xref: /openbmc/linux/drivers/gpu/drm/mgag200/mgag200_mode.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
19 
20 #include "mgag200_drv.h"
21 
22 #define MGAG200_LUT_SIZE 256
23 
24 /*
25  * This file contains setup code for the CRTC.
26  */
27 
28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 {
30 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 	struct drm_device *dev = crtc->dev;
32 	struct mga_device *mdev = dev->dev_private;
33 	struct drm_framebuffer *fb = crtc->primary->fb;
34 	int i;
35 
36 	if (!crtc->enabled)
37 		return;
38 
39 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40 
41 	if (fb && fb->bits_per_pixel == 16) {
42 		int inc = (fb->depth == 15) ? 8 : 4;
43 		u8 r, b;
44 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45 			if (fb->depth == 16) {
46 				if (i > (MGAG200_LUT_SIZE >> 1)) {
47 					r = b = 0;
48 				} else {
49 					r = mga_crtc->lut_r[i << 1];
50 					b = mga_crtc->lut_b[i << 1];
51 				}
52 			} else {
53 				r = mga_crtc->lut_r[i];
54 				b = mga_crtc->lut_b[i];
55 			}
56 			/* VGA registers */
57 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58 			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60 		}
61 		return;
62 	}
63 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64 		/* VGA registers */
65 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
68 	}
69 }
70 
71 static inline void mga_wait_vsync(struct mga_device *mdev)
72 {
73 	unsigned long timeout = jiffies + HZ/10;
74 	unsigned int status = 0;
75 
76 	do {
77 		status = RREG32(MGAREG_Status);
78 	} while ((status & 0x08) && time_before(jiffies, timeout));
79 	timeout = jiffies + HZ/10;
80 	status = 0;
81 	do {
82 		status = RREG32(MGAREG_Status);
83 	} while (!(status & 0x08) && time_before(jiffies, timeout));
84 }
85 
86 static inline void mga_wait_busy(struct mga_device *mdev)
87 {
88 	unsigned long timeout = jiffies + HZ;
89 	unsigned int status = 0;
90 	do {
91 		status = RREG8(MGAREG_Status + 2);
92 	} while ((status & 0x01) && time_before(jiffies, timeout));
93 }
94 
95 /*
96  * The core passes the desired mode to the CRTC code to see whether any
97  * CRTC-specific modifications need to be made to it. We're in a position
98  * to just pass that straight through, so this does nothing
99  */
100 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
101 				const struct drm_display_mode *mode,
102 				struct drm_display_mode *adjusted_mode)
103 {
104 	return true;
105 }
106 
107 #define P_ARRAY_SIZE 9
108 
109 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
110 {
111 	unsigned int vcomax, vcomin, pllreffreq;
112 	unsigned int delta, tmpdelta, permitteddelta;
113 	unsigned int testp, testm, testn;
114 	unsigned int p, m, n;
115 	unsigned int computed;
116 	unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
117 	unsigned int fvv;
118 	unsigned int i;
119 
120 	if (mdev->unique_rev_id <= 0x03) {
121 
122 		m = n = p = 0;
123 		vcomax = 320000;
124 		vcomin = 160000;
125 		pllreffreq = 25000;
126 
127 		delta = 0xffffffff;
128 		permitteddelta = clock * 5 / 1000;
129 
130 		for (testp = 8; testp > 0; testp /= 2) {
131 			if (clock * testp > vcomax)
132 				continue;
133 			if (clock * testp < vcomin)
134 				continue;
135 
136 			for (testn = 17; testn < 256; testn++) {
137 				for (testm = 1; testm < 32; testm++) {
138 					computed = (pllreffreq * testn) /
139 						(testm * testp);
140 					if (computed > clock)
141 						tmpdelta = computed - clock;
142 					else
143 						tmpdelta = clock - computed;
144 					if (tmpdelta < delta) {
145 						delta = tmpdelta;
146 						m = testm - 1;
147 						n = testn - 1;
148 						p = testp - 1;
149 					}
150 				}
151 			}
152 		}
153 	} else {
154 
155 
156 		m = n = p = 0;
157 		vcomax        = 1600000;
158 		vcomin        = 800000;
159 		pllreffreq    = 25000;
160 
161 		if (clock < 25000)
162 			clock = 25000;
163 
164 		clock = clock * 2;
165 
166 		delta = 0xFFFFFFFF;
167 		/* Permited delta is 0.5% as VESA Specification */
168 		permitteddelta = clock * 5 / 1000;
169 
170 		for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
171 			testp = pvalues_e4[i];
172 
173 			if ((clock * testp) > vcomax)
174 				continue;
175 			if ((clock * testp) < vcomin)
176 				continue;
177 
178 			for (testn = 50; testn <= 256; testn++) {
179 				for (testm = 1; testm <= 32; testm++) {
180 					computed = (pllreffreq * testn) /
181 						(testm * testp);
182 					if (computed > clock)
183 						tmpdelta = computed - clock;
184 					else
185 						tmpdelta = clock - computed;
186 
187 					if (tmpdelta < delta) {
188 						delta = tmpdelta;
189 						m = testm - 1;
190 						n = testn - 1;
191 						p = testp - 1;
192 					}
193 				}
194 			}
195 		}
196 
197 		fvv = pllreffreq * testn / testm;
198 		fvv = (fvv - 800000) / 50000;
199 
200 		if (fvv > 15)
201 			fvv = 15;
202 
203 		p |= (fvv << 4);
204 		m |= 0x80;
205 
206 		clock = clock / 2;
207 	}
208 
209 	if (delta > permitteddelta) {
210 		printk(KERN_WARNING "PLL delta too large\n");
211 		return 1;
212 	}
213 
214 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
215 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
216 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
217 	return 0;
218 }
219 
220 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
221 {
222 	unsigned int vcomax, vcomin, pllreffreq;
223 	unsigned int delta, tmpdelta;
224 	unsigned int testp, testm, testn, testp2;
225 	unsigned int p, m, n;
226 	unsigned int computed;
227 	int i, j, tmpcount, vcount;
228 	bool pll_locked = false;
229 	u8 tmp;
230 
231 	m = n = p = 0;
232 
233 	delta = 0xffffffff;
234 
235 	if (mdev->type == G200_EW3) {
236 
237 		vcomax = 800000;
238 		vcomin = 400000;
239 		pllreffreq = 25000;
240 
241 		for (testp = 1; testp < 8; testp++) {
242 			for (testp2 = 1; testp2 < 8; testp2++) {
243 				if (testp < testp2)
244 					continue;
245 				if ((clock * testp * testp2) > vcomax)
246 					continue;
247 				if ((clock * testp * testp2) < vcomin)
248 					continue;
249 				for (testm = 1; testm < 26; testm++) {
250 					for (testn = 32; testn < 2048 ; testn++) {
251 						computed = (pllreffreq * testn) /
252 							(testm * testp * testp2);
253 						if (computed > clock)
