t active_irqs;
1680 	int ret = IRQ_NONE;
1681 
1682 	/*
1683 	 * The irq is shared with the iommu. If the runtime-pm state of the
1684 	 * vop-device is disabled the irq has to be targeted at the iommu.
1685 	 */
1686 	if (!pm_runtime_get_if_in_use(vop->dev))
1687 		return IRQ_NONE;
1688 
1689 	if (vop_core_clks_enable(vop)) {
1690 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1691 		goto out;
1692 	}
1693 
1694 	/*
1695 	 * interrupt register has interrupt status, enable and clear bits, we
1696 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1697 	*/
1698 	spin_lock(&vop->irq_lock);
1699 
1700 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1701 	/* Clear all active interrupt sources */
1702 	if (active_irqs)
1703 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1704 
1705 	spin_unlock(&vop->irq_lock);
1706 
1707 	/* This is expected for vop iommu irqs, since the irq is shared */
1708 	if (!active_irqs)
1709 		goto out_disable;
1710 
1711 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1712 		complete(&vop->dsp_hold_completion);
1713 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1714 		ret = IRQ_HANDLED;
1715 	}
1716 
1717 	if (active_irqs & LINE_FLAG_INTR) {
1718 		complete(&vop->line_flag_completion);
1719 		active_irqs &= ~LINE_FLAG_INTR;
1720 		ret = IRQ_HANDLED;
1721 	}
1722 
1723 	if (active_irqs & FS_INTR) {
1724 		drm_crtc_handle_vblank(crtc);
1725 		vop_handle_vblank(vop);
1726 		active_irqs &= ~FS_INTR;
1727 		ret = IRQ_HANDLED;
1728 	}
1729 
1730 	/* Unhandled irqs are spurious. */
1731 	if (active_irqs)
1732 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1733 			      active_irqs);
1734 
1735 out_disable:
1736 	vop_core_clks_disable(vop);
1737 out:
1738 	pm_runtime_put(vop->dev);
1739 	return ret;
1740 }
1741 
1742 static void vop_plane_add_properties(struct drm_plane *plane,
1743 				     const struct vop_win_data *win_data)
1744 {
1745 	unsigned int flags = 0;
1746 
1747 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1748 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1749 	if (flags)
1750 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1751 						   DRM_MODE_ROTATE_0 | flags);
1752 }
1753 
1754 static int vop_create_crtc(struct vop *vop)
1755 {
1756 	const struct vop_data *vop_data = vop->data;
1757 	struct device *dev = vop->dev;
1758 	struct drm_device *drm_dev = vop->drm_dev;
1759 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1760 	struct drm_crtc *crtc = &vop->crtc;
1761 	struct device_node *port;
1762 	int ret;
1763 	int i;
1764 
1765 	/*
1766 	 * Create drm_plane for primary and cursor planes first, since we need
1767 	 * to pass them to drm_crtc_init_with_planes, which sets the
1768 	 * "possible_crtcs" to the newly initialized crtc.
1769 	 */
1770 	for (i = 0; i < vop_data->win_size; i++) {
1771 		struct vop_win *vop_win = &vop->win[i];
1772 		const struct vop_win_data *win_data = vop_win->data;
1773 
1774 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1775 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1776 			continue;
1777 
1778 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1779 					       0, &vop_plane_funcs,
1780 					       win_data->phy->data_formats,
1781 					       win_data->phy->nformats,
1782 					       win_data->phy->format_modifiers,
1783 					       win_data->type, NULL);
1784 		if (ret) {
1785 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1786 				      ret);
1787 			goto err_cleanup_planes;
1788 		}
1789 
1790 		plane = &vop_win->base;
1791 		drm_plane_helper_add(plane, &plane_helper_funcs);
1792 		vop_plane_add_properties(plane, win_data);
1793 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1794 			primary = plane;
1795 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1796 			cursor = plane;
1797 	}
1798 
1799 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1800 					&vop_crtc_funcs, NULL);
1801 	if (ret)
1802 		goto err_cleanup_planes;
1803 
1804 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1805 	if (vop->lut_regs) {
1806 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1807 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1808 	}
1809 
1810 	/*
1811 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1812 	 * to the newly created crtc.
