xref: /openbmc/linux/drivers/gpu/drm/i915/i915_pmu.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2017-2018 Intel Corporation
5  */
6 
7 #include <linux/pm_runtime.h>
8 
9 #include "gt/intel_engine.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_engine_user.h"
12 #include "gt/intel_gt_pm.h"
13 #include "gt/intel_rc6.h"
14 #include "gt/intel_rps.h"
15 
16 #include "i915_drv.h"
17 #include "i915_pmu.h"
18 #include "intel_pm.h"
19 
20 /* Frequency for the sampling timer for events which need it. */
21 #define FREQUENCY 200
22 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY)
23 
24 #define ENGINE_SAMPLE_MASK \
25 	(BIT(I915_SAMPLE_BUSY) | \
26 	 BIT(I915_SAMPLE_WAIT) | \
27 	 BIT(I915_SAMPLE_SEMA))
28 
29 static cpumask_t i915_pmu_cpumask;
30 static unsigned int i915_pmu_target_cpu = -1;
31 
32 static u8 engine_config_sample(u64 config)
33 {
34 	return config & I915_PMU_SAMPLE_MASK;
35 }
36 
37 static u8 engine_event_sample(struct perf_event *event)
38 {
39 	return engine_config_sample(event->attr.config);
40 }
41 
42 static u8 engine_event_class(struct perf_event *event)
43 {
44 	return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff;
45 }
46 
47 static u8 engine_event_instance(struct perf_event *event)
48 {
49 	return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff;
50 }
51 
52 static bool is_engine_config(u64 config)
53 {
54 	return config < __I915_PMU_OTHER(0);
55 }
56 
57 static unsigned int other_bit(const u64 config)
58 {
59 	unsigned int val;
60 
61 	switch (config) {
62 	case I915_PMU_ACTUAL_FREQUENCY:
63 		val =  __I915_PMU_ACTUAL_FREQUENCY_ENABLED;
64 		break;
65 	case I915_PMU_REQUESTED_FREQUENCY:
66 		val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED;
67 		break;
68 	case I915_PMU_RC6_RESIDENCY:
69 		val = __I915_PMU_RC6_RESIDENCY_ENABLED;
70 		break;
71 	default:
72 		/*
73 		 * Events that do not require sampling, or tracking state
74 		 * transitions between enabled and disabled can be ignored.
75 		 */
76 		return -1;
77 	}
78 
79 	return I915_ENGINE_SAMPLE_COUNT + val;
80 }
81 
82 static unsigned int config_bit(const u64 config)
83 {
84 	if (is_engine_config(config))
85 		return engine_config_sample(config);
86 	else
87 		return other_bit(config);
88 }
89 
90 static u64 config_mask(u64 config)
91 {
92 	return BIT_ULL(config_bit(config));
93 }
94 
95 static bool is_engine_event(struct perf_event *event)
96 {
97 	return is_engine_config(event->attr.config);
98 }
99 
100 static unsigned int event_bit(struct perf_event *event)
101 {
102 	return config_bit(event->attr.config);
103 }
104 
105 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active)
106 {
107 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
108 	u32 enable;
109 
110 	/*
111 	 * Only some counters need the sampling timer.
112 	 *
113 	 * We start with a bitmask of all currently enabled events.
114 	 */
115 	enable = pmu->enable;
116 
117 	/*
118 	 * Mask out all the ones which do not need the timer, or in
119 	 * other words keep all the ones that could need the timer.
120 	 */
121 	enable &= config_mask(I915_PMU_ACTUAL_FREQUENCY) |
122 		  config_mask(I915_PMU_REQUESTED_FREQUENCY) |
123 		  ENGINE_SAMPLE_MASK;
124 
125 	/*
126 	 * When the GPU is idle per-engine counters do not need to be
127 	 * running so clear those bits out.
128 	 */
129 	if (!gpu_active)
130 		enable &= ~ENGINE_SAMPLE_MASK;
131 	/*
132 	 * Also there is software busyness tracking available we do not
133 	 * need the timer for I915_SAMPLE_BUSY counter.
134 	 */
135 	else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS)
136 		enable &= ~BIT(I915_SAMPLE_BUSY);
137 
138 	/*
139 	 * If some bits remain it means we need the sampling timer running.
140 	 */
141 	return enable;
142 }
143 
144 static u64 __get_rc6(struct intel_gt *gt)
145 {
146 	struct drm_i915_private *i915 = gt->i915;
147 	u64 val;