254 							tmpdelta = computed - clock;
255 						else
256 							tmpdelta = clock - computed;
257 						if (tmpdelta < delta) {
258 							delta = tmpdelta;
259 							m = ((testn & 0x100) >> 1) |
260 								(testm);
261 							n = (testn & 0xFF);
262 							p = ((testn & 0x600) >> 3) |
263 								(testp2 << 3) |
264 								(testp);
265 						}
266 					}
267 				}
268 			}
269 		}
270 	} else {
271 
272 		vcomax = 550000;
273 		vcomin = 150000;
274 		pllreffreq = 48000;
275 
276 		for (testp = 1; testp < 9; testp++) {
277 			if (clock * testp > vcomax)
278 				continue;
279 			if (clock * testp < vcomin)
280 				continue;
281 
282 			for (testm = 1; testm < 17; testm++) {
283 				for (testn = 1; testn < 151; testn++) {
284 					computed = (pllreffreq * testn) /
285 						(testm * testp);
286 					if (computed > clock)
287 						tmpdelta = computed - clock;
288 					else
289 						tmpdelta = clock - computed;
290 					if (tmpdelta < delta) {
291 						delta = tmpdelta;
292 						n = testn - 1;
293 						m = (testm - 1) |
294 							((n >> 1) & 0x80);
295 						p = testp - 1;
296 					}
297 				}
298 			}
299 		}
300 	}
301 
302 	for (i = 0; i <= 32 && pll_locked == false; i++) {
303 		if (i > 0) {
304 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
305 			tmp = RREG8(MGAREG_CRTC_DATA);
306 			if (tmp < 0xff)
307 				WREG8(MGAREG_CRTC_DATA, tmp+1);
308 		}
309 
310 		/* set pixclkdis to 1 */
311 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
312 		tmp = RREG8(DAC_DATA);
313 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
314 		WREG8(DAC_DATA, tmp);
315 
316 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
317 		tmp = RREG8(DAC_DATA);
318 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
319 		WREG8(DAC_DATA, tmp);
320 
321 		/* select PLL Set C */
322 		tmp = RREG8(MGAREG_MEM_MISC_READ);
323 		tmp |= 0x3 << 2;
324 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
325 
326 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
327 		tmp = RREG8(DAC_DATA);
328 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
329 		WREG8(DAC_DATA, tmp);
330 
331 		udelay(500);
332 
333 		/* reset the PLL */
334 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
335 		tmp = RREG8(DAC_DATA);
336 		tmp &= ~0x04;
337 		WREG8(DAC_DATA, tmp);
338 
339 		udelay(50);
340 
341 		/* program pixel pll register */
342 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
343 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
344 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
345 
346 		udelay(50);
347 
348 		/* turn pll on */
349 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
350 		tmp = RREG8(DAC_DATA);
351 		tmp |= 0x04;
352 		WREG_DAC(MGA1064_VREF_CTL, tmp);
353 
354 		udelay(500);
355 
356 		/* select the pixel pll */
357 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
358 		tmp = RREG8(DAC_DATA);
359 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
360 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
361 		WREG8(DAC_DATA, tmp);
362 
363 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
364 		tmp = RREG8(DAC_DATA);
365 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
366 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
367 		WREG8(DAC_DATA, tmp);
368 
369 		/* reset dotclock rate bit */
370 		WREG8(MGAREG_SEQ_INDEX, 1);
371 		tmp = RREG8(MGAREG_SEQ_DATA);
372 		tmp &= ~0x8;
373 		WREG8(MGAREG_SEQ_DATA, tmp);
374 
375 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
376 		tmp = RREG8(DAC_DATA);
377 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
378 		WREG8(DAC_DATA, tmp);
379 
380 		vcount = RREG8(MGAREG_VCOUNT);
381 
382 		for (j = 0; j < 30 && pll_locked == false; j++) {
383 			tmpcount = RREG8(MGAREG_VCOUNT);
384 			if (tmpcount < vcount)
385 				vcount = 0;
386 			if ((tmpcount - vcount) > 2)
387 				pll_locked = true;
388 			else
389 				udelay(5);
390 		}
391 	}
392 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
393 	tmp = RREG8(DAC_DATA);
394 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
395 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
396 	return 0;
397 }
398 
399 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
400 {
401 	unsigned int vcomax, vcomin, pllreffreq;
402 	unsigned int delta, tmpdelta;
403 	unsigned int testp, testm, testn;
404 	unsigned int p, m, n;
405 	unsigned int computed;
406 	u8 tmp;
407 
408 	m = n = p = 0;
409 	vcomax = 550000;
410 	vcomin = 150000;
411 	pllreffreq = 50000;
412 
413 	delta = 0xffffffff;
414 
415 	for (testp = 16; testp > 0; testp--) {
416 		if (clock * testp > vcomax)
417 			continue;
418 		if (clock * testp < vcomin)
419 			continue;
420 
421 		for (testn = 1; testn < 257; testn++) {
422 			for (testm = 1; testm < 17; testm++) {
423 				computed = (pllreffreq * testn) /
424 					(testm * testp);
425 				if (computed > clock)
426 					tmpdelta = computed - clock;
427 				else
428 					tmpdelta = clock - computed;
429 				if (tmpdelta < delta) {
430 					delta = tmpdelta;
431 					n = testn - 1;
432 					m = testm - 1;
433 					p = testp - 1;
434 				}
435 			}
436 		}
437 	}
438 
439 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
440 	tmp = RREG8(DAC_DATA);
441 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
442 	WREG8(DAC_DATA, tmp);
443 
444 	tmp = RREG8(MGAREG_MEM_MISC_READ);
445 	tmp |= 0x3 << 2;
446 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
447 
448 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
449 	tmp = RREG8(DAC_DATA);
450 	WREG8(DAC_DATA, tmp & ~0x40);
451 
452 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
453 	tmp = RREG8(DAC_DATA);
454 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
455 	WREG8(DAC_DATA, tmp);
456 
457 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
458 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
459 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
460 
461 	udelay(50);
462 
463 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
464 	tmp = RREG8(DAC_DATA);
465 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
466 	WREG8(DAC_DATA, tmp);
467 
468 	udelay(500);
469 
470 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
471 	tmp = RREG8(DAC_DATA);
472 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
