xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/of_irq.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_opp.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/spinlock.h>
21 
22 #include <video/mipi_display.h>
23 
24 #include "dsi.h"
25 #include "dsi.xml.h"
26 #include "sfpb.xml.h"
27 #include "dsi_cfg.h"
28 #include "msm_kms.h"
29 #include "msm_gem.h"
30 #include "phy/dsi_phy.h"
31 
32 #define DSI_RESET_TOGGLE_DELAY_MS 20
33 
34 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
35 {
36 	u32 ver;
37 
38 	if (!major || !minor)
39 		return -EINVAL;
40 
41 	/*
42 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
43 	 * makes all other registers 4-byte shifted down.
44 	 *
45 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
46 	 * older, we read the DSI_VERSION register without any shift(offset
47 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
48 	 * the case of DSI6G, this has to be zero (the offset points to a
49 	 * scratch register which we never touch)
50 	 */
51 
52 	ver = msm_readl(base + REG_DSI_VERSION);
53 	if (ver) {
54 		/* older dsi host, there is no register shift */
55 		ver = FIELD(ver, DSI_VERSION_MAJOR);
56 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
57 			/* old versions */
58 			*major = ver;
59 			*minor = 0;
60 			return 0;
61 		} else {
62 			return -EINVAL;
63 		}
64 	} else {
65 		/*
66 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
67 		 * registers are shifted down, read DSI_VERSION again with
68 		 * the shifted offset
69 		 */
70 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
71 		ver = FIELD(ver, DSI_VERSION_MAJOR);
72 		if (ver == MSM_DSI_VER_MAJOR_6G) {
73 			/* 6G version */
74 			*major = ver;
75 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
76 			return 0;
77 		} else {
78 			return -EINVAL;
79 		}
80 	}
81 }
82 
83 #define DSI_ERR_STATE_ACK			0x0000
84 #define DSI_ERR_STATE_TIMEOUT			0x0001
85 #define DSI_ERR_STATE_DLN0_PHY			0x0002
86 #define DSI_ERR_STATE_FIFO			0x0004
87 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
88 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
89 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
90 
91 #define DSI_CLK_CTRL_ENABLE_CLKS	\
92 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
93 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
94 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
95 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
96 
97 struct msm_dsi_host {
98 	struct mipi_dsi_host base;
99 
100 	struct platform_device *pdev;
101 	struct drm_device *dev;
102 
103 	int id;
104 
105 	void __iomem *ctrl_base;
106 	phys_addr_t ctrl_size;
107 	struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
108 
109 	int num_bus_clks;
110 	struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX];
111 
112 	struct clk *byte_clk;
113 	struct clk *esc_clk;
114 	struct clk *pixel_clk;
115 	struct clk *byte_clk_src;
116 	struct clk *pixel_clk_src;
117 	struct clk *byte_intf_clk;
118 
119 	unsigned long byte_clk_rate;
120 	unsigned long pixel_clk_rate;
121 	unsigned long esc_clk_rate;
122 
123 	/* DSI v2 specific clocks */
124 	struct clk *src_clk;
125 	struct clk *esc_clk_src;
126 	struct clk *dsi_clk_src;
127 
128 	unsigned long src_clk_rate;
129 
130 	struct gpio_desc *disp_en_gpio;
131 	struct gpio_desc *te_gpio;
132 
133 	const struct msm_dsi_cfg_handler *cfg_hnd;
134 
135 	struct completion dma_comp;
136 	struct completion video_comp;
137 	struct mutex dev_mutex;
138 	struct mutex cmd_mutex;
139 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
140 
141 	u32 err_work_state;
142 	struct work_struct err_work;
143 	struct work_struct hpd_work;
144 	struct workqueue_struct *workqueue;
145 
146 	/* DSI 6G TX buffer*/
147 	struct drm_gem_object *tx_gem_obj;
148 
149 	/* DSI v2 TX buffer */
150 	void *tx_buf;
151 	dma_addr_t tx_buf_paddr;
152 
153 	int tx_size;
154 
155 	u8 *rx_buf;
156 
157 	struct regmap *sfpb;
158 
159 	struct drm_display_mode *mode;
160 
161 	/* connected device info */
162 	struct device_node *device_node;
163 	unsigned int channel;
164 	unsigned int lanes;
165 	enum mipi_dsi_pixel_format format;
166 	unsigned long mode_flags;
167 
168 	/* lane data parsed via DT */
169 	int dlane_swap;
170 	int num_data_lanes;
171 
172 	/* from phy DT */
173 	bool cphy_mode;
174 
175 	u32 dma_cmd_ctrl_restore;
176 
177 	bool registered;
178 	bool power_on;
179 	bool enabled;
180 	int irq;
181 };
182 
183 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
184 {
185 	switch (fmt) {
186 	case MIPI_DSI_FMT_RGB565:		return 16;
187 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
188 	case MIPI_DSI_FMT_RGB666:
189 	case MIPI_DSI_FMT_RGB888:
190 	default:				return 24;
191 	}
192 }
193 
194 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
195 {
196 	return msm_readl(msm_host->ctrl_base + reg);
197 }
198 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
199 {
200 	msm_writel(data, msm_host->ctrl_base + reg);
201 }
202 
203 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
204 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
205 
206 static const struct msm_dsi_cfg_handler *dsi_get_config(
207 						struct msm_dsi_host *msm_host)
208 {
209 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
210 	struct device *dev = &msm_host->pdev->dev;
211 	struct clk *ahb_clk;
212 	int ret;
213 	u32 major = 0, minor = 0;
214 
215 	cfg_hnd = device_get_match_data(dev);
216 	if (cfg_hnd)
217 		return cfg_hnd;
218 
219 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
220 	if (IS_ERR(ahb_clk)) {
221 		pr_err("%s: cannot get interface clock\n", __func__);
222 		goto exit;
223 	}
224 
225 	pm_runtime_get_sync(dev);
226 
227 	ret = clk_prepare_enable(ahb_clk);
228 	if (ret) {
229 		pr_err("%s: unable to enable ahb_clk\n", __func__);
230 		goto runtime_put;
231 	}
232 
233 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
234 	if (ret) {
235 		pr_err("%s: Invalid version\n", __func__);
236 		goto disable_clks;
237 	}
238 
239 	cfg_hnd = msm_dsi_cfg_get(major, minor);
240 
241 	DBG("%s: Version %x:%x\n", __func__, major, minor);
242 
243 disable_clks:
244 	clk_disable_unprepare(ahb_clk);
245 runtime_put:
246 	pm_runtime_put_sync(dev);
247 exit:
248 	return cfg_hnd;
249 }
250 
251 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
252 {
253 	return container_of(host, struct msm_dsi_host, base);
254 }
255 
256 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
257 {
258 	struct regulator_bulk_data *s = msm_host->supplies;
259 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
260 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
261 	int i;
262 
263 	DBG("");
264 	for (i = num - 1; i >= 0; i--)
265 		if (regs[i].disable_load >= 0)
266 			regulator_set_load(s[i].consumer,
267 					   regs[i].disable_load);
268 
269 	regulator_bulk_disable(num, s);
270 }
271 
272 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
273 {
274 	struct regulator_bulk_data *s = msm_host->supplies;
275 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
276 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
277 	int ret, i;
278 
279 	DBG("");
280 	for (i = 0; i < num; i++) {
281 		if (regs[i].enable_load >= 0) {
282 			ret = regulator_set_load(s[i].consumer,
283 						 regs[i].enable_load);
284 			if (ret < 0) {
285 				pr_err("regulator %d set op mode failed, %d\n",
286 					i, ret);
287 				goto fail;
288 			}
289 		}
290 	}
291 
292 	ret = regulator_bulk_enable(num, s);
293 	if (ret < 0) {
294 		pr_err("regulator enable failed, %d\n", ret);
295 		goto fail;
296 	}
297 
298 	return 0;
299 
300 fail:
301 	for (i--; i >= 0; i--)
302 		regulator_set_load(s[i].consumer, regs[i].disable_load);
303 	return ret;
304 }
305 
306 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
307 {
308 	struct regulator_bulk_data *s = msm_host->supplies;
309 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
310 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
311 	int i, ret;
312 
313 	for (i = 0; i < num; i++)
314 		s[i].supply = regs[i].name;
315 
316 	ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
317 	if (ret < 0) {
318 		pr_err("%s: failed to init regulator, ret=%d\n",
319 						__func__, ret);
320 		return ret;
321 	}
322 
323 	return 0;
324 }
325 
326 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
327 {
328 	struct platform_device *pdev = msm_host->pdev;
329 	int ret = 0;
330 
331 	msm_host->src_clk = msm_clk_get(pdev, "src");
332 
333 	if (IS_ERR(msm_host->src_clk)) {
334 		ret = PTR_ERR(msm_host->src_clk);
335 		pr_err("%s: can't find src clock. ret=%d\n",
336 			__func__, ret);
337 		msm_host->src_clk = NULL;
338 		return ret;
339 	}
340 
341 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
342 	if (!msm_host->esc_clk_src) {
343 		ret = -ENODEV;