148 
149 	val = intel_rc6_residency_ns(&gt->rc6,
150 				     IS_VALLEYVIEW(i915) ?
151 				     VLV_GT_RENDER_RC6 :
152 				     GEN6_GT_GFX_RC6);
153 
154 	if (HAS_RC6p(i915))
155 		val += intel_rc6_residency_ns(&gt->rc6, GEN6_GT_GFX_RC6p);
156 
157 	if (HAS_RC6pp(i915))
158 		val += intel_rc6_residency_ns(&gt->rc6, GEN6_GT_GFX_RC6pp);
159 
160 	return val;
161 }
162 
163 static inline s64 ktime_since_raw(const ktime_t kt)
164 {
165 	return ktime_to_ns(ktime_sub(ktime_get_raw(), kt));
166 }
167 
168 static u64 get_rc6(struct intel_gt *gt)
169 {
170 	struct drm_i915_private *i915 = gt->i915;
171 	struct i915_pmu *pmu = &i915->pmu;
172 	unsigned long flags;
173 	bool awake = false;
174 	u64 val;
175 
176 	if (intel_gt_pm_get_if_awake(gt)) {
177 		val = __get_rc6(gt);
178 		intel_gt_pm_put_async(gt);
179 		awake = true;
180 	}
181 
182 	spin_lock_irqsave(&pmu->lock, flags);
183 
184 	if (awake) {
185 		pmu->sample[__I915_SAMPLE_RC6].cur = val;
186 	} else {
187 		/*
188 		 * We think we are runtime suspended.
189 		 *
190 		 * Report the delta from when the device was suspended to now,
191 		 * on top of the last known real value, as the approximated RC6
192 		 * counter value.
193 		 */
194 		val = ktime_since_raw(pmu->sleep_last);
195 		val += pmu->sample[__I915_SAMPLE_RC6].cur;
196 	}
197 
198 	if (val < pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur)
199 		val = pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur;
200 	else
201 		pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = val;
202 
203 	spin_unlock_irqrestore(&pmu->lock, flags);
204 
205 	return val;
206 }
207 
208 static void init_rc6(struct i915_pmu *pmu)
209 {
210 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
211 	intel_wakeref_t wakeref;
212 
213 	with_intel_runtime_pm(i915->gt.uncore->rpm, wakeref) {
214 		pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(&i915->gt);
215 		pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur =
216 					pmu->sample[__I915_SAMPLE_RC6].cur;
217 		pmu->sleep_last = ktime_get_raw();
218 	}
219 }
220 
221 static void park_rc6(struct drm_i915_private *i915)
222 {
223 	struct i915_pmu *pmu = &i915->pmu;
224 
225 	pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(&i915->gt);
226 	pmu->sleep_last = ktime_get_raw();
227 }
228 
229 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu)
230 {
231 	if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) {
232 		pmu->timer_enabled = true;
233 		pmu->timer_last = ktime_get();
234 		hrtimer_start_range_ns(&pmu->timer,
235 				       ns_to_ktime(PERIOD), 0,
236 				       HRTIMER_MODE_REL_PINNED);
237 	}
238 }
239 
240 void i915_pmu_gt_parked(struct drm_i915_private *i915)
241 {
242 	struct i915_pmu *pmu = &i915->pmu;
243 
244 	if (!pmu->base.event_init)
245 		return;
246 
247 	spin_lock_irq(&pmu->lock);
248 
249 	park_rc6(i915);
250 
251 	/*
252 	 * Signal sampling timer to stop if only engine events are enabled and
253 	 * GPU went idle.
254 	 */
255 	pmu->timer_enabled = pmu_needs_timer(pmu, false);
256 
257 	spin_unlock_irq(&pmu->lock);
258 }
259 
260 void i915_pmu_gt_unparked(struct drm_i915_private *i915)
261 {
262 	struct i915_pmu *pmu = &i915->pmu;
263 
264 	if (!pmu->base.event_init)
265 		return;
266 
267 	spin_lock_irq(&pmu->lock);
268 
269 	/*
270 	 * Re-enable sampling timer when GPU goes active.
271 	 */
272 	__i915_pmu_maybe_start_timer(pmu);
273 
274 	spin_unlock_irq(&pmu->lock);
275 }
276 
277 static void
278 add_sample(struct i915_pmu_sample *sample, u32 val)
279 {
280 	sample->cur += val;
281 }
282 
283 static bool exclusive_mmio_access(const struct drm_i915_private *i915)
284 {
285 	/*
286 	 * We have to avoid concurrent mmio cache line access on gen7 or
287 	 * risk a machine hang. For a fun history lesson dig out the old
288 	 * userspace intel_gpu_top and run it on Ivybridge or Haswell!
289 	 */
290 	return IS_GEN(i915, 7);
291 }
292 
293 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
294 {
295 	struct intel_engine_pmu *pmu = &engine->pmu;
296 	bool busy;
297 	u32 val;
298 
299 	val = ENGINE_READ_FW(engine, RING_CTL);
300 	if (val == 0) /* powerwell off => engine idle */
301 		return;
302 
303 	if (val & RING_WAIT)
304 		add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
305 	if (val & RING_WAIT_SEMAPHORE)
306 		add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns);
307 
308 	/* No need to sample when busy stats are supported. */
309 	if (intel_engine_supports_stats(engine))
310 		return;
311 
312 	/*
313 	 * While waiting on a semaphore or event, MI_MODE reports the
314 	 * ring as idle. However, previously using the seqno, and with
315 	 * execlists sampling, we account for the ring waiting as the
316 	 * engine being busy. Therefore, we record the sample as being
317 	 * busy if either waiting or !idle.
