1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/oom.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 43 bool force); 44 static __must_check int 45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 46 bool readonly); 47 static void 48 i915_gem_object_retire(struct drm_i915_gem_object *obj); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, 59 struct shrink_control *sc); 60 static int i915_gem_shrinker_oom(struct notifier_block *nb, 61 unsigned long event, 62 void *ptr); 63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 65 66 static bool cpu_cache_is_coherent(struct drm_device *dev, 67 enum i915_cache_level level) 68 { 69 return HAS_LLC(dev) || level != I915_CACHE_NONE; 70 } 71 72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 73 { 74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 75 return true; 76 77 return obj->pin_display; 78 } 79 80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 81 { 82 if (obj->tiling_mode) 83 i915_gem_release_mmap(obj); 84 85 /* As we do not have an associated fence register, we will force 86 * a tiling change if we ever need to acquire one. 87 */ 88 obj->fence_dirty = false; 89 obj->fence_reg = I915_FENCE_REG_NONE; 90 } 91 92 /* some bookkeeping */ 93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 94 size_t size) 95 { 96 spin_lock(&dev_priv->mm.object_stat_lock); 97 dev_priv->mm.object_count++; 98 dev_priv->mm.object_memory += size; 99 spin_unlock(&dev_priv->mm.object_stat_lock); 100 } 101 102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 103 size_t size) 104 { 105 spin_lock(&dev_priv->mm.object_stat_lock); 106 dev_priv->mm.object_count--; 107 dev_priv->mm.object_memory -= size; 108 spin_unlock(&dev_priv->mm.object_stat_lock); 109 } 110 111 static int 112 i915_gem_wait_for_error(struct i915_gpu_error *error) 113 { 114 int ret; 115 116 #define EXIT_COND (!i915_reset_in_progress(error) || \ 117 i915_terminally_wedged(error)) 118 if (EXIT_COND) 119 return 0; 120 121 /* 122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 123 * userspace. If it takes that long something really bad is going on and 124 * we should simply try to bail out and fail as gracefully as possible. 125 */ 126 ret = wait_event_interruptible_timeout(error->reset_queue, 127 EXIT_COND, 128 10*HZ); 129 if (ret == 0) { 130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 131 return -EIO; 132 } else if (ret < 0) { 133 return ret; 134 } 135 #undef EXIT_COND 136 137 return 0; 138 } 139 140 int i915_mutex_lock_interruptible(struct drm_device *dev) 141 { 142 struct drm_i915_private *dev_priv = dev->dev_private; 143 int ret; 144 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 146 if (ret) 147 return ret; 148 149 ret = mutex_lock_interruptible(&dev->struct_mutex); 150 if (ret) 151 return ret; 152 153 WARN_ON(i915_verify_lists(dev)); 154 return 0; 155 } 156 157 static inline bool 158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 159 { 160 return i915_gem_obj_bound_any(obj) && !obj->active; 161 } 162 163 int 164 i915_gem_init_ioctl(struct drm_device *dev, void *data, 165 struct drm_file *file) 166 { 167 struct drm_i915_private *dev_priv = dev->dev_private; 168 struct drm_i915_gem_init *args = data; 169 170 if (drm_core_check_feature(dev, DRIVER_MODESET)) 171 return -ENODEV; 172 173 if (args->gtt_start >= args->gtt_end || 174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 175 return -EINVAL; 176 177 /* GEM with user mode setting was never supported on ilk and later. */ 178 if (INTEL_INFO(dev)->gen >= 5) 179 return -ENODEV; 180 181 mutex_lock(&dev->struct_mutex); 182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 183 args->gtt_end); 184 dev_priv->gtt.mappable_end = args->gtt_end; 185 mutex_unlock(&dev->struct_mutex); 186 187 return 0; 188 } 189 190 int 191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 192 struct drm_file *file) 193 { 194 struct drm_i915_private *dev_priv = dev->dev_private; 195 struct drm_i915_gem_get_aperture *args = data; 196 struct drm_i915_gem_object *obj; 197 size_t pinned; 198 199 pinned = 0; 200 mutex_lock(&dev->struct_mutex); 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 202 if (i915_gem_obj_is_pinned(obj)) 203 pinned += i915_gem_obj_ggtt_size(obj); 204 mutex_unlock(&dev->struct_mutex); 205 206 args->aper_size = dev_priv->gtt.base.total; 207 args->aper_available_size = args->aper_size - pinned; 208 209 return 0; 210 } 211 212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj) 213 { 214 drm_dma_handle_t *phys = obj->phys_handle; 215 216 if (!phys) 217 return; 218 219 if (obj->madv == I915_MADV_WILLNEED) { 220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 221 char *vaddr = phys->vaddr; 222 int i; 223 224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 225 struct page *page = shmem_read_mapping_page(mapping, i); 226 if (!IS_ERR(page)) { 227 char *dst = kmap_atomic(page); 228 memcpy(dst, vaddr, PAGE_SIZE); 229 drm_clflush_virt_range(dst, PAGE_SIZE); 230 kunmap_atomic(dst); 231 232 set_page_dirty(page); 233 mark_page_accessed(page); 234 page_cache_release(page); 235 } 236 vaddr += PAGE_SIZE; 237 } 238 i915_gem_chipset_flush(obj->base.dev); 239 } 240 241 #ifdef CONFIG_X86 242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE); 243 #endif 244 drm_pci_free(obj->base.dev, phys); 245 obj->phys_handle = NULL; 246 } 247 248 int 249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 250 int align) 251 { 252 drm_dma_handle_t *phys; 253 struct address_space *mapping; 254 char *vaddr; 255 int i; 256 257 if (obj->phys_handle) { 258 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 259 return -EBUSY; 260 261 return 0; 262 } 263 264 if (obj->madv != I915_MADV_WILLNEED) 265 return -EFAULT; 266 267 if (obj->base.filp == NULL) 268 return -EINVAL; 269 270 /* create a new object */ 271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 272 if (!phys) 273 return -ENOMEM; 274 275 vaddr = phys->vaddr; 276 #ifdef CONFIG_X86 277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE); 278 #endif 279 mapping = file_inode(obj->base.filp)->i_mapping; 280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 281 struct page *page; 282 char *src; 283 284 page = shmem_read_mapping_page(mapping, i); 285 if (IS_ERR(page)) { 286 #ifdef CONFIG_X86 287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE); 288 #endif 289 drm_pci_free(obj->base.dev, phys); 290 return PTR_ERR(page); 291 } 292 293 src = kmap_atomic(page); 294 memcpy(vaddr, src, PAGE_SIZE); 295 kunmap_atomic(src); 296 297 mark_page_accessed(page); 298 page_cache_release(page); 299 300 vaddr += PAGE_SIZE; 301 } 302 303 obj->phys_handle = phys; 304 return 0; 305 } 306 307 static int 308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 309 struct drm_i915_gem_pwrite *args, 310 struct drm_file *file_priv) 311 { 312 struct drm_device *dev = obj->base.dev; 313 void *vaddr = obj->phys_handle->vaddr + args->offset; 314 char __user *user_data = to_user_ptr(args->data_ptr); 315 316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 317 unsigned long unwritten; 318 319 /* The physical object once assigned is fixed for the lifetime 320 * of the obj, so we can safely drop the lock and continue 321 * to access vaddr. 322 */ 323 mutex_unlock(&dev->struct_mutex); 324 unwritten = copy_from_user(vaddr, user_data, args->size); 325 mutex_lock(&dev->struct_mutex); 326 if (unwritten) 327 return -EFAULT; 328 } 329 330 i915_gem_chipset_flush(dev); 331 return 0; 332 } 333 334 void *i915_gem_object_alloc(struct drm_device *dev) 335 { 336 struct drm_i915_private *dev_priv = dev->dev_private; 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 338 } 339 340 void i915_gem_object_free(struct drm_i915_gem_object *obj) 341 { 342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 343 kmem_cache_free(dev_priv->slab, obj); 344 } 345 346 static int 347 i915_gem_create(struct drm_file *file, 348 struct drm_device *dev, 349 uint64_t size, 350 uint32_t *handle_p) 351 { 352 struct drm_i915_gem_object *obj; 353 int ret; 354 u32 handle; 355 356 size = roundup(size, PAGE_SIZE); 357 if (size == 0) 358 return -EINVAL; 359 360 /* Allocate the new object */ 361 obj = i915_gem_alloc_object(dev, size); 362 if (obj == NULL) 363 return -ENOMEM; 364 365 ret = drm_gem_handle_create(file, &obj->base, &handle); 366 /* drop reference from allocate - handle holds it now */ 367 drm_gem_object_unreference_unlocked(&obj->base); 368 if (ret) 369 return ret; 370 371 *handle_p = handle; 372 return 0; 373 } 374 375 int 376 i915_gem_dumb_create(struct drm_file *file, 377 struct drm_device *dev, 378 struct drm_mode_create_dumb *args) 379 { 380 /* have to work out size/pitch and return them */ 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 382 args->size = args->pitch * args->height; 383 return i915_gem_create(file, dev, 384 args->size, &args->handle); 385 } 386 387 /** 388 * Creates a new mm object and returns a handle to it. 389 */ 390 int 391 i915_gem_create_ioctl(struct drm_device *dev, void *data, 392 struct drm_file *file) 393 { 394 struct drm_i915_gem_create *args = data; 395 396 return i915_gem_create(file, dev, 397 args->size, &args->handle); 398 } 399 400 static inline int 401 __copy_to_user_swizzled(char __user *cpu_vaddr, 402 const char *gpu_vaddr, int gpu_offset, 403 int length) 404 { 405 int ret, cpu_offset = 0; 406 407 while (length > 0) { 408 int cacheline_end = ALIGN(gpu_offset + 1, 64); 409 int this_length = min(cacheline_end - gpu_offset, length); 410 int swizzled_gpu_offset = gpu_offset ^ 64; 411 412 ret = __copy_to_user(cpu_vaddr + cpu_offset, 413 gpu_vaddr + swizzled_gpu_offset, 414 this_length); 415 if (ret) 416 return ret + length; 417 418 cpu_offset += this_length; 419 gpu_offset += this_length; 420 length -= this_length; 421 } 422 423 return 0; 424 } 425 426 static inline int 427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 428 const char __user *cpu_vaddr, 429 int length) 430 { 431 int ret, cpu_offset = 0; 432 433 while (length > 0) { 434 int cacheline_end = ALIGN(gpu_offset + 1, 64); 435 int this_length = min(cacheline_end - gpu_offset, length); 436 int swizzled_gpu_offset = gpu_offset ^ 64; 437 438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 439 cpu_vaddr + cpu_offset, 440 this_length); 441 if (ret) 442 return ret + length; 443 444 cpu_offset += this_length; 445 gpu_offset += this_length; 446 length -= this_length; 447 } 448 449 return 0; 450 } 451 452 /* 453 * Pins the specified object's pages and synchronizes the object with 454 * GPU accesses. Sets needs_clflush to non-zero if the caller should 455 * flush the object from the CPU cache. 456 */ 457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 458 int *needs_clflush) 459 { 460 int ret; 461 462 *needs_clflush = 0; 463 464 if (!obj->base.filp) 465 return -EINVAL; 466 467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 468 /* If we're not in the cpu read domain, set ourself into the gtt 469 * read domain and manually flush cachelines (if required). This 470 * optimizes for the case when the gpu will dirty the data 471 * anyway again before the next pread happens. */ 472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 473 obj->cache_level); 474 ret = i915_gem_object_wait_rendering(obj, true); 475 if (ret) 476 return ret; 477 478 i915_gem_object_retire(obj); 479 } 480 481 ret = i915_gem_object_get_pages(obj); 482 if (ret) 483 return ret; 484 485 i915_gem_object_pin_pages(obj); 486 487 return ret; 488 } 489 490 /* Per-page copy function for the shmem pread fastpath. 491 * Flushes invalid cachelines before reading the target if 492 * needs_clflush is set. */ 493 static int 494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 495 char __user *user_data, 496 bool page_do_bit17_swizzling, bool needs_clflush) 497 { 498 char *vaddr; 499 int ret; 500 501 if (unlikely(page_do_bit17_swizzling)) 502 return -EINVAL; 503 504 vaddr = kmap_atomic(page); 505 if (needs_clflush) 506 drm_clflush_virt_range(vaddr + shmem_page_offset, 507 page_length); 508 ret = __copy_to_user_inatomic(user_data, 509 vaddr + shmem_page_offset, 510 page_length); 511 kunmap_atomic(vaddr); 512 513 return ret ? -EFAULT : 0; 514 } 515 516 static void 517 shmem_clflush_swizzled_range(char *addr, unsigned long length, 518 bool swizzled) 519 { 520 if (unlikely(swizzled)) { 521 unsigned long start = (unsigned long) addr; 522 unsigned long end = (unsigned long) addr + length; 523 524 /* For swizzling simply ensure that we always flush both 525 * channels. Lame, but simple and it works. Swizzled 526 * pwrite/pread is far from a hotpath - current userspace 527 * doesn't use it at all. */ 528 start = round_down(start, 128); 529 end = round_up(end, 128); 530 531 drm_clflush_virt_range((void *)start, end - start); 532 } else { 533 drm_clflush_virt_range(addr, length); 534 } 535 536 } 537 538 /* Only difference to the fast-path function is that this can handle bit17 539 * and uses non-atomic copy and kmap functions. */ 540 static int 541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 542 char __user *user_data, 543 bool page_do_bit17_swizzling, bool needs_clflush) 544 { 545 char *vaddr; 546 int ret; 547 548 vaddr = kmap(page); 549 if (needs_clflush) 550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 551 page_length, 552 page_do_bit17_swizzling); 553 554 if (page_do_bit17_swizzling) 555 ret = __copy_to_user_swizzled(user_data, 556 vaddr, shmem_page_offset, 557 page_length); 558 else 559 ret = __copy_to_user(user_data, 560 vaddr + shmem_page_offset, 561 page_length); 562 kunmap(page); 563 564 return ret ? - EFAULT : 0; 565 } 566 567 static int 568 i915_gem_shmem_pread(struct drm_device *dev, 569 struct drm_i915_gem_object *obj, 570 struct drm_i915_gem_pread *args, 571 struct drm_file *file) 572 { 573 char __user *user_data; 574 ssize_t remain; 575 loff_t offset; 576 int shmem_page_offset, page_length, ret = 0; 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 578 int prefaulted = 0; 579 int needs_clflush = 0; 580 struct sg_page_iter sg_iter; 581 582 user_data = to_user_ptr(args->data_ptr); 583 remain = args->size; 584 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 586 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 588 if (ret) 589 return ret; 590 591 offset = args->offset; 592 593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 594 offset >> PAGE_SHIFT) { 595 struct page *page = sg_page_iter_page(&sg_iter); 596 597 if (remain <= 0) 598 break; 599 600 /* Operation in this page 601 * 602 * shmem_page_offset = offset within page in shmem file 603 * page_length = bytes to copy for this page 604 */ 605 shmem_page_offset = offset_in_page(offset); 606 page_length = remain; 607 if ((shmem_page_offset + page_length) > PAGE_SIZE) 608 page_length = PAGE_SIZE - shmem_page_offset; 609 610 page_do_bit17_swizzling = obj_do_bit17_swizzling && 611 (page_to_phys(page) & (1 << 17)) != 0; 612 613 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 614 user_data, page_do_bit17_swizzling, 615 needs_clflush); 616 if (ret == 0) 617 goto next_page; 618 619 mutex_unlock(&dev->struct_mutex); 620 621 if (likely(!i915.prefault_disable) && !prefaulted) { 622 ret = fault_in_multipages_writeable(user_data, remain); 623 /* Userspace is tricking us, but we've already clobbered 624 * its pages with the prefault and promised to write the 625 * data up to the first fault. Hence ignore any errors 626 * and just continue. */ 627 (void)ret; 628 prefaulted = 1; 629 } 630 631 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 632 user_data, page_do_bit17_swizzling, 633 needs_clflush); 634 635 mutex_lock(&dev->struct_mutex); 636 637 if (ret) 638 goto out; 639 640 next_page: 641 remain -= page_length; 642 user_data += page_length; 643 offset += page_length; 644 } 645 646 out: 647 i915_gem_object_unpin_pages(obj); 648 649 return ret; 650 } 651 652 /** 653 * Reads data from the object referenced by handle. 