344 		pr_err("%s: can't get esc clock parent. ret=%d\n",
345 			__func__, ret);
346 		return ret;
347 	}
348 
349 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
350 	if (!msm_host->dsi_clk_src) {
351 		ret = -ENODEV;
352 		pr_err("%s: can't get src clock parent. ret=%d\n",
353 			__func__, ret);
354 	}
355 
356 	return ret;
357 }
358 
359 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
360 {
361 	struct platform_device *pdev = msm_host->pdev;
362 	int ret = 0;
363 
364 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
365 	if (IS_ERR(msm_host->byte_intf_clk)) {
366 		ret = PTR_ERR(msm_host->byte_intf_clk);
367 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
368 			__func__, ret);
369 	}
370 
371 	return ret;
372 }
373 
374 static int dsi_clk_init(struct msm_dsi_host *msm_host)
375 {
376 	struct platform_device *pdev = msm_host->pdev;
377 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
378 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
379 	int i, ret = 0;
380 
381 	/* get bus clocks */
382 	for (i = 0; i < cfg->num_bus_clks; i++)
383 		msm_host->bus_clks[i].id = cfg->bus_clk_names[i];
384 	msm_host->num_bus_clks = cfg->num_bus_clks;
385 
386 	ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks);
387 	if (ret < 0) {
388 		dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret);
389 		goto exit;
390 	}
391 
392 	/* get link and source clocks */
393 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
394 	if (IS_ERR(msm_host->byte_clk)) {
395 		ret = PTR_ERR(msm_host->byte_clk);
396 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
397 			__func__, ret);
398 		msm_host->byte_clk = NULL;
399 		goto exit;
400 	}
401 
402 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
403 	if (IS_ERR(msm_host->pixel_clk)) {
404 		ret = PTR_ERR(msm_host->pixel_clk);
405 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
406 			__func__, ret);
407 		msm_host->pixel_clk = NULL;
408 		goto exit;
409 	}
410 
411 	msm_host->esc_clk = msm_clk_get(pdev, "core");
412 	if (IS_ERR(msm_host->esc_clk)) {
413 		ret = PTR_ERR(msm_host->esc_clk);
414 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
415 			__func__, ret);
416 		msm_host->esc_clk = NULL;
417 		goto exit;
418 	}
419 
420 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
421 	if (IS_ERR(msm_host->byte_clk_src)) {
422 		ret = PTR_ERR(msm_host->byte_clk_src);
423 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
424 		goto exit;
425 	}
426 
427 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
428 	if (IS_ERR(msm_host->pixel_clk_src)) {
429 		ret = PTR_ERR(msm_host->pixel_clk_src);
430 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
431 		goto exit;
432 	}
433 
434 	if (cfg_hnd->ops->clk_init_ver)
435 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
436 exit:
437 	return ret;
438 }
439 
440 int msm_dsi_runtime_suspend(struct device *dev)
441 {
442 	struct platform_device *pdev = to_platform_device(dev);
443 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
444 	struct mipi_dsi_host *host = msm_dsi->host;
445 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
446 
447 	if (!msm_host->cfg_hnd)
448 		return 0;
449 
450 	clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks);
451 
452 	return 0;
453 }
454 
455 int msm_dsi_runtime_resume(struct device *dev)
456 {
457 	struct platform_device *pdev = to_platform_device(dev);
458 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
459 	struct mipi_dsi_host *host = msm_dsi->host;
460 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
461 
462 	if (!msm_host->cfg_hnd)
463 		return 0;
464 
465 	return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks);
466 }
467 
468 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host)
469 {
470 	unsigned long byte_intf_rate;
471 	int ret;
472 
473 	DBG("Set clk rates: pclk=%d, byteclk=%lu",
474 		msm_host->mode->clock, msm_host->byte_clk_rate);
475 
476 	ret = dev_pm_opp_set_rate(&msm_host->pdev->dev,
477 				  msm_host->byte_clk_rate);
478 	if (ret) {
479 		pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret);
480 		return ret;
481 	}
482 
483 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
484 	if (ret) {
485 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
486 		return ret;
487 	}
488 
489 	if (msm_host->byte_intf_clk) {
490 		/* For CPHY, byte_intf_clk is same as byte_clk */
491 		if (msm_host->cphy_mode)
492 			byte_intf_rate = msm_host->byte_clk_rate;
493 		else
494 			byte_intf_rate = msm_host->byte_clk_rate / 2;
495 
496 		ret = clk_set_rate(msm_host->byte_intf_clk, byte_intf_rate);
497 		if (ret) {
498 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
499 			       __func__, ret);
500 			return ret;
501 		}
502 	}
503 
504 	return 0;
505 }
506 
507 
508 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
509 {
510 	int ret;
511 
512 	ret = clk_prepare_enable(msm_host->esc_clk);
513 	if (ret) {
514 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
515 		goto error;
516 	}
517 
518 	ret = clk_prepare_enable(msm_host->byte_clk);
519 	if (ret) {
520 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
521 		goto byte_clk_err;
522 	}
523 
524 	ret = clk_prepare_enable(msm_host->pixel_clk);
525 	if (ret) {
526 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
527 		goto pixel_clk_err;
528 	}
529 
530 	ret = clk_prepare_enable(msm_host->byte_intf_clk);
531 	if (ret) {
532 		pr_err("%s: Failed to enable byte intf clk\n",
533 			   __func__);
534 		goto byte_intf_clk_err;
535 	}
536 
537 	return 0;
538 
539 byte_intf_clk_err:
540 	clk_disable_unprepare(msm_host->pixel_clk);
541 pixel_clk_err:
542 	clk_disable_unprepare(msm_host->byte_clk);
543 byte_clk_err:
544 	clk_disable_unprepare(msm_host->esc_clk);
545 error:
546 	return ret;
547 }
548 
549 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host)
550 {
551 	int ret;
552 
553 	DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu",
554 		msm_host->mode->clock, msm_host->byte_clk_rate,
555 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
556 
557 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
558 	if (ret) {
559 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
560 		return ret;
561 	}
562 
563 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
564 	if (ret) {
565 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
566 		return ret;
567 	}
568 
569 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
570 	if (ret) {
571 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
572 		return ret;
573 	}
574 
575 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
576 	if (ret) {
577 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
578 		return ret;
579 	}
580 
581 	return 0;
582 }
583 
584 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
585 {
586 	int ret;
587 
588 	ret = clk_prepare_enable(msm_host->byte_clk);
589 	if (ret) {
590 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
591 		goto error;
592 	}
593 
594 	ret = clk_prepare_enable(msm_host->esc_clk);
595 	if (ret) {
596 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
597 		goto esc_clk_err;
598 	}
599 
600 	ret = clk_prepare_enable(msm_host->src_clk);
601 	if (ret) {
602 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
603 		goto src_clk_err;
604 	}
605 
606 	ret = clk_prepare_enable(msm_host->pixel_clk);
607 	if (ret) {
608 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
609 		goto pixel_clk_err;
610 	}
611 
612 	return 0;
613 
614 pixel_clk_err:
615 	clk_disable_unprepare(msm_host->src_clk);
616 src_clk_err:
617 	clk_disable_unprepare(msm_host->esc_clk);
618 esc_clk_err:
619 	clk_disable_unprepare(msm_host->byte_clk);
620 error:
621 	return ret;
622 }
623 
624 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
625 {
626 	/* Drop the performance state vote */
627 	dev_pm_opp_set_rate(&msm_host->pdev->dev, 0);
628 	clk_disable_unprepare(msm_host->esc_clk);
629 	clk_disable_unprepare(msm_host->pixel_clk);
630 	clk_disable_unprepare(msm_host->byte_intf_clk);
631 	clk_disable_unprepare(msm_host->byte_clk);
632 }
633 
634 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
635 {
636 	clk_disable_unprepare(msm_host->pixel_clk);
637 	clk_disable_unprepare(msm_host->src_clk);
638 	clk_disable_unprepare(msm_host->esc_clk);
639 	clk_disable_unprepare(msm_host->byte_clk);
640 }
641 
642 static unsigned long dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
643 {
644 	struct drm_display_mode *mode = msm_host->mode;
645 	unsigned long pclk_rate;
646 
647 	pclk_rate = mode->clock * 1000;
648 
649 	/*
650 	 * For bonded DSI mode, the current DRM mode has the complete width of the
651 	 * panel. Since, the complete panel is driven by two DSI controllers,
652 	 * the clock rates have to be split between the two dsi controllers.