318 	 */
319 	busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT);
320 	if (!busy) {
321 		val = ENGINE_READ_FW(engine, RING_MI_MODE);
322 		busy = !(val & MODE_IDLE);
323 	}
324 	if (busy)
325 		add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
326 }
327 
328 static void
329 engines_sample(struct intel_gt *gt, unsigned int period_ns)
330 {
331 	struct drm_i915_private *i915 = gt->i915;
332 	struct intel_engine_cs *engine;
333 	enum intel_engine_id id;
334 	unsigned long flags;
335 
336 	if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0)
337 		return;
338 
339 	if (!intel_gt_pm_is_awake(gt))
340 		return;
341 
342 	for_each_engine(engine, gt, id) {
343 		if (!intel_engine_pm_get_if_awake(engine))
344 			continue;
345 
346 		if (exclusive_mmio_access(i915)) {
347 			spin_lock_irqsave(&engine->uncore->lock, flags);
348 			engine_sample(engine, period_ns);
349 			spin_unlock_irqrestore(&engine->uncore->lock, flags);
350 		} else {
351 			engine_sample(engine, period_ns);
352 		}
353 
354 		intel_engine_pm_put_async(engine);
355 	}
356 }
357 
358 static void
359 add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul)
360 {
361 	sample->cur += mul_u32_u32(val, mul);
362 }
363 
364 static bool frequency_sampling_enabled(struct i915_pmu *pmu)
365 {
366 	return pmu->enable &
367 	       (config_mask(I915_PMU_ACTUAL_FREQUENCY) |
368 		config_mask(I915_PMU_REQUESTED_FREQUENCY));
369 }
370 
371 static void
372 frequency_sample(struct intel_gt *gt, unsigned int period_ns)
373 {
374 	struct drm_i915_private *i915 = gt->i915;
375 	struct intel_uncore *uncore = gt->uncore;
376 	struct i915_pmu *pmu = &i915->pmu;
377 	struct intel_rps *rps = &gt->rps;
378 
379 	if (!frequency_sampling_enabled(pmu))
380 		return;
381 
382 	/* Report 0/0 (actual/requested) frequency while parked. */
383 	if (!intel_gt_pm_get_if_awake(gt))
384 		return;
385 
386 	if (pmu->enable & config_mask(I915_PMU_ACTUAL_FREQUENCY)) {
387 		u32 val;
388 
389 		/*
390 		 * We take a quick peek here without using forcewake
391 		 * so that we don't perturb the system under observation
392 		 * (forcewake => !rc6 => increased power use). We expect
393 		 * that if the read fails because it is outside of the
394 		 * mmio power well, then it will return 0 -- in which
395 		 * case we assume the system is running at the intended
396 		 * frequency. Fortunately, the read should rarely fail!
397 		 */
398 		val = intel_uncore_read_fw(uncore, GEN6_RPSTAT1);
399 		if (val)
400 			val = intel_rps_get_cagf(rps, val);
401 		else
402 			val = rps->cur_freq;
403 
404 		add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT],
405 				intel_gpu_freq(rps, val), period_ns / 1000);
406 	}
407 
408 	if (pmu->enable & config_mask(I915_PMU_REQUESTED_FREQUENCY)) {
409 		add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ],
410 				intel_gpu_freq(rps, rps->cur_freq),
411 				period_ns / 1000);
412 	}
413 
414 	intel_gt_pm_put_async(gt);
415 }
416 
417 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer)
418 {
419 	struct drm_i915_private *i915 =
420 		container_of(hrtimer, struct drm_i915_private, pmu.timer);
421 	struct i915_pmu *pmu = &i915->pmu;
422 	struct intel_gt *gt = &i915->gt;
423 	unsigned int period_ns;
424 	ktime_t now;
425 
426 	if (!READ_ONCE(pmu->timer_enabled))
427 		return HRTIMER_NORESTART;
428 
429 	now = ktime_get();
430 	period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last));
431 	pmu->timer_last = now;
432 
433 	/*
434 	 * Strictly speaking the passed in period may not be 100% accurate for
435 	 * all internal calculation, since some amount of time can be spent on
436 	 * grabbing the forcewake. However the potential error from timer call-
437 	 * back delay greatly dominates this so we keep it simple.
