xref: /openbmc/linux/drivers/gpu/drm/nouveau/dispnv50/disp.c (revision ea6143a86c67110a2c62deaf70d0b7b92e4f865f)
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include <nvif/push507c.h>
46 
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/cl5070.h>
50 #include <nvif/event.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53 
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60 
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nouveau_fbcon.h"
68 
69 #include <subdev/bios/dp.h>
70 
71 /******************************************************************************
72  * EVO channel
73  *****************************************************************************/
74 
75 static int
76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
77 		 const s32 *oclass, u8 head, void *data, u32 size,
78 		 struct nv50_chan *chan)
79 {
80 	struct nvif_sclass *sclass;
81 	int ret, i, n;
82 
83 	chan->device = device;
84 
85 	ret = n = nvif_object_sclass_get(disp, &sclass);
86 	if (ret < 0)
87 		return ret;
88 
89 	while (oclass[0]) {
90 		for (i = 0; i < n; i++) {
91 			if (sclass[i].oclass == oclass[0]) {
92 				ret = nvif_object_ctor(disp, "kmsChan", 0,
93 						       oclass[0], data, size,
94 						       &chan->user);
95 				if (ret == 0)
96 					nvif_object_map(&chan->user, NULL, 0);
97 				nvif_object_sclass_put(&sclass);
98 				return ret;
99 			}
100 		}
101 		oclass++;
102 	}
103 
104 	nvif_object_sclass_put(&sclass);
105 	return -ENOSYS;
106 }
107 
108 static void
109 nv50_chan_destroy(struct nv50_chan *chan)
110 {
111 	nvif_object_dtor(&chan->user);
112 }
113 
114 /******************************************************************************
115  * DMA EVO channel
116  *****************************************************************************/
117 
118 void
119 nv50_dmac_destroy(struct nv50_dmac *dmac)
120 {
121 	nvif_object_dtor(&dmac->vram);
122 	nvif_object_dtor(&dmac->sync);
123 
124 	nv50_chan_destroy(&dmac->base);
125 
126 	nvif_mem_dtor(&dmac->_push.mem);
127 }
128 
129 static void
130 nv50_dmac_kick(struct nvif_push *push)
131 {
132 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
133 
134 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
135 	if (dmac->put != dmac->cur) {
136 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
137 		 * writes have been flushed right through to VRAM before writing PUT.
138 		 */
139 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
140 			struct nvif_device *device = dmac->base.device;
141 			nvif_wr32(&device->object, 0x070000, 0x00000001);
142 			nvif_msec(device, 2000,
143 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
144 					break;
145 			);
146 		}
147 
148 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
149 		dmac->put = dmac->cur;
150 	}
151 
152 	push->bgn = push->cur;
153 }
154 
155 static int
156 nv50_dmac_free(struct nv50_dmac *dmac)
157 {
158 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
159 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
160 		return get - dmac->cur - 5;
161 	return dmac->max - dmac->cur;
162 }
163 
164 static int
165 nv50_dmac_wind(struct nv50_dmac *dmac)
166 {
167 	/* Wait for GET to depart from the beginning of the push buffer to
168 	 * prevent writing PUT == GET, which would be ignored by HW.
169 	 */
170 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
171 	if (get == 0) {
172 		/* Corner-case, HW idle, but non-committed work pending. */
173 		if (dmac->put == 0)
174 			nv50_dmac_kick(dmac->push);
175 
176 		if (nvif_msec(dmac->base.device, 2000,
177 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
178 				break;
179 		) < 0)
180 			return -ETIMEDOUT;
181 	}
182 
183 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
184 	dmac->cur = 0;
185 	return 0;
186 }
187 
188 static int
189 nv50_dmac_wait(struct nvif_push *push, u32 size)
190 {
191 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
192 	int free;
193 
194 	if (WARN_ON(size > dmac->max))
195 		return -EINVAL;
196 
197 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
198 	if (dmac->cur + size >= dmac->max) {
199 		int ret = nv50_dmac_wind(dmac);
200 		if (ret)
201 			return ret;
202 
203 		push->cur = dmac->_push.mem.object.map.ptr;
204 		push->cur = push->cur + dmac->cur;
205 		nv50_dmac_kick(push);
206 	}
207 
208 	if (nvif_msec(dmac->base.device, 2000,
209 		if ((free = nv50_dmac_free(dmac)) >= size)
210 			break;
211 	) < 0) {
212 		WARN_ON(1);
213 		return -ETIMEDOUT;
214 	}
215 
216 	push->bgn = dmac->_push.mem.object.map.ptr;
217 	push->bgn = push->bgn + dmac->cur;
218 	push->cur = push->bgn;
219 	push->end = push->cur + free;
220 	return 0;
221 }
222 
223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
224 static int nv50_dmac_vram_pushbuf = -1;
225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
226 
227 int
228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
229 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
230 		 struct nv50_dmac *dmac)
231 {
232 	struct nouveau_cli *cli = (void *)device->object.client;
233 	struct nvif_disp_chan_v0 *args = data;
234 	u8 type = NVIF_MEM_COHERENT;
235 	int ret;
236 
237 	mutex_init(&dmac->lock);
238 
239 	/* Pascal added support for 47-bit physical addresses, but some
240 	 * parts of EVO still only accept 40-bit PAs.
241 	 *
242 	 * To avoid issues on systems with large amounts of RAM, and on
243 	 * systems where an IOMMU maps pages at a high address, we need
244 	 * to allocate push buffers in VRAM instead.
245 	 *
246 	 * This appears to match NVIDIA's behaviour on Pascal.
247 	 */
248 	if ((nv50_dmac_vram_pushbuf > 0) ||
249 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
250 		type |= NVIF_MEM_VRAM;
251 
252 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
253 				&dmac->_push.mem);
254 	if (ret)
255 		return ret;
256 
257 	dmac->ptr = dmac->_push.mem.object.map.ptr;
258 	dmac->_push.wait = nv50_dmac_wait;
259 	dmac->_push.kick = nv50_dmac_kick;
260 	dmac->push = &dmac->_push;
261 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
262 	dmac->push->cur = dmac->push->bgn;
263 	dmac->push->end = dmac->push->bgn;
264 	dmac->max = 0x1000/4 - 1;
265 
266 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
267 	 * of the push buffer aren't able to be used safely.
268 	 */
269 	if (disp->oclass < GV100_DISP)
270 		dmac->max -= 12;
271 
272 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
273 
274 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 			       &dmac->base);
276 	if (ret)
277 		return ret;
278 
279 	if (syncbuf < 0)
280 		return 0;
281 
282 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
283 			       NV_DMA_IN_MEMORY,
284 			       &(struct nv_dma_v0) {
285 					.target = NV_DMA_V0_TARGET_VRAM,
286 					.access = NV_DMA_V0_ACCESS_RDWR,
287 					.start = syncbuf + 0x0000,
288 					.limit = syncbuf + 0x0fff,
289 			       }, sizeof(struct nv_dma_v0),
290 			       &dmac->sync);
291 	if (ret)
292 		return ret;
293 
294 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
295 			       NV_DMA_IN_MEMORY,
296 			       &(struct nv_dma_v0) {
297 					.target = NV_DMA_V0_TARGET_VRAM,
298 					.access = NV_DMA_V0_ACCESS_RDWR,
299 					.start = 0,
300 					.limit = device->info.ram_user - 1,
301 			       }, sizeof(struct nv_dma_v0),
302 			       &dmac->vram);
303 	if (ret)
304 		return ret;
305 
306 	return ret;
307 }
308 
309 /******************************************************************************
310  * Output path helpers
311  *****************************************************************************/
312 static void
313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 		    struct nouveau_encoder *outp)
315 {
316 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 		 outp->base.base.name, outp->caps.dp_interlace);
318 }
319 
320 static int
321 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
322 			    struct drm_crtc_state *crtc_state,
323 			    struct drm_connector_state *conn_state,
324 			    struct drm_display_mode *native_mode)
325 {
326 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
327 	struct drm_display_mode *mode = &crtc_state->mode;
328 	struct drm_connector *connector = conn_state->connector;
329 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
330 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
331 
332 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
333 	asyc->scaler.full = false;
334 	if (!native_mode)
335 		return 0;
336 
337 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
338 		switch (connector->connector_type) {
339 		case DRM_MODE_CONNECTOR_LVDS:
340 		case DRM_MODE_CONNECTOR_eDP:
341 			/* Don't force scaler for EDID modes with
342 			 * same size as the native one (e.g. different
343 			 * refresh rate)
344 			 */
345 			if (mode->hdisplay == native_mode->hdisplay &&
346 			    mode->vdisplay == native_mode->vdisplay &&
347 			    mode->type & DRM_MODE_TYPE_DRIVER)
348 				break;
349 			mode = native_mode;
350 			asyc->scaler.full = true;
351 			break;
352 		default:
353 			break;
354 		}
355 	} else {
356 		mode = native_mode;
357 	}
358 
359 	if (!drm_mode_equal(adjusted_mode, mode)) {
360 		drm_mode_copy(adjusted_mode, mode);
361 		crtc_state->mode_changed = true;
362 	}
363 
364 	return 0;
365 }
366 
367 static int
368 nv50_outp_atomic_check(struct drm_encoder *encoder,
369 		       struct drm_crtc_state *crtc_state,
370 		       struct drm_connector_state *conn_state)
371 {
372 	struct drm_connector *connector = conn_state->connector;
373 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
374 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
375 	int ret;
376 
377 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
378 					  nv_connector->native_mode);
379 	if (ret)
380 		return ret;
381 
382 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
383 		asyh->or.bpc = connector->display_info.bpc;
384 
385 	return 0;
386 }
387 
388 struct nouveau_connector *
389 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
390 {
391 	struct drm_connector *connector;
392 	struct drm_connector_state *connector_state;
393 	struct drm_encoder *encoder = to_drm_encoder(outp);
394 	int i;
395 
396 	for_each_new_connector_in_state(state, connector, connector_state, i) {
397 		if (connector_state->best_encoder == encoder)
398 			return nouveau_connector(connector);
399 	}
400 
401 	return NULL;
402 }
403 
404 struct nouveau_connector *
405 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
406 {
407 	struct drm_connector *connector;
408 	struct drm_connector_state *connector_state;
409 	struct drm_encoder *encoder = to_drm_encoder(outp);
410 	int i;
411 
412 	for_each_old_connector_in_state(state, connector, connector_state, i) {
413 		if (connector_state->best_encoder == encoder)
414 			return nouveau_connector(connector);
415 	}
416 
417 	return NULL;
418 }
419 
420 static struct nouveau_crtc *
421 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
422 {
423 	struct drm_crtc *crtc;
424 	struct drm_crtc_state *crtc_state;
425 	const u32 mask = drm_encoder_mask(&outp->base.base);
426 	int i;
427 
428 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
429 		if (crtc_state->encoder_mask & mask)
430 			return nouveau_crtc(crtc);
431 	}
432 
433 	return NULL;
434 }
435 
436 /******************************************************************************
437  * DAC
438  *****************************************************************************/
439 static void
440 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
441 {
442 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
443 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
444 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
445 
446 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
447 	nv_encoder->crtc = NULL;
448 	nvif_outp_release(&nv_encoder->outp);
449 }
450 
451 static void
452 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
453 {
454 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
455 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
456 	struct nv50_head_atom *asyh =
457 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
458 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
459 	u32 ctrl = 0;
460 
461 	switch (nv_crtc->index) {
462 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