654 * 655 * On error, the contents of *data are undefined. 656 */ 657 int 658 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 659 struct drm_file *file) 660 { 661 struct drm_i915_gem_pread *args = data; 662 struct drm_i915_gem_object *obj; 663 int ret = 0; 664 665 if (args->size == 0) 666 return 0; 667 668 if (!access_ok(VERIFY_WRITE, 669 to_user_ptr(args->data_ptr), 670 args->size)) 671 return -EFAULT; 672 673 ret = i915_mutex_lock_interruptible(dev); 674 if (ret) 675 return ret; 676 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 678 if (&obj->base == NULL) { 679 ret = -ENOENT; 680 goto unlock; 681 } 682 683 /* Bounds check source. */ 684 if (args->offset > obj->base.size || 685 args->size > obj->base.size - args->offset) { 686 ret = -EINVAL; 687 goto out; 688 } 689 690 /* prime objects have no backing filp to GEM pread/pwrite 691 * pages from. 692 */ 693 if (!obj->base.filp) { 694 ret = -EINVAL; 695 goto out; 696 } 697 698 trace_i915_gem_object_pread(obj, args->offset, args->size); 699 700 ret = i915_gem_shmem_pread(dev, obj, args, file); 701 702 out: 703 drm_gem_object_unreference(&obj->base); 704 unlock: 705 mutex_unlock(&dev->struct_mutex); 706 return ret; 707 } 708 709 /* This is the fast write path which cannot handle 710 * page faults in the source data 711 */ 712 713 static inline int 714 fast_user_write(struct io_mapping *mapping, 715 loff_t page_base, int page_offset, 716 char __user *user_data, 717 int length) 718 { 719 void __iomem *vaddr_atomic; 720 void *vaddr; 721 unsigned long unwritten; 722 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 724 /* We can use the cpu mem copy function because this is X86. */ 725 vaddr = (void __force*)vaddr_atomic + page_offset; 726 unwritten = __copy_from_user_inatomic_nocache(vaddr, 727 user_data, length); 728 io_mapping_unmap_atomic(vaddr_atomic); 729 return unwritten; 730 } 731 732 /** 733 * This is the fast pwrite path, where we copy the data directly from the 734 * user into the GTT, uncached. 735 */ 736 static int 737 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 738 struct drm_i915_gem_object *obj, 739 struct drm_i915_gem_pwrite *args, 740 struct drm_file *file) 741 { 742 struct drm_i915_private *dev_priv = dev->dev_private; 743 ssize_t remain; 744 loff_t offset, page_base; 745 char __user *user_data; 746 int page_offset, page_length, ret; 747 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 749 if (ret) 750 goto out; 751 752 ret = i915_gem_object_set_to_gtt_domain(obj, true); 753 if (ret) 754 goto out_unpin; 755 756 ret = i915_gem_object_put_fence(obj); 757 if (ret) 758 goto out_unpin; 759 760 user_data = to_user_ptr(args->data_ptr); 761 remain = args->size; 762 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 764 765 while (remain > 0) { 766 /* Operation in this page 767 * 768 * page_base = page offset within aperture 769 * page_offset = offset within page 770 * page_length = bytes to copy for this page 771 */ 772 page_base = offset & PAGE_MASK; 773 page_offset = offset_in_page(offset); 774 page_length = remain; 775 if ((page_offset + remain) > PAGE_SIZE) 776 page_length = PAGE_SIZE - page_offset; 777 778 /* If we get a fault while copying data, then (presumably) our 779 * source page isn't available. Return the error and we'll 780 * retry in the slow path. 781 */ 782 if (fast_user_write(dev_priv->gtt.mappable, page_base, 783 page_offset, user_data, page_length)) { 784 ret = -EFAULT; 785 goto out_unpin; 786 } 787 788 remain -= page_length; 789 user_data += page_length; 790 offset += page_length; 791 } 792 793 out_unpin: 794 i915_gem_object_ggtt_unpin(obj); 795 out: 796 return ret; 797 } 798 799 /* Per-page copy function for the shmem pwrite fastpath. 800 * Flushes invalid cachelines before writing to the target if 801 * needs_clflush_before is set and flushes out any written cachelines after 802 * writing if needs_clflush is set. */ 803 static int 804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 805 char __user *user_data, 806 bool page_do_bit17_swizzling, 807 bool needs_clflush_before, 808 bool needs_clflush_after) 809 { 810 char *vaddr; 811 int ret; 812 813 if (unlikely(page_do_bit17_swizzling)) 814 return -EINVAL; 815 816 vaddr = kmap_atomic(page); 817 if (needs_clflush_before) 818 drm_clflush_virt_range(vaddr + shmem_page_offset, 819 page_length); 820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 821 user_data, page_length); 822 if (needs_clflush_after) 823 drm_clflush_virt_range(vaddr + shmem_page_offset, 824 page_length); 825 kunmap_atomic(vaddr); 826 827 return ret ? -EFAULT : 0; 828 } 829 830 /* Only difference to the fast-path function is that this can handle bit17 831 * and uses non-atomic copy and kmap functions. */ 832 static int 833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 834 char __user *user_data, 835 bool page_do_bit17_swizzling, 836 bool needs_clflush_before, 837 bool needs_clflush_after) 838 { 839 char *vaddr; 840 int ret; 841 842 vaddr = kmap(page); 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 845 page_length, 846 page_do_bit17_swizzling); 847 if (page_do_bit17_swizzling) 848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 849 user_data, 850 page_length); 851 else 852 ret = __copy_from_user(vaddr + shmem_page_offset, 853 user_data, 854 page_length); 855 if (needs_clflush_after) 856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 857 page_length, 858 page_do_bit17_swizzling); 859 kunmap(page); 860 861 return ret ? -EFAULT : 0; 862 } 863 864 static int 865 i915_gem_shmem_pwrite(struct drm_device *dev, 866 struct drm_i915_gem_object *obj, 867 struct drm_i915_gem_pwrite *args, 868 struct drm_file *file) 869 { 870 ssize_t remain; 871 loff_t offset; 872 char __user *user_data; 873 int shmem_page_offset, page_length, ret = 0; 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 875 int hit_slowpath = 0; 876 int needs_clflush_after = 0; 877 int needs_clflush_before = 0; 878 struct sg_page_iter sg_iter; 879 880 user_data = to_user_ptr(args->data_ptr); 881 remain = args->size; 882 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 884 885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 886 /* If we're not in the cpu write domain, set ourself into the gtt 887 * write domain and manually flush cachelines (if required). This 888 * optimizes for the case when the gpu will use the data 889 * right away and we therefore have to clflush anyway. */ 890 needs_clflush_after = cpu_write_needs_clflush(obj); 891 ret = i915_gem_object_wait_rendering(obj, false); 892 if (ret) 893 return ret; 894 895 i915_gem_object_retire(obj); 896 } 897 /* Same trick applies to invalidate partially written cachelines read 898 * before writing. */ 899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 900 needs_clflush_before = 901 !cpu_cache_is_coherent(dev, obj->cache_level); 902 903 ret = i915_gem_object_get_pages(obj); 904 if (ret) 905 return ret; 906 907 i915_gem_object_pin_pages(obj); 908 909 offset = args->offset; 910 obj->dirty = 1; 911 912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 913 offset >> PAGE_SHIFT) { 914 struct page *page = sg_page_iter_page(&sg_iter); 915 int partial_cacheline_write; 916 917 if (remain <= 0) 918 break; 919 920 /* Operation in this page 921 * 922 * shmem_page_offset = offset within page in shmem file 923 * page_length = bytes to copy for this page 924 */ 925 shmem_page_offset = offset_in_page(offset); 926 927 page_length = remain; 928 if ((shmem_page_offset + page_length) > PAGE_SIZE) 929 page_length = PAGE_SIZE - shmem_page_offset; 930 931 /* If we don't overwrite a cacheline completely we need to be 932 * careful to have up-to-date data by first clflushing. Don't 933 * overcomplicate things and flush the entire patch. */ 934 partial_cacheline_write = needs_clflush_before && 935 ((shmem_page_offset | page_length) 936 & (boot_cpu_data.x86_clflush_size - 1)); 937 938 page_do_bit17_swizzling = obj_do_bit17_swizzling && 939 (page_to_phys(page) & (1 << 17)) != 0; 940 941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 942 user_data, page_do_bit17_swizzling, 943 partial_cacheline_write, 944 needs_clflush_after); 945 if (ret == 0) 946 goto next_page; 947 948 hit_slowpath = 1; 949 mutex_unlock(&dev->struct_mutex); 950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 951 user_data, page_do_bit17_swizzling, 952 partial_cacheline_write, 953 needs_clflush_after); 954 955 mutex_lock(&dev->struct_mutex); 956 957 if (ret) 958 goto out; 959 960 next_page: 961 remain -= page_length; 962 user_data += page_length; 963 offset += page_length; 964 } 965 966 out: 967 i915_gem_object_unpin_pages(obj); 968 969 if (hit_slowpath) { 970 /* 971 * Fixup: Flush cpu caches in case we didn't flush the dirty 972 * cachelines in-line while writing and the object moved 973 * out of the cpu write domain while we've dropped the lock. 974 */ 975 if (!needs_clflush_after && 976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 977 if (i915_gem_clflush_object(obj, obj->pin_display)) 978 i915_gem_chipset_flush(dev); 979 } 980 } 981 982 if (needs_clflush_after) 983 i915_gem_chipset_flush(dev); 984 985 return ret; 986 } 987 988 /** 989 * Writes data to the object referenced by handle. 990 * 991 * On error, the contents of the buffer that were to be modified are undefined. 992 */ 993 int 994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 995 struct drm_file *file) 996 { 997 struct drm_i915_gem_pwrite *args = data; 998 struct drm_i915_gem_object *obj; 999 int ret; 1000 1001 if (args->size == 0) 1002 return 0; 1003 1004 if (!access_ok(VERIFY_READ, 1005 to_user_ptr(args->data_ptr), 1006 args->size)) 1007 return -EFAULT; 1008 1009 if (likely(!i915.prefault_disable)) { 1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1011 args->size); 1012 if (ret) 1013 return -EFAULT; 1014 } 1015 1016 ret = i915_mutex_lock_interruptible(dev); 1017 if (ret) 1018 return ret; 1019 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1021 if (&obj->base == NULL) { 1022 ret = -ENOENT; 1023 goto unlock; 1024 } 1025 1026 /* Bounds check destination. */ 1027 if (args->offset > obj->base.size || 1028 args->size > obj->base.size - args->offset) { 1029 ret = -EINVAL; 1030 goto out; 1031 } 1032 1033 /* prime objects have no backing filp to GEM pread/pwrite 1034 * pages from. 1035 */ 1036 if (!obj->base.filp) { 1037 ret = -EINVAL; 1038 goto out; 1039 } 1040 1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1042 1043 ret = -EFAULT; 1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1045 * it would end up going through the fenced access, and we'll get 1046 * different detiling behavior between reading and writing. 1047 * pread/pwrite currently are reading and writing from the CPU 1048 * perspective, requiring manual detiling by the client. 1049 */ 1050 if (obj->phys_handle) { 1051 ret = i915_gem_phys_pwrite(obj, args, file); 1052 goto out; 1053 } 1054 1055 if (obj->tiling_mode == I915_TILING_NONE && 1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1057 cpu_write_needs_clflush(obj)) { 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1059 /* Note that the gtt paths might fail with non-page-backed user 1060 * pointers (e.g. gtt mappings when moving data between 1061 * textures). Fallback to the shmem path in that case. */ 1062 } 1063 1064 if (ret == -EFAULT || ret == -ENOSPC) 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1066 1067 out: 1068 drm_gem_object_unreference(&obj->base); 1069 unlock: 1070 mutex_unlock(&dev->struct_mutex); 1071 return ret; 1072 } 1073 1074 int 1075 i915_gem_check_wedge(struct i915_gpu_error *error, 1076 bool interruptible) 1077 { 1078 if (i915_reset_in_progress(error)) { 1079 /* Non-interruptible callers can't handle -EAGAIN, hence return 1080 * -EIO unconditionally for these. */ 1081 if (!interruptible) 1082 return -EIO; 1083 1084 /* Recovery complete, but the reset failed ... */ 1085 if (i915_terminally_wedged(error)) 1086 return -EIO; 1087 1088 return -EAGAIN; 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Compare seqno against outstanding lazy request. Emit a request if they are 1096 * equal. 1097 */ 1098 int 1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno) 1100 { 1101 int ret; 1102 1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 1104 1105 ret = 0; 1106 if (seqno == ring->outstanding_lazy_seqno) 1107 ret = i915_add_request(ring, NULL); 1108 1109 return ret; 1110 } 1111 1112 static void fake_irq(unsigned long data) 1113 { 1114 wake_up_process((struct task_struct *)data); 1115 } 1116 1117 static bool missed_irq(struct drm_i915_private *dev_priv, 1118 struct intel_engine_cs *ring) 1119 { 1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1121 } 1122 1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv) 1124 { 1125 if (file_priv == NULL) 1126 return true; 1127 1128 return !atomic_xchg(&file_priv->rps_wait_boost, true); 1129 } 1130 1131 /** 1132 * __wait_seqno - wait until execution of seqno has finished 1133 * @ring: the ring expected to report seqno 1134 * @seqno: duh! 1135 * @reset_counter: reset sequence associated with the given seqno 1136 * @interruptible: do an interruptible wait (normally yes) 1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1138 * 1139 * Note: It is of utmost importance that the passed in seqno and reset_counter 1140 * values have been read by the caller in an smp safe manner. Where read-side 1141 * locks are involved, it is sufficient to read the reset_counter before 1142 * unlocking the lock that protects the seqno. For lockless tricks, the 1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1144 * inserted. 1145 * 1146 * Returns 0 if the seqno was found within the alloted time. Else returns the 1147 * errno with remaining time filled in timeout argument. 