473 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
474 	WREG8(DAC_DATA, tmp);
475 
476 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
477 	tmp = RREG8(DAC_DATA);
478 	WREG8(DAC_DATA, tmp | 0x40);
479 
480 	tmp = RREG8(MGAREG_MEM_MISC_READ);
481 	tmp |= (0x3 << 2);
482 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
483 
484 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
485 	tmp = RREG8(DAC_DATA);
486 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
487 	WREG8(DAC_DATA, tmp);
488 
489 	return 0;
490 }
491 
492 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
493 {
494 	unsigned int vcomax, vcomin, pllreffreq;
495 	unsigned int delta, tmpdelta;
496 	unsigned int testp, testm, testn;
497 	unsigned int p, m, n;
498 	unsigned int computed;
499 	int i, j, tmpcount, vcount;
500 	u8 tmp;
501 	bool pll_locked = false;
502 
503 	m = n = p = 0;
504 	vcomax = 800000;
505 	vcomin = 400000;
506 	pllreffreq = 33333;
507 
508 	delta = 0xffffffff;
509 
510 	for (testp = 16; testp > 0; testp >>= 1) {
511 		if (clock * testp > vcomax)
512 			continue;
513 		if (clock * testp < vcomin)
514 			continue;
515 
516 		for (testm = 1; testm < 33; testm++) {
517 			for (testn = 17; testn < 257; testn++) {
518 				computed = (pllreffreq * testn) /
519 					(testm * testp);
520 				if (computed > clock)
521 					tmpdelta = computed - clock;
522 				else
523 					tmpdelta = clock - computed;
524 				if (tmpdelta < delta) {
525 					delta = tmpdelta;
526 					n = testn - 1;
527 					m = (testm - 1);
528 					p = testp - 1;
529 				}
530 				if ((clock * testp) >= 600000)
531 					p |= 0x80;
532 			}
533 		}
534 	}
535 	for (i = 0; i <= 32 && pll_locked == false; i++) {
536 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
537 		tmp = RREG8(DAC_DATA);
538 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
539 		WREG8(DAC_DATA, tmp);
540 
541 		tmp = RREG8(MGAREG_MEM_MISC_READ);
542 		tmp |= 0x3 << 2;
543 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
544 
545 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
546 		tmp = RREG8(DAC_DATA);
547 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
548 		WREG8(DAC_DATA, tmp);
549 
550 		udelay(500);
551 
552 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
553 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
554 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
555 
556 		udelay(500);
557 
558 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
559 		tmp = RREG8(DAC_DATA);
560 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
561 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
562 		WREG8(DAC_DATA, tmp);
563 
564 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
565 		tmp = RREG8(DAC_DATA);
566 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
567 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
568 		WREG8(DAC_DATA, tmp);
569 
570 		vcount = RREG8(MGAREG_VCOUNT);
571 
572 		for (j = 0; j < 30 && pll_locked == false; j++) {
573 			tmpcount = RREG8(MGAREG_VCOUNT);
574 			if (tmpcount < vcount)
575 				vcount = 0;
576 			if ((tmpcount - vcount) > 2)
577 				pll_locked = true;
578 			else
579 				udelay(5);
580 		}
581 	}
582 
583 	return 0;
584 }
585 
586 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
587 {
588 	unsigned int vcomax, vcomin, pllreffreq;
589 	unsigned int delta, tmpdelta;
590 	int testr, testn, testm, testo;
591 	unsigned int p, m, n;
592 	unsigned int computed, vco;
593 	int tmp;
594 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
595 
596 	m = n = p = 0;
597 	vcomax = 1488000;
598 	vcomin = 1056000;
599 	pllreffreq = 48000;
600 
601 	delta = 0xffffffff;
602 
603 	for (testr = 0; testr < 4; testr++) {
604 		if (delta == 0)
605 			break;
606 		for (testn = 5; testn < 129; testn++) {
607 			if (delta == 0)
608 				break;
609 			for (testm = 3; testm >= 0; testm--) {
610 				if (delta == 0)
611 					break;
612 				for (testo = 5; testo < 33; testo++) {
613 					vco = pllreffreq * (testn + 1) /
614 						(testr + 1);
615 					if (vco < vcomin)
616 						continue;
617 					if (vco > vcomax)
618 						continue;
619 					computed = vco / (m_div_val[testm] * (testo + 1));
620 					if (computed > clock)
621 						tmpdelta = computed - clock;
622 					else
623 						tmpdelta = clock - computed;
624 					if (tmpdelta < delta) {
625 						delta = tmpdelta;
626 						m = testm | (testo << 3);
627 						n = testn;
628 						p = testr | (testr << 3);
629 					}
630 				}
631 			}
632 		}
633 	}
634 
635 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
636 	tmp = RREG8(DAC_DATA);
637 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
638 	WREG8(DAC_DATA, tmp);
639 
640 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
641 	tmp = RREG8(DAC_DATA);
642 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
643 	WREG8(DAC_DATA, tmp);
644 
645 	tmp = RREG8(MGAREG_MEM_MISC_READ);
646 	tmp |= (0x3<<2) | 0xc0;
647 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
648 
649 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
650 	tmp = RREG8(DAC_DATA);
651 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
652 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
653 	WREG8(DAC_DATA, tmp);
654 
655 	udelay(500);
656 
657 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
658 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
659 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
660 
661 	udelay(50);
662 
663 	return 0;
664 }
665 
666 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
667 {
668 	switch(mdev->type) {
669 	case G200_SE_A:
670 	case G200_SE_B:
671 		return mga_g200se_set_plls(mdev, clock);
672 		break;
673 	case G200_WB:
674 	case G200_EW3:
675 		return mga_g200wb_set_plls(mdev, clock);
676 		break;
677 	case G200_EV:
678 		return mga_g200ev_set_plls(mdev, clock);
679 		break;
680 	case G200_EH:
681 		return mga_g200eh_set_plls(mdev, clock);
682 		break;
683 	case G200_ER:
684 		return mga_g200er_set_plls(mdev, clock);
685 		break;
686 	}
687 	return 0;
688 }
689 
690 static void mga_g200wb_prepare(struct drm_crtc *crtc)
691 {
692 	struct mga_device *mdev = crtc->dev->dev_private;
693 	u8 tmp;
694 	int iter_max;
695 
696 	/* 1- The first step is to warn the BMC of an upcoming mode change.