438 	 */
439 	engines_sample(gt, period_ns);
440 	frequency_sample(gt, period_ns);
441 
442 	hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD));
443 
444 	return HRTIMER_RESTART;
445 }
446 
447 static void i915_pmu_event_destroy(struct perf_event *event)
448 {
449 	struct drm_i915_private *i915 =
450 		container_of(event->pmu, typeof(*i915), pmu.base);
451 
452 	drm_WARN_ON(&i915->drm, event->parent);
453 
454 	drm_dev_put(&i915->drm);
455 }
456 
457 static int
458 engine_event_status(struct intel_engine_cs *engine,
459 		    enum drm_i915_pmu_engine_sample sample)
460 {
461 	switch (sample) {
462 	case I915_SAMPLE_BUSY:
463 	case I915_SAMPLE_WAIT:
464 		break;
465 	case I915_SAMPLE_SEMA:
466 		if (INTEL_GEN(engine->i915) < 6)
467 			return -ENODEV;
468 		break;
469 	default:
470 		return -ENOENT;
471 	}
472 
473 	return 0;
474 }
475 
476 static int
477 config_status(struct drm_i915_private *i915, u64 config)
478 {
479 	switch (config) {
480 	case I915_PMU_ACTUAL_FREQUENCY:
481 		if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
482 			/* Requires a mutex for sampling! */
483 			return -ENODEV;
484 		fallthrough;
485 	case I915_PMU_REQUESTED_FREQUENCY:
486 		if (INTEL_GEN(i915) < 6)
487 			return -ENODEV;
488 		break;
489 	case I915_PMU_INTERRUPTS:
490 		break;
491 	case I915_PMU_RC6_RESIDENCY:
492 		if (!HAS_RC6(i915))
493 			return -ENODEV;
494 		break;
495 	case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
496 		break;
497 	default:
498 		return -ENOENT;
499 	}
500 
501 	return 0;
502 }
503 
504 static int engine_event_init(struct perf_event *event)
505 {
506 	struct drm_i915_private *i915 =
507 		container_of(event->pmu, typeof(*i915), pmu.base);
508 	struct intel_engine_cs *engine;
509 
510 	engine = intel_engine_lookup_user(i915, engine_event_class(event),
511 					  engine_event_instance(event));
512 	if (!engine)
513 		return -ENODEV;
514 
515 	return engine_event_status(engine, engine_event_sample(event));
516 }
517 
518 static int i915_pmu_event_init(struct perf_event *event)
519 {
520 	struct drm_i915_private *i915 =
521 		container_of(event->pmu, typeof(*i915), pmu.base);
522 	struct i915_pmu *pmu = &i915->pmu;
523 	int ret;
524 
525 	if (pmu->closed)
526 		return -ENODEV;
527 
528 	if (event->attr.type != event->pmu->type)
529 		return -ENOENT;
530 
531 	/* unsupported modes and filters */
532 	if (event->attr.sample_period) /* no sampling */
533 		return -EINVAL;
534 
535 	if (has_branch_stack(event))
536 		return -EOPNOTSUPP;
537 
538 	if (event->cpu < 0)
539 		return -EINVAL;
540 
541 	/* only allow running on one cpu at a time */
542 	if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask))
543 		return -EINVAL;
544 
545 	if (is_engine_event(event))
546 		ret = engine_event_init(event);
547 	else
548 		ret = config_status(i915, event->attr.config);
549 	if (ret)
550 		return ret;
551 
552 	if (!event->parent) {
553 		drm_dev_get(&i915->drm);
554 		event->destroy = i915_pmu_event_destroy;
555 	}
556 
557 	return 0;
558 }
559 
560 static u64 __i915_pmu_event_read(struct perf_event *event)
561 {
562 	struct drm_i915_private *i915 =
563 		container_of(event->pmu, typeof(*i915), pmu.base);
564 	struct i915_pmu *pmu = &i915->pmu;
565 	u64 val = 0;
566 
567 	if (is_engine_event(event)) {
568 		u8 sample = engine_event_sample(event);
569 		struct intel_engine_cs *engine;
570 
571 		engine = intel_engine_lookup_user(i915,
572 						  engine_event_class(event),
573 						  engine_event_instance(event));
574 
575 		if (drm_WARN_ON_ONCE(&i915->drm, !engine)) {
576 			/* Do nothing */
577 		} else if (sample == I915_SAMPLE_BUSY &&
578 			   intel_engine_supports_stats(engine)) {
579 			ktime_t unused;
580 
581 			val = ktime_to_ns(intel_engine_get_busy_time(engine,
582 								     &unused));
583 		} else {
584 			val = engine->pmu.sample[sample].cur;
585 		}
586 	} else {
587 		switch (event->attr.config) {
588 		case I915_PMU_ACTUAL_FREQUENCY:
589 			val =
590 			   div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur,
591 				   USEC_PER_SEC /* to MHz */);
592 			break;
593 		case I915_PMU_REQUESTED_FREQUENCY:
594 			val =
595 			   div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur,
596 				   USEC_PER_SEC /* to MHz */);
597 			break;
598 		case I915_PMU_INTERRUPTS:
599 			val = READ_ONCE(pmu->irq_count);
600 			break;
601 		case I915_PMU_RC6_RESIDENCY:
602 			val = get_rc6(&i915->gt);
603 			break;
604 		case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
605 			val = ktime_to_ns(intel_gt_get_awake_time(&i915->gt));
606 			break;
607 		}
608 	}
609 
610 	return val;
611 }
612 
613 static void i915_pmu_event_read(struct perf_event *event)
614 {
615 	struct drm_i915_private *i915 =
616 		container_of(event->pmu, typeof(*i915), pmu.base);
617 	struct hw_perf_event *hwc = &event->hw;
618 	struct i915_pmu *pmu = &i915->pmu;
619 	u64 prev, new;
620 
621 	if (pmu->closed) {
622 		event->hw.state = PERF_HES_STOPPED;
623 		return;
624 	}
625 again:
626 	prev = local64_read(&hwc->prev_count);
627 	new = __i915_pmu_event_read(event);
628 
629 	if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev)
630 		goto again;
631 
632 	local64_add(new - prev, &event->count);
633 }
634 
635 static void i915_pmu_enable(struct perf_event *event)
636 {
637 	struct drm_i915_private *i915 =
638 		container_of(event->pmu, typeof(*i915), pmu.base);
639 	struct i915_pmu *pmu = &i915->pmu;
640 	unsigned long flags;
641 	unsigned int bit;
642 
643 	bit = event_bit(event);
644 	if (bit == -1)
645 		goto update;
646 
647 	spin_lock_irqsave(&pmu->lock, flags);
648 
649 	/*
650 	 * Update the bitmask of enabled events and increment
651 	 * the event reference counter.