653 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
654 	 */
655 	if (is_bonded_dsi)
656 		pclk_rate /= 2;
657 
658 	return pclk_rate;
659 }
660 
661 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
662 {
663 	u8 lanes = msm_host->lanes;
664 	u32 bpp = dsi_get_bpp(msm_host->format);
665 	unsigned long pclk_rate = dsi_get_pclk_rate(msm_host, is_bonded_dsi);
666 	u64 pclk_bpp = (u64)pclk_rate * bpp;
667 
668 	if (lanes == 0) {
669 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
670 		lanes = 1;
671 	}
672 
673 	/* CPHY "byte_clk" is in units of 16 bits */
674 	if (msm_host->cphy_mode)
675 		do_div(pclk_bpp, (16 * lanes));
676 	else
677 		do_div(pclk_bpp, (8 * lanes));
678 
679 	msm_host->pixel_clk_rate = pclk_rate;
680 	msm_host->byte_clk_rate = pclk_bpp;
681 
682 	DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate,
683 				msm_host->byte_clk_rate);
684 
685 }
686 
687 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
688 {
689 	if (!msm_host->mode) {
690 		pr_err("%s: mode not set\n", __func__);
691 		return -EINVAL;
692 	}
693 
694 	dsi_calc_pclk(msm_host, is_bonded_dsi);
695 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
696 	return 0;
697 }
698 
699 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
700 {
701 	u32 bpp = dsi_get_bpp(msm_host->format);
702 	u64 pclk_bpp;
703 	unsigned int esc_mhz, esc_div;
704 	unsigned long byte_mhz;
705 
706 	dsi_calc_pclk(msm_host, is_bonded_dsi);
707 
708 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_bonded_dsi) * bpp;
709 	do_div(pclk_bpp, 8);
710 	msm_host->src_clk_rate = pclk_bpp;
711 
712 	/*
713 	 * esc clock is byte clock followed by a 4 bit divider,
714 	 * we need to find an escape clock frequency within the
715 	 * mipi DSI spec range within the maximum divider limit
716 	 * We iterate here between an escape clock frequencey
717 	 * between 20 Mhz to 5 Mhz and pick up the first one
718 	 * that can be supported by our divider
719 	 */
720 
721 	byte_mhz = msm_host->byte_clk_rate / 1000000;
722 
723 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
724 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
725 
726 		/*
727 		 * TODO: Ideally, we shouldn't know what sort of divider
728 		 * is available in mmss_cc, we're just assuming that
729 		 * it'll always be a 4 bit divider. Need to come up with
730 		 * a better way here.
731 		 */
732 		if (esc_div >= 1 && esc_div <= 16)
733 			break;
734 	}
735 
736 	if (esc_mhz < 5)
737 		return -EINVAL;
738 
739 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
740 
741 	DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate,
742 		msm_host->src_clk_rate);
743 
744 	return 0;
745 }
746 
747 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
748 {
749 	u32 intr;
750 	unsigned long flags;
751 
752 	spin_lock_irqsave(&msm_host->intr_lock, flags);
753 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
754 
755 	if (enable)
756 		intr |= mask;
757 	else
758 		intr &= ~mask;
759 
760 	DBG("intr=%x enable=%d", intr, enable);
761 
762 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
763 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
764 }
765 
766 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
767 {
768 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
769 		return BURST_MODE;
770 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
771 		return NON_BURST_SYNCH_PULSE;
772 
773 	return NON_BURST_SYNCH_EVENT;
774 }
775 
776 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
777 				const enum mipi_dsi_pixel_format mipi_fmt)
778 {
779 	switch (mipi_fmt) {
780 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
781 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
782 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
783 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
784 	default:			return VID_DST_FORMAT_RGB888;
785 	}
786 }
787 
788 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
789 				const enum mipi_dsi_pixel_format mipi_fmt)
790 {
791 	switch (mipi_fmt) {
792 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
793 	case MIPI_DSI_FMT_RGB666_PACKED:
794 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
795 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
796 	default:			return CMD_DST_FORMAT_RGB888;
797 	}
798 }
799 
800 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
801 			struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy)
802 {
803 	u32 flags = msm_host->mode_flags;
804 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
805 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
806 	u32 data = 0, lane_ctrl = 0;
807 
808 	if (!enable) {
809 		dsi_write(msm_host, REG_DSI_CTRL, 0);
810 		return;
811 	}
812 
813 	if (flags & MIPI_DSI_MODE_VIDEO) {
814 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
815 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
816 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP)
817 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
818 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP)
819 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
820 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA)
821 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
822 		/* Always set low power stop mode for BLLP
823 		 * to let command engine send packets
824 		 */
825 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
826 			DSI_VID_CFG0_BLLP_POWER_STOP;
827 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
828 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
829 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
830 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
831 
832 		/* Do not swap RGB colors */
833 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
834 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
835 	} else {
836 		/* Do not swap RGB colors */
837 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
838 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
839 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
840 
841 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
842 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
843 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
844 		/* Always insert DCS command */
845 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
846 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
847 	}
848 
849 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
850 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
851 			DSI_CMD_DMA_CTRL_LOW_POWER);
852 
853 	data = 0;
854 	/* Always assume dedicated TE pin */
855 	data |= DSI_TRIG_CTRL_TE;
856 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
857 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
858 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
859 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
860 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
861 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
862 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
863 
864 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
865 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
866 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
867 
868 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
869 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
870 	    phy_shared_timings->clk_pre_inc_by_2)
871 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
872 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
873 
874 	data = 0;
875 	if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET))
876 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
877 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
878 
879 	/* allow only ack-err-status to generate interrupt */
880 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
881 
882 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
883 
884 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
885 
886 	data = DSI_CTRL_CLK_EN;
887 
888 	DBG("lane number=%d", msm_host->lanes);
889 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
890 
891 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
892 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
893 
894 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) {
895 		lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL);
896 
897 		if (msm_dsi_phy_set_continuous_clock(phy, enable))
898 			lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY;
899 
900 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
901 			lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
902 	}
903 
904 	data |= DSI_CTRL_ENABLE;
905 
906 	dsi_write(msm_host, REG_DSI_CTRL, data);
907 
908 	if (msm_host->cphy_mode)
909 		dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0));
910 }
911 
912 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
913 {
914 	struct drm_display_mode *mode = msm_host->mode;
915 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
916 	u32 h_total = mode->htotal;
917 	u32 v_total = mode->vtotal;
918 	u32 hs_end = mode->hsync_end - mode->hsync_start;
919 	u32 vs_end = mode->vsync_end - mode->vsync_start;
920 	u32 ha_start = h_total - mode->hsync_start;
921 	u32 ha_end = ha_start + mode->hdisplay;
922 	u32 va_start = v_total - mode->vsync_start;
923 	u32 va_end = va_start + mode->vdisplay;
924 	u32 hdisplay = mode->hdisplay;
925 	u32 wc;
926 
927 	DBG("");
928 
929 	/*
930 	 * For bonded DSI mode, the current DRM mode has
931 	 * the complete width of the panel. Since, the complete
932 	 * panel is driven by two DSI controllers, the horizontal
933 	 * timings have to be split between the two dsi controllers.
934 	 * Adjust the DSI host timing values accordingly.