463 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
464 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
465 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
466 	default:
467 		WARN_ON(1);
468 		break;
469 	}
470 
471 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
472 
473 	nvif_outp_acquire_rgb_crt(&nv_encoder->outp);
474 
475 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
476 	asyh->or.depth = 0;
477 
478 	nv_encoder->crtc = &nv_crtc->base;
479 }
480 
481 static enum drm_connector_status
482 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
483 {
484 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
485 	u32 loadval;
486 	int ret;
487 
488 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
489 	if (loadval == 0)
490 		loadval = 340;
491 
492 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
493 	if (ret <= 0)
494 		return connector_status_disconnected;
495 
496 	return connector_status_connected;
497 }
498 
499 static const struct drm_encoder_helper_funcs
500 nv50_dac_help = {
501 	.atomic_check = nv50_outp_atomic_check,
502 	.atomic_enable = nv50_dac_atomic_enable,
503 	.atomic_disable = nv50_dac_atomic_disable,
504 	.detect = nv50_dac_detect
505 };
506 
507 static void
508 nv50_dac_destroy(struct drm_encoder *encoder)
509 {
510 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
511 
512 	nvif_outp_dtor(&nv_encoder->outp);
513 
514 	drm_encoder_cleanup(encoder);
515 	kfree(encoder);
516 }
517 
518 static const struct drm_encoder_funcs
519 nv50_dac_func = {
520 	.destroy = nv50_dac_destroy,
521 };
522 
523 static int
524 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
525 {
526 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
527 	struct nv50_disp *disp = nv50_disp(connector->dev);
528 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
529 	struct nvkm_i2c_bus *bus;
530 	struct nouveau_encoder *nv_encoder;
531 	struct drm_encoder *encoder;
532 	int type = DRM_MODE_ENCODER_DAC;
533 
534 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
535 	if (!nv_encoder)
536 		return -ENOMEM;
537 	nv_encoder->dcb = dcbe;
538 
539 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
540 	if (bus)
541 		nv_encoder->i2c = &bus->i2c;
542 
543 	encoder = to_drm_encoder(nv_encoder);
544 	encoder->possible_crtcs = dcbe->heads;
545 	encoder->possible_clones = 0;
546 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
547 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
548 	drm_encoder_helper_add(encoder, &nv50_dac_help);
549 
550 	drm_connector_attach_encoder(connector, encoder);
551 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
552 }
553 
554 /*
555  * audio component binding for ELD notification
556  */
557 static void
558 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
559 				int dev_id)
560 {
561 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
562 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
563 						 port, dev_id);
564 }
565 
566 static int
567 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
568 			     bool *enabled, unsigned char *buf, int max_bytes)
569 {
570 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
571 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
572 	struct drm_encoder *encoder;
573 	struct nouveau_encoder *nv_encoder;
574 	struct nouveau_crtc *nv_crtc;
575 	int ret = 0;
576 
577 	*enabled = false;
578 
579 	mutex_lock(&drm->audio.lock);
580 
581 	drm_for_each_encoder(encoder, drm->dev) {
582 		struct nouveau_connector *nv_connector = NULL;
583 
584 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
585 			continue; /* TODO */
586 
587 		nv_encoder = nouveau_encoder(encoder);
588 		nv_connector = nouveau_connector(nv_encoder->audio.connector);
589 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
590 
591 		if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
592 			continue;
593 
594 		*enabled = nv_encoder->audio.enabled;
595 		if (*enabled) {
596 			ret = drm_eld_size(nv_connector->base.eld);
597 			memcpy(buf, nv_connector->base.eld,
598 			       min(max_bytes, ret));
599 		}
600 		break;
601 	}
602 
603 	mutex_unlock(&drm->audio.lock);
604 
605 	return ret;
606 }
607 
608 static const struct drm_audio_component_ops nv50_audio_component_ops = {
609 	.get_eld = nv50_audio_component_get_eld,
610 };
611 
612 static int
613 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
614 			  void *data)
615 {
616 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
617 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
618 	struct drm_audio_component *acomp = data;
619 
620 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
621 		return -ENOMEM;
622 
623 	drm_modeset_lock_all(drm_dev);
624 	acomp->ops = &nv50_audio_component_ops;
625 	acomp->dev = kdev;
626 	drm->audio.component = acomp;
627 	drm_modeset_unlock_all(drm_dev);
628 	return 0;
629 }
630 
631 static void
632 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
633 			    void *data)
634 {
635 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
636 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
637 	struct drm_audio_component *acomp = data;
638 
639 	drm_modeset_lock_all(drm_dev);
640 	drm->audio.component = NULL;
641 	acomp->ops = NULL;
642 	acomp->dev = NULL;
643 	drm_modeset_unlock_all(drm_dev);
644 }
645 
646 static const struct component_ops nv50_audio_component_bind_ops = {
647 	.bind   = nv50_audio_component_bind,
648 	.unbind = nv50_audio_component_unbind,
649 };
650 
651 static void
652 nv50_audio_component_init(struct nouveau_drm *drm)
653 {
654 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
655 		return;
656 
657 	drm->audio.component_registered = true;
658 	mutex_init(&drm->audio.lock);
659 }
660 
661 static void
662 nv50_audio_component_fini(struct nouveau_drm *drm)
663 {
664 	if (!drm->audio.component_registered)
665 		return;
666 
667 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
668 	drm->audio.component_registered = false;
669 	mutex_destroy(&drm->audio.lock);
670 }
671 
672 /******************************************************************************
673  * Audio
674  *****************************************************************************/
675 static void
676 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
677 {
678 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
679 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
680 	struct nv50_disp *disp = nv50_disp(encoder->dev);
681 	struct nvif_outp *outp = &nv_encoder->outp;
682 	struct {
683 		struct nv50_disp_mthd_v1 base;
684 		struct nv50_disp_sor_hda_eld_v0 eld;
685 	} args = {
686 		.base.version = 1,
687 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
688 		.base.hasht   = nv_encoder->dcb->hasht,
689 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
690 				(0x0100 << nv_crtc->index),
691 	};
692 
693 	mutex_lock(&drm->audio.lock);
694 	if (nv_encoder->audio.enabled) {
695 		nv_encoder->audio.enabled = false;
696 		nv_encoder->audio.connector = NULL;
697 		nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
698 	}
699 	mutex_unlock(&drm->audio.lock);
700 
701 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
702 }
703 
704 static void
705 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
706 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
707 		  struct drm_display_mode *mode)
708 {
709 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
710 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
711 	struct nv50_disp *disp = nv50_disp(encoder->dev);
712 	struct nvif_outp *outp = &nv_encoder->outp;
713 	struct __packed {
714 		struct {
715 			struct nv50_disp_mthd_v1 mthd;
716 			struct nv50_disp_sor_hda_eld_v0 eld;
717 		} base;
718 		u8 data[sizeof(nv_connector->base.eld)];
719 	} args = {
720 		.base.mthd.version = 1,
721 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
722 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
723 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
724 				     (0x0100 << nv_crtc->index),
725 	};
726 
727 	if (!drm_detect_monitor_audio(nv_connector->edid))
728 		return;
729 
730 	mutex_lock(&drm->audio.lock);
731 
732 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
733 
734 	nvif_mthd(&disp->disp->object, 0, &args,
735 		  sizeof(args.base) + drm_eld_size(args.data));
736 	nv_encoder->audio.enabled = true;
737 	nv_encoder->audio.connector = &nv_connector->base;
738 
739 	mutex_unlock(&drm->audio.lock);
740 
741 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
742 }
743 
744 /******************************************************************************
745  * HDMI
746  *****************************************************************************/
747 static void
748 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
749 {
750 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
751 	struct nv50_disp *disp = nv50_disp(encoder->dev);
752 	struct {
753 		struct nv50_disp_mthd_v1 base;
754 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
755 	} args = {
756 		.base.version = 1,
757 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
758 		.base.hasht  = nv_encoder->dcb->hasht,
759 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
760 			       (0x0100 << nv_crtc->index),
761 	};
762 
763 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
764 }
765 
766 static void
767 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
768 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
769 		 struct drm_display_mode *mode)
770 {
771 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
772 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
773 	struct nv50_disp *disp = nv50_disp(encoder->dev);
774 	struct {
775 		struct nv50_disp_mthd_v1 base;
776 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
777 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
778 	} args = {
779 		.base.version = 1,
780 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
781 		.base.hasht  = nv_encoder->dcb->hasht,
782 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
783 			       (0x0100 << nv_crtc->index),
784 		.pwr.state = 1,
785 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
786 	};
787 	struct drm_hdmi_info *hdmi;
788 	u32 max_ac_packet;
789 	union hdmi_infoframe avi_frame;
790 	union hdmi_infoframe vendor_frame;
791 	bool high_tmds_clock_ratio = false, scrambling = false;
792 	u8 config;
793 	int ret;
794 	int size;
795 
796 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
797 		return;
798 
799 	hdmi = &nv_connector->base.display_info.hdmi;
800 
801 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
802 						       &nv_connector->base, mode);
803 	if (!ret) {
804 		drm_hdmi_avi_infoframe_quant_range(&avi_frame.avi,
805 						   &nv_connector->base, mode,
806 						   HDMI_QUANTIZATION_RANGE_FULL);
807 		/* We have an AVI InfoFrame, populate it to the display */
808 		args.pwr.avi_infoframe_length
809 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
810 	}
811 
812 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
813 							  &nv_connector->base, mode);
814 	if (!ret) {
815 		/* We have a Vendor InfoFrame, populate it to the display */
816 		args.pwr.vendor_infoframe_length
817 			= hdmi_infoframe_pack(&vendor_frame,
818 					      args.infoframes
819 					      + args.pwr.avi_infoframe_length,
820 					      17);
821 	}
822 
823 	max_ac_packet  = mode->htotal - mode->hdisplay;
824 	max_ac_packet -= args.pwr.rekey;
825 	max_ac_packet -= 18; /* constant from tegra */
826 	args.pwr.max_ac_packet = max_ac_packet / 32;
827 
828 	if (hdmi->scdc.scrambling.supported) {
829 		high_tmds_clock_ratio = mode->clock > 340000;
830 		scrambling = high_tmds_clock_ratio ||
831 			hdmi->scdc.scrambling.low_rates;
832 	}
833 
834 	args.pwr.scdc =
835 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
836 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
837 
838 	size = sizeof(args.base)
839 		+ sizeof(args.pwr)
840 		+ args.pwr.avi_infoframe_length
841 		+ args.pwr.vendor_infoframe_length;
842 	nvif_mthd(&disp->disp->object, 0, &args, size);
843 
844 	nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
845 
846 	/* If SCDC is supported by the downstream monitor, update
847 	 * divider / scrambling settings to what we programmed above.