652 	 */
653 	BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS);
654 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
655 	GEM_BUG_ON(pmu->enable_count[bit] == ~0);
656 
657 	pmu->enable |= BIT_ULL(bit);
658 	pmu->enable_count[bit]++;
659 
660 	/*
661 	 * Start the sampling timer if needed and not already enabled.
662 	 */
663 	__i915_pmu_maybe_start_timer(pmu);
664 
665 	/*
666 	 * For per-engine events the bitmask and reference counting
667 	 * is stored per engine.
668 	 */
669 	if (is_engine_event(event)) {
670 		u8 sample = engine_event_sample(event);
671 		struct intel_engine_cs *engine;
672 
673 		engine = intel_engine_lookup_user(i915,
674 						  engine_event_class(event),
675 						  engine_event_instance(event));
676 
677 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) !=
678 			     I915_ENGINE_SAMPLE_COUNT);
679 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) !=
680 			     I915_ENGINE_SAMPLE_COUNT);
681 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
682 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
683 		GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0);
684 
685 		engine->pmu.enable |= BIT(sample);
686 		engine->pmu.enable_count[sample]++;
687 	}
688 
689 	spin_unlock_irqrestore(&pmu->lock, flags);
690 
691 update:
692 	/*
693 	 * Store the current counter value so we can report the correct delta
694 	 * for all listeners. Even when the event was already enabled and has
695 	 * an existing non-zero value.
696 	 */
697 	local64_set(&event->hw.prev_count, __i915_pmu_event_read(event));
698 }
699 
700 static void i915_pmu_disable(struct perf_event *event)
701 {
702 	struct drm_i915_private *i915 =
703 		container_of(event->pmu, typeof(*i915), pmu.base);
704 	unsigned int bit = event_bit(event);
705 	struct i915_pmu *pmu = &i915->pmu;
706 	unsigned long flags;
707 
708 	if (bit == -1)
709 		return;
710 
711 	spin_lock_irqsave(&pmu->lock, flags);
712 
713 	if (is_engine_event(event)) {
714 		u8 sample = engine_event_sample(event);
715 		struct intel_engine_cs *engine;
716 
717 		engine = intel_engine_lookup_user(i915,
718 						  engine_event_class(event),
719 						  engine_event_instance(event));
720 
721 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
722 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
723 		GEM_BUG_ON(engine->pmu.enable_count[sample] == 0);
724 
725 		/*
726 		 * Decrement the reference count and clear the enabled
727 		 * bitmask when the last listener on an event goes away.
728 		 */
729 		if (--engine->pmu.enable_count[sample] == 0)
730 			engine->pmu.enable &= ~BIT(sample);
731 	}
732 
733 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
734 	GEM_BUG_ON(pmu->enable_count[bit] == 0);
735 	/*
736 	 * Decrement the reference count and clear the enabled
737 	 * bitmask when the last listener on an event goes away.