935 	 */
936 	if (is_bonded_dsi) {
937 		h_total /= 2;
938 		hs_end /= 2;
939 		ha_start /= 2;
940 		ha_end /= 2;
941 		hdisplay /= 2;
942 	}
943 
944 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
945 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
946 			DSI_ACTIVE_H_START(ha_start) |
947 			DSI_ACTIVE_H_END(ha_end));
948 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
949 			DSI_ACTIVE_V_START(va_start) |
950 			DSI_ACTIVE_V_END(va_end));
951 		dsi_write(msm_host, REG_DSI_TOTAL,
952 			DSI_TOTAL_H_TOTAL(h_total - 1) |
953 			DSI_TOTAL_V_TOTAL(v_total - 1));
954 
955 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
956 			DSI_ACTIVE_HSYNC_START(hs_start) |
957 			DSI_ACTIVE_HSYNC_END(hs_end));
958 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
959 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
960 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
961 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
962 	} else {		/* command mode */
963 		/* image data and 1 byte write_memory_start cmd */
964 		wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
965 
966 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL,
967 			DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) |
968 			DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL(
969 					msm_host->channel) |
970 			DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE(
971 					MIPI_DSI_DCS_LONG_WRITE));
972 
973 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL,
974 			DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) |
975 			DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay));
976 	}
977 }
978 
979 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
980 {
981 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
982 	wmb(); /* clocks need to be enabled before reset */
983 
984 	dsi_write(msm_host, REG_DSI_RESET, 1);
985 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
986 	dsi_write(msm_host, REG_DSI_RESET, 0);
987 }
988 
989 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
990 					bool video_mode, bool enable)
991 {
992 	u32 dsi_ctrl;
993 
994 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
995 
996 	if (!enable) {
997 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
998 				DSI_CTRL_CMD_MODE_EN);
999 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1000 					DSI_IRQ_MASK_VIDEO_DONE, 0);
1001 	} else {
1002 		if (video_mode) {
1003 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1004 		} else {		/* command mode */
1005 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1006 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1007 		}
1008 		dsi_ctrl |= DSI_CTRL_ENABLE;
1009 	}
1010 
1011 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1012 }
1013 
1014 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1015 {
1016 	u32 data;
1017 
1018 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1019 
1020 	if (mode == 0)
1021 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1022 	else
1023 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1024 
1025 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1026 }
1027 
1028 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1029 {
1030 	u32 ret = 0;
1031 	struct device *dev = &msm_host->pdev->dev;
1032 
1033 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1034 
1035 	reinit_completion(&msm_host->video_comp);
1036 
1037 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1038 			msecs_to_jiffies(70));
1039 
1040 	if (ret == 0)
1041 		DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1042 
1043 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1044 }
1045 
1046 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1047 {
1048 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1049 		return;
1050 
1051 	if (msm_host->power_on && msm_host->enabled) {
1052 		dsi_wait4video_done(msm_host);
1053 		/* delay 4 ms to skip BLLP */
1054 		usleep_range(2000, 4000);
1055 	}
1056 }
1057 
1058 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1059 {
1060 	struct drm_device *dev = msm_host->dev;
1061 	struct msm_drm_private *priv = dev->dev_private;
1062 	uint64_t iova;
1063 	u8 *data;
1064 
1065 	data = msm_gem_kernel_new(dev, size, MSM_BO_WC,
1066 					priv->kms->aspace,
1067 					&msm_host->tx_gem_obj, &iova);
1068 
1069 	if (IS_ERR(data)) {
1070 		msm_host->tx_gem_obj = NULL;
1071 		return PTR_ERR(data);
1072 	}
1073 
1074 	msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1075 
1076 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1077 
1078 	return 0;
1079 }
1080 
1081 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1082 {
1083 	struct drm_device *dev = msm_host->dev;
1084 
1085 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1086 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1087 	if (!msm_host->tx_buf)
1088 		return -ENOMEM;
1089 
1090 	msm_host->tx_size = size;
1091 
1092 	return 0;
1093 }
1094 
1095 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1096 {
1097 	struct drm_device *dev = msm_host->dev;
1098 	struct msm_drm_private *priv;
1099 
1100 	/*
1101 	 * This is possible if we're tearing down before we've had a chance to
1102 	 * fully initialize. A very real possibility if our probe is deferred,
1103 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1104 	 * through the dsi_tx_buf_alloc().
1105 	 */
1106 	if (!dev)
1107 		return;
1108 
1109 	priv = dev->dev_private;
1110 	if (msm_host->tx_gem_obj) {
1111 		msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1112 		drm_gem_object_put(msm_host->tx_gem_obj);
1113 		msm_host->tx_gem_obj = NULL;
1114 	}
1115 
1116 	if (msm_host->tx_buf)
1117 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1118 			msm_host->tx_buf_paddr);
1119 }
1120 
1121 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1122 {
1123 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1124 }
1125 
1126 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1127 {
1128 	return msm_host->tx_buf;
1129 }
1130 
1131 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1132 {
1133 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1134 }
1135 
1136 /*
1137  * prepare cmd buffer to be txed
1138  */
1139 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1140 			   const struct mipi_dsi_msg *msg)
1141 {
1142 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1143 	struct mipi_dsi_packet packet;
1144 	int len;
1145 	int ret;
1146 	u8 *data;
1147 
1148 	ret = mipi_dsi_create_packet(&packet, msg);
1149 	if (ret) {
1150 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1151 		return ret;
1152 	}
1153 	len = (packet.size + 3) & (~0x3);
1154 
1155 	if (len > msm_host->tx_size) {
1156 		pr_err("%s: packet size is too big\n", __func__);
1157 		return -EINVAL;
1158 	}
1159 
1160 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1161 	if (IS_ERR(data)) {
1162 		ret = PTR_ERR(data);
1163 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1164 		return ret;
1165 	}
1166 
1167 	/* MSM specific command format in memory */
1168 	data[0] = packet.header[1];
1169 	data[1] = packet.header[2];
1170 	data[2] = packet.header[0];
1171 	data[3] = BIT(7); /* Last packet */
1172 	if (mipi_dsi_packet_format_is_long(msg->type))
1173 		data[3] |= BIT(6);
1174 	if (msg->rx_buf && msg->rx_len)
1175 		data[3] |= BIT(5);
1176 
1177 	/* Long packet */
1178 	if (packet.payload && packet.payload_length)
1179 		memcpy(data + 4, packet.payload, packet.payload_length);
1180 
1181 	/* Append 0xff to the end */
1182 	if (packet.size < len)
1183 		memset(data + packet.size, 0xff, len - packet.size);
1184 
1185 	if (cfg_hnd->ops->tx_buf_put)
1186 		cfg_hnd->ops->tx_buf_put(msm_host);
1187 
1188 	return len;
1189 }
1190 
1191 /*
1192  * dsi_short_read1_resp: 1 parameter
1193  */
1194 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1195 {
1196 	u8 *data = msg->rx_buf;
1197 	if (data && (msg->rx_len >= 1)) {
1198 		*data = buf[1]; /* strip out dcs type */
1199 		return 1;
1200 	} else {
1201 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1202 			__func__, msg->rx_len);
1203 		return -EINVAL;
1204 	}
1205 }
1206 
1207 /*
1208  * dsi_short_read2_resp: 2 parameter
1209  */
1210 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1211 {
1212 	u8 *data = msg->rx_buf;
1213 	if (data && (msg->rx_len >= 2)) {
1214 		data[0] = buf[1]; /* strip out dcs type */
1215 		data[1] = buf[2];
1216 		return 2;
1217 	} else {
1218 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1219 			__func__, msg->rx_len);
1220 		return -EINVAL;
1221 	}
1222 }
1223 
1224 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1225 {
1226 	/* strip out 4 byte dcs header */
1227 	if (msg->rx_buf && msg->rx_len)
1228 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1229 
1230 	return msg->rx_len;
1231 }
1232 
1233 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1234 {
1235 	struct drm_device *dev = msm_host->dev;
1236 	struct msm_drm_private *priv = dev->dev_private;
1237 
1238 	if (!dma_base)
1239 		return -EINVAL;
1240 
1241 	return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1242 				priv->kms->aspace, dma_base);
1243 }
1244 
1245 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1246 {
1247 	if (!dma_base)
1248 		return -EINVAL;
1249 
1250 	*dma_base = msm_host->tx_buf_paddr;
1251 	return 0;
1252 }
1253 
1254 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1255 {
1256 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1257 	int ret;
1258 	uint64_t dma_base;
1259 	bool triggered;
1260 
1261 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1262 	if (ret) {
1263 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1264 		return ret;
1265 	}
1266 
1267 	reinit_completion(&msm_host->dma_comp);
1268 
1269 	dsi_wait4video_eng_busy(msm_host);
1270 
1271 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1272 						msm_host->id, dma_base, len);
1273 	if (triggered) {
1274 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1275 					msecs_to_jiffies(200));
1276 		DBG("ret=%d", ret);
1277 		if (ret == 0)
1278 			ret = -ETIMEDOUT;
1279 		else
1280 			ret = len;
1281 	} else
1282 		ret = len;
1283 
1284 	return ret;
1285 }
1286 
1287 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1288 			u8 *buf, int rx_byte, int pkt_size)
1289 {
1290 	u32 *temp, data;
1291 	int i, j = 0, cnt;
1292 	u32 read_cnt;
1293 	u8 reg[16];
1294 	int repeated_bytes = 0;
1295 	int buf_offset = buf - msm_host->rx_buf;
1296 
1297 	temp = (u32 *)reg;
1298 	cnt = (rx_byte + 3) >> 2;
1299 	if (cnt > 4)
1300 		cnt = 4; /* 4 x 32 bits registers only */
1301 
1302 	if (rx_byte == 4)
1303 		read_cnt = 4;
1304 	else
1305 		read_cnt = pkt_size + 6;
1306 
1307 	/*
1308 	 * In case of multiple reads from the panel, after the first read, there
1309 	 * is possibility that there are some bytes in the payload repeating in
1310 	 * the RDBK_DATA registers. Since we read all the parameters from the
1311 	 * panel right from the first byte for every pass. We need to skip the
1312 	 * repeating bytes and then append the new parameters to the rx buffer.