1813 	 */
1814 	for (i = 0; i < vop_data->win_size; i++) {
1815 		struct vop_win *vop_win = &vop->win[i];
1816 		const struct vop_win_data *win_data = vop_win->data;
1817 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1818 
1819 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1820 			continue;
1821 
1822 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1823 					       possible_crtcs,
1824 					       &vop_plane_funcs,
1825 					       win_data->phy->data_formats,
1826 					       win_data->phy->nformats,
1827 					       win_data->phy->format_modifiers,
1828 					       win_data->type, NULL);
1829 		if (ret) {
1830 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1831 				      ret);
1832 			goto err_cleanup_crtc;
1833 		}
1834 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1835 		vop_plane_add_properties(&vop_win->base, win_data);
1836 	}
1837 
1838 	port = of_get_child_by_name(dev->of_node, "port");
1839 	if (!port) {
1840 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1841 			      dev->of_node);
1842 		ret = -ENOENT;
1843 		goto err_cleanup_crtc;
1844 	}
1845 
1846 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1847 			   vop_fb_unref_worker);
1848 
1849 	init_completion(&vop->dsp_hold_completion);
1850 	init_completion(&vop->line_flag_completion);
1851 	crtc->port = port;
1852 
1853 	ret = drm_self_refresh_helper_init(crtc);
1854 	if (ret)
1855 		DRM_DEV_DEBUG_KMS(vop->dev,
1856 			"Failed to init %s with SR helpers %d, ignoring\n",
1857 			crtc->name, ret);
1858 
1859 	return 0;
1860 
1861 err_cleanup_crtc:
1862 	drm_crtc_cleanup(crtc);
1863 err_cleanup_planes:
1864 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1865 				 head)
1866 		drm_plane_cleanup(plane);
1867 	return ret;
1868 }
1869 
1870 static void vop_destroy_crtc(struct vop *vop)
1871 {
1872 	struct drm_crtc *crtc = &vop->crtc;
1873 	struct drm_device *drm_dev = vop->drm_dev;
1874 	struct drm_plane *plane, *tmp;
1875 
1876 	drm_self_refresh_helper_cleanup(crtc);
1877 
1878 	of_node_put(crtc->port);
1879 
1880 	/*
1881 	 * We need to cleanup the planes now.  Why?
1882 	 *
1883 	 * The planes are "&vop->win[i].base".  That means the memory is
1884 	 * all part of the big "struct vop" chunk of memory.  That memory
1885 	 * was devm allocated and associated with this component.  We need to
1886 	 * free it ourselves before vop_unbind() finishes.
1887 	 */
1888 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1889 				 head)
1890 		vop_plane_destroy(plane);
1891 
1892 	/*
1893 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1894 	 * references the CRTC.
1895 	 */
1896 	drm_crtc_cleanup(crtc);
1897 	drm_flip_work_cleanup(&vop->fb_unref_work);
1898 }
1899 
1900 static int vop_initial(struct vop *vop)
1901 {
1902 	struct reset_control *ahb_rst;
1903 	int i, ret;
1904 
1905 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1906 	if (IS_ERR(vop->hclk)) {
1907 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1908 		return PTR_ERR(vop->hclk);
1909 	}
1910 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1911 	if (IS_ERR(vop->aclk)) {
1912 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1913 		return PTR_ERR(vop->aclk);
1914 	}
1915 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1916 	if (IS_ERR(vop->dclk)) {
1917 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1918 		return PTR_ERR(vop->dclk);
1919 	}
1920 
1921 	ret = pm_runtime_get_sync(vop->dev);
1922 	if (ret < 0) {
1923 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1924 		return ret;
1925 	}
1926 
1927 	ret = clk_prepare(vop->dclk);
1928 	if (ret < 0) {
1929 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1930 		goto err_put_pm_runtime;
1931 	}
1932 
1933 	/* Enable both the hclk and aclk to setup the vop */
1934 	ret = clk_prepare_enable(vop->hclk);
1935 	if (ret < 0) {
1936 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1937 		goto err_unprepare_dclk;
1938 	}
1939 
1940 	ret = clk_prepare_enable(vop->aclk);
1941 	if (ret < 0) {
1942 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1943 		goto err_disable_hclk;
1944 	}
1945 
1946 	/*
1947 	 * do hclk_reset, reset all vop registers.