738 	 */
739 	if (--pmu->enable_count[bit] == 0) {
740 		pmu->enable &= ~BIT_ULL(bit);
741 		pmu->timer_enabled &= pmu_needs_timer(pmu, true);
742 	}
743 
744 	spin_unlock_irqrestore(&pmu->lock, flags);
745 }
746 
747 static void i915_pmu_event_start(struct perf_event *event, int flags)
748 {
749 	struct drm_i915_private *i915 =
750 		container_of(event->pmu, typeof(*i915), pmu.base);
751 	struct i915_pmu *pmu = &i915->pmu;
752 
753 	if (pmu->closed)
754 		return;
755 
756 	i915_pmu_enable(event);
757 	event->hw.state = 0;
758 }
759 
760 static void i915_pmu_event_stop(struct perf_event *event, int flags)
761 {
762 	if (flags & PERF_EF_UPDATE)
763 		i915_pmu_event_read(event);
764 	i915_pmu_disable(event);
765 	event->hw.state = PERF_HES_STOPPED;
766 }
767 
768 static int i915_pmu_event_add(struct perf_event *event, int flags)
769 {
770 	struct drm_i915_private *i915 =
771 		container_of(event->pmu, typeof(*i915), pmu.base);
772 	struct i915_pmu *pmu = &i915->pmu;
773 
774 	if (pmu->closed)
775 		return -ENODEV;
776 
777 	if (flags & PERF_EF_START)
778 		i915_pmu_event_start(event, flags);
779 
780 	return 0;
781 }
782 
783 static void i915_pmu_event_del(struct perf_event *event, int flags)
784 {
785 	i915_pmu_event_stop(event, PERF_EF_UPDATE);
786 }
787 
788 static int i915_pmu_event_event_idx(struct perf_event *event)
789 {
790 	return 0;
791 }
792 
793 struct i915_str_attribute {
794 	struct device_attribute attr;
795 	const char *str;
796 };
797 
798 static ssize_t i915_pmu_format_show(struct device *dev,
799 				    struct device_attribute *attr, char *buf)
800 {
801 	struct i915_str_attribute *eattr;
802 
803 	eattr = container_of(attr, struct i915_str_attribute, attr);
804 	return sprintf(buf, "%s\n", eattr->str);
805 }
806 
807 #define I915_PMU_FORMAT_ATTR(_name, _config) \
808 	(&((struct i915_str_attribute[]) { \
809 		{ .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \
810 		  .str = _config, } \
811 	})[0].attr.attr)
812 
813 static struct attribute *i915_pmu_format_attrs[] = {
814 	I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"),
815 	NULL,
816 };
817 
818 static const struct attribute_group i915_pmu_format_attr_group = {
819 	.name = "format",
820 	.attrs = i915_pmu_format_attrs,
821 };
822 
823 struct i915_ext_attribute {
824 	struct device_attribute attr;
825 	unsigned long val;
826 };
827 
828 static ssize_t i915_pmu_event_show(struct device *dev,
829 				   struct device_attribute *attr, char *buf)
830 {
831 	struct i915_ext_attribute *eattr;
832 
833 	eattr = container_of(attr, struct i915_ext_attribute, attr);
834 	return sprintf(buf, "config=0x%lx\n", eattr->val);
835 }
836 
837 static ssize_t
838 i915_pmu_get_attr_cpumask(struct device *dev,
839 			  struct device_attribute *attr,
840 			  char *buf)
841 {
842 	return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask);
843 }
844 
845 static DEVICE_ATTR(cpumask, 0444, i915_pmu_get_attr_cpumask, NULL);
846 
847 static struct attribute *i915_cpumask_attrs[] = {
848 	&dev_attr_cpumask.attr,
849 	NULL,
850 };
851 
852 static const struct attribute_group i915_pmu_cpumask_attr_group = {
853 	.attrs = i915_cpumask_attrs,
854 };
855 
856 #define __event(__config, __name, __unit) \
857 { \
858 	.config = (__config), \
859 	.name = (__name), \
860 	.unit = (__unit), \
861 }
862 
863 #define __engine_event(__sample, __name) \
864 { \
865 	.sample = (__sample), \
866 	.name = (__name), \
867 }
868 
869 static struct i915_ext_attribute *
870 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config)
871 {
872 	sysfs_attr_init(&attr->attr.attr);
873 	attr->attr.attr.name = name;
874 	attr->attr.attr.mode = 0444;
875 	attr->attr.show = i915_pmu_event_show;
876 	attr->val = config;
877 
878 	return ++attr;
879 }
880 
881 static struct perf_pmu_events_attr *
882 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name,
883 	     const char *str)
884 {
885 	sysfs_attr_init(&attr->attr.attr);
886 	attr->attr.attr.name = name;
887 	attr->attr.attr.mode = 0444;
888 	attr->attr.show = perf_event_sysfs_show;
889 	attr->event_str = str;
890 
891 	return ++attr;
892 }
893 
894 static struct attribute **
895 create_event_attributes(struct i915_pmu *pmu)
896 {
897 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
898 	static const struct {
899 		u64 config;
900 		const char *name;
901 		const char *unit;
902 	} events[] = {
903 		__event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"),
904 		__event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"),
905 		__event(I915_PMU_INTERRUPTS, "interrupts", NULL),
906 		__event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"),