848 	 */
849 	if (!hdmi->scdc.scrambling.supported)
850 		return;
851 
852 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
853 	if (ret < 0) {
854 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
855 		return;
856 	}
857 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
858 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
859 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
860 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
861 	if (ret < 0)
862 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
863 			 config, ret);
864 }
865 
866 /******************************************************************************
867  * MST
868  *****************************************************************************/
869 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
870 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
871 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
872 
873 struct nv50_mstc {
874 	struct nv50_mstm *mstm;
875 	struct drm_dp_mst_port *port;
876 	struct drm_connector connector;
877 
878 	struct drm_display_mode *native;
879 	struct edid *edid;
880 };
881 
882 struct nv50_msto {
883 	struct drm_encoder encoder;
884 
885 	/* head is statically assigned on msto creation */
886 	struct nv50_head *head;
887 	struct nv50_mstc *mstc;
888 	bool disabled;
889 	bool enabled;
890 };
891 
892 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
893 {
894 	struct nv50_msto *msto;
895 
896 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
897 		return nouveau_encoder(encoder);
898 
899 	msto = nv50_msto(encoder);
900 	if (!msto->mstc)
901 		return NULL;
902 	return msto->mstc->mstm->outp;
903 }
904 
905 static void
906 nv50_msto_cleanup(struct drm_atomic_state *state,
907 		  struct drm_dp_mst_topology_state *mst_state,
908 		  struct drm_dp_mst_topology_mgr *mgr,
909 		  struct nv50_msto *msto)
910 {
911 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
912 	struct drm_dp_mst_atomic_payload *payload =
913 		drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
914 
915 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
916 
917 	if (msto->disabled) {
918 		msto->mstc = NULL;
919 		msto->disabled = false;
920 	} else if (msto->enabled) {
921 		drm_dp_add_payload_part2(mgr, state, payload);
922 		msto->enabled = false;
923 	}
924 }
925 
926 static void
927 nv50_msto_prepare(struct drm_atomic_state *state,
928 		  struct drm_dp_mst_topology_state *mst_state,
929 		  struct drm_dp_mst_topology_mgr *mgr,
930 		  struct nv50_msto *msto)
931 {
932 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
933 	struct nv50_mstc *mstc = msto->mstc;
934 	struct nv50_mstm *mstm = mstc->mstm;
935 	struct drm_dp_mst_atomic_payload *payload;
936 	struct {
937 		struct nv50_disp_mthd_v1 base;
938 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
939 	} args = {
940 		.base.version = 1,
941 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
942 		.base.hasht  = mstm->outp->dcb->hasht,
943 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
944 			       (0x0100 << msto->head->base.index),
945 	};
946 
947 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
948 
949 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
950 
951 	// TODO: Figure out if we want to do a better job of handling VCPI allocation failures here?
952 	if (msto->disabled) {
953 		drm_dp_remove_payload(mgr, mst_state, payload);
954 	} else {
955 		if (msto->enabled)
956 			drm_dp_add_payload_part1(mgr, mst_state, payload);
957 
958 		args.vcpi.start_slot = payload->vc_start_slot;
959 		args.vcpi.num_slots = payload->time_slots;
960 		args.vcpi.pbn = payload->pbn;
961 		args.vcpi.aligned_pbn = payload->time_slots * mst_state->pbn_div;
962 	}
963 
964 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
965 		  msto->encoder.name, msto->head->base.base.name,
966 		  args.vcpi.start_slot, args.vcpi.num_slots,
967 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
968 
969 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
970 }
971 
972 static int
973 nv50_msto_atomic_check(struct drm_encoder *encoder,
974 		       struct drm_crtc_state *crtc_state,
975 		       struct drm_connector_state *conn_state)
976 {
977 	struct drm_atomic_state *state = crtc_state->state;
978 	struct drm_connector *connector = conn_state->connector;
979 	struct drm_dp_mst_topology_state *mst_state;
980 	struct nv50_mstc *mstc = nv50_mstc(connector);
981 	struct nv50_mstm *mstm = mstc->mstm;
982 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
983 	int slots;
984 	int ret;
985 
986 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
987 					  mstc->native);
988 	if (ret)
989 		return ret;
990 
991 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
992 		return 0;
993 
994 	/*
995 	 * When restoring duplicated states, we need to make sure that the bw
996 	 * remains the same and avoid recalculating it, as the connector's bpc
997 	 * may have changed after the state was duplicated
998 	 */
999 	if (!state->duplicated) {
1000 		const int clock = crtc_state->adjusted_mode.clock;
1001 
1002 		asyh->or.bpc = connector->display_info.bpc;
1003 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1004 						    false);
1005 	}
1006 
1007 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
1008 	if (IS_ERR(mst_state))
1009 		return PTR_ERR(mst_state);
1010 
1011 	if (!mst_state->pbn_div) {
1012 		struct nouveau_encoder *outp = mstc->mstm->outp;
1013 
1014 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
1015 							      outp->dp.link_bw, outp->dp.link_nr);
1016 	}
1017 
1018 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1019 	if (slots < 0)
1020 		return slots;
1021 
1022 	asyh->dp.tu = slots;
1023 
1024 	return 0;
1025 }
1026 
1027 static u8
1028 nv50_dp_bpc_to_depth(unsigned int bpc)
1029 {
1030 	switch (bpc) {
1031 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1032 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1033 	case 10:
1034 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1035 	}
1036 }
1037 
1038 static void
1039 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1040 {
1041 	struct nv50_msto *msto = nv50_msto(encoder);
1042 	struct nv50_head *head = msto->head;
1043 	struct nv50_head_atom *asyh =
1044 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1045 	struct nv50_mstc *mstc = NULL;
1046 	struct nv50_mstm *mstm = NULL;
1047 	struct drm_connector *connector;
1048 	struct drm_connector_list_iter conn_iter;
1049 	u8 proto;
1050 
1051 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1052 	drm_for_each_connector_iter(connector, &conn_iter) {
1053 		if (connector->state->best_encoder == &msto->encoder) {
1054 			mstc = nv50_mstc(connector);
1055 			mstm = mstc->mstm;
1056 			break;
1057 		}
1058 	}
1059 	drm_connector_list_iter_end(&conn_iter);
1060 
1061 	if (WARN_ON(!mstc))
1062 		return;
1063 
1064 	if (!mstm->links++) {
1065 		/*XXX: MST audio. */
1066 		nvif_outp_acquire_dp(&mstm->outp->outp, false);
1067 	}
1068 
1069 	if (mstm->outp->outp.or.link & 1)
1070 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1071 	else
1072 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1073 
1074 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1075 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1076 
1077 	msto->mstc = mstc;
1078 	msto->enabled = true;
1079 	mstm->modified = true;
1080 }
1081 
1082 static void
1083 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1084 {
1085 	struct nv50_msto *msto = nv50_msto(encoder);
1086 	struct nv50_mstc *mstc = msto->mstc;
1087 	struct nv50_mstm *mstm = mstc->mstm;
1088 
1089 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1090 	mstm->modified = true;
1091 	if (!--mstm->links)
1092 		mstm->disabled = true;
1093 	msto->disabled = true;
1094 }
1095 
1096 static const struct drm_encoder_helper_funcs
1097 nv50_msto_help = {
1098 	.atomic_disable = nv50_msto_atomic_disable,
1099 	.atomic_enable = nv50_msto_atomic_enable,
1100 	.atomic_check = nv50_msto_atomic_check,
1101 };
1102 
1103 static void
1104 nv50_msto_destroy(struct drm_encoder *encoder)
1105 {
1106 	struct nv50_msto *msto = nv50_msto(encoder);
1107 	drm_encoder_cleanup(&msto->encoder);
1108 	kfree(msto);
1109 }
1110 
1111 static const struct drm_encoder_funcs
1112 nv50_msto = {
1113 	.destroy = nv50_msto_destroy,
1114 };
1115 
1116 static struct nv50_msto *
1117 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1118 {
1119 	struct nv50_msto *msto;
1120 	int ret;
1121 
1122 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1123 	if (!msto)
1124 		return ERR_PTR(-ENOMEM);
1125 
1126 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1127 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1128 	if (ret) {
1129 		kfree(msto);
1130 		return ERR_PTR(ret);
1131 	}
1132 
1133 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1134 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1135 	msto->head = head;
1136 	return msto;
1137 }
1138 
1139 static struct drm_encoder *
1140 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1141 			      struct drm_atomic_state *state)
1142 {
1143 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1144 											 connector);
1145 	struct nv50_mstc *mstc = nv50_mstc(connector);
1146 	struct drm_crtc *crtc = connector_state->crtc;
1147 
1148 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1149 		return NULL;
1150 
1151 	return &nv50_head(crtc)->msto->encoder;
1152 }
1153 
1154 static enum drm_mode_status
1155 nv50_mstc_mode_valid(struct drm_connector *connector,
1156 		     struct drm_display_mode *mode)
1157 {
1158 	struct nv50_mstc *mstc = nv50_mstc(connector);
1159 	struct nouveau_encoder *outp = mstc->mstm->outp;
1160 
1161 	/* TODO: calculate the PBN from the dotclock and validate against the
1162 	 * MSTB's max possible PBN
1163 	 */
1164 
1165 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1166 }
1167 
1168 static int
1169 nv50_mstc_get_modes(struct drm_connector *connector)
1170 {
1171 	struct nv50_mstc *mstc = nv50_mstc(connector);
1172 	int ret = 0;
1173 
1174 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1175 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1176 	if (mstc->edid)
1177 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1178 
1179 	/*
1180 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1181 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1182 	 * to properly fix this by dynamically selecting the highest possible
1183 	 * bpc that would fit in the topology
1184 	 */
1185 	if (connector->display_info.bpc)
1186 		connector->display_info.bpc =
1187 			clamp(connector->display_info.bpc, 6U, 8U);
1188 	else
1189 		connector->display_info.bpc = 8;
1190 
1191 	if (mstc->native)
1192 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1193 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1194 	return ret;
1195 }
1196 
1197 static int
1198 nv50_mstc_atomic_check(struct drm_connector *connector,
1199 		       struct drm_atomic_state *state)
1200 {
1201 	struct nv50_mstc *mstc = nv50_mstc(connector);
1202 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1203 
1204 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1205 }