1948 	 */
1949 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1950 	if (IS_ERR(ahb_rst)) {
1951 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1952 		ret = PTR_ERR(ahb_rst);
1953 		goto err_disable_aclk;
1954 	}
1955 	reset_control_assert(ahb_rst);
1956 	usleep_range(10, 20);
1957 	reset_control_deassert(ahb_rst);
1958 
1959 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1960 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1961 
1962 	for (i = 0; i < vop->len; i += sizeof(u32))
1963 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1964 
1965 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1966 	VOP_REG_SET(vop, common, dsp_blank, 0);
1967 
1968 	for (i = 0; i < vop->data->win_size; i++) {
1969 		struct vop_win *vop_win = &vop->win[i];
1970 		const struct vop_win_data *win = vop_win->data;
1971 		int channel = i * 2 + 1;
1972 
1973 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1974 		vop_win_disable(vop, vop_win);
1975 		VOP_WIN_SET(vop, win, gate, 1);
1976 	}
1977 
1978 	vop_cfg_done(vop);
1979 
1980 	/*
1981 	 * do dclk_reset, let all config take affect.
1982 	 */
1983 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1984 	if (IS_ERR(vop->dclk_rst)) {
1985 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1986 		ret = PTR_ERR(vop->dclk_rst);
1987 		goto err_disable_aclk;
1988 	}
1989 	reset_control_assert(vop->dclk_rst);
1990 	usleep_range(10, 20);
1991 	reset_control_deassert(vop->dclk_rst);
1992 
1993 	clk_disable(vop->hclk);
1994 	clk_disable(vop->aclk);
1995 
1996 	vop->is_enabled = false;
1997 
1998 	pm_runtime_put_sync(vop->dev);
1999 
2000 	return 0;
2001 
2002 err_disable_aclk:
2003 	clk_disable_unprepare(vop->aclk);
2004 err_disable_hclk:
2005 	clk_disable_unprepare(vop->hclk);
2006 err_unprepare_dclk:
2007 	clk_unprepare(vop->dclk);
2008 err_put_pm_runtime:
2009 	pm_runtime_put_sync(vop->dev);
2010 	return ret;
2011 }
2012 
2013 /*
2014  * Initialize the vop->win array elements.
2015  */
2016 static void vop_win_init(struct vop *vop)
2017 {
2018 	const struct vop_data *vop_data = vop->data;
2019 	unsigned int i;
2020 
2021 	for (i = 0; i < vop_data->win_size; i++) {
2022 		struct vop_win *vop_win = &vop->win[i];
2023 		const struct vop_win_data *win_data = &vop_data->win[i];
2024 
2025 		vop_win->data = win_data;
2026 		vop_win->vop = vop;
2027 
2028 		if (vop_data->win_yuv2yuv)
2029 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2030 	}
2031 }
2032 
2033 /**
2034  * rockchip_drm_wait_vact_end
2035  * @crtc: CRTC to enable line flag
2036  * @mstimeout: millisecond for timeout
2037  *
2038  * Wait for vact_end line flag irq or timeout.
2039  *
2040  * Returns:
2041  * Zero on success, negative errno on failure.