907 		__event(I915_PMU_SOFTWARE_GT_AWAKE_TIME, "software-gt-awake-time", "ns"),
908 	};
909 	static const struct {
910 		enum drm_i915_pmu_engine_sample sample;
911 		char *name;
912 	} engine_events[] = {
913 		__engine_event(I915_SAMPLE_BUSY, "busy"),
914 		__engine_event(I915_SAMPLE_SEMA, "sema"),
915 		__engine_event(I915_SAMPLE_WAIT, "wait"),
916 	};
917 	unsigned int count = 0;
918 	struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter;
919 	struct i915_ext_attribute *i915_attr = NULL, *i915_iter;
920 	struct attribute **attr = NULL, **attr_iter;
921 	struct intel_engine_cs *engine;
922 	unsigned int i;
923 
924 	/* Count how many counters we will be exposing. */
925 	for (i = 0; i < ARRAY_SIZE(events); i++) {
926 		if (!config_status(i915, events[i].config))
927 			count++;
928 	}
929 
930 	for_each_uabi_engine(engine, i915) {
931 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
932 			if (!engine_event_status(engine,
933 						 engine_events[i].sample))
934 				count++;
935 		}
936 	}
937 
938 	/* Allocate attribute objects and table. */
939 	i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL);
940 	if (!i915_attr)
941 		goto err_alloc;
942 
943 	pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL);
944 	if (!pmu_attr)
945 		goto err_alloc;
946 
947 	/* Max one pointer of each attribute type plus a termination entry. */
948 	attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL);
949 	if (!attr)
950 		goto err_alloc;
951 
952 	i915_iter = i915_attr;
953 	pmu_iter = pmu_attr;
954 	attr_iter = attr;
955 
956 	/* Initialize supported non-engine counters. */
957 	for (i = 0; i < ARRAY_SIZE(events); i++) {
958 		char *str;
959 
960 		if (config_status(i915, events[i].config))
961 			continue;
962 
963 		str = kstrdup(events[i].name, GFP_KERNEL);
964 		if (!str)
965 			goto err;
966 
967 		*attr_iter++ = &i915_iter->attr.attr;
968 		i915_iter = add_i915_attr(i915_iter, str, events[i].config);
969 
970 		if (events[i].unit) {
971 			str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name);
972 			if (!str)
973 				goto err;
974 
975 			*attr_iter++ = &pmu_iter->attr.attr;
976 			pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit);
977 		}
978 	}
979 
980 	/* Initialize supported engine counters. */
981 	for_each_uabi_engine(engine, i915) {
982 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
983 			char *str;
984 
985 			if (engine_event_status(engine,
986 						engine_events[i].sample))
987 				continue;
988 
989 			str = kasprintf(GFP_KERNEL, "%s-%s",
990 					engine->name, engine_events[i].name);
991 			if (!str)
992 				goto err;
993 
994 			*attr_iter++ = &i915_iter->attr.attr;
995 			i915_iter =
996 				add_i915_attr(i915_iter, str,
997 					      __I915_PMU_ENGINE(engine->uabi_class,
998 								engine->uabi_instance,
999 								engine_events[i].sample));
1000 
1001 			str = kasprintf(GFP_KERNEL, "%s-%s.unit",
1002 					engine->name, engine_events[i].name);
1003 			if (!str)
1004 				goto err;
1005 
1006 			*attr_iter++ = &pmu_iter->attr.attr;
1007 			pmu_iter = add_pmu_attr(pmu_iter, str, "ns");
1008 		}
1009 	}
1010 
1011 	pmu->i915_attr = i915_attr;
1012 	pmu->pmu_attr = pmu_attr;
1013 
1014 	return attr;
1015 
1016 err:;
1017 	for (attr_iter = attr; *attr_iter; attr_iter++)
1018 		kfree((*attr_iter)->name);
1019 
1020 err_alloc:
1021 	kfree(attr);
1022 	kfree(i915_attr);
1023 	kfree(pmu_attr);
1024 
1025 	return NULL;
1026 }
1027 
1028 static void free_event_attributes(struct i915_pmu *pmu)
1029 {
1030 	struct attribute **attr_iter = pmu->events_attr_group.attrs;
1031 
1032 	for (; *attr_iter; attr_iter++)
1033 		kfree((*attr_iter)->name);
1034 
1035 	kfree(pmu->events_attr_group.attrs);
1036 	kfree(pmu->i915_attr);
1037 	kfree(pmu->pmu_attr);
1038 
1039 	pmu->events_attr_group.attrs = NULL;
1040 	pmu->i915_attr = NULL;
1041 	pmu->pmu_attr = NULL;
1042 }
1043 
1044 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1045 {
1046 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1047 
1048 	GEM_BUG_ON(!pmu->base.event_init);
1049 
1050 	/* Select the first online CPU as a designated reader. */
1051 	if (!cpumask_weight(&i915_pmu_cpumask))
1052 		cpumask_set_cpu(cpu, &i915_pmu_cpumask);
1053 
1054 	return 0;
1055 }
1056 
1057 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node)
1058 {
1059 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1060 	unsigned int target = i915_pmu_target_cpu;
1061 
1062 	GEM_BUG_ON(!pmu->base.event_init);
1063 
1064 	/*
1065 	 * Unregistering an instance generates a CPU offline event which we must
1066 	 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask.