1148 */ 1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno, 1150 unsigned reset_counter, 1151 bool interruptible, 1152 s64 *timeout, 1153 struct drm_i915_file_private *file_priv) 1154 { 1155 struct drm_device *dev = ring->dev; 1156 struct drm_i915_private *dev_priv = dev->dev_private; 1157 const bool irq_test_in_progress = 1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1159 DEFINE_WAIT(wait); 1160 unsigned long timeout_expire; 1161 s64 before, now; 1162 int ret; 1163 1164 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1165 1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1167 return 0; 1168 1169 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0; 1170 1171 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) { 1172 gen6_rps_boost(dev_priv); 1173 if (file_priv) 1174 mod_delayed_work(dev_priv->wq, 1175 &file_priv->mm.idle_work, 1176 msecs_to_jiffies(100)); 1177 } 1178 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) 1180 return -ENODEV; 1181 1182 /* Record current time in case interrupted by signal, or wedged */ 1183 trace_i915_gem_request_wait_begin(ring, seqno); 1184 before = ktime_get_raw_ns(); 1185 for (;;) { 1186 struct timer_list timer; 1187 1188 prepare_to_wait(&ring->irq_queue, &wait, 1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1190 1191 /* We need to check whether any gpu reset happened in between 1192 * the caller grabbing the seqno and now ... */ 1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1195 * is truely gone. */ 1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1197 if (ret == 0) 1198 ret = -EAGAIN; 1199 break; 1200 } 1201 1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) { 1203 ret = 0; 1204 break; 1205 } 1206 1207 if (interruptible && signal_pending(current)) { 1208 ret = -ERESTARTSYS; 1209 break; 1210 } 1211 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1213 ret = -ETIME; 1214 break; 1215 } 1216 1217 timer.function = NULL; 1218 if (timeout || missed_irq(dev_priv, ring)) { 1219 unsigned long expire; 1220 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1223 mod_timer(&timer, expire); 1224 } 1225 1226 io_schedule(); 1227 1228 if (timer.function) { 1229 del_singleshot_timer_sync(&timer); 1230 destroy_timer_on_stack(&timer); 1231 } 1232 } 1233 now = ktime_get_raw_ns(); 1234 trace_i915_gem_request_wait_end(ring, seqno); 1235 1236 if (!irq_test_in_progress) 1237 ring->irq_put(ring); 1238 1239 finish_wait(&ring->irq_queue, &wait); 1240 1241 if (timeout) { 1242 s64 tres = *timeout - (now - before); 1243 1244 *timeout = tres < 0 ? 0 : tres; 1245 } 1246 1247 return ret; 1248 } 1249 1250 /** 1251 * Waits for a sequence number to be signaled, and cleans up the 1252 * request and object lists appropriately for that event. 1253 */ 1254 int 1255 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno) 1256 { 1257 struct drm_device *dev = ring->dev; 1258 struct drm_i915_private *dev_priv = dev->dev_private; 1259 bool interruptible = dev_priv->mm.interruptible; 1260 int ret; 1261 1262 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1263 BUG_ON(seqno == 0); 1264 1265 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1266 if (ret) 1267 return ret; 1268 1269 ret = i915_gem_check_olr(ring, seqno); 1270 if (ret) 1271 return ret; 1272 1273 return __wait_seqno(ring, seqno, 1274 atomic_read(&dev_priv->gpu_error.reset_counter), 1275 interruptible, NULL, NULL); 1276 } 1277 1278 static int 1279 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1280 struct intel_engine_cs *ring) 1281 { 1282 if (!obj->active) 1283 return 0; 1284 1285 /* Manually manage the write flush as we may have not yet 1286 * retired the buffer. 1287 * 1288 * Note that the last_write_seqno is always the earlier of 1289 * the two (read/write) seqno, so if we haved successfully waited, 1290 * we know we have passed the last write. 1291 */ 1292 obj->last_write_seqno = 0; 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * Ensures that all rendering to the object has completed and the object is 1299 * safe to unbind from the GTT or access from the CPU. 1300 */ 1301 static __must_check int 1302 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1303 bool readonly) 1304 { 1305 struct intel_engine_cs *ring = obj->ring; 1306 u32 seqno; 1307 int ret; 1308 1309 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1310 if (seqno == 0) 1311 return 0; 1312 1313 ret = i915_wait_seqno(ring, seqno); 1314 if (ret) 1315 return ret; 1316 1317 return i915_gem_object_wait_rendering__tail(obj, ring); 1318 } 1319 1320 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1321 * as the object state may change during this call. 1322 */ 1323 static __must_check int 1324 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1325 struct drm_i915_file_private *file_priv, 1326 bool readonly) 1327 { 1328 struct drm_device *dev = obj->base.dev; 1329 struct drm_i915_private *dev_priv = dev->dev_private; 1330 struct intel_engine_cs *ring = obj->ring; 1331 unsigned reset_counter; 1332 u32 seqno; 1333 int ret; 1334 1335 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1336 BUG_ON(!dev_priv->mm.interruptible); 1337 1338 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1339 if (seqno == 0) 1340 return 0; 1341 1342 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1343 if (ret) 1344 return ret; 1345 1346 ret = i915_gem_check_olr(ring, seqno); 1347 if (ret) 1348 return ret; 1349 1350 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1351 mutex_unlock(&dev->struct_mutex); 1352 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv); 1353 mutex_lock(&dev->struct_mutex); 1354 if (ret) 1355 return ret; 1356 1357 return i915_gem_object_wait_rendering__tail(obj, ring); 1358 } 1359 1360 /** 1361 * Called when user space prepares to use an object with the CPU, either 1362 * through the mmap ioctl's mapping or a GTT mapping. 1363 */ 1364 int 1365 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1366 struct drm_file *file) 1367 { 1368 struct drm_i915_gem_set_domain *args = data; 1369 struct drm_i915_gem_object *obj; 1370 uint32_t read_domains = args->read_domains; 1371 uint32_t write_domain = args->write_domain; 1372 int ret; 1373 1374 /* Only handle setting domains to types used by the CPU. */ 1375 if (write_domain & I915_GEM_GPU_DOMAINS) 1376 return -EINVAL; 1377 1378 if (read_domains & I915_GEM_GPU_DOMAINS) 1379 return -EINVAL; 1380 1381 /* Having something in the write domain implies it's in the read 1382 * domain, and only that read domain. Enforce that in the request. 1383 */ 1384 if (write_domain != 0 && read_domains != write_domain) 1385 return -EINVAL; 1386 1387 ret = i915_mutex_lock_interruptible(dev); 1388 if (ret) 1389 return ret; 1390 1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1392 if (&obj->base == NULL) { 1393 ret = -ENOENT; 1394 goto unlock; 1395 } 1396 1397 /* Try to flush the object off the GPU without holding the lock. 1398 * We will repeat the flush holding the lock in the normal manner 1399 * to catch cases where we are gazumped. 1400 */ 1401 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1402 file->driver_priv, 1403 !write_domain); 1404 if (ret) 1405 goto unref; 1406 1407 if (read_domains & I915_GEM_DOMAIN_GTT) { 1408 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1409 1410 /* Silently promote "you're not bound, there was nothing to do" 1411 * to success, since the client was just asking us to 1412 * make sure everything was done. 1413 */ 1414 if (ret == -EINVAL) 1415 ret = 0; 1416 } else { 1417 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1418 } 1419 1420 unref: 1421 drm_gem_object_unreference(&obj->base); 1422 unlock: 1423 mutex_unlock(&dev->struct_mutex); 1424 return ret; 1425 } 1426 1427 /** 1428 * Called when user space has done writes to this buffer 1429 */ 1430 int 1431 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1432 struct drm_file *file) 1433 { 1434 struct drm_i915_gem_sw_finish *args = data; 1435 struct drm_i915_gem_object *obj; 1436 int ret = 0; 1437 1438 ret = i915_mutex_lock_interruptible(dev); 1439 if (ret) 1440 return ret; 1441 1442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1443 if (&obj->base == NULL) { 1444 ret = -ENOENT; 1445 goto unlock; 1446 } 1447 1448 /* Pinned buffers may be scanout, so flush the cache */ 1449 if (obj->pin_display) 1450 i915_gem_object_flush_cpu_write_domain(obj, true); 1451 1452 drm_gem_object_unreference(&obj->base); 1453 unlock: 1454 mutex_unlock(&dev->struct_mutex); 1455 return ret; 1456 } 1457 1458 /** 1459 * Maps the contents of an object, returning the address it is mapped 1460 * into. 1461 * 1462 * While the mapping holds a reference on the contents of the object, it doesn't 1463 * imply a ref on the object itself. 1464 */ 1465 int 1466 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1467 struct drm_file *file) 1468 { 1469 struct drm_i915_gem_mmap *args = data; 1470 struct drm_gem_object *obj; 1471 unsigned long addr; 1472 1473 obj = drm_gem_object_lookup(dev, file, args->handle); 1474 if (obj == NULL) 1475 return -ENOENT; 1476 1477 /* prime objects have no backing filp to GEM mmap 1478 * pages from. 1479 */ 1480 if (!obj->filp) { 1481 drm_gem_object_unreference_unlocked(obj); 1482 return -EINVAL; 1483 } 1484 1485 addr = vm_mmap(obj->filp, 0, args->size, 1486 PROT_READ | PROT_WRITE, MAP_SHARED, 1487 args->offset); 1488 drm_gem_object_unreference_unlocked(obj); 1489 if (IS_ERR((void *)addr)) 1490 return addr; 1491 1492 args->addr_ptr = (uint64_t) addr; 1493 1494 return 0; 1495 } 1496 1497 /** 1498 * i915_gem_fault - fault a page into the GTT 1499 * vma: VMA in question 1500 * vmf: fault info 1501 * 1502 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1503 * from userspace. The fault handler takes care of binding the object to 1504 * the GTT (if needed), allocating and programming a fence register (again, 1505 * only if needed based on whether the old reg is still valid or the object 1506 * is tiled) and inserting a new PTE into the faulting process. 1507 * 1508 * Note that the faulting process may involve evicting existing objects 1509 * from the GTT and/or fence registers to make room. So performance may 1510 * suffer if the GTT working set is large or there are few fence registers 1511 * left. 1512 */ 1513 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1514 { 1515 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1516 struct drm_device *dev = obj->base.dev; 1517 struct drm_i915_private *dev_priv = dev->dev_private; 1518 pgoff_t page_offset; 1519 unsigned long pfn; 1520 int ret = 0; 1521 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1522 1523 intel_runtime_pm_get(dev_priv); 1524 1525 /* We don't use vmf->pgoff since that has the fake offset */ 1526 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1527 PAGE_SHIFT; 1528 1529 ret = i915_mutex_lock_interruptible(dev); 1530 if (ret) 1531 goto out; 1532 1533 trace_i915_gem_object_fault(obj, page_offset, true, write); 1534 1535 /* Try to flush the object off the GPU first without holding the lock. 1536 * Upon reacquiring the lock, we will perform our sanity checks and then 1537 * repeat the flush holding the lock in the normal manner to catch cases 1538 * where we are gazumped. 1539 */ 1540 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1541 if (ret) 1542 goto unlock; 1543 1544 /* Access to snoopable pages through the GTT is incoherent. */ 1545 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1546 ret = -EFAULT; 1547 goto unlock; 1548 } 1549 1550 /* Now bind it into the GTT if needed */ 1551 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); 1552 if (ret) 1553 goto unlock; 1554 1555 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1556 if (ret) 1557 goto unpin; 1558 1559 ret = i915_gem_object_get_fence(obj); 1560 if (ret) 1561 goto unpin; 1562 1563 /* Finally, remap it using the new GTT offset */ 1564 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1565 pfn >>= PAGE_SHIFT; 1566 1567 if (!obj->fault_mappable) { 1568 unsigned long size = min_t(unsigned long, 1569 vma->vm_end - vma->vm_start, 1570 obj->base.size); 1571 int i; 1572 1573 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1574 ret = vm_insert_pfn(vma, 1575 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1576 pfn + i); 1577 if (ret) 1578 break; 1579 } 1580 1581 obj->fault_mappable = true; 1582 } else 1583 ret = vm_insert_pfn(vma, 1584 (unsigned long)vmf->virtual_address, 1585 pfn + page_offset); 1586 unpin: 1587 i915_gem_object_ggtt_unpin(obj); 1588 unlock: 1589 mutex_unlock(&dev->struct_mutex); 1590 out: 1591 switch (ret) { 1592 case -EIO: 1593 /* 1594 * We eat errors when the gpu is terminally wedged to avoid 1595 * userspace unduly crashing (gl has no provisions for mmaps to 1596 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1597 * and so needs to be reported. 1598 */ 1599 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1600 ret = VM_FAULT_SIGBUS; 1601 break; 1602 } 1603 case -EAGAIN: 1604 /* 1605 * EAGAIN means the gpu is hung and we'll wait for the error 1606 * handler to reset everything when re-faulting in 1607 * i915_mutex_lock_interruptible. 1608 */ 1609 case 0: 1610 case -ERESTARTSYS: 1611 case -EINTR: 1612 case -EBUSY: 1613 /* 1614 * EBUSY is ok: this just means that another thread 1615 * already did the job. 1616 */ 1617 ret = VM_FAULT_NOPAGE; 1618 break; 1619 case -ENOMEM: 1620 ret = VM_FAULT_OOM; 1621 break; 1622 case -ENOSPC: 1623 case -EFAULT: 1624 ret = VM_FAULT_SIGBUS; 1625 break; 1626 default: 1627 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1628 ret = VM_FAULT_SIGBUS; 1629 break; 1630 } 1631 1632 intel_runtime_pm_put(dev_priv); 1633 return ret; 1634 } 1635 1636 /** 1637 * i915_gem_release_mmap - remove physical page mappings 1638 * @obj: obj in question 1639 * 1640 * Preserve the reservation of the mmapping with the DRM core code, but 1641 * relinquish ownership of the pages back to the system. 1642 * 1643 * It is vital that we remove the page mapping if we have mapped a tiled 1644 * object through the GTT and then lose the fence register due to 1645 * resource pressure. Similarly if the object has been moved out of the 1646 * aperture, than pages mapped into userspace must be revoked. Removing the 1647 * mapping will then trigger a page fault on the next user access, allowing 1648 * fixup by i915_gem_fault(). 1649 */ 1650 void 1651 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1652 { 1653 if (!obj->fault_mappable) 1654 return; 1655 1656 drm_vma_node_unmap(&obj->base.vma_node, 1657 obj->base.dev->anon_inode->i_mapping); 1658 obj->fault_mappable = false; 1659 } 1660 1661 void 1662 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1663 { 1664 struct drm_i915_gem_object *obj; 1665 1666 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1667 i915_gem_release_mmap(obj); 1668 } 1669 1670 uint32_t 1671 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1672 { 1673 uint32_t gtt_size; 1674 1675 if (INTEL_INFO(dev)->gen >= 4 || 1676 tiling_mode == I915_TILING_NONE) 1677 return size; 1678 1679 /* Previous chips need a power-of-two fence region when tiling */ 1680 if (INTEL_INFO(dev)->gen == 3) 1681 gtt_size = 1024*1024; 1682 else 1683 gtt_size = 512*1024; 1684 1685 while (gtt_size < size) 1686 gtt_size <<= 1; 1687 1688 return gtt_size; 1689 } 1690 1691 /** 1692 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1693 * @obj: object to check 1694 * 1695 * Return the required GTT alignment for an object, taking into account 1696 * potential fence register mapping. 1697 */ 1698 uint32_t 1699 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1700 int tiling_mode, bool fenced) 1701 { 1702 /* 1703 * Minimum alignment is 4k (GTT page size), but might be greater 1704 * if a fence register is needed for the object. 