2042  */
2043 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2044 {
2045 	struct vop *vop = to_vop(crtc);
2046 	unsigned long jiffies_left;
2047 	int ret = 0;
2048 
2049 	if (!crtc || !vop->is_enabled)
2050 		return -ENODEV;
2051 
2052 	mutex_lock(&vop->vop_lock);
2053 	if (mstimeout <= 0) {
2054 		ret = -EINVAL;
2055 		goto out;
2056 	}
2057 
2058 	if (vop_line_flag_irq_is_enabled(vop)) {
2059 		ret = -EBUSY;
2060 		goto out;
2061 	}
2062 
2063 	reinit_completion(&vop->line_flag_completion);
2064 	vop_line_flag_irq_enable(vop);
2065 
2066 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2067 						   msecs_to_jiffies(mstimeout));
2068 	vop_line_flag_irq_disable(vop);
2069 
2070 	if (jiffies_left == 0) {
2071 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2072 		ret = -ETIMEDOUT;
2073 		goto out;
2074 	}
2075 
2076 out:
2077 	mutex_unlock(&vop->vop_lock);
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2081 
2082 static int vop_bind(struct device *dev, struct device *master, void *data)
2083 {
2084 	struct platform_device *pdev = to_platform_device(dev);
2085 	const struct vop_data *vop_data;
2086 	struct drm_device *drm_dev = data;
2087 	struct vop *vop;
2088 	struct resource *res;
2089 	int ret, irq;
2090 
2091 	vop_data = of_device_get_match_data(dev);
2092 	if (!vop_data)
2093 		return -ENODEV;
2094 
2095 	/* Allocate vop struct and its vop_win array */
2096 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2097 			   GFP_KERNEL);
2098 	if (!vop)
2099 		return -ENOMEM;
2100 
2101 	vop->dev = dev;
2102 	vop->data = vop_data;
2103 	vop->drm_dev = drm_dev;
2104 	dev_set_drvdata(dev, vop);
2105 
2106 	vop_win_init(vop);
2107 
2108 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2109 	vop->len = resource_size(res);
2110 	vop->regs = devm_ioremap_resource(dev, res);
2111 	if (IS_ERR(vop->regs))
2112 		return PTR_ERR(vop->regs);
2113 
2114 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2115 	if (res) {
2116 		if (!vop_data->lut_size) {
2117 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2118 			return -EINVAL;
2119 		}
2120 		vop->lut_regs = devm_ioremap_resource(dev, res);
2121 		if (IS_ERR(vop->lut_regs))
2122 			return PTR_ERR(vop->lut_regs);
2123 	}
2124 
2125 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2126 	if (!vop->regsbak)
2127 		return -ENOMEM;
2128 
2129 	irq = platform_get_irq(pdev, 0);
2130 	if (irq < 0) {
2131 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2132 		return irq;
2133 	}
2134 	vop->irq = (unsigned int)irq;
2135 
2136 	spin_lock_init(&vop->reg_lock);
2137 	spin_lock_init(&vop->irq_lock);
2138 	mutex_init(&vop->vop_lock);
2139 
2140 	ret = vop_create_crtc(vop);
2141 	if (ret)
2142 		return ret;
2143 
2144 	pm_runtime_enable(&pdev->dev);
2145 
2146 	ret = vop_initial(vop);
2147 	if (ret < 0) {
2148 		DRM_DEV_ERROR(&pdev->dev,
2149 			      "cannot initial vop dev - err %d\n", ret);
2150 		goto err_disable_pm_runtime;
2151 	}
2152 
2153 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2154 			       IRQF_SHARED, dev_name(dev), vop);
2155 	if (ret)
2156 		goto err_disable_pm_runtime;
2157 
2158 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2159 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2160 		if (IS_ERR(vop->rgb)) {
2161 			ret = PTR_ERR(vop->rgb);
2162 			goto err_disable_pm_runtime;
2163 		}
2164 	}
2165 
2166 	return 0;
2167 
2168 err_disable_pm_runtime:
2169 	pm_runtime_disable(&pdev->dev);
2170 	vop_destroy_crtc(vop);
2171 	return ret;
2172 }
2173 
2174 static void vop_unbind(struct device *dev, struct device *master, void *data)
2175 {
2176 	struct vop *vop = dev_get_drvdata(dev);
2177 
2178 	if (vop->rgb)
2179 		rockchip_rgb_fini(vop->rgb);
2180 
2181 	pm_runtime_disable(dev);
2182 	vop_destroy_crtc(vop);
2183 
2184 	clk_unprepare(vop->aclk);
2185 	clk_unprepare(vop->hclk);
2186 	clk_unprepare(vop->dclk);
2187 }
2188 
2189 const struct component_ops vop_component_ops = {
2190 	.bind = vop_bind,
2191 	.unbind = vop_unbind,
2192 };
2193 EXPORT_SYMBOL_GPL(vop_component_ops);
2194