1067 	 */
1068 	if (pmu->closed)
1069 		return 0;
1070 
1071 	if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) {
1072 		target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu);
1073 
1074 		/* Migrate events if there is a valid target */
1075 		if (target < nr_cpu_ids) {
1076 			cpumask_set_cpu(target, &i915_pmu_cpumask);
1077 			i915_pmu_target_cpu = target;
1078 		}
1079 	}
1080 
1081 	if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) {
1082 		perf_pmu_migrate_context(&pmu->base, cpu, target);
1083 		pmu->cpuhp.cpu = target;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID;
1090 
1091 void i915_pmu_init(void)
1092 {
1093 	int ret;
1094 
1095 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1096 				      "perf/x86/intel/i915:online",
1097 				      i915_pmu_cpu_online,
1098 				      i915_pmu_cpu_offline);
1099 	if (ret < 0)
1100 		pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n",
1101 			  ret);
1102 	else
1103 		cpuhp_slot = ret;
1104 }
1105 
1106 void i915_pmu_exit(void)
1107 {
1108 	if (cpuhp_slot != CPUHP_INVALID)
1109 		cpuhp_remove_multi_state(cpuhp_slot);
1110 }
1111 
1112 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu)
1113 {
1114 	if (cpuhp_slot == CPUHP_INVALID)
1115 		return -EINVAL;
1116 
1117 	return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node);
1118 }
1119 
1120 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu)
1121 {
1122 	cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node);
1123 }
1124 
1125 static bool is_igp(struct drm_i915_private *i915)
1126 {
1127 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1128 
1129 	/* IGP is 0000:00:02.0 */
1130 	return pci_domain_nr(pdev->bus) == 0 &&
1131 	       pdev->bus->number == 0 &&
1132 	       PCI_SLOT(pdev->devfn) == 2 &&
1133 	       PCI_FUNC(pdev->devfn) == 0;
1134 }
1135 
1136 void i915_pmu_register(struct drm_i915_private *i915)
1137 {
1138 	struct i915_pmu *pmu = &i915->pmu;
1139 	const struct attribute_group *attr_groups[] = {
1140 		&i915_pmu_format_attr_group,
1141 		&pmu->events_attr_group,
1142 		&i915_pmu_cpumask_attr_group,
1143 		NULL
1144 	};
1145 
1146 	int ret = -ENOMEM;
1147 
1148 	if (INTEL_GEN(i915) <= 2) {
1149 		drm_info(&i915->drm, "PMU not supported for this GPU.");
1150 		return;
1151 	}
1152 
1153 	spin_lock_init(&pmu->lock);
1154 	hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1155 	pmu->timer.function = i915_sample;
1156 	pmu->cpuhp.cpu = -1;
1157 	init_rc6(pmu);
1158 
1159 	if (!is_igp(i915)) {
1160 		pmu->name = kasprintf(GFP_KERNEL,
1161 				      "i915_%s",
1162 				      dev_name(i915->drm.dev));
1163 		if (pmu->name) {
1164 			/* tools/perf reserves colons as special. */
1165 			strreplace((char *)pmu->name, ':', '_');
1166 		}
1167 	} else {
1168 		pmu->name = "i915";
1169 	}
1170 	if (!pmu->name)
1171 		goto err;
1172 
1173 	pmu->events_attr_group.name = "events";
1174 	pmu->events_attr_group.attrs = create_event_attributes(pmu);
1175 	if (!pmu->events_attr_group.attrs)
1176 		goto err_name;
1177 
1178 	pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups),
1179 					GFP_KERNEL);
1180 	if (!pmu->base.attr_groups)
1181 		goto err_attr;
1182 
1183 	pmu->base.module	= THIS_MODULE;
1184 	pmu->base.task_ctx_nr	= perf_invalid_context;
1185 	pmu->base.event_init	= i915_pmu_event_init;
1186 	pmu->base.add		= i915_pmu_event_add;
1187 	pmu->base.del		= i915_pmu_event_del;
1188 	pmu->base.start		= i915_pmu_event_start;
1189 	pmu->base.stop		= i915_pmu_event_stop;
1190 	pmu->base.read		= i915_pmu_event_read;
1191 	pmu->base.event_idx	= i915_pmu_event_event_idx;
1192 
1193 	ret = perf_pmu_register(&pmu->base, pmu->name, -1);
1194 	if (ret)
1195 		goto err_groups;
1196 
1197 	ret = i915_pmu_register_cpuhp_state(pmu);
1198 	if (ret)
1199 		goto err_unreg;
1200 
1201 	return;
1202 
1203 err_unreg:
1204 	perf_pmu_unregister(&pmu->base);
1205 err_groups:
1206 	kfree(pmu->base.attr_groups);
1207 err_attr:
1208 	pmu->base.event_init = NULL;
1209 	free_event_attributes(pmu);
1210 err_name:
1211 	if (!is_igp(i915))
1212 		kfree(pmu->name);
1213 err:
1214 	drm_notice(&i915->drm, "Failed to register PMU!\n");
1215 }
1216 
1217 void i915_pmu_unregister(struct drm_i915_private *i915)
1218 {
1219 	struct i915_pmu *pmu = &i915->pmu;
1220 
1221 	if (!pmu->base.event_init)
1222 		return;
1223 
1224 	/*
1225 	 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu
1226 	 * ensures all currently executing ones will have exited before we
1227 	 * proceed with unregistration.
1228 	 */
1229 	pmu->closed = true;
1230 	synchronize_rcu();
1231 
1232 	hrtimer_cancel(&pmu->timer);
1233 
1234 	i915_pmu_unregister_cpuhp_state(pmu);
1235 
1236 	perf_pmu_unregister(&pmu->base);
1237 	pmu->base.event_init = NULL;
1238 	kfree(pmu->base.attr_groups);
1239 	if (!is_igp(i915))
1240 		kfree(pmu->name);
1241 	free_event_attributes(pmu);
1242 }
1243