1705 */ 1706 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1707 tiling_mode == I915_TILING_NONE) 1708 return 4096; 1709 1710 /* 1711 * Previous chips need to be aligned to the size of the smallest 1712 * fence register that can contain the object. 1713 */ 1714 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1715 } 1716 1717 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1718 { 1719 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1720 int ret; 1721 1722 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1723 return 0; 1724 1725 dev_priv->mm.shrinker_no_lock_stealing = true; 1726 1727 ret = drm_gem_create_mmap_offset(&obj->base); 1728 if (ret != -ENOSPC) 1729 goto out; 1730 1731 /* Badly fragmented mmap space? The only way we can recover 1732 * space is by destroying unwanted objects. We can't randomly release 1733 * mmap_offsets as userspace expects them to be persistent for the 1734 * lifetime of the objects. The closest we can is to release the 1735 * offsets on purgeable objects by truncating it and marking it purged, 1736 * which prevents userspace from ever using that object again. 1737 */ 1738 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1739 ret = drm_gem_create_mmap_offset(&obj->base); 1740 if (ret != -ENOSPC) 1741 goto out; 1742 1743 i915_gem_shrink_all(dev_priv); 1744 ret = drm_gem_create_mmap_offset(&obj->base); 1745 out: 1746 dev_priv->mm.shrinker_no_lock_stealing = false; 1747 1748 return ret; 1749 } 1750 1751 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1752 { 1753 drm_gem_free_mmap_offset(&obj->base); 1754 } 1755 1756 int 1757 i915_gem_mmap_gtt(struct drm_file *file, 1758 struct drm_device *dev, 1759 uint32_t handle, 1760 uint64_t *offset) 1761 { 1762 struct drm_i915_private *dev_priv = dev->dev_private; 1763 struct drm_i915_gem_object *obj; 1764 int ret; 1765 1766 ret = i915_mutex_lock_interruptible(dev); 1767 if (ret) 1768 return ret; 1769 1770 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1771 if (&obj->base == NULL) { 1772 ret = -ENOENT; 1773 goto unlock; 1774 } 1775 1776 if (obj->base.size > dev_priv->gtt.mappable_end) { 1777 ret = -E2BIG; 1778 goto out; 1779 } 1780 1781 if (obj->madv != I915_MADV_WILLNEED) { 1782 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 1783 ret = -EFAULT; 1784 goto out; 1785 } 1786 1787 ret = i915_gem_object_create_mmap_offset(obj); 1788 if (ret) 1789 goto out; 1790 1791 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1792 1793 out: 1794 drm_gem_object_unreference(&obj->base); 1795 unlock: 1796 mutex_unlock(&dev->struct_mutex); 1797 return ret; 1798 } 1799 1800 /** 1801 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1802 * @dev: DRM device 1803 * @data: GTT mapping ioctl data 1804 * @file: GEM object info 1805 * 1806 * Simply returns the fake offset to userspace so it can mmap it. 1807 * The mmap call will end up in drm_gem_mmap(), which will set things 1808 * up so we can get faults in the handler above. 1809 * 1810 * The fault handler will take care of binding the object into the GTT 1811 * (since it may have been evicted to make room for something), allocating 1812 * a fence register, and mapping the appropriate aperture address into 1813 * userspace. 1814 */ 1815 int 1816 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1817 struct drm_file *file) 1818 { 1819 struct drm_i915_gem_mmap_gtt *args = data; 1820 1821 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1822 } 1823 1824 static inline int 1825 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1826 { 1827 return obj->madv == I915_MADV_DONTNEED; 1828 } 1829 1830 /* Immediately discard the backing storage */ 1831 static void 1832 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1833 { 1834 i915_gem_object_free_mmap_offset(obj); 1835 1836 if (obj->base.filp == NULL) 1837 return; 1838 1839 /* Our goal here is to return as much of the memory as 1840 * is possible back to the system as we are called from OOM. 1841 * To do this we must instruct the shmfs to drop all of its 1842 * backing pages, *now*. 1843 */ 1844 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 1845 obj->madv = __I915_MADV_PURGED; 1846 } 1847 1848 /* Try to discard unwanted pages */ 1849 static void 1850 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 1851 { 1852 struct address_space *mapping; 1853 1854 switch (obj->madv) { 1855 case I915_MADV_DONTNEED: 1856 i915_gem_object_truncate(obj); 1857 case __I915_MADV_PURGED: 1858 return; 1859 } 1860 1861 if (obj->base.filp == NULL) 1862 return; 1863 1864 mapping = file_inode(obj->base.filp)->i_mapping, 1865 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 1866 } 1867 1868 static void 1869 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1870 { 1871 struct sg_page_iter sg_iter; 1872 int ret; 1873 1874 BUG_ON(obj->madv == __I915_MADV_PURGED); 1875 1876 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1877 if (ret) { 1878 /* In the event of a disaster, abandon all caches and 1879 * hope for the best. 1880 */ 1881 WARN_ON(ret != -EIO); 1882 i915_gem_clflush_object(obj, true); 1883 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1884 } 1885 1886 if (i915_gem_object_needs_bit17_swizzle(obj)) 1887 i915_gem_object_save_bit_17_swizzle(obj); 1888 1889 if (obj->madv == I915_MADV_DONTNEED) 1890 obj->dirty = 0; 1891 1892 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1893 struct page *page = sg_page_iter_page(&sg_iter); 1894 1895 if (obj->dirty) 1896 set_page_dirty(page); 1897 1898 if (obj->madv == I915_MADV_WILLNEED) 1899 mark_page_accessed(page); 1900 1901 page_cache_release(page); 1902 } 1903 obj->dirty = 0; 1904 1905 sg_free_table(obj->pages); 1906 kfree(obj->pages); 1907 } 1908 1909 int 1910 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1911 { 1912 const struct drm_i915_gem_object_ops *ops = obj->ops; 1913 1914 if (obj->pages == NULL) 1915 return 0; 1916 1917 if (obj->pages_pin_count) 1918 return -EBUSY; 1919 1920 BUG_ON(i915_gem_obj_bound_any(obj)); 1921 1922 /* ->put_pages might need to allocate memory for the bit17 swizzle 1923 * array, hence protect them from being reaped by removing them from gtt 1924 * lists early. */ 1925 list_del(&obj->global_list); 1926 1927 ops->put_pages(obj); 1928 obj->pages = NULL; 1929 1930 i915_gem_object_invalidate(obj); 1931 1932 return 0; 1933 } 1934 1935 static unsigned long 1936 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1937 bool purgeable_only) 1938 { 1939 struct list_head still_in_list; 1940 struct drm_i915_gem_object *obj; 1941 unsigned long count = 0; 1942 1943 /* 1944 * As we may completely rewrite the (un)bound list whilst unbinding 1945 * (due to retiring requests) we have to strictly process only 1946 * one element of the list at the time, and recheck the list 1947 * on every iteration. 1948 * 1949 * In particular, we must hold a reference whilst removing the 1950 * object as we may end up waiting for and/or retiring the objects. 1951 * This might release the final reference (held by the active list) 1952 * and result in the object being freed from under us. This is 1953 * similar to the precautions the eviction code must take whilst 1954 * removing objects. 1955 * 1956 * Also note that although these lists do not hold a reference to 1957 * the object we can safely grab one here: The final object 1958 * unreferencing and the bound_list are both protected by the 1959 * dev->struct_mutex and so we won't ever be able to observe an 1960 * object on the bound_list with a reference count equals 0. 1961 */ 1962 INIT_LIST_HEAD(&still_in_list); 1963 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) { 1964 obj = list_first_entry(&dev_priv->mm.unbound_list, 1965 typeof(*obj), global_list); 1966 list_move_tail(&obj->global_list, &still_in_list); 1967 1968 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1969 continue; 1970 1971 drm_gem_object_reference(&obj->base); 1972 1973 if (i915_gem_object_put_pages(obj) == 0) 1974 count += obj->base.size >> PAGE_SHIFT; 1975 1976 drm_gem_object_unreference(&obj->base); 1977 } 1978 list_splice(&still_in_list, &dev_priv->mm.unbound_list); 1979 1980 INIT_LIST_HEAD(&still_in_list); 1981 while (count < target && !list_empty(&dev_priv->mm.bound_list)) { 1982 struct i915_vma *vma, *v; 1983 1984 obj = list_first_entry(&dev_priv->mm.bound_list, 1985 typeof(*obj), global_list); 1986 list_move_tail(&obj->global_list, &still_in_list); 1987 1988 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1989 continue; 1990 1991 drm_gem_object_reference(&obj->base); 1992 1993 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link) 1994 if (i915_vma_unbind(vma)) 1995 break; 1996 1997 if (i915_gem_object_put_pages(obj) == 0) 1998 count += obj->base.size >> PAGE_SHIFT; 1999 2000 drm_gem_object_unreference(&obj->base); 2001 } 2002 list_splice(&still_in_list, &dev_priv->mm.bound_list); 2003 2004 return count; 2005 } 2006 2007 static unsigned long 2008 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 2009 { 2010 return __i915_gem_shrink(dev_priv, target, true); 2011 } 2012 2013 static unsigned long 2014 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 2015 { 2016 i915_gem_evict_everything(dev_priv->dev); 2017 return __i915_gem_shrink(dev_priv, LONG_MAX, false); 2018 } 2019 2020 static int 2021 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2022 { 2023 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2024 int page_count, i; 2025 struct address_space *mapping; 2026 struct sg_table *st; 2027 struct scatterlist *sg; 2028 struct sg_page_iter sg_iter; 2029 struct page *page; 2030 unsigned long last_pfn = 0; /* suppress gcc warning */ 2031 gfp_t gfp; 2032 2033 /* Assert that the object is not currently in any GPU domain. As it 2034 * wasn't in the GTT, there shouldn't be any way it could have been in 2035 * a GPU cache 2036 */ 2037 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2038 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2039 2040 st = kmalloc(sizeof(*st), GFP_KERNEL); 2041 if (st == NULL) 2042 return -ENOMEM; 2043 2044 page_count = obj->base.size / PAGE_SIZE; 2045 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2046 kfree(st); 2047 return -ENOMEM; 2048 } 2049 2050 /* Get the list of pages out of our struct file. They'll be pinned 2051 * at this point until we release them. 2052 * 2053 * Fail silently without starting the shrinker 2054 */ 2055 mapping = file_inode(obj->base.filp)->i_mapping; 2056 gfp = mapping_gfp_mask(mapping); 2057 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2058 gfp &= ~(__GFP_IO | __GFP_WAIT); 2059 sg = st->sgl; 2060 st->nents = 0; 2061 for (i = 0; i < page_count; i++) { 2062 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2063 if (IS_ERR(page)) { 2064 i915_gem_purge(dev_priv, page_count); 2065 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2066 } 2067 if (IS_ERR(page)) { 2068 /* We've tried hard to allocate the memory by reaping 2069 * our own buffer, now let the real VM do its job and 2070 * go down in flames if truly OOM. 2071 */ 2072 i915_gem_shrink_all(dev_priv); 2073 page = shmem_read_mapping_page(mapping, i); 2074 if (IS_ERR(page)) 2075 goto err_pages; 2076 } 2077 #ifdef CONFIG_SWIOTLB 2078 if (swiotlb_nr_tbl()) { 2079 st->nents++; 2080 sg_set_page(sg, page, PAGE_SIZE, 0); 2081 sg = sg_next(sg); 2082 continue; 2083 } 2084 #endif 2085 if (!i || page_to_pfn(page) != last_pfn + 1) { 2086 if (i) 2087 sg = sg_next(sg); 2088 st->nents++; 2089 sg_set_page(sg, page, PAGE_SIZE, 0); 2090 } else { 2091 sg->length += PAGE_SIZE; 2092 } 2093 last_pfn = page_to_pfn(page); 2094 2095 /* Check that the i965g/gm workaround works. */ 2096 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2097 } 2098 #ifdef CONFIG_SWIOTLB 2099 if (!swiotlb_nr_tbl()) 2100 #endif 2101 sg_mark_end(sg); 2102 obj->pages = st; 2103 2104 if (i915_gem_object_needs_bit17_swizzle(obj)) 2105 i915_gem_object_do_bit_17_swizzle(obj); 2106 2107 return 0; 2108 2109 err_pages: 2110 sg_mark_end(sg); 2111 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2112 page_cache_release(sg_page_iter_page(&sg_iter)); 2113 sg_free_table(st); 2114 kfree(st); 2115 2116 /* shmemfs first checks if there is enough memory to allocate the page 2117 * and reports ENOSPC should there be insufficient, along with the usual 2118 * ENOMEM for a genuine allocation failure. 2119 * 2120 * We use ENOSPC in our driver to mean that we have run out of aperture 2121 * space and so want to translate the error from shmemfs back to our 2122 * usual understanding of ENOMEM. 2123 */ 2124 if (PTR_ERR(page) == -ENOSPC) 2125 return -ENOMEM; 2126 else 2127 return PTR_ERR(page); 2128 } 2129 2130 /* Ensure that the associated pages are gathered from the backing storage 2131 * and pinned into our object. i915_gem_object_get_pages() may be called 2132 * multiple times before they are released by a single call to 2133 * i915_gem_object_put_pages() - once the pages are no longer referenced 2134 * either as a result of memory pressure (reaping pages under the shrinker) 2135 * or as the object is itself released. 