1206 
1207 static int
1208 nv50_mstc_detect(struct drm_connector *connector,
1209 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1210 {
1211 	struct nv50_mstc *mstc = nv50_mstc(connector);
1212 	int ret;
1213 
1214 	if (drm_connector_is_unregistered(connector))
1215 		return connector_status_disconnected;
1216 
1217 	ret = pm_runtime_get_sync(connector->dev->dev);
1218 	if (ret < 0 && ret != -EACCES) {
1219 		pm_runtime_put_autosuspend(connector->dev->dev);
1220 		return connector_status_disconnected;
1221 	}
1222 
1223 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1224 				     mstc->port);
1225 	if (ret != connector_status_connected)
1226 		goto out;
1227 
1228 out:
1229 	pm_runtime_mark_last_busy(connector->dev->dev);
1230 	pm_runtime_put_autosuspend(connector->dev->dev);
1231 	return ret;
1232 }
1233 
1234 static const struct drm_connector_helper_funcs
1235 nv50_mstc_help = {
1236 	.get_modes = nv50_mstc_get_modes,
1237 	.mode_valid = nv50_mstc_mode_valid,
1238 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1239 	.atomic_check = nv50_mstc_atomic_check,
1240 	.detect_ctx = nv50_mstc_detect,
1241 };
1242 
1243 static void
1244 nv50_mstc_destroy(struct drm_connector *connector)
1245 {
1246 	struct nv50_mstc *mstc = nv50_mstc(connector);
1247 
1248 	drm_connector_cleanup(&mstc->connector);
1249 	drm_dp_mst_put_port_malloc(mstc->port);
1250 
1251 	kfree(mstc);
1252 }
1253 
1254 static const struct drm_connector_funcs
1255 nv50_mstc = {
1256 	.reset = nouveau_conn_reset,
1257 	.fill_modes = drm_helper_probe_single_connector_modes,
1258 	.destroy = nv50_mstc_destroy,
1259 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1260 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1261 	.atomic_set_property = nouveau_conn_atomic_set_property,
1262 	.atomic_get_property = nouveau_conn_atomic_get_property,
1263 };
1264 
1265 static int
1266 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1267 	      const char *path, struct nv50_mstc **pmstc)
1268 {
1269 	struct drm_device *dev = mstm->outp->base.base.dev;
1270 	struct drm_crtc *crtc;
1271 	struct nv50_mstc *mstc;
1272 	int ret;
1273 
1274 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1275 		return -ENOMEM;
1276 	mstc->mstm = mstm;
1277 	mstc->port = port;
1278 
1279 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1280 				 DRM_MODE_CONNECTOR_DisplayPort);
1281 	if (ret) {
1282 		kfree(*pmstc);
1283 		*pmstc = NULL;
1284 		return ret;
1285 	}
1286 
1287 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1288 
1289 	mstc->connector.funcs->reset(&mstc->connector);
1290 	nouveau_conn_attach_properties(&mstc->connector);
1291 
1292 	drm_for_each_crtc(crtc, dev) {
1293 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1294 			continue;
1295 
1296 		drm_connector_attach_encoder(&mstc->connector,
1297 					     &nv50_head(crtc)->msto->encoder);
1298 	}
1299 
1300 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1301 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1302 	drm_connector_set_path_property(&mstc->connector, path);
1303 	drm_dp_mst_get_port_malloc(port);
1304 	return 0;
1305 }
1306 
1307 static void
1308 nv50_mstm_cleanup(struct drm_atomic_state *state,
1309 		  struct drm_dp_mst_topology_state *mst_state,
1310 		  struct nv50_mstm *mstm)
1311 {
1312 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1313 	struct drm_encoder *encoder;
1314 
1315 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1316 	drm_dp_check_act_status(&mstm->mgr);
1317 
1318 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1319 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1320 			struct nv50_msto *msto = nv50_msto(encoder);
1321 			struct nv50_mstc *mstc = msto->mstc;
1322 			if (mstc && mstc->mstm == mstm)
1323 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1324 		}
1325 	}
1326 
1327 	mstm->modified = false;
1328 }
1329 
1330 static void
1331 nv50_mstm_prepare(struct drm_atomic_state *state,
1332 		  struct drm_dp_mst_topology_state *mst_state,
1333 		  struct nv50_mstm *mstm)
1334 {
1335 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1336 	struct drm_encoder *encoder;
1337 
1338 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1339 
1340 	/* Disable payloads first */
1341 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1342 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1343 			struct nv50_msto *msto = nv50_msto(encoder);
1344 			struct nv50_mstc *mstc = msto->mstc;
1345 			if (mstc && mstc->mstm == mstm && msto->disabled)
1346 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1347 		}
1348 	}
1349 
1350 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1351 	 * active) heads that may have had their VC slots shifted left after the previous step
1352 	 */
1353 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1354 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1355 			struct nv50_msto *msto = nv50_msto(encoder);
1356 			struct nv50_mstc *mstc = msto->mstc;
1357 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1358 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1359 		}
1360 	}
1361 
1362 	if (mstm->disabled) {
1363 		if (!mstm->links)
1364 			nvif_outp_release(&mstm->outp->outp);
1365 		mstm->disabled = false;
1366 	}
1367 }
1368 
1369 static struct drm_connector *
1370 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1371 			struct drm_dp_mst_port *port, const char *path)
1372 {
1373 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1374 	struct nv50_mstc *mstc;
1375 	int ret;
1376 
1377 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1378 	if (ret)
1379 		return NULL;
1380 
1381 	return &mstc->connector;
1382 }
1383 
1384 static const struct drm_dp_mst_topology_cbs
1385 nv50_mstm = {
1386 	.add_connector = nv50_mstm_add_connector,
1387 };
1388 
1389 bool
1390 nv50_mstm_service(struct nouveau_drm *drm,
1391 		  struct nouveau_connector *nv_connector,
1392 		  struct nv50_mstm *mstm)
1393 {
1394 	struct drm_dp_aux *aux = &nv_connector->aux;
1395 	bool handled = true, ret = true;
1396 	int rc;
1397 	u8 esi[8] = {};
1398 
1399 	while (handled) {
1400 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1401 		if (rc != 8) {
1402 			ret = false;
1403 			break;
1404 		}
1405 
1406 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1407 		if (!handled)
1408 			break;
1409 
1410 		rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1411 				       3);
1412 		if (rc != 3) {
1413 			ret = false;
1414 			break;
1415 		}
1416 	}
1417 
1418 	if (!ret)
1419 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1420 			 nv_connector->base.name, rc);
1421 
1422 	return ret;
1423 }
1424 
1425 void
1426 nv50_mstm_remove(struct nv50_mstm *mstm)
1427 {
1428 	mstm->is_mst = false;
1429 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1430 }
1431 
1432 static int
1433 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1434 {
1435 	struct nouveau_encoder *outp = mstm->outp;
1436 	struct {
1437 		struct nv50_disp_mthd_v1 base;
1438 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1439 	} args = {
1440 		.base.version = 1,
1441 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1442 		.base.hasht = outp->dcb->hasht,
1443 		.base.hashm = outp->dcb->hashm,
1444 		.mst.state = state,
1445 	};
1446 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1447 	struct nvif_object *disp = &drm->display->disp.object;
1448 
1449 	return nvif_mthd(disp, 0, &args, sizeof(args));
1450 }
1451 
1452 int
1453 nv50_mstm_detect(struct nouveau_encoder *outp)
1454 {
1455 	struct nv50_mstm *mstm = outp->dp.mstm;
1456 	struct drm_dp_aux *aux;
1457 	int ret;
1458 
1459 	if (!mstm || !mstm->can_mst)
1460 		return 0;
1461 
1462 	aux = mstm->mgr.aux;
1463 
1464 	/* Clear any leftover MST state we didn't set ourselves by first
1465 	 * disabling MST if it was already enabled
1466 	 */
1467 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1468 	if (ret < 0)
1469 		return ret;
1470 
1471 	/* And start enabling */
1472 	ret = nv50_mstm_enable(mstm, true);
1473 	if (ret)
1474 		return ret;
1475 
1476 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1477 	if (ret) {
1478 		nv50_mstm_enable(mstm, false);
1479 		return ret;
1480 	}
1481 
1482 	mstm->is_mst = true;
1483 	return 1;
1484 }
1485 
1486 static void
1487 nv50_mstm_fini(struct nouveau_encoder *outp)
1488 {
1489 	struct nv50_mstm *mstm = outp->dp.mstm;
1490 
1491 	if (!mstm)
1492 		return;
1493 
1494 	/* Don't change the MST state of this connector until we've finished
1495 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1496 	 * path to protect mstm->is_mst without potentially deadlocking
1497 	 */
1498 	mutex_lock(&outp->dp.hpd_irq_lock);
1499 	mstm->suspended = true;
1500 	mutex_unlock(&outp->dp.hpd_irq_lock);
1501 
1502 	if (mstm->is_mst)
1503 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1504 }
1505 
1506 static void
1507 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1508 {
1509 	struct nv50_mstm *mstm = outp->dp.mstm;
1510 	int ret = 0;
1511 
1512 	if (!mstm)
1513 		return;
1514 
1515 	if (mstm->is_mst) {
1516 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1517 		if (ret == -1)
1518 			nv50_mstm_remove(mstm);
1519 	}
1520 
1521 	mutex_lock(&outp->dp.hpd_irq_lock);
1522 	mstm->suspended = false;
1523 	mutex_unlock(&outp->dp.hpd_irq_lock);
1524 
1525 	if (ret == -1)
1526 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1527 }
1528 
1529 static void
1530 nv50_mstm_del(struct nv50_mstm **pmstm)
1531 {
1532 	struct nv50_mstm *mstm = *pmstm;
1533 	if (mstm) {
1534 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1535 		kfree(*pmstm);
1536 		*pmstm = NULL;
1537 	}
1538 }
1539 
1540 static int
1541 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1542 	      int conn_base_id, struct nv50_mstm **pmstm)
1543 {
1544 	const int max_payloads = hweight8(outp->dcb->heads);
1545 	struct drm_device *dev = outp->base.base.dev;
1546 	struct nv50_mstm *mstm;
1547 	int ret;
1548 
1549 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1550 		return -ENOMEM;
1551 	mstm->outp = outp;
1552 	mstm->mgr.cbs = &nv50_mstm;
1553 
1554 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1555 					   max_payloads, conn_base_id);
1556 	if (ret)
1557 		return ret;
1558 
1559 	return 0;
1560 }
1561 
1562 /******************************************************************************
1563  * SOR
1564  *****************************************************************************/
1565 static void
1566 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1567 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1568 {
1569 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1570 	struct nv50_core *core = disp->core;
1571 
1572 	if (!asyh) {
1573 		nv_encoder->ctrl &= ~BIT(head);
1574 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1575 			nv_encoder->ctrl = 0;
1576 	} else {
1577 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1578 		nv_encoder->ctrl |= BIT(head);
1579 		asyh->or.depth = depth;
1580 	}
1581 
1582 	core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1583 }
1584 
1585 /* TODO: Should we extend this to PWM-only backlights?