1313 	 */
1314 	if (read_cnt > 16) {
1315 		int bytes_shifted;
1316 		/* Any data more than 16 bytes will be shifted out.
1317 		 * The temp read buffer should already contain these bytes.
1318 		 * The remaining bytes in read buffer are the repeated bytes.
1319 		 */
1320 		bytes_shifted = read_cnt - 16;
1321 		repeated_bytes = buf_offset - bytes_shifted;
1322 	}
1323 
1324 	for (i = cnt - 1; i >= 0; i--) {
1325 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1326 		*temp++ = ntohl(data); /* to host byte order */
1327 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1328 	}
1329 
1330 	for (i = repeated_bytes; i < 16; i++)
1331 		buf[j++] = reg[i];
1332 
1333 	return j;
1334 }
1335 
1336 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1337 				const struct mipi_dsi_msg *msg)
1338 {
1339 	int len, ret;
1340 	int bllp_len = msm_host->mode->hdisplay *
1341 			dsi_get_bpp(msm_host->format) / 8;
1342 
1343 	len = dsi_cmd_dma_add(msm_host, msg);
1344 	if (!len) {
1345 		pr_err("%s: failed to add cmd type = 0x%x\n",
1346 			__func__,  msg->type);
1347 		return -EINVAL;
1348 	}
1349 
1350 	/* for video mode, do not send cmds more than
1351 	* one pixel line, since it only transmit it
1352 	* during BLLP.
1353 	*/
1354 	/* TODO: if the command is sent in LP mode, the bit rate is only
1355 	 * half of esc clk rate. In this case, if the video is already
1356 	 * actively streaming, we need to check more carefully if the
1357 	 * command can be fit into one BLLP.
1358 	 */
1359 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1360 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1361 			__func__, len);
1362 		return -EINVAL;
1363 	}
1364 
1365 	ret = dsi_cmd_dma_tx(msm_host, len);
1366 	if (ret < len) {
1367 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1368 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1369 		return -ECOMM;
1370 	}
1371 
1372 	return len;
1373 }
1374 
1375 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1376 {
1377 	u32 data0, data1;
1378 
1379 	data0 = dsi_read(msm_host, REG_DSI_CTRL);
1380 	data1 = data0;
1381 	data1 &= ~DSI_CTRL_ENABLE;
1382 	dsi_write(msm_host, REG_DSI_CTRL, data1);
1383 	/*
1384 	 * dsi controller need to be disabled before
1385 	 * clocks turned on
1386 	 */
1387 	wmb();
1388 
1389 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1390 	wmb();	/* make sure clocks enabled */
1391 
1392 	/* dsi controller can only be reset while clocks are running */
1393 	dsi_write(msm_host, REG_DSI_RESET, 1);
1394 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1395 	dsi_write(msm_host, REG_DSI_RESET, 0);
1396 	wmb();	/* controller out of reset */
1397 	dsi_write(msm_host, REG_DSI_CTRL, data0);
1398 	wmb();	/* make sure dsi controller enabled again */
1399 }
1400 
1401 static void dsi_hpd_worker(struct work_struct *work)
1402 {
1403 	struct msm_dsi_host *msm_host =
1404 		container_of(work, struct msm_dsi_host, hpd_work);
1405 
1406 	drm_helper_hpd_irq_event(msm_host->dev);
1407 }
1408 
1409 static void dsi_err_worker(struct work_struct *work)
1410 {
1411 	struct msm_dsi_host *msm_host =
1412 		container_of(work, struct msm_dsi_host, err_work);
1413 	u32 status = msm_host->err_work_state;
1414 
1415 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1416 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1417 		dsi_sw_reset_restore(msm_host);
1418 
1419 	/* It is safe to clear here because error irq is disabled. */
1420 	msm_host->err_work_state = 0;
1421 
1422 	/* enable dsi error interrupt */
1423 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1424 }
1425 
1426 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1427 {
1428 	u32 status;
1429 
1430 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1431 
1432 	if (status) {
1433 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1434 		/* Writing of an extra 0 needed to clear error bits */
1435 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1436 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1437 	}
1438 }
1439 
1440 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1441 {
1442 	u32 status;
1443 
1444 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1445 
1446 	if (status) {
1447 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1448 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1449 	}
1450 }
1451 
1452 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1453 {
1454 	u32 status;
1455 
1456 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1457 
1458 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1459 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1460 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1461 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1462 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1463 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1464 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1465 	}
1466 }
1467 
1468 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1469 {
1470 	u32 status;
1471 
1472 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1473 
1474 	/* fifo underflow, overflow */
1475 	if (status) {
1476 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1477 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1478 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1479 			msm_host->err_work_state |=
1480 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1481 	}
1482 }
1483 
1484 static void dsi_status(struct msm_dsi_host *msm_host)
1485 {
1486 	u32 status;
1487 
1488 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1489 
1490 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1491 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1492 		msm_host->err_work_state |=
1493 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1494 	}
1495 }
1496 
1497 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1498 {
1499 	u32 status;
1500 
1501 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1502 
1503 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1504 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1505 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1506 	}
1507 }
1508 
1509 static void dsi_error(struct msm_dsi_host *msm_host)
1510 {
1511 	/* disable dsi error interrupt */
1512 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1513 
1514 	dsi_clk_status(msm_host);
1515 	dsi_fifo_status(msm_host);
1516 	dsi_ack_err_status(msm_host);
1517 	dsi_timeout_status(msm_host);
1518 	dsi_status(msm_host);
1519 	dsi_dln0_phy_err(msm_host);
1520 
1521 	queue_work(msm_host->workqueue, &msm_host->err_work);
1522 }
1523 
1524 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1525 {
1526 	struct msm_dsi_host *msm_host = ptr;
1527 	u32 isr;
1528 	unsigned long flags;
1529 
1530 	if (!msm_host->ctrl_base)
1531 		return IRQ_HANDLED;
1532 
1533 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1534 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1535 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1536 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1537 
1538 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1539 
1540 	if (isr & DSI_IRQ_ERROR)
1541 		dsi_error(msm_host);
1542 
1543 	if (isr & DSI_IRQ_VIDEO_DONE)
1544 		complete(&msm_host->video_comp);
1545 
1546 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1547 		complete(&msm_host->dma_comp);
1548 
1549 	return IRQ_HANDLED;
1550 }
1551 
1552 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1553 			struct device *panel_device)
1554 {
1555 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1556 							 "disp-enable",
1557 							 GPIOD_OUT_LOW);
1558 	if (IS_ERR(msm_host->disp_en_gpio)) {
1559 		DBG("cannot get disp-enable-gpios %ld",
1560 				PTR_ERR(msm_host->disp_en_gpio));
1561 		return PTR_ERR(msm_host->disp_en_gpio);
1562 	}
1563 
1564 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1565 								GPIOD_IN);
1566 	if (IS_ERR(msm_host->te_gpio)) {
1567 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1568 		return PTR_ERR(msm_host->te_gpio);
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int dsi_host_attach(struct mipi_dsi_host *host,
1575 					struct mipi_dsi_device *dsi)
1576 {
1577 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1578 	int ret;
1579 
1580 	if (dsi->lanes > msm_host->num_data_lanes)
1581 		return -EINVAL;
1582 
1583 	msm_host->channel = dsi->channel;
1584 	msm_host->lanes = dsi->lanes;
1585 	msm_host->format = dsi->format;
1586 	msm_host->mode_flags = dsi->mode_flags;
1587 
1588 	/* Some gpios defined in panel DT need to be controlled by host */
1589 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1590 	if (ret)
1591 		return ret;
1592 
1593 	ret = dsi_dev_attach(msm_host->pdev);
1594 	if (ret)
1595 		return ret;
1596 
1597 	DBG("id=%d", msm_host->id);
1598 	if (msm_host->dev)
1599 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1600 
1601 	return 0;
1602 }
1603 
1604 static int dsi_host_detach(struct mipi_dsi_host *host,
1605 					struct mipi_dsi_device *dsi)
1606 {
1607 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1608 
1609 	dsi_dev_detach(msm_host->pdev);
1610 
1611 	msm_host->device_node = NULL;
1612 
1613 	DBG("id=%d", msm_host->id);
1614 	if (msm_host->dev)
1615 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1616 
1617 	return 0;
1618 }
1619 
1620 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1621 					const struct mipi_dsi_msg *msg)
1622 {
1623 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1624 	int ret;
1625 
1626 	if (!msg || !msm_host->power_on)
1627 		return -EINVAL;
1628 
1629 	mutex_lock(&msm_host->cmd_mutex);
1630 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1631 	mutex_unlock(&msm_host->cmd_mutex);
1632 
1633 	return ret;
1634 }
1635 
1636 static const struct mipi_dsi_host_ops dsi_host_ops = {
1637 	.attach = dsi_host_attach,
1638 	.detach = dsi_host_detach,
1639 	.transfer = dsi_host_transfer,
1640 };
1641 
1642 /*
1643  * List of supported physical to logical lane mappings.