2136 */ 2137 int 2138 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2139 { 2140 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2141 const struct drm_i915_gem_object_ops *ops = obj->ops; 2142 int ret; 2143 2144 if (obj->pages) 2145 return 0; 2146 2147 if (obj->madv != I915_MADV_WILLNEED) { 2148 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2149 return -EFAULT; 2150 } 2151 2152 BUG_ON(obj->pages_pin_count); 2153 2154 ret = ops->get_pages(obj); 2155 if (ret) 2156 return ret; 2157 2158 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2159 return 0; 2160 } 2161 2162 static void 2163 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 2164 struct intel_engine_cs *ring) 2165 { 2166 struct drm_device *dev = obj->base.dev; 2167 struct drm_i915_private *dev_priv = dev->dev_private; 2168 u32 seqno = intel_ring_get_seqno(ring); 2169 2170 BUG_ON(ring == NULL); 2171 if (obj->ring != ring && obj->last_write_seqno) { 2172 /* Keep the seqno relative to the current ring */ 2173 obj->last_write_seqno = seqno; 2174 } 2175 obj->ring = ring; 2176 2177 /* Add a reference if we're newly entering the active list. */ 2178 if (!obj->active) { 2179 drm_gem_object_reference(&obj->base); 2180 obj->active = 1; 2181 } 2182 2183 list_move_tail(&obj->ring_list, &ring->active_list); 2184 2185 obj->last_read_seqno = seqno; 2186 2187 if (obj->fenced_gpu_access) { 2188 obj->last_fenced_seqno = seqno; 2189 2190 /* Bump MRU to take account of the delayed flush */ 2191 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2192 struct drm_i915_fence_reg *reg; 2193 2194 reg = &dev_priv->fence_regs[obj->fence_reg]; 2195 list_move_tail(®->lru_list, 2196 &dev_priv->mm.fence_list); 2197 } 2198 } 2199 } 2200 2201 void i915_vma_move_to_active(struct i915_vma *vma, 2202 struct intel_engine_cs *ring) 2203 { 2204 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2205 return i915_gem_object_move_to_active(vma->obj, ring); 2206 } 2207 2208 static void 2209 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 2210 { 2211 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2212 struct i915_address_space *vm; 2213 struct i915_vma *vma; 2214 2215 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 2216 BUG_ON(!obj->active); 2217 2218 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 2219 vma = i915_gem_obj_to_vma(obj, vm); 2220 if (vma && !list_empty(&vma->mm_list)) 2221 list_move_tail(&vma->mm_list, &vm->inactive_list); 2222 } 2223 2224 intel_fb_obj_flush(obj, true); 2225 2226 list_del_init(&obj->ring_list); 2227 obj->ring = NULL; 2228 2229 obj->last_read_seqno = 0; 2230 obj->last_write_seqno = 0; 2231 obj->base.write_domain = 0; 2232 2233 obj->last_fenced_seqno = 0; 2234 obj->fenced_gpu_access = false; 2235 2236 obj->active = 0; 2237 drm_gem_object_unreference(&obj->base); 2238 2239 WARN_ON(i915_verify_lists(dev)); 2240 } 2241 2242 static void 2243 i915_gem_object_retire(struct drm_i915_gem_object *obj) 2244 { 2245 struct intel_engine_cs *ring = obj->ring; 2246 2247 if (ring == NULL) 2248 return; 2249 2250 if (i915_seqno_passed(ring->get_seqno(ring, true), 2251 obj->last_read_seqno)) 2252 i915_gem_object_move_to_inactive(obj); 2253 } 2254 2255 static int 2256 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2257 { 2258 struct drm_i915_private *dev_priv = dev->dev_private; 2259 struct intel_engine_cs *ring; 2260 int ret, i, j; 2261 2262 /* Carefully retire all requests without writing to the rings */ 2263 for_each_ring(ring, dev_priv, i) { 2264 ret = intel_ring_idle(ring); 2265 if (ret) 2266 return ret; 2267 } 2268 i915_gem_retire_requests(dev); 2269 2270 /* Finally reset hw state */ 2271 for_each_ring(ring, dev_priv, i) { 2272 intel_ring_init_seqno(ring, seqno); 2273 2274 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2275 ring->semaphore.sync_seqno[j] = 0; 2276 } 2277 2278 return 0; 2279 } 2280 2281 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2282 { 2283 struct drm_i915_private *dev_priv = dev->dev_private; 2284 int ret; 2285 2286 if (seqno == 0) 2287 return -EINVAL; 2288 2289 /* HWS page needs to be set less than what we 2290 * will inject to ring 2291 */ 2292 ret = i915_gem_init_seqno(dev, seqno - 1); 2293 if (ret) 2294 return ret; 2295 2296 /* Carefully set the last_seqno value so that wrap 2297 * detection still works 2298 */ 2299 dev_priv->next_seqno = seqno; 2300 dev_priv->last_seqno = seqno - 1; 2301 if (dev_priv->last_seqno == 0) 2302 dev_priv->last_seqno--; 2303 2304 return 0; 2305 } 2306 2307 int 2308 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2309 { 2310 struct drm_i915_private *dev_priv = dev->dev_private; 2311 2312 /* reserve 0 for non-seqno */ 2313 if (dev_priv->next_seqno == 0) { 2314 int ret = i915_gem_init_seqno(dev, 0); 2315 if (ret) 2316 return ret; 2317 2318 dev_priv->next_seqno = 1; 2319 } 2320 2321 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2322 return 0; 2323 } 2324 2325 int __i915_add_request(struct intel_engine_cs *ring, 2326 struct drm_file *file, 2327 struct drm_i915_gem_object *obj, 2328 u32 *out_seqno) 2329 { 2330 struct drm_i915_private *dev_priv = ring->dev->dev_private; 2331 struct drm_i915_gem_request *request; 2332 u32 request_ring_position, request_start; 2333 int ret; 2334 2335 request_start = intel_ring_get_tail(ring->buffer); 2336 /* 2337 * Emit any outstanding flushes - execbuf can fail to emit the flush 2338 * after having emitted the batchbuffer command. Hence we need to fix 2339 * things up similar to emitting the lazy request. The difference here 2340 * is that the flush _must_ happen before the next request, no matter 2341 * what. 2342 */ 2343 ret = intel_ring_flush_all_caches(ring); 2344 if (ret) 2345 return ret; 2346 2347 request = ring->preallocated_lazy_request; 2348 if (WARN_ON(request == NULL)) 2349 return -ENOMEM; 2350 2351 /* Record the position of the start of the request so that 2352 * should we detect the updated seqno part-way through the 2353 * GPU processing the request, we never over-estimate the 2354 * position of the head. 2355 */ 2356 request_ring_position = intel_ring_get_tail(ring->buffer); 2357 2358 ret = ring->add_request(ring); 2359 if (ret) 2360 return ret; 2361 2362 request->seqno = intel_ring_get_seqno(ring); 2363 request->ring = ring; 2364 request->head = request_start; 2365 request->tail = request_ring_position; 2366 2367 /* Whilst this request exists, batch_obj will be on the 2368 * active_list, and so will hold the active reference. Only when this 2369 * request is retired will the the batch_obj be moved onto the 2370 * inactive_list and lose its active reference. Hence we do not need 2371 * to explicitly hold another reference here. 2372 */ 2373 request->batch_obj = obj; 2374 2375 /* Hold a reference to the current context so that we can inspect 2376 * it later in case a hangcheck error event fires. 2377 */ 2378 request->ctx = ring->last_context; 2379 if (request->ctx) 2380 i915_gem_context_reference(request->ctx); 2381 2382 request->emitted_jiffies = jiffies; 2383 list_add_tail(&request->list, &ring->request_list); 2384 request->file_priv = NULL; 2385 2386 if (file) { 2387 struct drm_i915_file_private *file_priv = file->driver_priv; 2388 2389 spin_lock(&file_priv->mm.lock); 2390 request->file_priv = file_priv; 2391 list_add_tail(&request->client_list, 2392 &file_priv->mm.request_list); 2393 spin_unlock(&file_priv->mm.lock); 2394 } 2395 2396 trace_i915_gem_request_add(ring, request->seqno); 2397 ring->outstanding_lazy_seqno = 0; 2398 ring->preallocated_lazy_request = NULL; 2399 2400 if (!dev_priv->ums.mm_suspended) { 2401 i915_queue_hangcheck(ring->dev); 2402 2403 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 2404 queue_delayed_work(dev_priv->wq, 2405 &dev_priv->mm.retire_work, 2406 round_jiffies_up_relative(HZ)); 2407 intel_mark_busy(dev_priv->dev); 2408 } 2409 2410 if (out_seqno) 2411 *out_seqno = request->seqno; 2412 return 0; 2413 } 2414 2415 static inline void 2416 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2417 { 2418 struct drm_i915_file_private *file_priv = request->file_priv; 2419 2420 if (!file_priv) 2421 return; 2422 2423 spin_lock(&file_priv->mm.lock); 2424 list_del(&request->client_list); 2425 request->file_priv = NULL; 2426 spin_unlock(&file_priv->mm.lock); 2427 } 2428 2429 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2430 const struct intel_context *ctx) 2431 { 2432 unsigned long elapsed; 2433 2434 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2435 2436 if (ctx->hang_stats.banned) 2437 return true; 2438 2439 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) { 2440 if (!i915_gem_context_is_default(ctx)) { 2441 DRM_DEBUG("context hanging too fast, banning!\n"); 2442 return true; 2443 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2444 if (i915_stop_ring_allow_warn(dev_priv)) 2445 DRM_ERROR("gpu hanging too fast, banning!\n"); 2446 return true; 2447 } 2448 } 2449 2450 return false; 2451 } 2452 2453 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2454 struct intel_context *ctx, 2455 const bool guilty) 2456 { 2457 struct i915_ctx_hang_stats *hs; 2458 2459 if (WARN_ON(!ctx)) 2460 return; 2461 2462 hs = &ctx->hang_stats; 2463 2464 if (guilty) { 2465 hs->banned = i915_context_is_banned(dev_priv, ctx); 2466 hs->batch_active++; 2467 hs->guilty_ts = get_seconds(); 2468 } else { 2469 hs->batch_pending++; 2470 } 2471 } 2472 2473 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2474 { 2475 list_del(&request->list); 2476 i915_gem_request_remove_from_client(request); 2477 2478 if (request->ctx) 2479 i915_gem_context_unreference(request->ctx); 2480 2481 kfree(request); 2482 } 2483 2484 struct drm_i915_gem_request * 2485 i915_gem_find_active_request(struct intel_engine_cs *ring) 2486 { 2487 struct drm_i915_gem_request *request; 2488 u32 completed_seqno; 2489 2490 completed_seqno = ring->get_seqno(ring, false); 2491 2492 list_for_each_entry(request, &ring->request_list, list) { 2493 if (i915_seqno_passed(completed_seqno, request->seqno)) 2494 continue; 2495 2496 return request; 2497 } 2498 2499 return NULL; 2500 } 2501 2502 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2503 struct intel_engine_cs *ring) 2504 { 2505 struct drm_i915_gem_request *request; 2506 bool ring_hung; 2507 2508 request = i915_gem_find_active_request(ring); 2509 2510 if (request == NULL) 2511 return; 2512 2513 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2514 2515 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2516 2517 list_for_each_entry_continue(request, &ring->request_list, list) 2518 i915_set_reset_status(dev_priv, request->ctx, false); 2519 } 2520 2521 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2522 struct intel_engine_cs *ring) 2523 { 2524 while (!list_empty(&ring->active_list)) { 2525 struct drm_i915_gem_object *obj; 2526 2527 obj = list_first_entry(&ring->active_list, 2528 struct drm_i915_gem_object, 2529 ring_list); 2530 2531 i915_gem_object_move_to_inactive(obj); 2532 } 2533 2534 /* 2535 * We must free the requests after all the corresponding objects have 2536 * been moved off active lists. Which is the same order as the normal 2537 * retire_requests function does. This is important if object hold 2538 * implicit references on things like e.g. ppgtt address spaces through 2539 * the request. 2540 */ 2541 while (!list_empty(&ring->request_list)) { 2542 struct drm_i915_gem_request *request; 2543 2544 request = list_first_entry(&ring->request_list, 2545 struct drm_i915_gem_request, 2546 list); 2547 2548 i915_gem_free_request(request); 2549 } 2550 2551 /* These may not have been flush before the reset, do so now */ 2552 kfree(ring->preallocated_lazy_request); 2553 ring->preallocated_lazy_request = NULL; 2554 ring->outstanding_lazy_seqno = 0; 2555 } 2556 2557 void i915_gem_restore_fences(struct drm_device *dev) 2558 { 2559 struct drm_i915_private *dev_priv = dev->dev_private; 2560 int i; 2561 2562 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2563 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2564 2565 /* 2566 * Commit delayed tiling changes if we have an object still 2567 * attached to the fence, otherwise just clear the fence. 2568 */ 2569 if (reg->obj) { 2570 i915_gem_object_update_fence(reg->obj, reg, 2571 reg->obj->tiling_mode); 2572 } else { 2573 i915_gem_write_fence(dev, i, NULL); 2574 } 2575 } 2576 } 2577 2578 void i915_gem_reset(struct drm_device *dev) 2579 { 2580 struct drm_i915_private *dev_priv = dev->dev_private; 2581 struct intel_engine_cs *ring; 2582 int i; 2583 2584 /* 2585 * Before we free the objects from the requests, we need to inspect 2586 * them for finding the guilty party. As the requests only borrow 2587 * their reference to the objects, the inspection must be done first. 2588 */ 2589 for_each_ring(ring, dev_priv, i) 2590 i915_gem_reset_ring_status(dev_priv, ring); 2591 2592 for_each_ring(ring, dev_priv, i) 2593 i915_gem_reset_ring_cleanup(dev_priv, ring); 2594 2595 i915_gem_context_reset(dev); 2596 2597 i915_gem_restore_fences(dev); 2598 } 2599 2600 /** 2601 * This function clears the request list as sequence numbers are passed. 2602 */ 2603 void 2604 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2605 { 2606 uint32_t seqno; 2607 2608 if (list_empty(&ring->request_list)) 2609 return; 2610 2611 WARN_ON(i915_verify_lists(ring->dev)); 2612 2613 seqno = ring->get_seqno(ring, true); 2614 2615 /* Move any buffers on the active list that are no longer referenced 2616 * by the ringbuffer to the flushing/inactive lists as appropriate, 2617 * before we free the context associated with the requests. 2618 */ 2619 while (!list_empty(&ring->active_list)) { 2620 struct drm_i915_gem_object *obj; 2621 2622 obj = list_first_entry(&ring->active_list, 2623 struct drm_i915_gem_object, 2624 ring_list); 2625 2626 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2627 break; 2628 2629 i915_gem_object_move_to_inactive(obj); 2630 } 2631 2632 2633 while (!list_empty(&ring->request_list)) { 2634 struct drm_i915_gem_request *request; 2635 2636 request = list_first_entry(&ring->request_list, 2637 struct drm_i915_gem_request, 2638 list); 2639 2640 if (!i915_seqno_passed(seqno, request->seqno)) 2641 break; 2642 2643 trace_i915_gem_request_retire(ring, request->seqno); 2644 /* We know the GPU must have read the request to have 2645 * sent us the seqno + interrupt, so use the position 2646 * of tail of the request to update the last known position 2647 * of the GPU head. 2648 */ 2649 ring->buffer->last_retired_head = request->tail; 2650 2651 i915_gem_free_request(request); 2652 } 2653 2654 if (unlikely(ring->trace_irq_seqno && 2655 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2656 ring->irq_put(ring); 2657 ring->trace_irq_seqno = 0; 2658 } 2659 2660 WARN_ON(i915_verify_lists(ring->dev)); 2661 } 2662 2663 bool 2664 i915_gem_retire_requests(struct drm_device *dev) 2665 { 2666 struct drm_i915_private *dev_priv = dev->dev_private; 2667 struct intel_engine_cs *ring; 2668 bool idle = true; 2669 int i; 2670 2671 for_each_ring(ring, dev_priv, i) { 2672 i915_gem_retire_requests_ring(ring); 2673 idle &= list_empty(&ring->request_list); 2674 } 2675 2676 if (idle) 2677 mod_delayed_work(dev_priv->wq, 2678 &dev_priv->mm.idle_work, 2679 msecs_to_jiffies(100)); 2680 2681 return idle; 2682 } 2683 2684 static void 2685 i915_gem_retire_work_handler(struct work_struct *work) 2686 { 2687 struct drm_i915_private *dev_priv = 2688 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2689 struct drm_device *dev = dev_priv->dev; 2690 bool idle; 2691 2692 /* Come back later if the device is busy... */ 2693 idle = false; 2694 if (mutex_trylock(&dev->struct_mutex)) { 2695 idle = i915_gem_retire_requests(dev); 2696 mutex_unlock(&dev->struct_mutex); 2697 } 2698 if (!idle) 2699 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2700 round_jiffies_up_relative(HZ)); 2701 } 2702 2703 static void 2704 i915_gem_idle_work_handler(struct work_struct *work) 2705 { 2706 struct drm_i915_private *dev_priv = 2707 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2708 2709 intel_mark_idle(dev_priv->dev); 2710 } 2711 2712 /** 2713 * Ensures that an object will eventually get non-busy by flushing any required 2714 * write domains, emitting any outstanding lazy request and retiring and 2715 * completed requests. 2716 */ 2717 static int 2718 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2719 { 2720 int ret; 2721 2722 if (obj->active) { 2723 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2724 if (ret) 2725 return ret; 2726 2727 i915_gem_retire_requests_ring(obj->ring); 2728 } 2729 2730 return 0; 2731 } 2732 2733 /** 2734 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2735 * @DRM_IOCTL_ARGS: standard ioctl arguments 2736 * 2737 * Returns 0 if successful, else an error is returned with the remaining time in 2738 * the timeout parameter. 