1586  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1587  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1588  * fixed time delay from the vbios…
1589  */
1590 static void
1591 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1592 {
1593 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1594 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1595 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1596 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1597 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1598 	struct nouveau_backlight *backlight = nv_connector->backlight;
1599 #endif
1600 	struct drm_dp_aux *aux = &nv_connector->aux;
1601 	int ret;
1602 	u8 pwr;
1603 
1604 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1605 	if (backlight && backlight->uses_dpcd) {
1606 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1607 		if (ret < 0)
1608 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1609 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1610 	}
1611 #endif
1612 
1613 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1614 		ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1615 
1616 		if (ret == 0) {
1617 			pwr &= ~DP_SET_POWER_MASK;
1618 			pwr |=  DP_SET_POWER_D3;
1619 			drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1620 		}
1621 	}
1622 
1623 	nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1624 	nv50_audio_disable(encoder, nv_crtc);
1625 	nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1626 	nvif_outp_release(&nv_encoder->outp);
1627 	nv_encoder->crtc = NULL;
1628 }
1629 
1630 static void
1631 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1632 {
1633 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1634 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1635 	struct nv50_head_atom *asyh =
1636 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1637 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1638 	struct {
1639 		struct nv50_disp_mthd_v1 base;
1640 		struct nv50_disp_sor_lvds_script_v0 lvds;
1641 	} lvds = {
1642 		.base.version = 1,
1643 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1644 		.base.hasht   = nv_encoder->dcb->hasht,
1645 		.base.hashm   = nv_encoder->dcb->hashm,
1646 	};
1647 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1648 	struct drm_device *dev = encoder->dev;
1649 	struct nouveau_drm *drm = nouveau_drm(dev);
1650 	struct nouveau_connector *nv_connector;
1651 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1652 	struct nouveau_backlight *backlight;
1653 #endif
1654 	struct nvbios *bios = &drm->vbios;
1655 	bool hda = false;
1656 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1657 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1658 
1659 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1660 	nv_encoder->crtc = &nv_crtc->base;
1661 
1662 	if ((disp->disp->object.oclass == GT214_DISP ||
1663 	     disp->disp->object.oclass >= GF110_DISP) &&
1664 	    drm_detect_monitor_audio(nv_connector->edid))
1665 		hda = true;
1666 
1667 	switch (nv_encoder->dcb->type) {
1668 	case DCB_OUTPUT_TMDS:
1669 		nvif_outp_acquire_tmds(&nv_encoder->outp, hda);
1670 		if (nv_encoder->outp.or.link & 1) {
1671 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1672 			/* Only enable dual-link if:
1673 			 *  - Need to (i.e. rate > 165MHz)
1674 			 *  - DCB says we can
1675 			 *  - Not an HDMI monitor, since there's no dual-link
1676 			 *    on HDMI.
1677 			 */
1678 			if (mode->clock >= 165000 &&
1679 			    nv_encoder->dcb->duallink_possible &&
1680 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1681 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1682 		} else {
1683 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1684 		}
1685 
1686 		nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1687 		break;
1688 	case DCB_OUTPUT_LVDS:
1689 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1690 
1691 		if (bios->fp_no_ddc) {
1692 			if (bios->fp.dual_link)
1693 				lvds.lvds.script |= 0x0100;
1694 			if (bios->fp.if_is_24bit)
1695 				lvds.lvds.script |= 0x0200;
1696 		} else {
1697 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1698 				if (((u8 *)nv_connector->edid)[121] == 2)
1699 					lvds.lvds.script |= 0x0100;
1700 			} else
1701 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1702 				lvds.lvds.script |= 0x0100;
1703 			}
1704 
1705 			if (lvds.lvds.script & 0x0100) {
1706 				if (bios->fp.strapless_is_24bit & 2)
1707 					lvds.lvds.script |= 0x0200;
1708 			} else {
1709 				if (bios->fp.strapless_is_24bit & 1)
1710 					lvds.lvds.script |= 0x0200;
1711 			}
1712 
1713 			if (asyh->or.bpc == 8)
1714 				lvds.lvds.script |= 0x0200;
1715 		}
1716 
1717 		nvif_outp_acquire_lvds(&nv_encoder->outp);
1718 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1719 		break;
1720 	case DCB_OUTPUT_DP:
1721 		nvif_outp_acquire_dp(&nv_encoder->outp, hda);
1722 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1723 
1724 		if (nv_encoder->outp.or.link & 1)
1725 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1726 		else
1727 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1728 
1729 		nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1730 
1731 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1732 		backlight = nv_connector->backlight;
1733 		if (backlight && backlight->uses_dpcd)
1734 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1735 						 (u16)backlight->dev->props.brightness);
1736 #endif
1737 
1738 		break;
1739 	default:
1740 		BUG();
1741 		break;
1742 	}
1743 
1744 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1745 }
1746 
1747 static const struct drm_encoder_helper_funcs
1748 nv50_sor_help = {
1749 	.atomic_check = nv50_outp_atomic_check,
1750 	.atomic_enable = nv50_sor_atomic_enable,
1751 	.atomic_disable = nv50_sor_atomic_disable,
1752 };
1753 
1754 static void
1755 nv50_sor_destroy(struct drm_encoder *encoder)
1756 {
1757 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1758 
1759 	nvif_outp_dtor(&nv_encoder->outp);
1760 
1761 	nv50_mstm_del(&nv_encoder->dp.mstm);
1762 	drm_encoder_cleanup(encoder);
1763 
1764 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1765 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1766 
1767 	kfree(encoder);
1768 }
1769 
1770 static const struct drm_encoder_funcs
1771 nv50_sor_func = {
1772 	.destroy = nv50_sor_destroy,
1773 };
1774 
1775 bool nv50_has_mst(struct nouveau_drm *drm)
1776 {
1777 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1778 	u32 data;
1779 	u8 ver, hdr, cnt, len;
1780 
1781 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1782 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1783 }
1784 
1785 static int
1786 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1787 {
1788 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1789 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1790 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1791 	struct nouveau_encoder *nv_encoder;
1792 	struct drm_encoder *encoder;
1793 	struct nv50_disp *disp = nv50_disp(connector->dev);
1794 	int type, ret;
1795 
1796 	switch (dcbe->type) {
1797 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1798 	case DCB_OUTPUT_TMDS:
1799 	case DCB_OUTPUT_DP:
1800 	default:
1801 		type = DRM_MODE_ENCODER_TMDS;
1802 		break;
1803 	}
1804 
1805 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1806 	if (!nv_encoder)
1807 		return -ENOMEM;
1808 	nv_encoder->dcb = dcbe;
1809 	nv_encoder->update = nv50_sor_update;
1810 
1811 	encoder = to_drm_encoder(nv_encoder);
1812 	encoder->possible_crtcs = dcbe->heads;
1813 	encoder->possible_clones = 0;
1814 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1815 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1816 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1817 
1818 	drm_connector_attach_encoder(connector, encoder);
1819 
1820 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1821 	nv50_outp_dump_caps(drm, nv_encoder);
1822 
1823 	if (dcbe->type == DCB_OUTPUT_DP) {
1824 		struct nvkm_i2c_aux *aux =
1825 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1826 
1827 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1828 
1829 		if (aux) {
1830 			if (disp->disp->object.oclass < GF110_DISP) {
1831 				/* HW has no support for address-only
1832 				 * transactions, so we're required to
1833 				 * use custom I2C-over-AUX code.