697 	 * We are putting the misc<0> to output.*/
698 
699 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
700 	tmp = RREG8(DAC_DATA);
701 	tmp |= 0x10;
702 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
703 
704 	/* we are putting a 1 on the misc<0> line */
705 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
706 	tmp = RREG8(DAC_DATA);
707 	tmp |= 0x10;
708 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
709 
710 	/* 2- Second step to mask and further scan request
711 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
712 	 */
713 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
714 	tmp = RREG8(DAC_DATA);
715 	tmp |= 0x80;
716 	WREG_DAC(MGA1064_SPAREREG, tmp);
717 
718 	/* 3a- the third step is to verifu if there is an active scan
719 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
720 	 */
721 	iter_max = 300;
722 	while (!(tmp & 0x1) && iter_max) {
723 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
724 		tmp = RREG8(DAC_DATA);
725 		udelay(1000);
726 		iter_max--;
727 	}
728 
729 	/* 3b- this step occurs only if the remove is actually scanning
730 	 * we are waiting for the end of the frame which is a 1 on
731 	 * remvsyncsts (XSPAREREG<1>)
732 	 */
733 	if (iter_max) {
734 		iter_max = 300;
735 		while ((tmp & 0x2) && iter_max) {
736 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
737 			tmp = RREG8(DAC_DATA);
738 			udelay(1000);
739 			iter_max--;
740 		}
741 	}
742 }
743 
744 static void mga_g200wb_commit(struct drm_crtc *crtc)
745 {
746 	u8 tmp;
747 	struct mga_device *mdev = crtc->dev->dev_private;
748 
749 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
750 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
751 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
752 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
753 
754 	/* 2- second step is to assert the rstlvl2 */
755 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
756 	tmp = RREG8(DAC_DATA);
757 	tmp |= 0x8;
758 	WREG8(DAC_DATA, tmp);
759 
760 	/* wait 10 us */
761 	udelay(10);
762 
763 	/* 3- deassert rstlvl2 */
764 	tmp &= ~0x08;
765 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
766 	WREG8(DAC_DATA, tmp);
767 
768 	/* 4- remove mask of scan request */
769 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
770 	tmp = RREG8(DAC_DATA);
771 	tmp &= ~0x80;
772 	WREG8(DAC_DATA, tmp);
773 
774 	/* 5- put back a 0 on the misc<0> line */
775 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
776 	tmp = RREG8(DAC_DATA);
777 	tmp &= ~0x10;
778 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
779 }
780 
781 /*
782    This is how the framebuffer base address is stored in g200 cards:
783    * Assume @offset is the gpu_addr variable of the framebuffer object
784    * Then addr is the number of _pixels_ (not bytes) from the start of
785      VRAM to the first pixel we want to display. (divided by 2 for 32bit
786      framebuffers)
787    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
788    addr<20> -> CRTCEXT0<6>
789    addr<19-16> -> CRTCEXT0<3-0>
790    addr<15-8> -> CRTCC<7-0>
791    addr<7-0> -> CRTCD<7-0>
792    CRTCEXT0 has to be programmed last to trigger an update and make the
793    new addr variable take effect.
794  */
795 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
796 {
797 	struct mga_device *mdev = crtc->dev->dev_private;
798 	u32 addr;
799 	int count;
800 	u8 crtcext0;
801 
802 	while (RREG8(0x1fda) & 0x08);
803 	while (!(RREG8(0x1fda) & 0x08));
804 
805 	count = RREG8(MGAREG_VCOUNT) + 2;
806 	while (RREG8(MGAREG_VCOUNT) < count);
807 
808 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
809 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
810 	crtcext0 &= 0xB0;
811 	addr = offset / 8;
812 	/* Can't store addresses any higher than that...
813 	   but we also don't have more than 16MB of memory, so it should be fine. */
814 	WARN_ON(addr > 0x1fffff);
815 	crtcext0 |= (!!(addr & (1<<20)))<<6;
816 	WREG_CRT(0x0d, (u8)(addr & 0xff));
817 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
818 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
819 }
820 
821 
822 /* ast is different - we will force move buffers out of VRAM */
823 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
824 				struct drm_framebuffer *fb,
825 				int x, int y, int atomic)
826 {
827 	struct mga_device *mdev = crtc->dev->dev_private;
828 	struct drm_gem_object *obj;
829 	struct mga_framebuffer *mga_fb;
830 	struct mgag200_bo *bo;
831 	int ret;
832 	u64 gpu_addr;
833 
834 	/* push the previous fb to system ram */
835 	if (!atomic && fb) {
836 		mga_fb = to_mga_framebuffer(fb);
837 		obj = mga_fb->obj;
838 		bo = gem_to_mga_bo(obj);
839 		ret = mgag200_bo_reserve(bo, false);
840 		if (ret)
841 			return ret;
842 		mgag200_bo_push_sysram(bo);
843 		mgag200_bo_unreserve(bo);
844 	}
845 
846 	mga_fb = to_mga_framebuffer(crtc->primary->fb);
847 	obj = mga_fb->obj;
848 	bo = gem_to_mga_bo(obj);
849 
850 	ret = mgag200_bo_reserve(bo, false);
851 	if (ret)
852 		return ret;
853 
854 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
855 	if (ret) {
856 		mgag200_bo_unreserve(bo);
857 		return ret;
858 	}
859 
860 	if (&mdev->mfbdev->mfb == mga_fb) {
861 		/* if pushing console in kmap it */
862 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
863 		if (ret)
864 			DRM_ERROR("failed to kmap fbcon\n");
865 
866 	}
867 	mgag200_bo_unreserve(bo);
868 
869 	mga_set_start_address(crtc, (u32)gpu_addr);
870 
871 	return 0;
872 }
873 
874 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
875 				  struct drm_framebuffer *old_fb)
876 {
877 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
878 }
879 
880 static int mga_crtc_mode_set(struct drm_crtc *crtc,
881 				struct drm_display_mode *mode,
882 				struct drm_display_mode *adjusted_mode,
883 				int x, int y, struct drm_framebuffer *old_fb)
884 {
885 	struct drm_device *dev = crtc->dev;
886 	struct mga_device *mdev = dev->dev_private;
887 	int hdisplay, hsyncstart, hsyncend, htotal;
888 	int vdisplay, vsyncstart, vsyncend, vtotal;
889 	int pitch;
890 	int option = 0, option2 = 0;
891 	int i;
892 	unsigned char misc = 0;
893 	unsigned char ext_vga[6];
894 	u8 bppshift;
895 
896 	static unsigned char dacvalue[] = {
897 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
898 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
899 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