2739 * -ETIME: object is still busy after timeout 2740 * -ERESTARTSYS: signal interrupted the wait 2741 * -ENONENT: object doesn't exist 2742 * Also possible, but rare: 2743 * -EAGAIN: GPU wedged 2744 * -ENOMEM: damn 2745 * -ENODEV: Internal IRQ fail 2746 * -E?: The add request failed 2747 * 2748 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2749 * non-zero timeout parameter the wait ioctl will wait for the given number of 2750 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2751 * without holding struct_mutex the object may become re-busied before this 2752 * function completes. A similar but shorter * race condition exists in the busy 2753 * ioctl 2754 */ 2755 int 2756 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2757 { 2758 struct drm_i915_private *dev_priv = dev->dev_private; 2759 struct drm_i915_gem_wait *args = data; 2760 struct drm_i915_gem_object *obj; 2761 struct intel_engine_cs *ring = NULL; 2762 unsigned reset_counter; 2763 u32 seqno = 0; 2764 int ret = 0; 2765 2766 ret = i915_mutex_lock_interruptible(dev); 2767 if (ret) 2768 return ret; 2769 2770 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2771 if (&obj->base == NULL) { 2772 mutex_unlock(&dev->struct_mutex); 2773 return -ENOENT; 2774 } 2775 2776 /* Need to make sure the object gets inactive eventually. */ 2777 ret = i915_gem_object_flush_active(obj); 2778 if (ret) 2779 goto out; 2780 2781 if (obj->active) { 2782 seqno = obj->last_read_seqno; 2783 ring = obj->ring; 2784 } 2785 2786 if (seqno == 0) 2787 goto out; 2788 2789 /* Do this after OLR check to make sure we make forward progress polling 2790 * on this IOCTL with a timeout <=0 (like busy ioctl) 2791 */ 2792 if (args->timeout_ns <= 0) { 2793 ret = -ETIME; 2794 goto out; 2795 } 2796 2797 drm_gem_object_unreference(&obj->base); 2798 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2799 mutex_unlock(&dev->struct_mutex); 2800 2801 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns, 2802 file->driver_priv); 2803 2804 out: 2805 drm_gem_object_unreference(&obj->base); 2806 mutex_unlock(&dev->struct_mutex); 2807 return ret; 2808 } 2809 2810 /** 2811 * i915_gem_object_sync - sync an object to a ring. 2812 * 2813 * @obj: object which may be in use on another ring. 2814 * @to: ring we wish to use the object on. May be NULL. 2815 * 2816 * This code is meant to abstract object synchronization with the GPU. 2817 * Calling with NULL implies synchronizing the object with the CPU 2818 * rather than a particular GPU ring. 2819 * 2820 * Returns 0 if successful, else propagates up the lower layer error. 2821 */ 2822 int 2823 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2824 struct intel_engine_cs *to) 2825 { 2826 struct intel_engine_cs *from = obj->ring; 2827 u32 seqno; 2828 int ret, idx; 2829 2830 if (from == NULL || to == from) 2831 return 0; 2832 2833 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2834 return i915_gem_object_wait_rendering(obj, false); 2835 2836 idx = intel_ring_sync_index(from, to); 2837 2838 seqno = obj->last_read_seqno; 2839 /* Optimization: Avoid semaphore sync when we are sure we already 2840 * waited for an object with higher seqno */ 2841 if (seqno <= from->semaphore.sync_seqno[idx]) 2842 return 0; 2843 2844 ret = i915_gem_check_olr(obj->ring, seqno); 2845 if (ret) 2846 return ret; 2847 2848 trace_i915_gem_ring_sync_to(from, to, seqno); 2849 ret = to->semaphore.sync_to(to, from, seqno); 2850 if (!ret) 2851 /* We use last_read_seqno because sync_to() 2852 * might have just caused seqno wrap under 2853 * the radar. 2854 */ 2855 from->semaphore.sync_seqno[idx] = obj->last_read_seqno; 2856 2857 return ret; 2858 } 2859 2860 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2861 { 2862 u32 old_write_domain, old_read_domains; 2863 2864 /* Force a pagefault for domain tracking on next user access */ 2865 i915_gem_release_mmap(obj); 2866 2867 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2868 return; 2869 2870 /* Wait for any direct GTT access to complete */ 2871 mb(); 2872 2873 old_read_domains = obj->base.read_domains; 2874 old_write_domain = obj->base.write_domain; 2875 2876 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2877 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2878 2879 trace_i915_gem_object_change_domain(obj, 2880 old_read_domains, 2881 old_write_domain); 2882 } 2883 2884 int i915_vma_unbind(struct i915_vma *vma) 2885 { 2886 struct drm_i915_gem_object *obj = vma->obj; 2887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2888 int ret; 2889 2890 if (list_empty(&vma->vma_link)) 2891 return 0; 2892 2893 if (!drm_mm_node_allocated(&vma->node)) { 2894 i915_gem_vma_destroy(vma); 2895 return 0; 2896 } 2897 2898 if (vma->pin_count) 2899 return -EBUSY; 2900 2901 BUG_ON(obj->pages == NULL); 2902 2903 ret = i915_gem_object_finish_gpu(obj); 2904 if (ret) 2905 return ret; 2906 /* Continue on if we fail due to EIO, the GPU is hung so we 2907 * should be safe and we need to cleanup or else we might 2908 * cause memory corruption through use-after-free. 2909 */ 2910 2911 if (i915_is_ggtt(vma->vm)) { 2912 i915_gem_object_finish_gtt(obj); 2913 2914 /* release the fence reg _after_ flushing */ 2915 ret = i915_gem_object_put_fence(obj); 2916 if (ret) 2917 return ret; 2918 } 2919 2920 trace_i915_vma_unbind(vma); 2921 2922 vma->unbind_vma(vma); 2923 2924 list_del_init(&vma->mm_list); 2925 /* Avoid an unnecessary call to unbind on rebind. */ 2926 if (i915_is_ggtt(vma->vm)) 2927 obj->map_and_fenceable = true; 2928 2929 drm_mm_remove_node(&vma->node); 2930 i915_gem_vma_destroy(vma); 2931 2932 /* Since the unbound list is global, only move to that list if 2933 * no more VMAs exist. */ 2934 if (list_empty(&obj->vma_list)) { 2935 i915_gem_gtt_finish_object(obj); 2936 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2937 } 2938 2939 /* And finally now the object is completely decoupled from this vma, 2940 * we can drop its hold on the backing storage and allow it to be 2941 * reaped by the shrinker. 2942 */ 2943 i915_gem_object_unpin_pages(obj); 2944 2945 return 0; 2946 } 2947 2948 int i915_gpu_idle(struct drm_device *dev) 2949 { 2950 struct drm_i915_private *dev_priv = dev->dev_private; 2951 struct intel_engine_cs *ring; 2952 int ret, i; 2953 2954 /* Flush everything onto the inactive list. */ 2955 for_each_ring(ring, dev_priv, i) { 2956 ret = i915_switch_context(ring, ring->default_context); 2957 if (ret) 2958 return ret; 2959 2960 ret = intel_ring_idle(ring); 2961 if (ret) 2962 return ret; 2963 } 2964 2965 return 0; 2966 } 2967 2968 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2969 struct drm_i915_gem_object *obj) 2970 { 2971 struct drm_i915_private *dev_priv = dev->dev_private; 2972 int fence_reg; 2973 int fence_pitch_shift; 2974 2975 if (INTEL_INFO(dev)->gen >= 6) { 2976 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2977 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2978 } else { 2979 fence_reg = FENCE_REG_965_0; 2980 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2981 } 2982 2983 fence_reg += reg * 8; 2984 2985 /* To w/a incoherency with non-atomic 64-bit register updates, 2986 * we split the 64-bit update into two 32-bit writes. In order 2987 * for a partial fence not to be evaluated between writes, we 2988 * precede the update with write to turn off the fence register, 2989 * and only enable the fence as the last step. 2990 * 2991 * For extra levels of paranoia, we make sure each step lands 2992 * before applying the next step. 2993 */ 2994 I915_WRITE(fence_reg, 0); 2995 POSTING_READ(fence_reg); 2996 2997 if (obj) { 2998 u32 size = i915_gem_obj_ggtt_size(obj); 2999 uint64_t val; 3000 3001 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 3002 0xfffff000) << 32; 3003 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 3004 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 3005 if (obj->tiling_mode == I915_TILING_Y) 3006 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 3007 val |= I965_FENCE_REG_VALID; 3008 3009 I915_WRITE(fence_reg + 4, val >> 32); 3010 POSTING_READ(fence_reg + 4); 3011 3012 I915_WRITE(fence_reg + 0, val); 3013 POSTING_READ(fence_reg); 3014 } else { 3015 I915_WRITE(fence_reg + 4, 0); 3016 POSTING_READ(fence_reg + 4); 3017 } 3018 } 3019 3020 static void i915_write_fence_reg(struct drm_device *dev, int reg, 3021 struct drm_i915_gem_object *obj) 3022 { 3023 struct drm_i915_private *dev_priv = dev->dev_private; 3024 u32 val; 3025 3026 if (obj) { 3027 u32 size = i915_gem_obj_ggtt_size(obj); 3028 int pitch_val; 3029 int tile_width; 3030 3031 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 3032 (size & -size) != size || 3033 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3034 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 3035 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 3036 3037 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 3038 tile_width = 128; 3039 else 3040 tile_width = 512; 3041 3042 /* Note: pitch better be a power of two tile widths */ 3043 pitch_val = obj->stride / tile_width; 3044 pitch_val = ffs(pitch_val) - 1; 3045 3046 val = i915_gem_obj_ggtt_offset(obj); 3047 if (obj->tiling_mode == I915_TILING_Y) 3048 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3049 val |= I915_FENCE_SIZE_BITS(size); 3050 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3051 val |= I830_FENCE_REG_VALID; 3052 } else 3053 val = 0; 3054 3055 if (reg < 8) 3056 reg = FENCE_REG_830_0 + reg * 4; 3057 else 3058 reg = FENCE_REG_945_8 + (reg - 8) * 4; 3059 3060 I915_WRITE(reg, val); 3061 POSTING_READ(reg); 3062 } 3063 3064 static void i830_write_fence_reg(struct drm_device *dev, int reg, 3065 struct drm_i915_gem_object *obj) 3066 { 3067 struct drm_i915_private *dev_priv = dev->dev_private; 3068 uint32_t val; 3069 3070 if (obj) { 3071 u32 size = i915_gem_obj_ggtt_size(obj); 3072 uint32_t pitch_val; 3073 3074 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 3075 (size & -size) != size || 3076 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3077 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 3078 i915_gem_obj_ggtt_offset(obj), size); 3079 3080 pitch_val = obj->stride / 128; 3081 pitch_val = ffs(pitch_val) - 1; 3082 3083 val = i915_gem_obj_ggtt_offset(obj); 3084 if (obj->tiling_mode == I915_TILING_Y) 3085 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3086 val |= I830_FENCE_SIZE_BITS(size); 3087 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3088 val |= I830_FENCE_REG_VALID; 3089 } else 3090 val = 0; 3091 3092 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 3093 POSTING_READ(FENCE_REG_830_0 + reg * 4); 3094 } 3095 3096 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 3097 { 3098 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 3099 } 3100 3101 static void i915_gem_write_fence(struct drm_device *dev, int reg, 3102 struct drm_i915_gem_object *obj) 3103 { 3104 struct drm_i915_private *dev_priv = dev->dev_private; 3105 3106 /* Ensure that all CPU reads are completed before installing a fence 3107 * and all writes before removing the fence. 3108 */ 3109 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 3110 mb(); 3111 3112 WARN(obj && (!obj->stride || !obj->tiling_mode), 3113 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 3114 obj->stride, obj->tiling_mode); 3115 3116 switch (INTEL_INFO(dev)->gen) { 3117 case 8: 3118 case 7: 3119 case 6: 3120 case 5: 3121 case 4: i965_write_fence_reg(dev, reg, obj); break; 3122 case 3: i915_write_fence_reg(dev, reg, obj); break; 3123 case 2: i830_write_fence_reg(dev, reg, obj); break; 3124 default: BUG(); 3125 } 3126 3127 /* And similarly be paranoid that no direct access to this region 3128 * is reordered to before the fence is installed. 3129 */ 3130 if (i915_gem_object_needs_mb(obj)) 3131 mb(); 3132 } 3133 3134 static inline int fence_number(struct drm_i915_private *dev_priv, 3135 struct drm_i915_fence_reg *fence) 3136 { 3137 return fence - dev_priv->fence_regs; 3138 } 3139 3140 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 3141 struct drm_i915_fence_reg *fence, 3142 bool enable) 3143 { 3144 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3145 int reg = fence_number(dev_priv, fence); 3146 3147 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 3148 3149 if (enable) { 3150 obj->fence_reg = reg; 3151 fence->obj = obj; 3152 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 3153 } else { 3154 obj->fence_reg = I915_FENCE_REG_NONE; 3155 fence->obj = NULL; 3156 list_del_init(&fence->lru_list); 3157 } 3158 obj->fence_dirty = false; 3159 } 3160 3161 static int 3162 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 3163 { 3164 if (obj->last_fenced_seqno) { 3165 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 3166 if (ret) 3167 return ret; 3168 3169 obj->last_fenced_seqno = 0; 3170 } 3171 3172 obj->fenced_gpu_access = false; 3173 return 0; 3174 } 3175 3176 int 3177 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 3178 { 3179 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3180 struct drm_i915_fence_reg *fence; 3181 int ret; 3182 3183 ret = i915_gem_object_wait_fence(obj); 3184 if (ret) 3185 return ret; 3186 3187 if (obj->fence_reg == I915_FENCE_REG_NONE) 3188 return 0; 3189 3190 fence = &dev_priv->fence_regs[obj->fence_reg]; 3191 3192 if (WARN_ON(fence->pin_count)) 3193 return -EBUSY; 3194 3195 i915_gem_object_fence_lost(obj); 3196 i915_gem_object_update_fence(obj, fence, false); 3197 3198 return 0; 3199 } 3200 3201 static struct drm_i915_fence_reg * 3202 i915_find_fence_reg(struct drm_device *dev) 3203 { 3204 struct drm_i915_private *dev_priv = dev->dev_private; 3205 struct drm_i915_fence_reg *reg, *avail; 3206 int i; 3207 3208 /* First try to find a free reg */ 3209 avail = NULL; 3210 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 3211 reg = &dev_priv->fence_regs[i]; 3212 if (!reg->obj) 3213 return reg; 3214 3215 if (!reg->pin_count) 3216 avail = reg; 3217 } 3218 3219 if (avail == NULL) 3220 goto deadlock; 3221 3222 /* None available, try to steal one or wait for a user to finish */ 3223 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 3224 if (reg->pin_count) 3225 continue; 3226 3227 return reg; 3228 } 3229 3230 deadlock: 3231 /* Wait for completion of pending flips which consume fences */ 3232 if (intel_has_pending_fb_unpin(dev)) 3233 return ERR_PTR(-EAGAIN); 3234 3235 return ERR_PTR(-EDEADLK); 3236 } 3237 3238 /** 3239 * i915_gem_object_get_fence - set up fencing for an object 3240 * @obj: object to map through a fence reg 3241 * 3242 * When mapping objects through the GTT, userspace wants to be able to write 3243 * to them without having to worry about swizzling if the object is tiled. 3244 * This function walks the fence regs looking for a free one for @obj, 3245 * stealing one if it can't find any. 3246 * 3247 * It then sets up the reg based on the object's properties: address, pitch 3248 * and tiling format. 3249 * 3250 * For an untiled surface, this removes any existing fence. 3251 */ 3252 int 3253 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3254 { 3255 struct drm_device *dev = obj->base.dev; 3256 struct drm_i915_private *dev_priv = dev->dev_private; 3257 bool enable = obj->tiling_mode != I915_TILING_NONE; 3258 struct drm_i915_fence_reg *reg; 3259 int ret; 3260 3261 /* Have we updated the tiling parameters upon the object and so 3262 * will need to serialise the write to the associated fence register? 