1834 				 */
1835 				nv_encoder->i2c = &aux->i2c;
1836 			} else {
1837 				nv_encoder->i2c = &nv_connector->aux.ddc;
1838 			}
1839 			nv_encoder->aux = aux;
1840 		}
1841 
1842 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1843 		    nv50_has_mst(drm)) {
1844 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1845 					    16, nv_connector->base.base.id,
1846 					    &nv_encoder->dp.mstm);
1847 			if (ret)
1848 				return ret;
1849 		}
1850 	} else {
1851 		struct nvkm_i2c_bus *bus =
1852 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1853 		if (bus)
1854 			nv_encoder->i2c = &bus->i2c;
1855 	}
1856 
1857 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
1858 }
1859 
1860 /******************************************************************************
1861  * PIOR
1862  *****************************************************************************/
1863 static int
1864 nv50_pior_atomic_check(struct drm_encoder *encoder,
1865 		       struct drm_crtc_state *crtc_state,
1866 		       struct drm_connector_state *conn_state)
1867 {
1868 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1869 	if (ret)
1870 		return ret;
1871 	crtc_state->adjusted_mode.clock *= 2;
1872 	return 0;
1873 }
1874 
1875 static void
1876 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1877 {
1878 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1879 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1880 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1881 
1882 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1883 	nv_encoder->crtc = NULL;
1884 	nvif_outp_release(&nv_encoder->outp);
1885 }
1886 
1887 static void
1888 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1889 {
1890 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1891 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1892 	struct nv50_head_atom *asyh =
1893 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1894 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1895 	u32 ctrl = 0;
1896 
1897 	switch (nv_crtc->index) {
1898 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1899 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1900 	default:
1901 		WARN_ON(1);
1902 		break;
1903 	}
1904 
1905 	switch (asyh->or.bpc) {
1906 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1907 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1908 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1909 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1910 	}
1911 
1912 	switch (nv_encoder->dcb->type) {
1913 	case DCB_OUTPUT_TMDS:
1914 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1915 		nvif_outp_acquire_tmds(&nv_encoder->outp, false);
1916 		break;
1917 	case DCB_OUTPUT_DP:
1918 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1919 		nvif_outp_acquire_dp(&nv_encoder->outp, false);
1920 		break;
1921 	default:
1922 		BUG();
1923 		break;
1924 	}
1925 
1926 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1927 	nv_encoder->crtc = &nv_crtc->base;
1928 }
1929 
1930 static const struct drm_encoder_helper_funcs
1931 nv50_pior_help = {
1932 	.atomic_check = nv50_pior_atomic_check,
1933 	.atomic_enable = nv50_pior_atomic_enable,
1934 	.atomic_disable = nv50_pior_atomic_disable,
1935 };
1936 
1937 static void
1938 nv50_pior_destroy(struct drm_encoder *encoder)
1939 {
1940 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1941 
1942 	nvif_outp_dtor(&nv_encoder->outp);
1943 
1944 	drm_encoder_cleanup(encoder);
1945 	kfree(encoder);
1946 }
1947 
1948 static const struct drm_encoder_funcs
1949 nv50_pior_func = {
1950 	.destroy = nv50_pior_destroy,
1951 };
1952 
1953 static int
1954 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1955 {
1956 	struct drm_device *dev = connector->dev;
1957 	struct nouveau_drm *drm = nouveau_drm(dev);
1958 	struct nv50_disp *disp = nv50_disp(dev);
1959 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1960 	struct nvkm_i2c_bus *bus = NULL;
1961 	struct nvkm_i2c_aux *aux = NULL;
1962 	struct i2c_adapter *ddc;
1963 	struct nouveau_encoder *nv_encoder;
1964 	struct drm_encoder *encoder;
1965 	int type;
1966 
1967 	switch (dcbe->type) {
1968 	case DCB_OUTPUT_TMDS:
1969 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1970 		ddc  = bus ? &bus->i2c : NULL;
1971 		type = DRM_MODE_ENCODER_TMDS;
1972 		break;
1973 	case DCB_OUTPUT_DP:
1974 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1975 		ddc  = aux ? &aux->i2c : NULL;
1976 		type = DRM_MODE_ENCODER_TMDS;
1977 		break;
1978 	default:
1979 		return -ENODEV;
1980 	}
1981 
1982 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1983 	if (!nv_encoder)
1984 		return -ENOMEM;
1985 	nv_encoder->dcb = dcbe;
1986 	nv_encoder->i2c = ddc;
1987 	nv_encoder->aux = aux;
1988 
1989 	encoder = to_drm_encoder(nv_encoder);
1990 	encoder->possible_crtcs = dcbe->heads;
1991 	encoder->possible_clones = 0;
1992 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1993 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1994 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1995 
1996 	drm_connector_attach_encoder(connector, encoder);
1997 
1998 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1999 	nv50_outp_dump_caps(drm, nv_encoder);
2000 
2001 	return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
2002 }
2003 
2004 /******************************************************************************
2005  * Atomic
2006  *****************************************************************************/
2007 
2008 static void
2009 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2010 {
2011 	struct drm_dp_mst_topology_mgr *mgr;
2012 	struct drm_dp_mst_topology_state *mst_state;
2013 	struct nouveau_drm *drm = nouveau_drm(state->dev);
2014 	struct nv50_disp *disp = nv50_disp(drm->dev);
2015 	struct nv50_core *core = disp->core;
2016 	struct nv50_mstm *mstm;
2017 	int i;
2018 
2019 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2020 
2021 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2022 		mstm = nv50_mstm(mgr);
2023 		if (mstm->modified)
2024 			nv50_mstm_prepare(state, mst_state, mstm);
2025 	}
2026 
2027 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2028 	core->func->update(core, interlock, true);
2029 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2030 				       disp->core->chan.base.device))
2031 		NV_ERROR(drm, "core notifier timeout\n");
2032 
2033 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2034 		mstm = nv50_mstm(mgr);
2035 		if (mstm->modified)
2036 			nv50_mstm_cleanup(state, mst_state, mstm);
2037 	}
2038 }
2039 
2040 static void
2041 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2042 {
2043 	struct drm_plane_state *new_plane_state;
2044 	struct drm_plane *plane;
2045 	int i;
2046 
2047 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2048 		struct nv50_wndw *wndw = nv50_wndw(plane);
2049 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2050 			if (wndw->func->update)
2051 				wndw->func->update(wndw, interlock);
2052 		}
2053 	}
2054 }
2055 
2056 static void
2057 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2058 {
2059 	struct drm_device *dev = state->dev;
2060 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2061 	struct drm_crtc *crtc;
2062 	struct drm_plane_state *new_plane_state;
2063 	struct drm_plane *plane;
2064 	struct nouveau_drm *drm = nouveau_drm(dev);
2065 	struct nv50_disp *disp = nv50_disp(dev);
2066 	struct nv50_atom *atom = nv50_atom(state);
2067 	struct nv50_core *core = disp->core;
2068 	struct nv50_outp_atom *outp, *outt;
2069 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2070 	int i;
2071 	bool flushed = false;
2072 
2073 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2074 	nv50_crc_atomic_stop_reporting(state);
2075 	drm_atomic_helper_wait_for_fences(dev, state, false);
2076 	drm_atomic_helper_wait_for_dependencies(state);
2077 	drm_dp_mst_atomic_wait_for_dependencies(state);
2078 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2079 	drm_atomic_helper_calc_timestamping_constants(state);
2080 
2081 	if (atom->lock_core)
2082 		mutex_lock(&disp->mutex);
2083 
2084 	/* Disable head(s). */
2085 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2086 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2087 		struct nv50_head *head = nv50_head(crtc);
2088 
2089 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2090 			  asyh->clr.mask, asyh->set.mask);
2091 
2092 		if (old_crtc_state->active && !new_crtc_state->active) {
2093 			pm_runtime_put_noidle(dev->dev);
2094 			drm_crtc_vblank_off(crtc);
2095 		}
2096 
2097 		if (asyh->clr.mask) {
2098 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2099 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2100 		}
2101 	}
2102 
2103 	/* Disable plane(s). */
2104 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2105 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2106 		struct nv50_wndw *wndw = nv50_wndw(plane);
2107 
2108 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2109 			  asyw->clr.mask, asyw->set.mask);
2110 		if (!asyw->clr.mask)
2111 			continue;
2112 
2113 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2114 	}
2115 
2116 	/* Disable output path(s). */
2117 	list_for_each_entry(outp, &atom->outp, head) {
2118 		const struct drm_encoder_helper_funcs *help;
2119 		struct drm_encoder *encoder;
2120 
2121 		encoder = outp->encoder;
2122 		help = encoder->helper_private;
2123 
2124 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2125 			  outp->clr.mask, outp->set.mask);
2126 
2127 		if (outp->clr.mask) {
2128 			help->atomic_disable(encoder, state);
2129 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2130 			if (outp->flush_disable) {
2131 				nv50_disp_atomic_commit_wndw(state, interlock);
2132 				nv50_disp_atomic_commit_core(state, interlock);
2133 				memset(interlock, 0x00, sizeof(interlock));
2134 
2135 				flushed = true;
2136 			}
2137 		}
2138 	}
2139 
2140 	/* Flush disable. */
2141 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2142 		if (atom->flush_disable) {
2143 			nv50_disp_atomic_commit_wndw(state, interlock);
2144 			nv50_disp_atomic_commit_core(state, interlock);
2145 			memset(interlock, 0x00, sizeof(interlock));
2146 
2147 			flushed = true;
2148 		}
2149 	}
2150 
2151 	if (flushed)
2152 		nv50_crc_atomic_release_notifier_contexts(state);
2153 	nv50_crc_atomic_init_notifier_contexts(state);
2154 
2155 	/* Update output path(s). */
2156 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2157 		const struct drm_encoder_helper_funcs *help;
2158 		struct drm_encoder *encoder;
2159 
2160 		encoder = outp->encoder;
2161 		help = encoder->helper_private;
2162 
2163 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2164 			  outp->set.mask, outp->clr.mask);
2165 
2166 		if (outp->set.mask) {
2167 			help->atomic_enable(encoder, state);
2168 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2169 		}
2170 
2171 		list_del(&outp->head);
2172 		kfree(outp);
2173 	}
2174 
2175 	/* Update head(s). */
2176 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2177 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2178 		struct nv50_head *head = nv50_head(crtc);
2179 
2180 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2181 			  asyh->set.mask, asyh->clr.mask);
2182 
2183 		if (asyh->set.mask) {
2184 			nv50_head_flush_set(head, asyh);
2185 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2186 		}
2187 
2188 		if (new_crtc_state->active) {
2189 			if (!old_crtc_state->active) {
2190 				drm_crtc_vblank_on(crtc);
2191 				pm_runtime_get_noresume(dev->dev);
2192 			}
2193 			if (new_crtc_state->event)
2194 				drm_crtc_vblank_get(crtc);
2195 		}
2196 	}
2197 
2198 	/* Update window->head assignment.