900 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
901 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
902 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
903 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
904 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
905 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
906 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
907 	};
908 
909 	bppshift = mdev->bpp_shifts[(crtc->primary->fb->bits_per_pixel >> 3) - 1];
910 
911 	switch (mdev->type) {
912 	case G200_SE_A:
913 	case G200_SE_B:
914 		dacvalue[MGA1064_VREF_CTL] = 0x03;
915 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
916 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
917 					     MGA1064_MISC_CTL_VGA8 |
918 					     MGA1064_MISC_CTL_DAC_RAM_CS;
919 		if (mdev->has_sdram)
920 			option = 0x40049120;
921 		else
922 			option = 0x4004d120;
923 		option2 = 0x00008000;
924 		break;
925 	case G200_WB:
926 	case G200_EW3:
927 		dacvalue[MGA1064_VREF_CTL] = 0x07;
928 		option = 0x41049120;
929 		option2 = 0x0000b000;
930 		break;
931 	case G200_EV:
932 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
933 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
934 					     MGA1064_MISC_CTL_DAC_RAM_CS;
935 		option = 0x00000120;
936 		option2 = 0x0000b000;
937 		break;
938 	case G200_EH:
939 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
940 					     MGA1064_MISC_CTL_DAC_RAM_CS;
941 		option = 0x00000120;
942 		option2 = 0x0000b000;
943 		break;
944 	case G200_ER:
945 		break;
946 	}
947 
948 	switch (crtc->primary->fb->bits_per_pixel) {
949 	case 8:
950 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
951 		break;
952 	case 16:
953 		if (crtc->primary->fb->depth == 15)
954 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
955 		else
956 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
957 		break;
958 	case 24:
959 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
960 		break;
961 	case 32:
962 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
963 		break;
964 	}
965 
966 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
967 		misc |= 0x40;
968 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
969 		misc |= 0x80;
970 
971 
972 	for (i = 0; i < sizeof(dacvalue); i++) {
973 		if ((i <= 0x17) ||
974 		    (i == 0x1b) ||
975 		    (i == 0x1c) ||
976 		    ((i >= 0x1f) && (i <= 0x29)) ||
977 		    ((i >= 0x30) && (i <= 0x37)))
978 			continue;
979 		if (IS_G200_SE(mdev) &&
980 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
981 			continue;
982 		if ((mdev->type == G200_EV ||
983 		    mdev->type == G200_WB ||
984 		    mdev->type == G200_EH ||
985 		    mdev->type == G200_EW3) &&
986 		    (i >= 0x44) && (i <= 0x4e))
987 			continue;
988 
989 		WREG_DAC(i, dacvalue[i]);
990 	}
991 
992 	if (mdev->type == G200_ER)
993 		WREG_DAC(0x90, 0);
994 
995 	if (option)
996 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
997 	if (option2)
998 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
999 
1000 	WREG_SEQ(2, 0xf);
1001 	WREG_SEQ(3, 0);
1002 	WREG_SEQ(4, 0xe);
1003 
1004 	pitch = crtc->primary->fb->pitches[0] / (crtc->primary->fb->bits_per_pixel / 8);
1005 	if (crtc->primary->fb->bits_per_pixel == 24)
1006 		pitch = (pitch * 3) >> (4 - bppshift);
1007 	else
1008 		pitch = pitch >> (4 - bppshift);
1009 
1010 	hdisplay = mode->hdisplay / 8 - 1;
1011 	hsyncstart = mode->hsync_start / 8 - 1;
1012 	hsyncend = mode->hsync_end / 8 - 1;
1013 	htotal = mode->htotal / 8 - 1;
1014 
1015 	/* Work around hardware quirk */
1016 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1017 		htotal++;
1018 
1019 	vdisplay = mode->vdisplay - 1;
1020 	vsyncstart = mode->vsync_start - 1;
1021 	vsyncend = mode->vsync_end - 1;
1022 	vtotal = mode->vtotal - 2;
1023 
1024 	WREG_GFX(0, 0);
1025 	WREG_GFX(1, 0);
1026 	WREG_GFX(2, 0);
1027 	WREG_GFX(3, 0);
1028 	WREG_GFX(4, 0);
1029 	WREG_GFX(5, 0x40);
1030 	WREG_GFX(6, 0x5);
1031 	WREG_GFX(7, 0xf);
1032 	WREG_GFX(8, 0xf);
1033 
1034 	WREG_CRT(0, htotal - 4);
1035 	WREG_CRT(1, hdisplay);
1036 	WREG_CRT(2, hdisplay);
1037 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
1038 	WREG_CRT(4, hsyncstart);
1039 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1040 	WREG_CRT(6, vtotal & 0xFF);
1041 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1042 		 ((vdisplay & 0x100) >> 7) |
1043 		 ((vsyncstart & 0x100) >> 6) |
1044 		 ((vdisplay & 0x100) >> 5) |
1045 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
1046 		 ((vtotal & 0x200) >> 4)|
1047 		 ((vdisplay & 0x200) >> 3) |
1048 		 ((vsyncstart & 0x200) >> 2));
1049 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1050 		 ((vdisplay & 0x200) >> 3));
1051 	WREG_CRT(10, 0);
1052 	WREG_CRT(11, 0);
1053 	WREG_CRT(12, 0);
1054 	WREG_CRT(13, 0);
1055 	WREG_CRT(14, 0);
1056 	WREG_CRT(15, 0);
1057 	WREG_CRT(16, vsyncstart & 0xFF);
1058 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1059 	WREG_CRT(18, vdisplay & 0xFF);
1060 	WREG_CRT(19, pitch & 0xFF);
1061 	WREG_CRT(20, 0);
1062 	WREG_CRT(21, vdisplay & 0xFF);
1063 	WREG_CRT(22, (vtotal + 1) & 0xFF);
1064 	WREG_CRT(23, 0xc3);
1065 	WREG_CRT(24, vdisplay & 0xFF);
1066 
1067 	ext_vga[0] = 0;
1068 	ext_vga[5] = 0;
1069 
1070 	/* TODO interlace */
1071 
1072 	ext_vga[0] |= (pitch & 0x300) >> 4;
1073 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1074 		((hdisplay & 0x100) >> 7) |
1075 		((hsyncstart & 0x100) >> 6) |
1076 		(htotal & 0x40);
1077 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1078 		((vdisplay & 0x400) >> 8) |
1079 		((vdisplay & 0xc00) >> 7) |
1080 		((vsyncstart & 0xc00) >> 5) |
1081 		((vdisplay & 0x400) >> 3);
1082 	if (crtc->primary->fb->bits_per_pixel == 24)
1083 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1084 	else
1085 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1086 	ext_vga[4] = 0;
1087 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1088 		ext_vga[1] |= 0x88;
1089 
1090 	/* Set pixel clocks */
1091 	misc = 0x2d;
1092 	WREG8(MGA_MISC_OUT, misc);
1093 
1094 	mga_crtc_set_plls(mdev, mode->clock);
1095 
1096 	for (i = 0; i < 6; i++) {
1097 		WREG_ECRT(i, ext_vga[i]);
1098 	}
1099 
1100 	if (mdev->type == G200_ER)
1101 		WREG_ECRT(0x24, 0x5);
1102 
1103 	if (mdev->type == G200_EW3)
1104 		WREG_ECRT(0x34, 0x5);
1105 
1106 	if (mdev->type == G200_EV) {
1107 		WREG_ECRT(6, 0);
1108 	}
1109 
1110 	WREG_ECRT(0, ext_vga[0]);
1111 	/* Enable mga pixel clock */