3263 */ 3264 if (obj->fence_dirty) { 3265 ret = i915_gem_object_wait_fence(obj); 3266 if (ret) 3267 return ret; 3268 } 3269 3270 /* Just update our place in the LRU if our fence is getting reused. */ 3271 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3272 reg = &dev_priv->fence_regs[obj->fence_reg]; 3273 if (!obj->fence_dirty) { 3274 list_move_tail(®->lru_list, 3275 &dev_priv->mm.fence_list); 3276 return 0; 3277 } 3278 } else if (enable) { 3279 reg = i915_find_fence_reg(dev); 3280 if (IS_ERR(reg)) 3281 return PTR_ERR(reg); 3282 3283 if (reg->obj) { 3284 struct drm_i915_gem_object *old = reg->obj; 3285 3286 ret = i915_gem_object_wait_fence(old); 3287 if (ret) 3288 return ret; 3289 3290 i915_gem_object_fence_lost(old); 3291 } 3292 } else 3293 return 0; 3294 3295 i915_gem_object_update_fence(obj, reg, enable); 3296 3297 return 0; 3298 } 3299 3300 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 3301 struct drm_mm_node *gtt_space, 3302 unsigned long cache_level) 3303 { 3304 struct drm_mm_node *other; 3305 3306 /* On non-LLC machines we have to be careful when putting differing 3307 * types of snoopable memory together to avoid the prefetcher 3308 * crossing memory domains and dying. 3309 */ 3310 if (HAS_LLC(dev)) 3311 return true; 3312 3313 if (!drm_mm_node_allocated(gtt_space)) 3314 return true; 3315 3316 if (list_empty(>t_space->node_list)) 3317 return true; 3318 3319 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3320 if (other->allocated && !other->hole_follows && other->color != cache_level) 3321 return false; 3322 3323 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3324 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3325 return false; 3326 3327 return true; 3328 } 3329 3330 static void i915_gem_verify_gtt(struct drm_device *dev) 3331 { 3332 #if WATCH_GTT 3333 struct drm_i915_private *dev_priv = dev->dev_private; 3334 struct drm_i915_gem_object *obj; 3335 int err = 0; 3336 3337 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3338 if (obj->gtt_space == NULL) { 3339 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3340 err++; 3341 continue; 3342 } 3343 3344 if (obj->cache_level != obj->gtt_space->color) { 3345 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3346 i915_gem_obj_ggtt_offset(obj), 3347 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3348 obj->cache_level, 3349 obj->gtt_space->color); 3350 err++; 3351 continue; 3352 } 3353 3354 if (!i915_gem_valid_gtt_space(dev, 3355 obj->gtt_space, 3356 obj->cache_level)) { 3357 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3358 i915_gem_obj_ggtt_offset(obj), 3359 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3360 obj->cache_level); 3361 err++; 3362 continue; 3363 } 3364 } 3365 3366 WARN_ON(err); 3367 #endif 3368 } 3369 3370 /** 3371 * Finds free space in the GTT aperture and binds the object there. 3372 */ 3373 static struct i915_vma * 3374 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3375 struct i915_address_space *vm, 3376 unsigned alignment, 3377 uint64_t flags) 3378 { 3379 struct drm_device *dev = obj->base.dev; 3380 struct drm_i915_private *dev_priv = dev->dev_private; 3381 u32 size, fence_size, fence_alignment, unfenced_alignment; 3382 unsigned long start = 3383 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3384 unsigned long end = 3385 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3386 struct i915_vma *vma; 3387 int ret; 3388 3389 fence_size = i915_gem_get_gtt_size(dev, 3390 obj->base.size, 3391 obj->tiling_mode); 3392 fence_alignment = i915_gem_get_gtt_alignment(dev, 3393 obj->base.size, 3394 obj->tiling_mode, true); 3395 unfenced_alignment = 3396 i915_gem_get_gtt_alignment(dev, 3397 obj->base.size, 3398 obj->tiling_mode, false); 3399 3400 if (alignment == 0) 3401 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3402 unfenced_alignment; 3403 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3404 DRM_DEBUG("Invalid object alignment requested %u\n", alignment); 3405 return ERR_PTR(-EINVAL); 3406 } 3407 3408 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3409 3410 /* If the object is bigger than the entire aperture, reject it early 3411 * before evicting everything in a vain attempt to find space. 3412 */ 3413 if (obj->base.size > end) { 3414 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n", 3415 obj->base.size, 3416 flags & PIN_MAPPABLE ? "mappable" : "total", 3417 end); 3418 return ERR_PTR(-E2BIG); 3419 } 3420 3421 ret = i915_gem_object_get_pages(obj); 3422 if (ret) 3423 return ERR_PTR(ret); 3424 3425 i915_gem_object_pin_pages(obj); 3426 3427 vma = i915_gem_obj_lookup_or_create_vma(obj, vm); 3428 if (IS_ERR(vma)) 3429 goto err_unpin; 3430 3431 search_free: 3432 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3433 size, alignment, 3434 obj->cache_level, 3435 start, end, 3436 DRM_MM_SEARCH_DEFAULT, 3437 DRM_MM_CREATE_DEFAULT); 3438 if (ret) { 3439 ret = i915_gem_evict_something(dev, vm, size, alignment, 3440 obj->cache_level, 3441 start, end, 3442 flags); 3443 if (ret == 0) 3444 goto search_free; 3445 3446 goto err_free_vma; 3447 } 3448 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node, 3449 obj->cache_level))) { 3450 ret = -EINVAL; 3451 goto err_remove_node; 3452 } 3453 3454 ret = i915_gem_gtt_prepare_object(obj); 3455 if (ret) 3456 goto err_remove_node; 3457 3458 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3459 list_add_tail(&vma->mm_list, &vm->inactive_list); 3460 3461 if (i915_is_ggtt(vm)) { 3462 bool mappable, fenceable; 3463 3464 fenceable = (vma->node.size == fence_size && 3465 (vma->node.start & (fence_alignment - 1)) == 0); 3466 3467 mappable = (vma->node.start + obj->base.size <= 3468 dev_priv->gtt.mappable_end); 3469 3470 obj->map_and_fenceable = mappable && fenceable; 3471 } 3472 3473 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 3474 3475 trace_i915_vma_bind(vma, flags); 3476 vma->bind_vma(vma, obj->cache_level, 3477 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0); 3478 3479 i915_gem_verify_gtt(dev); 3480 return vma; 3481 3482 err_remove_node: 3483 drm_mm_remove_node(&vma->node); 3484 err_free_vma: 3485 i915_gem_vma_destroy(vma); 3486 vma = ERR_PTR(ret); 3487 err_unpin: 3488 i915_gem_object_unpin_pages(obj); 3489 return vma; 3490 } 3491 3492 bool 3493 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3494 bool force) 3495 { 3496 /* If we don't have a page list set up, then we're not pinned 3497 * to GPU, and we can ignore the cache flush because it'll happen 3498 * again at bind time. 3499 */ 3500 if (obj->pages == NULL) 3501 return false; 3502 3503 /* 3504 * Stolen memory is always coherent with the GPU as it is explicitly 3505 * marked as wc by the system, or the system is cache-coherent. 3506 */ 3507 if (obj->stolen) 3508 return false; 3509 3510 /* If the GPU is snooping the contents of the CPU cache, 3511 * we do not need to manually clear the CPU cache lines. However, 3512 * the caches are only snooped when the render cache is 3513 * flushed/invalidated. As we always have to emit invalidations 3514 * and flushes when moving into and out of the RENDER domain, correct 3515 * snooping behaviour occurs naturally as the result of our domain 3516 * tracking. 3517 */ 3518 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 3519 return false; 3520 3521 trace_i915_gem_object_clflush(obj); 3522 drm_clflush_sg(obj->pages); 3523 3524 return true; 3525 } 3526 3527 /** Flushes the GTT write domain for the object if it's dirty. */ 3528 static void 3529 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3530 { 3531 uint32_t old_write_domain; 3532 3533 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3534 return; 3535 3536 /* No actual flushing is required for the GTT write domain. Writes 3537 * to it immediately go to main memory as far as we know, so there's 3538 * no chipset flush. It also doesn't land in render cache. 3539 * 3540 * However, we do have to enforce the order so that all writes through 3541 * the GTT land before any writes to the device, such as updates to 3542 * the GATT itself. 3543 */ 3544 wmb(); 3545 3546 old_write_domain = obj->base.write_domain; 3547 obj->base.write_domain = 0; 3548 3549 intel_fb_obj_flush(obj, false); 3550 3551 trace_i915_gem_object_change_domain(obj, 3552 obj->base.read_domains, 3553 old_write_domain); 3554 } 3555 3556 /** Flushes the CPU write domain for the object if it's dirty. */ 3557 static void 3558 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 3559 bool force) 3560 { 3561 uint32_t old_write_domain; 3562 3563 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3564 return; 3565 3566 if (i915_gem_clflush_object(obj, force)) 3567 i915_gem_chipset_flush(obj->base.dev); 3568 3569 old_write_domain = obj->base.write_domain; 3570 obj->base.write_domain = 0; 3571 3572 intel_fb_obj_flush(obj, false); 3573 3574 trace_i915_gem_object_change_domain(obj, 3575 obj->base.read_domains, 3576 old_write_domain); 3577 } 3578 3579 /** 3580 * Moves a single object to the GTT read, and possibly write domain. 3581 * 3582 * This function returns when the move is complete, including waiting on 3583 * flushes to occur. 3584 */ 3585 int 3586 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3587 { 3588 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3589 uint32_t old_write_domain, old_read_domains; 3590 int ret; 3591 3592 /* Not valid to be called on unbound objects. */ 3593 if (!i915_gem_obj_bound_any(obj)) 3594 return -EINVAL; 3595 3596 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3597 return 0; 3598 3599 ret = i915_gem_object_wait_rendering(obj, !write); 3600 if (ret) 3601 return ret; 3602 3603 i915_gem_object_retire(obj); 3604 i915_gem_object_flush_cpu_write_domain(obj, false); 3605 3606 /* Serialise direct access to this object with the barriers for 3607 * coherent writes from the GPU, by effectively invalidating the 3608 * GTT domain upon first access. 3609 */ 3610 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3611 mb(); 3612 3613 old_write_domain = obj->base.write_domain; 3614 old_read_domains = obj->base.read_domains; 3615 3616 /* It should now be out of any other write domains, and we can update 3617 * the domain values for our changes. 3618 */ 3619 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3620 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3621 if (write) { 3622 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3623 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3624 obj->dirty = 1; 3625 } 3626 3627 if (write) 3628 intel_fb_obj_invalidate(obj, NULL); 3629 3630 trace_i915_gem_object_change_domain(obj, 3631 old_read_domains, 3632 old_write_domain); 3633 3634 /* And bump the LRU for this access */ 3635 if (i915_gem_object_is_inactive(obj)) { 3636 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 3637 if (vma) 3638 list_move_tail(&vma->mm_list, 3639 &dev_priv->gtt.base.inactive_list); 3640 3641 } 3642 3643 return 0; 3644 } 3645 3646 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3647 enum i915_cache_level cache_level) 3648 { 3649 struct drm_device *dev = obj->base.dev; 3650 struct i915_vma *vma, *next; 3651 int ret; 3652 3653 if (obj->cache_level == cache_level) 3654 return 0; 3655 3656 if (i915_gem_obj_is_pinned(obj)) { 3657 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3658 return -EBUSY; 3659 } 3660 3661 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3662 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) { 3663 ret = i915_vma_unbind(vma); 3664 if (ret) 3665 return ret; 3666 } 3667 } 3668 3669 if (i915_gem_obj_bound_any(obj)) { 3670 ret = i915_gem_object_finish_gpu(obj); 3671 if (ret) 3672 return ret; 3673 3674 i915_gem_object_finish_gtt(obj); 3675 3676 /* Before SandyBridge, you could not use tiling or fence 3677 * registers with snooped memory, so relinquish any fences 3678 * currently pointing to our region in the aperture. 3679 */ 3680 if (INTEL_INFO(dev)->gen < 6) { 3681 ret = i915_gem_object_put_fence(obj); 3682 if (ret) 3683 return ret; 3684 } 3685 3686 list_for_each_entry(vma, &obj->vma_list, vma_link) 3687 if (drm_mm_node_allocated(&vma->node)) 3688 vma->bind_vma(vma, cache_level, 3689 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0); 3690 } 3691 3692 list_for_each_entry(vma, &obj->vma_list, vma_link) 3693 vma->node.color = cache_level; 3694 obj->cache_level = cache_level; 3695 3696 if (cpu_write_needs_clflush(obj)) { 3697 u32 old_read_domains, old_write_domain; 3698 3699 /* If we're coming from LLC cached, then we haven't 3700 * actually been tracking whether the data is in the 3701 * CPU cache or not, since we only allow one bit set 3702 * in obj->write_domain and have been skipping the clflushes. 3703 * Just set it to the CPU cache for now. 3704 */ 3705 i915_gem_object_retire(obj); 3706 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3707 3708 old_read_domains = obj->base.read_domains; 3709 old_write_domain = obj->base.write_domain; 3710 3711 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3712 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3713 3714 trace_i915_gem_object_change_domain(obj, 3715 old_read_domains, 3716 old_write_domain); 3717 } 3718 3719 i915_gem_verify_gtt(dev); 3720 return 0; 3721 } 3722 3723 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3724 struct drm_file *file) 3725 { 3726 struct drm_i915_gem_caching *args = data; 3727 struct drm_i915_gem_object *obj; 3728 int ret; 3729 3730 ret = i915_mutex_lock_interruptible(dev); 3731 if (ret) 3732 return ret; 3733 3734 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3735 if (&obj->base == NULL) { 3736 ret = -ENOENT; 3737 goto unlock; 3738 } 3739 3740 switch (obj->cache_level) { 3741 case I915_CACHE_LLC: 3742 case I915_CACHE_L3_LLC: 3743 args->caching = I915_CACHING_CACHED; 3744 break; 3745 3746 case I915_CACHE_WT: 3747 args->caching = I915_CACHING_DISPLAY; 3748 break; 3749 3750 default: 3751 args->caching = I915_CACHING_NONE; 3752 break; 3753 } 3754 3755 drm_gem_object_unreference(&obj->base); 3756 unlock: 3757 mutex_unlock(&dev->struct_mutex); 3758 return ret; 3759 } 3760 3761 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3762 struct drm_file *file) 3763 { 3764 struct drm_i915_gem_caching *args = data; 3765 struct drm_i915_gem_object *obj; 3766 enum i915_cache_level level; 3767 int ret; 3768 3769 switch (args->caching) { 3770 case I915_CACHING_NONE: 3771 level = I915_CACHE_NONE; 3772 break; 3773 case I915_CACHING_CACHED: 3774 level = I915_CACHE_LLC; 3775 break; 3776 case I915_CACHING_DISPLAY: 3777 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3778 break; 3779 default: 3780 return -EINVAL; 3781 } 3782 3783 ret = i915_mutex_lock_interruptible(dev); 3784 if (ret) 3785 return ret; 3786 3787 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3788 if (&obj->base == NULL) { 3789 ret = -ENOENT; 3790 goto unlock; 3791 } 3792 3793 ret = i915_gem_object_set_cache_level(obj, level); 3794 3795 drm_gem_object_unreference(&obj->base); 3796 unlock: 3797 mutex_unlock(&dev->struct_mutex); 3798 return ret; 3799 } 3800 3801 static bool is_pin_display(struct drm_i915_gem_object *obj) 3802 { 3803 struct i915_vma *vma; 3804 3805 if (list_empty(&obj->vma_list)) 3806 return false; 3807 3808 vma = i915_gem_obj_to_ggtt(obj); 3809 if (!vma) 3810 return false; 3811 3812 /* There are 3 sources that pin objects: 3813 * 1. The display engine (scanouts, sprites, cursors); 3814 * 2. Reservations for execbuffer; 3815 * 3. The user. 3816 * 3817 * We can ignore reservations as we hold the struct_mutex and 3818 * are only called outside of the reservation path. The user 3819 * can only increment pin_count once, and so if after 3820 * subtracting the potential reference by the user, any pin_count 3821 * remains, it must be due to another use by the display engine. 