2199 	 *
2200 	 * This has to happen in an update that's not interlocked with
2201 	 * any window channels to avoid hitting HW error checks.
2202 	 *
2203 	 *TODO: Proper handling of window ownership (Turing apparently
2204 	 *      supports non-fixed mappings).
2205 	 */
2206 	if (core->assign_windows) {
2207 		core->func->wndw.owner(core);
2208 		nv50_disp_atomic_commit_core(state, interlock);
2209 		core->assign_windows = false;
2210 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2211 	}
2212 
2213 	/* Finish updating head(s)...
2214 	 *
2215 	 * NVD is rather picky about both where window assignments can change,
2216 	 * *and* about certain core and window channel states matching.
2217 	 *
2218 	 * The EFI GOP driver on newer GPUs configures window channels with a
2219 	 * different output format to what we do, and the core channel update
2220 	 * in the assign_windows case above would result in a state mismatch.
2221 	 *
2222 	 * Delay some of the head update until after that point to workaround
2223 	 * the issue.  This only affects the initial modeset.
2224 	 *
2225 	 * TODO: handle this better when adding flexible window mapping
2226 	 */
2227 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2228 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2229 		struct nv50_head *head = nv50_head(crtc);
2230 
2231 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2232 			  asyh->set.mask, asyh->clr.mask);
2233 
2234 		if (asyh->set.mask) {
2235 			nv50_head_flush_set_wndw(head, asyh);
2236 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2237 		}
2238 	}
2239 
2240 	/* Update plane(s). */
2241 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2242 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2243 		struct nv50_wndw *wndw = nv50_wndw(plane);
2244 
2245 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2246 			  asyw->set.mask, asyw->clr.mask);
2247 		if ( !asyw->set.mask &&
2248 		    (!asyw->clr.mask || atom->flush_disable))
2249 			continue;
2250 
2251 		nv50_wndw_flush_set(wndw, interlock, asyw);
2252 	}
2253 
2254 	/* Flush update. */
2255 	nv50_disp_atomic_commit_wndw(state, interlock);
2256 
2257 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2258 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2259 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2260 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2261 		    !atom->state.legacy_cursor_update)
2262 			nv50_disp_atomic_commit_core(state, interlock);
2263 		else
2264 			disp->core->func->update(disp->core, interlock, false);
2265 	}
2266 
2267 	if (atom->lock_core)
2268 		mutex_unlock(&disp->mutex);
2269 
2270 	/* Wait for HW to signal completion. */
2271 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2272 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2273 		struct nv50_wndw *wndw = nv50_wndw(plane);
2274 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2275 		if (ret)
2276 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2277 	}
2278 
2279 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2280 		if (new_crtc_state->event) {
2281 			unsigned long flags;
2282 			/* Get correct count/ts if racing with vblank irq */
2283 			if (new_crtc_state->active)
2284 				drm_crtc_accurate_vblank_count(crtc);
2285 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2286 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2287 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2288 
2289 			new_crtc_state->event = NULL;
2290 			if (new_crtc_state->active)
2291 				drm_crtc_vblank_put(crtc);
2292 		}
2293 	}
2294 
2295 	nv50_crc_atomic_start_reporting(state);
2296 	if (!flushed)
2297 		nv50_crc_atomic_release_notifier_contexts(state);
2298 
2299 	drm_atomic_helper_commit_hw_done(state);
2300 	drm_atomic_helper_cleanup_planes(dev, state);
2301 	drm_atomic_helper_commit_cleanup_done(state);
2302 	drm_atomic_state_put(state);
2303 
2304 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2305 	pm_runtime_mark_last_busy(dev->dev);
2306 	pm_runtime_put_autosuspend(dev->dev);
2307 }
2308 
2309 static void
2310 nv50_disp_atomic_commit_work(struct work_struct *work)
2311 {
2312 	struct drm_atomic_state *state =
2313 		container_of(work, typeof(*state), commit_work);
2314 	nv50_disp_atomic_commit_tail(state);
2315 }
2316 
2317 static int
2318 nv50_disp_atomic_commit(struct drm_device *dev,
2319 			struct drm_atomic_state *state, bool nonblock)
2320 {
2321 	struct drm_plane_state *new_plane_state;
2322 	struct drm_plane *plane;
2323 	int ret, i;
2324 
2325 	ret = pm_runtime_get_sync(dev->dev);
2326 	if (ret < 0 && ret != -EACCES) {
2327 		pm_runtime_put_autosuspend(dev->dev);
2328 		return ret;
2329 	}
2330 
2331 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2332 	if (ret)
2333 		goto done;
2334 
2335 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2336 
2337 	ret = drm_atomic_helper_prepare_planes(dev, state);
2338 	if (ret)
2339 		goto done;
2340 
2341 	if (!nonblock) {
2342 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2343 		if (ret)
2344 			goto err_cleanup;
2345 	}
2346 
2347 	ret = drm_atomic_helper_swap_state(state, true);
2348 	if (ret)
2349 		goto err_cleanup;
2350 
2351 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2352 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2353 		struct nv50_wndw *wndw = nv50_wndw(plane);
2354 
2355 		if (asyw->set.image)
2356 			nv50_wndw_ntfy_enable(wndw, asyw);
2357 	}
2358 
2359 	drm_atomic_state_get(state);
2360 
2361 	/*
2362 	 * Grab another RPM ref for the commit tail, which will release the
2363 	 * ref when it's finished
2364 	 */
2365 	pm_runtime_get_noresume(dev->dev);
2366 
2367 	if (nonblock)
2368 		queue_work(system_unbound_wq, &state->commit_work);
2369 	else
2370 		nv50_disp_atomic_commit_tail(state);
2371 
2372 err_cleanup:
2373 	if (ret)
2374 		drm_atomic_helper_cleanup_planes(dev, state);
2375 done:
2376 	pm_runtime_put_autosuspend(dev->dev);
2377 	return ret;
2378 }
2379 
2380 static struct nv50_outp_atom *
2381 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2382 {
2383 	struct nv50_outp_atom *outp;
2384 
2385 	list_for_each_entry(outp, &atom->outp, head) {
2386 		if (outp->encoder == encoder)
2387 			return outp;
2388 	}
2389 
2390 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2391 	if (!outp)
2392 		return ERR_PTR(-ENOMEM);
2393 
2394 	list_add(&outp->head, &atom->outp);
2395 	outp->encoder = encoder;
2396 	return outp;
2397 }
2398 
2399 static int
2400 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2401 				struct drm_connector_state *old_connector_state)
2402 {
2403 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2404 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2405 	struct drm_crtc *crtc;
2406 	struct nv50_outp_atom *outp;
2407 
2408 	if (!(crtc = old_connector_state->crtc))
2409 		return 0;
2410 
2411 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2412 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2413 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2414 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2415 		if (IS_ERR(outp))
2416 			return PTR_ERR(outp);
2417 
2418 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2419 			outp->flush_disable = true;
2420 			atom->flush_disable = true;
2421 		}
2422 		outp->clr.ctrl = true;
2423 		atom->lock_core = true;
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 static int
2430 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2431 				struct drm_connector_state *connector_state)
2432 {
2433 	struct drm_encoder *encoder = connector_state->best_encoder;
2434 	struct drm_crtc_state *new_crtc_state;
2435 	struct drm_crtc *crtc;
2436 	struct nv50_outp_atom *outp;
2437 
2438 	if (!(crtc = connector_state->crtc))
2439 		return 0;
2440 
2441 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2442 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2443 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2444 		if (IS_ERR(outp))
2445 			return PTR_ERR(outp);
2446 
2447 		outp->set.ctrl = true;
2448 		atom->lock_core = true;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 static int
2455 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2456 {
2457 	struct nv50_atom *atom = nv50_atom(state);
2458 	struct nv50_core *core = nv50_disp(dev)->core;
2459 	struct drm_connector_state *old_connector_state, *new_connector_state;
2460 	struct drm_connector *connector;
2461 	struct drm_crtc_state *new_crtc_state;
2462 	struct drm_crtc *crtc;
2463 	struct nv50_head *head;
2464 	struct nv50_head_atom *asyh;
2465 	int ret, i;
2466 
2467 	if (core->assign_windows && core->func->head->static_wndw_map) {
2468 		drm_for_each_crtc(crtc, dev) {
2469 			new_crtc_state = drm_atomic_get_crtc_state(state,
2470 								   crtc);
2471 			if (IS_ERR(new_crtc_state))
2472 				return PTR_ERR(new_crtc_state);
2473 
2474 			head = nv50_head(crtc);
2475 			asyh = nv50_head_atom(new_crtc_state);
2476 			core->func->head->static_wndw_map(head, asyh);
2477 		}
2478 	}
2479 
2480 	/* We need to handle colour management on a per-plane basis. */
2481 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2482 		if (new_crtc_state->color_mgmt_changed) {
2483 			ret = drm_atomic_add_affected_planes(state, crtc);
2484 			if (ret)
2485 				return ret;
2486 		}
2487 	}
2488 
2489 	ret = drm_atomic_helper_check(dev, state);
2490 	if (ret)
2491 		return ret;
2492 
2493 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2494 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2495 		if (ret)
2496 			return ret;
2497 
2498 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2499 		if (ret)
2500 			return ret;
2501 	}
2502 
2503 	ret = drm_dp_mst_atomic_check(state);
2504 	if (ret)
2505 		return ret;
2506 
2507 	nv50_crc_atomic_check_outp(atom);
2508 
2509 	return 0;
2510 }
2511 
2512 static void
2513 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2514 {
2515 	struct nv50_atom *atom = nv50_atom(state);
2516 	struct nv50_outp_atom *outp, *outt;
2517 
2518 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2519 		list_del(&outp->head);
2520 		kfree(outp);
2521 	}
2522 
2523 	drm_atomic_state_default_clear(state);
2524 }
2525 
2526 static void
2527 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2528 {
2529 	struct nv50_atom *atom = nv50_atom(state);
2530 	drm_atomic_state_default_release(&atom->state);
2531 	kfree(atom);
2532 }
2533 
2534 static struct drm_atomic_state *
2535 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2536 {
2537 	struct nv50_atom *atom;
2538 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2539 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2540 		kfree(atom);
2541 		return NULL;
2542 	}