1112 	misc = 0x2d;
1113 
1114 	WREG8(MGA_MISC_OUT, misc);
1115 
1116 	if (adjusted_mode)
1117 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1118 
1119 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1120 
1121 	/* reset tagfifo */
1122 	if (mdev->type == G200_ER) {
1123 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1124 		u8 seq1;
1125 
1126 		/* screen off */
1127 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1128 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1129 		WREG8(MGAREG_SEQ_DATA, seq1);
1130 
1131 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1132 		udelay(1000);
1133 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1134 
1135 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1136 	}
1137 
1138 
1139 	if (IS_G200_SE(mdev)) {
1140 		if (mdev->unique_rev_id >= 0x02) {
1141 			u8 hi_pri_lvl;
1142 			u32 bpp;
1143 			u32 mb;
1144 
1145 			if (crtc->primary->fb->bits_per_pixel > 16)
1146 				bpp = 32;
1147 			else if (crtc->primary->fb->bits_per_pixel > 8)
1148 				bpp = 16;
1149 			else
1150 				bpp = 8;
1151 
1152 			mb = (mode->clock * bpp) / 1000;
1153 			if (mb > 3100)
1154 				hi_pri_lvl = 0;
1155 			else if (mb > 2600)
1156 				hi_pri_lvl = 1;
1157 			else if (mb > 1900)
1158 				hi_pri_lvl = 2;
1159 			else if (mb > 1160)
1160 				hi_pri_lvl = 3;
1161 			else if (mb > 440)
1162 				hi_pri_lvl = 4;
1163 			else
1164 				hi_pri_lvl = 5;
1165 
1166 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1167 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1168 		} else {
1169 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1170 			if (mdev->unique_rev_id >= 0x01)
1171 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1172 			else
1173 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1174 		}
1175 	}
1176 	return 0;
1177 }
1178 
1179 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1180 static int mga_suspend(struct drm_crtc *crtc)
1181 {
1182 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1183 	struct drm_device *dev = crtc->dev;
1184 	struct mga_device *mdev = dev->dev_private;
1185 	struct pci_dev *pdev = dev->pdev;
1186 	int option;
1187 
1188 	if (mdev->suspended)
1189 		return 0;
1190 
1191 	WREG_SEQ(1, 0x20);
1192 	WREG_ECRT(1, 0x30);
1193 	/* Disable the pixel clock */
1194 	WREG_DAC(0x1a, 0x05);
1195 	/* Power down the DAC */
1196 	WREG_DAC(0x1e, 0x18);
1197 	/* Power down the pixel PLL */
1198 	WREG_DAC(0x1a, 0x0d);
1199 
1200 	/* Disable PLLs and clocks */
1201 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1202 	option &= ~(0x1F8024);
1203 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1204 	pci_set_power_state(pdev, PCI_D3hot);
1205 	pci_disable_device(pdev);
1206 
1207 	mdev->suspended = true;
1208 
1209 	return 0;
1210 }
1211 
1212 static int mga_resume(struct drm_crtc *crtc)
1213 {
1214 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1215 	struct drm_device *dev = crtc->dev;
1216 	struct mga_device *mdev = dev->dev_private;
1217 	struct pci_dev *pdev = dev->pdev;
1218 	int option;
1219 
1220 	if (!mdev->suspended)
1221 		return 0;
1222 
1223 	pci_set_power_state(pdev, PCI_D0);
1224 	pci_enable_device(pdev);
1225 
1226 	/* Disable sysclk */
1227 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1228 	option &= ~(0x4);
1229 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1230 
1231 	mdev->suspended = false;
1232 
1233 	return 0;
1234 }
1235 
1236 #endif
1237 
1238 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1239 {
1240 	struct drm_device *dev = crtc->dev;
1241 	struct mga_device *mdev = dev->dev_private;
1242 	u8 seq1 = 0, crtcext1 = 0;
1243 
1244 	switch (mode) {
1245 	case DRM_MODE_DPMS_ON:
1246 		seq1 = 0;
1247 		crtcext1 = 0;
1248 		mga_crtc_load_lut(crtc);
1249 		break;
1250 	case DRM_MODE_DPMS_STANDBY:
1251 		seq1 = 0x20;
1252 		crtcext1 = 0x10;
1253 		break;
1254 	case DRM_MODE_DPMS_SUSPEND:
1255 		seq1 = 0x20;
1256 		crtcext1 = 0x20;
1257 		break;
1258 	case DRM_MODE_DPMS_OFF:
1259 		seq1 = 0x20;
1260 		crtcext1 = 0x30;
1261 		break;
1262 	}
1263 
1264 #if 0
1265 	if (mode == DRM_MODE_DPMS_OFF) {
1266 		mga_suspend(crtc);
1267 	}
1268 #endif
1269 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1270 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1271 	mga_wait_vsync(mdev);
1272 	mga_wait_busy(mdev);
1273 	WREG8(MGAREG_SEQ_DATA, seq1);
1274 	msleep(20);
1275 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1276 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1277 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1278 
1279 #if 0
1280 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1281 		mga_resume(crtc);
1282 		drm_helper_resume_force_mode(dev);
1283 	}
1284 #endif
1285 }
1286 
1287 /*
1288  * This is called before a mode is programmed. A typical use might be to
1289  * enable DPMS during the programming to avoid seeing intermediate stages,
1290  * but that's not relevant to us
1291  */
1292 static void mga_crtc_prepare(struct drm_crtc *crtc)
1293 {
1294 	struct drm_device *dev = crtc->dev;
1295 	struct mga_device *mdev = dev->dev_private;
1296 	u8 tmp;
1297 
1298 	/*	mga_resume(crtc);*/
1299 
1300 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1301 	tmp = RREG8(MGAREG_CRTC_DATA);
1302 	WREG_CRT(0x11, tmp | 0x80);
1303 
1304 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1305 		WREG_SEQ(0, 1);
1306 		msleep(50);
1307 		WREG_SEQ(1, 0x20);
1308 		msleep(20);
1309 	} else {
1310 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1311 		tmp = RREG8(MGAREG_SEQ_DATA);
1312 
1313 		/* start sync reset */
1314 		WREG_SEQ(0, 1);
1315 		WREG_SEQ(1, tmp | 0x20);
1316 	}
1317 
1318 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1319 		mga_g200wb_prepare(crtc);
1320 
1321 	WREG_CRT(17, 0);
1322 }
1323 
1324 /*
1325  * This is called after a mode is programmed. It should reverse anything done
1326  * by the prepare function
1327  */
1328 static void mga_crtc_commit(struct drm_crtc *crtc)
1329 {
1330 	struct drm_device *dev = crtc->dev;
1331 	struct mga_device *mdev = dev->dev_private;
1332 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1333 	u8 tmp;
1334 
1335 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1336 		mga_g200wb_commit(crtc);
1337 
1338 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1339 		msleep(50);
1340 		WREG_SEQ(1, 0x0);
1341 		msleep(20);
1342 		WREG_SEQ(0, 0x3);
1343 	} else {