1644  * For example, the 2nd entry represents the following mapping:
1645  *
1646  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1647  */
1648 static const int supported_data_lane_swaps[][4] = {
1649 	{ 0, 1, 2, 3 },
1650 	{ 3, 0, 1, 2 },
1651 	{ 2, 3, 0, 1 },
1652 	{ 1, 2, 3, 0 },
1653 	{ 0, 3, 2, 1 },
1654 	{ 1, 0, 3, 2 },
1655 	{ 2, 1, 0, 3 },
1656 	{ 3, 2, 1, 0 },
1657 };
1658 
1659 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1660 				    struct device_node *ep)
1661 {
1662 	struct device *dev = &msm_host->pdev->dev;
1663 	struct property *prop;
1664 	u32 lane_map[4];
1665 	int ret, i, len, num_lanes;
1666 
1667 	prop = of_find_property(ep, "data-lanes", &len);
1668 	if (!prop) {
1669 		DRM_DEV_DEBUG(dev,
1670 			"failed to find data lane mapping, using default\n");
1671 		/* Set the number of date lanes to 4 by default. */
1672 		msm_host->num_data_lanes = 4;
1673 		return 0;
1674 	}
1675 
1676 	num_lanes = len / sizeof(u32);
1677 
1678 	if (num_lanes < 1 || num_lanes > 4) {
1679 		DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1680 		return -EINVAL;
1681 	}
1682 
1683 	msm_host->num_data_lanes = num_lanes;
1684 
1685 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1686 					 num_lanes);
1687 	if (ret) {
1688 		DRM_DEV_ERROR(dev, "failed to read lane data\n");
1689 		return ret;
1690 	}
1691 
1692 	/*
1693 	 * compare DT specified physical-logical lane mappings with the ones
1694 	 * supported by hardware
1695 	 */
1696 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1697 		const int *swap = supported_data_lane_swaps[i];
1698 		int j;
1699 
1700 		/*
1701 		 * the data-lanes array we get from DT has a logical->physical
1702 		 * mapping. The "data lane swap" register field represents
1703 		 * supported configurations in a physical->logical mapping.
1704 		 * Translate the DT mapping to what we understand and find a
1705 		 * configuration that works.
1706 		 */
1707 		for (j = 0; j < num_lanes; j++) {
1708 			if (lane_map[j] < 0 || lane_map[j] > 3)
1709 				DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1710 					lane_map[j]);
1711 
1712 			if (swap[lane_map[j]] != j)
1713 				break;
1714 		}
1715 
1716 		if (j == num_lanes) {
1717 			msm_host->dlane_swap = i;
1718 			return 0;
1719 		}
1720 	}
1721 
1722 	return -EINVAL;
1723 }
1724 
1725 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1726 {
1727 	struct device *dev = &msm_host->pdev->dev;
1728 	struct device_node *np = dev->of_node;
1729 	struct device_node *endpoint, *device_node;
1730 	int ret = 0;
1731 
1732 	/*
1733 	 * Get the endpoint of the output port of the DSI host. In our case,
1734 	 * this is mapped to port number with reg = 1. Don't return an error if
1735 	 * the remote endpoint isn't defined. It's possible that there is
1736 	 * nothing connected to the dsi output.
1737 	 */
1738 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1739 	if (!endpoint) {
1740 		DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1741 		return 0;
1742 	}
1743 
1744 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1745 	if (ret) {
1746 		DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1747 			__func__, ret);
1748 		ret = -EINVAL;
1749 		goto err;
1750 	}
1751 
1752 	/* Get panel node from the output port's endpoint data */
1753 	device_node = of_graph_get_remote_node(np, 1, 0);
1754 	if (!device_node) {
1755 		DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__);
1756 		ret = -ENODEV;
1757 		goto err;
1758 	}
1759 
1760 	msm_host->device_node = device_node;
1761 
1762 	if (of_property_read_bool(np, "syscon-sfpb")) {
1763 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1764 					"syscon-sfpb");
1765 		if (IS_ERR(msm_host->sfpb)) {
1766 			DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1767 				__func__);
1768 			ret = PTR_ERR(msm_host->sfpb);
1769 		}
1770 	}
1771 
1772 	of_node_put(device_node);
1773 
1774 err:
1775 	of_node_put(endpoint);
1776 
1777 	return ret;
1778 }
1779 
1780 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1781 {
1782 	struct platform_device *pdev = msm_host->pdev;
1783 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1784 	struct resource *res;
1785 	int i;
1786 
1787 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1788 	if (!res)
1789 		return -EINVAL;
1790 
1791 	for (i = 0; i < cfg->num_dsi; i++) {
1792 		if (cfg->io_start[i] == res->start)
1793 			return i;
1794 	}
1795 
1796 	return -EINVAL;
1797 }
1798 
1799 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1800 {
1801 	struct msm_dsi_host *msm_host = NULL;
1802 	struct platform_device *pdev = msm_dsi->pdev;
1803 	int ret;
1804 
1805 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1806 	if (!msm_host) {
1807 		ret = -ENOMEM;
1808 		goto fail;
1809 	}
1810 
1811 	msm_host->pdev = pdev;
1812 	msm_dsi->host = &msm_host->base;
1813 
1814 	ret = dsi_host_parse_dt(msm_host);
1815 	if (ret) {
1816 		pr_err("%s: failed to parse dt\n", __func__);
1817 		goto fail;
1818 	}
1819 
1820 	msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", &msm_host->ctrl_size);
1821 	if (IS_ERR(msm_host->ctrl_base)) {
1822 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1823 		ret = PTR_ERR(msm_host->ctrl_base);
1824 		goto fail;
1825 	}
1826 
1827 	pm_runtime_enable(&pdev->dev);
1828 
1829 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1830 	if (!msm_host->cfg_hnd) {
1831 		ret = -EINVAL;
1832 		pr_err("%s: get config failed\n", __func__);
1833 		goto fail;
1834 	}
1835 
1836 	msm_host->id = dsi_host_get_id(msm_host);
1837 	if (msm_host->id < 0) {
1838 		ret = msm_host->id;
1839 		pr_err("%s: unable to identify DSI host index\n", __func__);
1840 		goto fail;
1841 	}
1842 
1843 	/* fixup base address by io offset */
1844 	msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1845 
1846 	ret = dsi_regulator_init(msm_host);
1847 	if (ret) {
1848 		pr_err("%s: regulator init failed\n", __func__);
1849 		goto fail;
1850 	}
1851 
1852 	ret = dsi_clk_init(msm_host);
1853 	if (ret) {
1854 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1855 		goto fail;
1856 	}
1857 
1858 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1859 	if (!msm_host->rx_buf) {
1860 		ret = -ENOMEM;
1861 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1862 		goto fail;
1863 	}
1864 
1865 	ret = devm_pm_opp_set_clkname(&pdev->dev, "byte");
1866 	if (ret)
1867 		return ret;
1868 	/* OPP table is optional */
1869 	ret = devm_pm_opp_of_add_table(&pdev->dev);
1870 	if (ret && ret != -ENODEV) {
1871 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1872 		return ret;
1873 	}
1874 
1875 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1876 	if (msm_host->irq < 0) {
1877 		ret = msm_host->irq;
1878 		dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1879 		return ret;
1880 	}
1881 
1882 	/* do not autoenable, will be enabled later */
1883 	ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq,
1884 			IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1885 			"dsi_isr", msm_host);
1886 	if (ret < 0) {
1887 		dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
1888 				msm_host->irq, ret);
1889 		return ret;
1890 	}
1891 
1892 	init_completion(&msm_host->dma_comp);
1893 	init_completion(&msm_host->video_comp);