2543 	INIT_LIST_HEAD(&atom->outp);
2544 	return &atom->state;
2545 }
2546 
2547 static const struct drm_mode_config_funcs
2548 nv50_disp_func = {
2549 	.fb_create = nouveau_user_framebuffer_create,
2550 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2551 	.atomic_check = nv50_disp_atomic_check,
2552 	.atomic_commit = nv50_disp_atomic_commit,
2553 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2554 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2555 	.atomic_state_free = nv50_disp_atomic_state_free,
2556 };
2557 
2558 static const struct drm_mode_config_helper_funcs
2559 nv50_disp_helper_func = {
2560 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2561 };
2562 
2563 /******************************************************************************
2564  * Init
2565  *****************************************************************************/
2566 
2567 static void
2568 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2569 {
2570 	struct nouveau_drm *drm = nouveau_drm(dev);
2571 	struct drm_encoder *encoder;
2572 
2573 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2574 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2575 			nv50_mstm_fini(nouveau_encoder(encoder));
2576 	}
2577 
2578 	if (!runtime)
2579 		cancel_work_sync(&drm->hpd_work);
2580 }
2581 
2582 static int
2583 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2584 {
2585 	struct nv50_core *core = nv50_disp(dev)->core;
2586 	struct drm_encoder *encoder;
2587 
2588 	if (resume || runtime)
2589 		core->func->init(core);
2590 
2591 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2592 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2593 			struct nouveau_encoder *nv_encoder =
2594 				nouveau_encoder(encoder);
2595 			nv50_mstm_init(nv_encoder, runtime);
2596 		}
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 static void
2603 nv50_display_destroy(struct drm_device *dev)
2604 {
2605 	struct nv50_disp *disp = nv50_disp(dev);
2606 
2607 	nv50_audio_component_fini(nouveau_drm(dev));
2608 
2609 	nvif_object_unmap(&disp->caps);
2610 	nvif_object_dtor(&disp->caps);
2611 	nv50_core_del(&disp->core);
2612 
2613 	nouveau_bo_unmap(disp->sync);
2614 	if (disp->sync)
2615 		nouveau_bo_unpin(disp->sync);
2616 	nouveau_bo_ref(NULL, &disp->sync);
2617 
2618 	nouveau_display(dev)->priv = NULL;
2619 	kfree(disp);
2620 }
2621 
2622 int
2623 nv50_display_create(struct drm_device *dev)
2624 {
2625 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2626 	struct nouveau_drm *drm = nouveau_drm(dev);
2627 	struct dcb_table *dcb = &drm->vbios.dcb;
2628 	struct drm_connector *connector, *tmp;
2629 	struct nv50_disp *disp;
2630 	struct dcb_output *dcbe;
2631 	int crtcs, ret, i;
2632 	bool has_mst = nv50_has_mst(drm);
2633 
2634 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2635 	if (!disp)
2636 		return -ENOMEM;
2637 
2638 	mutex_init(&disp->mutex);
2639 
2640 	nouveau_display(dev)->priv = disp;
2641 	nouveau_display(dev)->dtor = nv50_display_destroy;
2642 	nouveau_display(dev)->init = nv50_display_init;
2643 	nouveau_display(dev)->fini = nv50_display_fini;
2644 	disp->disp = &nouveau_display(dev)->disp;
2645 	dev->mode_config.funcs = &nv50_disp_func;
2646 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2647 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2648 	dev->mode_config.normalize_zpos = true;
2649 
2650 	/* small shared memory area we use for notifiers and semaphores */
2651 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2652 			     NOUVEAU_GEM_DOMAIN_VRAM,
2653 			     0, 0x0000, NULL, NULL, &disp->sync);
2654 	if (!ret) {
2655 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2656 		if (!ret) {
2657 			ret = nouveau_bo_map(disp->sync);
2658 			if (ret)
2659 				nouveau_bo_unpin(disp->sync);
2660 		}
2661 		if (ret)
2662 			nouveau_bo_ref(NULL, &disp->sync);
2663 	}
2664 
2665 	if (ret)
2666 		goto out;
2667 
2668 	/* allocate master evo channel */
2669 	ret = nv50_core_new(drm, &disp->core);
2670 	if (ret)
2671 		goto out;
2672 
2673 	disp->core->func->init(disp->core);
2674 	if (disp->core->func->caps_init) {
2675 		ret = disp->core->func->caps_init(drm, disp);
2676 		if (ret)
2677 			goto out;
2678 	}
2679 
2680 	/* Assign the correct format modifiers */
2681 	if (disp->disp->object.oclass >= TU102_DISP)
2682 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2683 	else
2684 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2685 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2686 	else
2687 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2688 
2689 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2690 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2691 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2692 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2693 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2694 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2695 	 * large pages.
2696 	 */
2697 	if (disp->disp->object.oclass >= GM107_DISP) {
2698 		dev->mode_config.cursor_width = 256;
2699 		dev->mode_config.cursor_height = 256;
2700 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2701 		dev->mode_config.cursor_width = 128;
2702 		dev->mode_config.cursor_height = 128;
2703 	} else {
2704 		dev->mode_config.cursor_width = 64;
2705 		dev->mode_config.cursor_height = 64;
2706 	}
2707 
2708 	/* create crtc objects to represent the hw heads */
2709 	if (disp->disp->object.oclass >= GV100_DISP)
2710 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2711 	else
2712 	if (disp->disp->object.oclass >= GF110_DISP)
2713 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2714 	else
2715 		crtcs = 0x3;
2716 
2717 	for (i = 0; i < fls(crtcs); i++) {
2718 		struct nv50_head *head;
2719 
2720 		if (!(crtcs & (1 << i)))
2721 			continue;
2722 
2723 		head = nv50_head_create(dev, i);
2724 		if (IS_ERR(head)) {
2725 			ret = PTR_ERR(head);
2726 			goto out;
2727 		}
2728 
2729 		if (has_mst) {
2730 			head->msto = nv50_msto_new(dev, head, i);
2731 			if (IS_ERR(head->msto)) {
2732 				ret = PTR_ERR(head->msto);
2733 				head->msto = NULL;
2734 				goto out;
2735 			}
2736 
2737 			/*
2738 			 * FIXME: This is a hack to workaround the following
2739 			 * issues:
2740 			 *
2741 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2742 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2743 			 *
2744 			 * Once these issues are closed, this should be
2745 			 * removed
2746 			 */
2747 			head->msto->encoder.possible_crtcs = crtcs;
2748 		}
2749 	}
2750 
2751 	/* create encoder/connector objects based on VBIOS DCB table */
2752 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2753 		connector = nouveau_connector_create(dev, dcbe);
2754 		if (IS_ERR(connector))
2755 			continue;
2756 
2757 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2758 			switch (dcbe->type) {
2759 			case DCB_OUTPUT_TMDS:
2760 			case DCB_OUTPUT_LVDS:
2761 			case DCB_OUTPUT_DP:
2762 				ret = nv50_sor_create(connector, dcbe);
2763 				break;
2764 			case DCB_OUTPUT_ANALOG:
2765 				ret = nv50_dac_create(connector, dcbe);
2766 				break;
2767 			default:
2768 				ret = -ENODEV;
2769 				break;
2770 			}
2771 		} else {
2772 			ret = nv50_pior_create(connector, dcbe);
2773 		}
2774 
2775 		if (ret) {
2776 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2777 				     dcbe->location, dcbe->type,
2778 				     ffs(dcbe->or) - 1, ret);
2779 			ret = 0;
2780 		}
2781 	}
2782 
2783 	/* cull any connectors we created that don't have an encoder */
2784 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2785 		if (connector->possible_encoders)
2786 			continue;
2787 
2788 		NV_WARN(drm, "%s has no encoders, removing\n",
2789 			connector->name);
2790 		connector->funcs->destroy(connector);
2791 	}
2792 
2793 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2794 	dev->vblank_disable_immediate = true;
2795 
2796 	nv50_audio_component_init(drm);
2797 
2798 out:
2799 	if (ret)
2800 		nv50_display_destroy(dev);
2801 	return ret;
2802 }
2803 
2804 /******************************************************************************
2805  * Format modifiers
2806  *****************************************************************************/
2807 
2808 /****************************************************************
2809  *            Log2(block height) ----------------------------+  *
2810  *            Page Kind ----------------------------------+  |  *
2811  *            Gob Height/Page Kind Generation ------+     |  |  *
2812  *                          Sector layout -------+  |     |  |  *
2813  *                          Compression ------+  |  |     |  |  */
2814 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2815 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2816 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2817 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2818 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2819 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2820 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2821 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2822 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2823 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2824 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2825 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2826 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2827 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2828 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2829 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2830 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2831 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2832 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2833 	DRM_FORMAT_MOD_LINEAR,
2834 	DRM_FORMAT_MOD_INVALID
2835 };
2836 
2837 /****************************************************************
2838  *            Log2(block height) ----------------------------+  *
2839  *            Page Kind ----------------------------------+  |  *
2840  *            Gob Height/Page Kind Generation ------+     |  |  *
2841  *                          Sector layout -------+  |     |  |  *
2842  *                          Compression ------+  |  |     |  |  */
2843 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2844 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2845 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2846 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2847 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2848 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2849 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2850 	DRM_FORMAT_MOD_LINEAR,
2851 	DRM_FORMAT_MOD_INVALID
2852 };
2853