1344 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1345 		tmp = RREG8(MGAREG_SEQ_DATA);
1346 
1347 		tmp &= ~0x20;
1348 		WREG_SEQ(0x1, tmp);
1349 		WREG_SEQ(0, 3);
1350 	}
1351 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1352 }
1353 
1354 /*
1355  * The core can pass us a set of gamma values to program. We actually only
1356  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1357  * but it's a requirement that we provide the function
1358  */
1359 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1360 				  u16 *blue, uint32_t start, uint32_t size)
1361 {
1362 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1363 	int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1364 	int i;
1365 
1366 	for (i = start; i < end; i++) {
1367 		mga_crtc->lut_r[i] = red[i] >> 8;
1368 		mga_crtc->lut_g[i] = green[i] >> 8;
1369 		mga_crtc->lut_b[i] = blue[i] >> 8;
1370 	}
1371 	mga_crtc_load_lut(crtc);
1372 }
1373 
1374 /* Simple cleanup function */
1375 static void mga_crtc_destroy(struct drm_crtc *crtc)
1376 {
1377 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1378 
1379 	drm_crtc_cleanup(crtc);
1380 	kfree(mga_crtc);
1381 }
1382 
1383 static void mga_crtc_disable(struct drm_crtc *crtc)
1384 {
1385 	int ret;
1386 	DRM_DEBUG_KMS("\n");
1387 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1388 	if (crtc->primary->fb) {
1389 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1390 		struct drm_gem_object *obj = mga_fb->obj;
1391 		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1392 		ret = mgag200_bo_reserve(bo, false);
1393 		if (ret)
1394 			return;
1395 		mgag200_bo_push_sysram(bo);
1396 		mgag200_bo_unreserve(bo);
1397 	}
1398 	crtc->primary->fb = NULL;
1399 }
1400 
1401 /* These provide the minimum set of functions required to handle a CRTC */
1402 static const struct drm_crtc_funcs mga_crtc_funcs = {
1403 	.cursor_set = mga_crtc_cursor_set,
1404 	.cursor_move = mga_crtc_cursor_move,
1405 	.gamma_set = mga_crtc_gamma_set,
1406 	.set_config = drm_crtc_helper_set_config,
1407 	.destroy = mga_crtc_destroy,
1408 };
1409 
1410 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1411 	.disable = mga_crtc_disable,
1412 	.dpms = mga_crtc_dpms,
1413 	.mode_fixup = mga_crtc_mode_fixup,
1414 	.mode_set = mga_crtc_mode_set,
1415 	.mode_set_base = mga_crtc_mode_set_base,
1416 	.prepare = mga_crtc_prepare,
1417 	.commit = mga_crtc_commit,
1418 	.load_lut = mga_crtc_load_lut,
1419 };
1420 
1421 /* CRTC setup */
1422 static void mga_crtc_init(struct mga_device *mdev)
1423 {
1424 	struct mga_crtc *mga_crtc;
1425 	int i;
1426 
1427 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1428 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1429 			      GFP_KERNEL);
1430 
1431 	if (mga_crtc == NULL)
1432 		return;
1433 
1434 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1435 
1436 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1437 	mdev->mode_info.crtc = mga_crtc;
1438 
1439 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1440 		mga_crtc->lut_r[i] = i;
1441 		mga_crtc->lut_g[i] = i;
1442 		mga_crtc->lut_b[i] = i;
1443 	}
1444 
1445 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1446 }
1447 
1448 /** Sets the color ramps on behalf of fbcon */
1449 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1450 			      u16 blue, int regno)
1451 {
1452 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1453 
1454 	mga_crtc->lut_r[regno] = red >> 8;
1455 	mga_crtc->lut_g[regno] = green >> 8;
1456 	mga_crtc->lut_b[regno] = blue >> 8;
1457 }
1458 
1459 /** Gets the color ramps on behalf of fbcon */
1460 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1461 			      u16 *blue, int regno)
1462 {
1463 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1464 
1465 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1466 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1467 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1468 }
1469 
1470 /*
1471  * The encoder comes after the CRTC in the output pipeline, but before
1472  * the connector. It's responsible for ensuring that the digital
1473  * stream is appropriately converted into the output format. Setup is
1474  * very simple in this case - all we have to do is inform qemu of the
1475  * colour depth in order to ensure that it displays appropriately
1476  */
1477 
1478 /*
1479  * These functions are analagous to those in the CRTC code, but are intended
1480  * to handle any encoder-specific limitations
1481  */
1482 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1483 				   const struct drm_display_mode *mode,
1484 				   struct drm_display_mode *adjusted_mode)
1485 {
1486 	return true;
1487 }
1488 
1489 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1490 				struct drm_display_mode *mode,
1491 				struct drm_display_mode *adjusted_mode)
1492 {
1493 
1494 }
1495 
1496 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1497 {
1498 	return;
1499 }
1500 
1501 static void mga_encoder_prepare(struct drm_encoder *encoder)
1502 {
1503 }
1504 
1505 static void mga_encoder_commit(struct drm_encoder *encoder)
1506 {
1507 }
1508 
1509 static void mga_encoder_destroy(struct drm_encoder *encoder)
1510 {
1511 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1512 	drm_encoder_cleanup(encoder);
1513 	kfree(mga_encoder);
1514 }
1515 
1516 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1517 	.dpms = mga_encoder_dpms,
1518 	.mode_fixup = mga_encoder_mode_fixup,
1519 	.mode_set = mga_encoder_mode_set,
1520 	.prepare = mga_encoder_prepare,
1521 	.commit = mga_encoder_commit,
1522 };
1523 
1524 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1525 	.destroy = mga_encoder_destroy,
1526 };
1527 
1528 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1529 {
1530 	struct drm_encoder *encoder;
1531 	struct mga_encoder *mga_encoder;
1532 
1533 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1534 	if (!mga_encoder)
1535 		return NULL;
1536 
1537 	encoder = &mga_encoder->base;
1538 	encoder->possible_crtcs = 0x1;
1539 
1540 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1541 			 DRM_MODE_ENCODER_DAC);
1542 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1543 
1544 	return encoder;
1545 }
1546 
1547 
1548 static int mga_vga_get_modes(struct drm_connector *connector)
1549 {
1550 	struct mga_connector *mga_connector = to_mga_connector(connector);
1551 	struct edid *edid;
1552 	int ret = 0;
1553 