1894 	mutex_init(&msm_host->dev_mutex);
1895 	mutex_init(&msm_host->cmd_mutex);
1896 	spin_lock_init(&msm_host->intr_lock);
1897 
1898 	/* setup workqueue */
1899 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1900 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
1901 	INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1902 
1903 	msm_dsi->id = msm_host->id;
1904 
1905 	DBG("Dsi Host %d initialized", msm_host->id);
1906 	return 0;
1907 
1908 fail:
1909 	return ret;
1910 }
1911 
1912 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1913 {
1914 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1915 
1916 	DBG("");
1917 	dsi_tx_buf_free(msm_host);
1918 	if (msm_host->workqueue) {
1919 		destroy_workqueue(msm_host->workqueue);
1920 		msm_host->workqueue = NULL;
1921 	}
1922 
1923 	mutex_destroy(&msm_host->cmd_mutex);
1924 	mutex_destroy(&msm_host->dev_mutex);
1925 
1926 	pm_runtime_disable(&msm_host->pdev->dev);
1927 }
1928 
1929 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1930 					struct drm_device *dev)
1931 {
1932 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1933 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1934 	int ret;
1935 
1936 	msm_host->dev = dev;
1937 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1938 	if (ret) {
1939 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1940 		return ret;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 int msm_dsi_host_register(struct mipi_dsi_host *host)
1947 {
1948 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1949 	int ret;
1950 
1951 	/* Register mipi dsi host */
1952 	if (!msm_host->registered) {
1953 		host->dev = &msm_host->pdev->dev;
1954 		host->ops = &dsi_host_ops;
1955 		ret = mipi_dsi_host_register(host);
1956 		if (ret)
1957 			return ret;
1958 
1959 		msm_host->registered = true;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
1966 {
1967 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1968 
1969 	if (msm_host->registered) {
1970 		mipi_dsi_host_unregister(host);
1971 		host->dev = NULL;
1972 		host->ops = NULL;
1973 		msm_host->registered = false;
1974 	}
1975 }
1976 
1977 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
1978 				const struct mipi_dsi_msg *msg)
1979 {
1980 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1981 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1982 
1983 	/* TODO: make sure dsi_cmd_mdp is idle.
1984 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
1985 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
1986 	 * How to handle the old versions? Wait for mdp cmd done?
1987 	 */
1988 
1989 	/*
1990 	 * mdss interrupt is generated in mdp core clock domain
1991 	 * mdp clock need to be enabled to receive dsi interrupt
1992 	 */
1993 	pm_runtime_get_sync(&msm_host->pdev->dev);
1994 	cfg_hnd->ops->link_clk_set_rate(msm_host);
1995 	cfg_hnd->ops->link_clk_enable(msm_host);
1996 
1997 	/* TODO: vote for bus bandwidth */
1998 
1999 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2000 		dsi_set_tx_power_mode(0, msm_host);
2001 
2002 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2003 	dsi_write(msm_host, REG_DSI_CTRL,
2004 		msm_host->dma_cmd_ctrl_restore |
2005 		DSI_CTRL_CMD_MODE_EN |
2006 		DSI_CTRL_ENABLE);
2007 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2008 
2009 	return 0;
2010 }
2011 
2012 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2013 				const struct mipi_dsi_msg *msg)
2014 {
2015 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2016 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2017 
2018 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2019 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2020 
2021 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2022 		dsi_set_tx_power_mode(1, msm_host);
2023 
2024 	/* TODO: unvote for bus bandwidth */
2025 
2026 	cfg_hnd->ops->link_clk_disable(msm_host);
2027 	pm_runtime_put(&msm_host->pdev->dev);
2028 }
2029 
2030 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2031 				const struct mipi_dsi_msg *msg)
2032 {
2033 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2034 
2035 	return dsi_cmds2buf_tx(msm_host, msg);
2036 }
2037 
2038 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2039 				const struct mipi_dsi_msg *msg)
2040 {
2041 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2042 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2043 	int data_byte, rx_byte, dlen, end;
2044 	int short_response, diff, pkt_size, ret = 0;
2045 	char cmd;
2046 	int rlen = msg->rx_len;
2047 	u8 *buf;
2048 
2049 	if (rlen <= 2) {
2050 		short_response = 1;
2051 		pkt_size = rlen;
2052 		rx_byte = 4;
2053 	} else {
2054 		short_response = 0;
2055 		data_byte = 10;	/* first read */
2056 		if (rlen < data_byte)
2057 			pkt_size = rlen;
2058 		else
2059 			pkt_size = data_byte;
2060 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2061 	}
2062 
2063 	buf = msm_host->rx_buf;
2064 	end = 0;
2065 	while (!end) {
2066 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2067 		struct mipi_dsi_msg max_pkt_size_msg = {
2068 			.channel = msg->channel,
2069 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2070 			.tx_len = 2,
2071 			.tx_buf = tx,
2072 		};
2073 
2074 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2075 			rlen, pkt_size, rx_byte);
2076 
2077 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2078 		if (ret < 2) {
2079 			pr_err("%s: Set max pkt size failed, %d\n",
2080 				__func__, ret);
2081 			return -EINVAL;
2082 		}
2083 
2084 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2085 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2086 			/* Clear the RDBK_DATA registers */
2087 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2088 					DSI_RDBK_DATA_CTRL_CLR);
2089 			wmb(); /* make sure the RDBK registers are cleared */
2090 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2091 			wmb(); /* release cleared status before transfer */
2092 		}
2093 
2094 		ret = dsi_cmds2buf_tx(msm_host, msg);
2095 		if (ret < msg->tx_len) {
2096 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2097 			return ret;
2098 		}
2099 
2100 		/*
2101 		 * once cmd_dma_done interrupt received,
2102 		 * return data from client is ready and stored
2103 		 * at RDBK_DATA register already
2104 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2105 		 * after that dcs header lost during shift into registers
2106 		 */
2107 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2108 
2109 		if (dlen <= 0)
2110 			return 0;
2111 
2112 		if (short_response)
2113 			break;
2114 
2115 		if (rlen <= data_byte) {
2116 			diff = data_byte - rlen;
2117 			end = 1;
2118 		} else {
2119 			diff = 0;
2120 			rlen -= data_byte;
2121 		}
2122 
2123 		if (!end) {
2124 			dlen -= 2; /* 2 crc */
2125 			dlen -= diff;
2126 			buf += dlen;	/* next start position */
2127 			data_byte = 14;	/* NOT first read */
2128 			if (rlen < data_byte)
2129 				pkt_size += rlen;
2130 			else
2131 				pkt_size += data_byte;
2132 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * For single Long read, if the requested rlen < 10,
2138 	 * we need to shift the start position of rx
2139 	 * data buffer to skip the bytes which are not
2140 	 * updated.