1554 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1555 	if (edid) {
1556 		drm_mode_connector_update_edid_property(connector, edid);
1557 		ret = drm_add_edid_modes(connector, edid);
1558 		kfree(edid);
1559 	}
1560 	return ret;
1561 }
1562 
1563 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1564 							int bits_per_pixel)
1565 {
1566 	uint32_t total_area, divisor;
1567 	int64_t active_area, pixels_per_second, bandwidth;
1568 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1569 
1570 	divisor = 1024;
1571 
1572 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1573 		return 0;
1574 
1575 	active_area = mode->hdisplay * mode->vdisplay;
1576 	total_area = mode->htotal * mode->vtotal;
1577 
1578 	pixels_per_second = active_area * mode->clock * 1000;
1579 	do_div(pixels_per_second, total_area);
1580 
1581 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1582 	do_div(bandwidth, divisor);
1583 
1584 	return (uint32_t)(bandwidth);
1585 }
1586 
1587 #define MODE_BANDWIDTH	MODE_BAD
1588 
1589 static int mga_vga_mode_valid(struct drm_connector *connector,
1590 				 struct drm_display_mode *mode)
1591 {
1592 	struct drm_device *dev = connector->dev;
1593 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1594 	int bpp = 32;
1595 
1596 	if (IS_G200_SE(mdev)) {
1597 		if (mdev->unique_rev_id == 0x01) {
1598 			if (mode->hdisplay > 1600)
1599 				return MODE_VIRTUAL_X;
1600 			if (mode->vdisplay > 1200)
1601 				return MODE_VIRTUAL_Y;
1602 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1603 				> (24400 * 1024))
1604 				return MODE_BANDWIDTH;
1605 		} else if (mdev->unique_rev_id == 0x02) {
1606 			if (mode->hdisplay > 1920)
1607 				return MODE_VIRTUAL_X;
1608 			if (mode->vdisplay > 1200)
1609 				return MODE_VIRTUAL_Y;
1610 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1611 				> (30100 * 1024))
1612 				return MODE_BANDWIDTH;
1613 		}
1614 	} else if (mdev->type == G200_WB) {
1615 		if (mode->hdisplay > 1280)
1616 			return MODE_VIRTUAL_X;
1617 		if (mode->vdisplay > 1024)
1618 			return MODE_VIRTUAL_Y;
1619 		if (mga_vga_calculate_mode_bandwidth(mode,
1620 			bpp > (31877 * 1024)))
1621 			return MODE_BANDWIDTH;
1622 	} else if (mdev->type == G200_EV &&
1623 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1624 			> (32700 * 1024))) {
1625 		return MODE_BANDWIDTH;
1626 	} else if (mdev->type == G200_EH &&
1627 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1628 			> (37500 * 1024))) {
1629 		return MODE_BANDWIDTH;
1630 	} else if (mdev->type == G200_ER &&
1631 		(mga_vga_calculate_mode_bandwidth(mode,
1632 			bpp) > (55000 * 1024))) {
1633 		return MODE_BANDWIDTH;
1634 	}
1635 
1636 	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1637 	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1638 		return MODE_H_ILLEGAL;
1639 	}
1640 
1641 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1642 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1643 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1644 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1645 		return MODE_BAD;
1646 	}
1647 
1648 	/* Validate the mode input by the user */
1649 	if (connector->cmdline_mode.specified) {
1650 		if (connector->cmdline_mode.bpp_specified)
1651 			bpp = connector->cmdline_mode.bpp;
1652 	}
1653 
1654 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1655 		if (connector->cmdline_mode.specified)
1656 			connector->cmdline_mode.specified = false;
1657 		return MODE_BAD;
1658 	}
1659 
1660 	return MODE_OK;
1661 }
1662 
1663 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1664 						  *connector)
1665 {
1666 	int enc_id = connector->encoder_ids[0];
1667 	/* pick the encoder ids */
1668 	if (enc_id)
1669 		return drm_encoder_find(connector->dev, enc_id);
1670 	return NULL;
1671 }
1672 
1673 static enum drm_connector_status mga_vga_detect(struct drm_connector
1674 						   *connector, bool force)
1675 {
1676 	return connector_status_connected;
1677 }
1678 
1679 static void mga_connector_destroy(struct drm_connector *connector)
1680 {
1681 	struct mga_connector *mga_connector = to_mga_connector(connector);
1682 	mgag200_i2c_destroy(mga_connector->i2c);
1683 	drm_connector_cleanup(connector);
1684 	kfree(connector);
1685 }
1686 
1687 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1688 	.get_modes = mga_vga_get_modes,
1689 	.mode_valid = mga_vga_mode_valid,
1690 	.best_encoder = mga_connector_best_encoder,
1691 };
1692 
1693 struct drm_connector_funcs mga_vga_connector_funcs = {
1694 	.dpms = drm_helper_connector_dpms,
1695 	.detect = mga_vga_detect,
1696 	.fill_modes = drm_helper_probe_single_connector_modes,
1697 	.destroy = mga_connector_destroy,
1698 };
1699 
1700 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1701 {
1702 	struct drm_connector *connector;
1703 	struct mga_connector *mga_connector;
1704 
1705 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1706 	if (!mga_connector)
1707 		return NULL;
1708 
1709 	connector = &mga_connector->base;
1710 
1711 	drm_connector_init(dev, connector,
1712 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1713 
1714 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1715 
1716 	drm_connector_register(connector);
1717 
1718 	mga_connector->i2c = mgag200_i2c_create(dev);
1719 	if (!mga_connector->i2c)
1720 		DRM_ERROR("failed to add ddc bus\n");
1721 
1722 	return connector;
1723 }
1724 
1725 
1726 int mgag200_modeset_init(struct mga_device *mdev)
1727 {
1728 	struct drm_encoder *encoder;
1729 	struct drm_connector *connector;
1730 	int ret;
1731 
1732 	mdev->mode_info.mode_config_initialized = true;
1733 
1734 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1735 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1736 
1737 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1738 
1739 	mga_crtc_init(mdev);
1740 
1741 	encoder = mga_encoder_init(mdev->dev);
1742 	if (!encoder) {
1743 		DRM_ERROR("mga_encoder_init failed\n");
1744 		return -1;
1745 	}
1746 
1747 	connector = mga_vga_init(mdev->dev);
1748 	if (!connector) {
1749 		DRM_ERROR("mga_vga_init failed\n");
1750 		return -1;
1751 	}
1752 
1753 	drm_mode_connector_attach_encoder(connector, encoder);
1754 
1755 	ret = mgag200_fbdev_init(mdev);
1756 	if (ret) {
1757 		DRM_ERROR("mga_fbdev_init failed\n");
1758 		return ret;
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 void mgag200_modeset_fini(struct mga_device *mdev)
1765 {
1766 
1767 }
1768