2141 	 */
2142 	if (pkt_size < 10 && !short_response)
2143 		buf = msm_host->rx_buf + (10 - rlen);
2144 	else
2145 		buf = msm_host->rx_buf;
2146 
2147 	cmd = buf[0];
2148 	switch (cmd) {
2149 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2150 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2151 		ret = 0;
2152 		break;
2153 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2154 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2155 		ret = dsi_short_read1_resp(buf, msg);
2156 		break;
2157 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2158 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2159 		ret = dsi_short_read2_resp(buf, msg);
2160 		break;
2161 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2162 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2163 		ret = dsi_long_read_resp(buf, msg);
2164 		break;
2165 	default:
2166 		pr_warn("%s:Invalid response cmd\n", __func__);
2167 		ret = 0;
2168 	}
2169 
2170 	return ret;
2171 }
2172 
2173 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2174 				  u32 len)
2175 {
2176 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2177 
2178 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2179 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2180 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2181 
2182 	/* Make sure trigger happens */
2183 	wmb();
2184 }
2185 
2186 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host,
2187 	struct msm_dsi_phy *src_phy)
2188 {
2189 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2190 
2191 	msm_host->cphy_mode = src_phy->cphy_mode;
2192 }
2193 
2194 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2195 {
2196 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2197 
2198 	DBG("");
2199 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2200 	/* Make sure fully reset */
2201 	wmb();
2202 	udelay(1000);
2203 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2204 	udelay(100);
2205 }
2206 
2207 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2208 			struct msm_dsi_phy_clk_request *clk_req,
2209 			bool is_bonded_dsi)
2210 {
2211 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2212 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2213 	int ret;
2214 
2215 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi);
2216 	if (ret) {
2217 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2218 		return;
2219 	}
2220 
2221 	/* CPHY transmits 16 bits over 7 clock cycles
2222 	 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk),
2223 	 * so multiply by 7 to get the "bitclk rate"
2224 	 */
2225 	if (msm_host->cphy_mode)
2226 		clk_req->bitclk_rate = msm_host->byte_clk_rate * 7;
2227 	else
2228 		clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2229 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2230 }
2231 
2232 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host)
2233 {
2234 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2235 
2236 	enable_irq(msm_host->irq);
2237 }
2238 
2239 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host)
2240 {
2241 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2242 
2243 	disable_irq(msm_host->irq);
2244 }
2245 
2246 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2247 {
2248 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2249 
2250 	dsi_op_mode_config(msm_host,
2251 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2252 
2253 	/* TODO: clock should be turned off for command mode,
2254 	 * and only turned on before MDP START.
2255 	 * This part of code should be enabled once mdp driver support it.
2256 	 */
2257 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2258 	 *	dsi_link_clk_disable(msm_host);
2259 	 *	pm_runtime_put(&msm_host->pdev->dev);
2260 	 * }
2261 	 */
2262 	msm_host->enabled = true;
2263 	return 0;
2264 }
2265 
2266 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2267 {
2268 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2269 
2270 	msm_host->enabled = false;
2271 	dsi_op_mode_config(msm_host,
2272 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2273 
2274 	/* Since we have disabled INTF, the video engine won't stop so that
2275 	 * the cmd engine will be blocked.
2276 	 * Reset to disable video engine so that we can send off cmd.
2277 	 */
2278 	dsi_sw_reset(msm_host);
2279 
2280 	return 0;
2281 }
2282 
2283 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2284 {
2285 	enum sfpb_ahb_arb_master_port_en en;
2286 
2287 	if (!msm_host->sfpb)
2288 		return;
2289 
2290 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2291 
2292 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2293 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2294 			SFPB_GPREG_MASTER_PORT_EN(en));
2295 }
2296 
2297 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2298 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2299 			bool is_bonded_dsi, struct msm_dsi_phy *phy)
2300 {
2301 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2302 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2303 	int ret = 0;
2304 
2305 	mutex_lock(&msm_host->dev_mutex);
2306 	if (msm_host->power_on) {
2307 		DBG("dsi host already on");
2308 		goto unlock_ret;
2309 	}
2310 
2311 	msm_dsi_sfpb_config(msm_host, true);
2312 
2313 	ret = dsi_host_regulator_enable(msm_host);
2314 	if (ret) {
2315 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2316 			__func__, ret);
2317 		goto unlock_ret;
2318 	}
2319 
2320 	pm_runtime_get_sync(&msm_host->pdev->dev);
2321 	ret = cfg_hnd->ops->link_clk_set_rate(msm_host);
2322 	if (!ret)
2323 		ret = cfg_hnd->ops->link_clk_enable(msm_host);
2324 	if (ret) {
2325 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2326 		       __func__, ret);
2327 		goto fail_disable_reg;
2328 	}
2329 
2330 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2331 	if (ret) {
2332 		pr_err("%s: failed to set pinctrl default state, %d\n",
2333 			__func__, ret);
2334 		goto fail_disable_clk;
2335 	}
2336 
2337 	dsi_timing_setup(msm_host, is_bonded_dsi);
2338 	dsi_sw_reset(msm_host);
2339 	dsi_ctrl_config(msm_host, true, phy_shared_timings, phy);
2340 
2341 	if (msm_host->disp_en_gpio)
2342 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2343 
2344 	msm_host->power_on = true;
2345 	mutex_unlock(&msm_host->dev_mutex);
2346 
2347 	return 0;
2348 
2349 fail_disable_clk:
2350 	cfg_hnd->ops->link_clk_disable(msm_host);
2351 	pm_runtime_put(&msm_host->pdev->dev);
2352 fail_disable_reg:
2353 	dsi_host_regulator_disable(msm_host);
2354 unlock_ret:
2355 	mutex_unlock(&msm_host->dev_mutex);
2356 	return ret;
2357 }
2358 
2359 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2360 {
2361 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2362 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2363 
2364 	mutex_lock(&msm_host->dev_mutex);
2365 	if (!msm_host->power_on) {
2366 		DBG("dsi host already off");
2367 		goto unlock_ret;
2368 	}
2369 
2370 	dsi_ctrl_config(msm_host, false, NULL, NULL);
2371 
2372 	if (msm_host->disp_en_gpio)
2373 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2374 
2375 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2376 
2377 	cfg_hnd->ops->link_clk_disable(msm_host);
2378 	pm_runtime_put(&msm_host->pdev->dev);
2379 
2380 	dsi_host_regulator_disable(msm_host);
2381 
2382 	msm_dsi_sfpb_config(msm_host, false);
2383 
2384 	DBG("-");
2385 
2386 	msm_host->power_on = false;
2387 
2388 unlock_ret:
2389 	mutex_unlock(&msm_host->dev_mutex);
2390 	return 0;
2391 }
2392 
2393 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2394 				  const struct drm_display_mode *mode)
2395 {
2396 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2397 
2398 	if (msm_host->mode) {
2399 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2400 		msm_host->mode = NULL;
2401 	}
2402 
2403 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2404 	if (!msm_host->mode) {
2405 		pr_err("%s: cannot duplicate mode\n", __func__);
2406 		return -ENOMEM;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host)
2413 {
2414 	return of_drm_find_panel(to_msm_dsi_host(host)->device_node);
2415 }
2416 
2417 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2418 {
2419 	return to_msm_dsi_host(host)->mode_flags;
2420 }
2421 
2422 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2423 {
2424 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2425 
2426 	return of_drm_find_bridge(msm_host->device_node);
2427 }
2428 
2429 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host)
2430 {
2431 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2432 
2433 	pm_runtime_get_sync(&msm_host->pdev->dev);
2434 
2435 	msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size,
2436 			msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id);
2437 
2438 	pm_runtime_put_sync(&msm_host->pdev->dev);
2439 }
2440 
2441 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host)
2442 {
2443 	u32 reg;
2444 
2445 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2446 
2447 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff);
2448 	/* draw checkered rectangle pattern */
2449 	dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL,
2450 			DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN);
2451 	/* use 24-bit RGB test pttern */
2452 	dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG,
2453 			DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) |
2454 			DSI_TPG_VIDEO_CONFIG_RGB);
2455 
2456 	reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN);
2457 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg);
2458 
2459 	DBG("Video test pattern setup done\n");
2460 }
2461 
2462 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host)
2463 {
2464 	u32 reg;
2465 
2466 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2467 
2468 	/* initial value for test pattern */
2469 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff);
2470 
2471 	reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN);
2472 
2473 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg);
2474 	/* draw checkered rectangle pattern */
2475 	dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2,
2476 			DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN);
2477 
2478 	DBG("Cmd test pattern setup done\n");
2479 }
2480 
2481 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host)
2482 {
2483 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2484 	bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO);
2485 	u32 reg;
2486 
2487 	if (is_video_mode)
2488 		msm_dsi_host_video_test_pattern_setup(msm_host);
2489 	else
2490 		msm_dsi_host_cmd_test_pattern_setup(msm_host);
2491 
2492 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2493 	/* enable the test pattern generator */
2494 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN));
2495 
2496 	/* for command mode need to trigger one frame from tpg */
2497 	if (!is_video_mode)
2498 		dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER,
2499 				DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER);
2500 }
2501