3822 */ 3823 return vma->pin_count - !!obj->user_pin_count; 3824 } 3825 3826 /* 3827 * Prepare buffer for display plane (scanout, cursors, etc). 3828 * Can be called from an uninterruptible phase (modesetting) and allows 3829 * any flushes to be pipelined (for pageflips). 3830 */ 3831 int 3832 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3833 u32 alignment, 3834 struct intel_engine_cs *pipelined) 3835 { 3836 u32 old_read_domains, old_write_domain; 3837 bool was_pin_display; 3838 int ret; 3839 3840 if (pipelined != obj->ring) { 3841 ret = i915_gem_object_sync(obj, pipelined); 3842 if (ret) 3843 return ret; 3844 } 3845 3846 /* Mark the pin_display early so that we account for the 3847 * display coherency whilst setting up the cache domains. 3848 */ 3849 was_pin_display = obj->pin_display; 3850 obj->pin_display = true; 3851 3852 /* The display engine is not coherent with the LLC cache on gen6. As 3853 * a result, we make sure that the pinning that is about to occur is 3854 * done with uncached PTEs. This is lowest common denominator for all 3855 * chipsets. 3856 * 3857 * However for gen6+, we could do better by using the GFDT bit instead 3858 * of uncaching, which would allow us to flush all the LLC-cached data 3859 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3860 */ 3861 ret = i915_gem_object_set_cache_level(obj, 3862 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3863 if (ret) 3864 goto err_unpin_display; 3865 3866 /* As the user may map the buffer once pinned in the display plane 3867 * (e.g. libkms for the bootup splash), we have to ensure that we 3868 * always use map_and_fenceable for all scanout buffers. 3869 */ 3870 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); 3871 if (ret) 3872 goto err_unpin_display; 3873 3874 i915_gem_object_flush_cpu_write_domain(obj, true); 3875 3876 old_write_domain = obj->base.write_domain; 3877 old_read_domains = obj->base.read_domains; 3878 3879 /* It should now be out of any other write domains, and we can update 3880 * the domain values for our changes. 3881 */ 3882 obj->base.write_domain = 0; 3883 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3884 3885 trace_i915_gem_object_change_domain(obj, 3886 old_read_domains, 3887 old_write_domain); 3888 3889 return 0; 3890 3891 err_unpin_display: 3892 WARN_ON(was_pin_display != is_pin_display(obj)); 3893 obj->pin_display = was_pin_display; 3894 return ret; 3895 } 3896 3897 void 3898 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 3899 { 3900 i915_gem_object_ggtt_unpin(obj); 3901 obj->pin_display = is_pin_display(obj); 3902 } 3903 3904 int 3905 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3906 { 3907 int ret; 3908 3909 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3910 return 0; 3911 3912 ret = i915_gem_object_wait_rendering(obj, false); 3913 if (ret) 3914 return ret; 3915 3916 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3917 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3918 return 0; 3919 } 3920 3921 /** 3922 * Moves a single object to the CPU read, and possibly write domain. 3923 * 3924 * This function returns when the move is complete, including waiting on 3925 * flushes to occur. 3926 */ 3927 int 3928 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3929 { 3930 uint32_t old_write_domain, old_read_domains; 3931 int ret; 3932 3933 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3934 return 0; 3935 3936 ret = i915_gem_object_wait_rendering(obj, !write); 3937 if (ret) 3938 return ret; 3939 3940 i915_gem_object_retire(obj); 3941 i915_gem_object_flush_gtt_write_domain(obj); 3942 3943 old_write_domain = obj->base.write_domain; 3944 old_read_domains = obj->base.read_domains; 3945 3946 /* Flush the CPU cache if it's still invalid. */ 3947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3948 i915_gem_clflush_object(obj, false); 3949 3950 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3951 } 3952 3953 /* It should now be out of any other write domains, and we can update 3954 * the domain values for our changes. 3955 */ 3956 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3957 3958 /* If we're writing through the CPU, then the GPU read domains will 3959 * need to be invalidated at next use. 3960 */ 3961 if (write) { 3962 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3963 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3964 } 3965 3966 if (write) 3967 intel_fb_obj_invalidate(obj, NULL); 3968 3969 trace_i915_gem_object_change_domain(obj, 3970 old_read_domains, 3971 old_write_domain); 3972 3973 return 0; 3974 } 3975 3976 /* Throttle our rendering by waiting until the ring has completed our requests 3977 * emitted over 20 msec ago. 3978 * 3979 * Note that if we were to use the current jiffies each time around the loop, 3980 * we wouldn't escape the function with any frames outstanding if the time to 3981 * render a frame was over 20ms. 3982 * 3983 * This should get us reasonable parallelism between CPU and GPU but also 3984 * relatively low latency when blocking on a particular request to finish. 3985 */ 3986 static int 3987 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3988 { 3989 struct drm_i915_private *dev_priv = dev->dev_private; 3990 struct drm_i915_file_private *file_priv = file->driver_priv; 3991 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3992 struct drm_i915_gem_request *request; 3993 struct intel_engine_cs *ring = NULL; 3994 unsigned reset_counter; 3995 u32 seqno = 0; 3996 int ret; 3997 3998 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3999 if (ret) 4000 return ret; 4001 4002 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 4003 if (ret) 4004 return ret; 4005 4006 spin_lock(&file_priv->mm.lock); 4007 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 4008 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4009 break; 4010 4011 ring = request->ring; 4012 seqno = request->seqno; 4013 } 4014 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4015 spin_unlock(&file_priv->mm.lock); 4016 4017 if (seqno == 0) 4018 return 0; 4019 4020 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL); 4021 if (ret == 0) 4022 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4023 4024 return ret; 4025 } 4026 4027 static bool 4028 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4029 { 4030 struct drm_i915_gem_object *obj = vma->obj; 4031 4032 if (alignment && 4033 vma->node.start & (alignment - 1)) 4034 return true; 4035 4036 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4037 return true; 4038 4039 if (flags & PIN_OFFSET_BIAS && 4040 vma->node.start < (flags & PIN_OFFSET_MASK)) 4041 return true; 4042 4043 return false; 4044 } 4045 4046 int 4047 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4048 struct i915_address_space *vm, 4049 uint32_t alignment, 4050 uint64_t flags) 4051 { 4052 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4053 struct i915_vma *vma; 4054 int ret; 4055 4056 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4057 return -ENODEV; 4058 4059 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4060 return -EINVAL; 4061 4062 vma = i915_gem_obj_to_vma(obj, vm); 4063 if (vma) { 4064 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4065 return -EBUSY; 4066 4067 if (i915_vma_misplaced(vma, alignment, flags)) { 4068 WARN(vma->pin_count, 4069 "bo is already pinned with incorrect alignment:" 4070 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 4071 " obj->map_and_fenceable=%d\n", 4072 i915_gem_obj_offset(obj, vm), alignment, 4073 !!(flags & PIN_MAPPABLE), 4074 obj->map_and_fenceable); 4075 ret = i915_vma_unbind(vma); 4076 if (ret) 4077 return ret; 4078 4079 vma = NULL; 4080 } 4081 } 4082 4083 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4084 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags); 4085 if (IS_ERR(vma)) 4086 return PTR_ERR(vma); 4087 } 4088 4089 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping) 4090 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); 4091 4092 vma->pin_count++; 4093 if (flags & PIN_MAPPABLE) 4094 obj->pin_mappable |= true; 4095 4096 return 0; 4097 } 4098 4099 void 4100 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 4101 { 4102 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 4103 4104 BUG_ON(!vma); 4105 BUG_ON(vma->pin_count == 0); 4106 BUG_ON(!i915_gem_obj_ggtt_bound(obj)); 4107 4108 if (--vma->pin_count == 0) 4109 obj->pin_mappable = false; 4110 } 4111 4112 bool 4113 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj) 4114 { 4115 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4116 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4117 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj); 4118 4119 WARN_ON(!ggtt_vma || 4120 dev_priv->fence_regs[obj->fence_reg].pin_count > 4121 ggtt_vma->pin_count); 4122 dev_priv->fence_regs[obj->fence_reg].pin_count++; 4123 return true; 4124 } else 4125 return false; 4126 } 4127 4128 void 4129 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj) 4130 { 4131 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4132 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4133 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0); 4134 dev_priv->fence_regs[obj->fence_reg].pin_count--; 4135 } 4136 } 4137 4138 int 4139 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 4140 struct drm_file *file) 4141 { 4142 struct drm_i915_gem_pin *args = data; 4143 struct drm_i915_gem_object *obj; 4144 int ret; 4145 4146 if (INTEL_INFO(dev)->gen >= 6) 4147 return -ENODEV; 4148 4149 ret = i915_mutex_lock_interruptible(dev); 4150 if (ret) 4151 return ret; 4152 4153 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4154 if (&obj->base == NULL) { 4155 ret = -ENOENT; 4156 goto unlock; 4157 } 4158 4159 if (obj->madv != I915_MADV_WILLNEED) { 4160 DRM_DEBUG("Attempting to pin a purgeable buffer\n"); 4161 ret = -EFAULT; 4162 goto out; 4163 } 4164 4165 if (obj->pin_filp != NULL && obj->pin_filp != file) { 4166 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n", 4167 args->handle); 4168 ret = -EINVAL; 4169 goto out; 4170 } 4171 4172 if (obj->user_pin_count == ULONG_MAX) { 4173 ret = -EBUSY; 4174 goto out; 4175 } 4176 4177 if (obj->user_pin_count == 0) { 4178 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE); 4179 if (ret) 4180 goto out; 4181 } 4182 4183 obj->user_pin_count++; 4184 obj->pin_filp = file; 4185 4186 args->offset = i915_gem_obj_ggtt_offset(obj); 4187 out: 4188 drm_gem_object_unreference(&obj->base); 4189 unlock: 4190 mutex_unlock(&dev->struct_mutex); 4191 return ret; 4192 } 4193 4194 int 4195 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 4196 struct drm_file *file) 4197 { 4198 struct drm_i915_gem_pin *args = data; 4199 struct drm_i915_gem_object *obj; 4200 int ret; 4201 4202 ret = i915_mutex_lock_interruptible(dev); 4203 if (ret) 4204 return ret; 4205 4206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4207 if (&obj->base == NULL) { 4208 ret = -ENOENT; 4209 goto unlock; 4210 } 4211 4212 if (obj->pin_filp != file) { 4213 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 4214 args->handle); 4215 ret = -EINVAL; 4216 goto out; 4217 } 4218 obj->user_pin_count--; 4219 if (obj->user_pin_count == 0) { 4220 obj->pin_filp = NULL; 4221 i915_gem_object_ggtt_unpin(obj); 4222 } 4223 4224 out: 4225 drm_gem_object_unreference(&obj->base); 4226 unlock: 4227 mutex_unlock(&dev->struct_mutex); 4228 return ret; 4229 } 4230 4231 int 4232 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4233 struct drm_file *file) 4234 { 4235 struct drm_i915_gem_busy *args = data; 4236 struct drm_i915_gem_object *obj; 4237 int ret; 4238 4239 ret = i915_mutex_lock_interruptible(dev); 4240 if (ret) 4241 return ret; 4242 4243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4244 if (&obj->base == NULL) { 4245 ret = -ENOENT; 4246 goto unlock; 4247 } 4248 4249 /* Count all active objects as busy, even if they are currently not used 4250 * by the gpu. Users of this interface expect objects to eventually 4251 * become non-busy without any further actions, therefore emit any 4252 * necessary flushes here. 4253 */ 4254 ret = i915_gem_object_flush_active(obj); 4255 4256 args->busy = obj->active; 4257 if (obj->ring) { 4258 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4259 args->busy |= intel_ring_flag(obj->ring) << 16; 4260 } 4261 4262 drm_gem_object_unreference(&obj->base); 4263 unlock: 4264 mutex_unlock(&dev->struct_mutex); 4265 return ret; 4266 } 4267 4268 int 4269 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4270 struct drm_file *file_priv) 4271 { 4272 return i915_gem_ring_throttle(dev, file_priv); 4273 } 4274 4275 int 4276 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4277 struct drm_file *file_priv) 4278 { 4279 struct drm_i915_gem_madvise *args = data; 4280 struct drm_i915_gem_object *obj; 4281 int ret; 4282 4283 switch (args->madv) { 4284 case I915_MADV_DONTNEED: 4285 case I915_MADV_WILLNEED: 4286 break; 4287 default: 4288 return -EINVAL; 4289 } 4290 4291 ret = i915_mutex_lock_interruptible(dev); 4292 if (ret) 4293 return ret; 4294 4295 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4296 if (&obj->base == NULL) { 4297 ret = -ENOENT; 4298 goto unlock; 4299 } 4300 4301 if (i915_gem_obj_is_pinned(obj)) { 4302 ret = -EINVAL; 4303 goto out; 4304 } 4305 4306 if (obj->madv != __I915_MADV_PURGED) 4307 obj->madv = args->madv; 4308 4309 /* if the object is no longer attached, discard its backing storage */ 4310 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4311 i915_gem_object_truncate(obj); 4312 4313 args->retained = obj->madv != __I915_MADV_PURGED; 4314 4315 out: 4316 drm_gem_object_unreference(&obj->base); 4317 unlock: 4318 mutex_unlock(&dev->struct_mutex); 4319 return ret; 4320 } 4321 4322 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4323 const struct drm_i915_gem_object_ops *ops) 4324 { 4325 INIT_LIST_HEAD(&obj->global_list); 4326 INIT_LIST_HEAD(&obj->ring_list); 4327 INIT_LIST_HEAD(&obj->obj_exec_link); 4328 INIT_LIST_HEAD(&obj->vma_list); 4329 4330 obj->ops = ops; 4331 4332 obj->fence_reg = I915_FENCE_REG_NONE; 4333 obj->madv = I915_MADV_WILLNEED; 4334 /* Avoid an unnecessary call to unbind on the first bind. */ 4335 obj->map_and_fenceable = true; 4336 4337 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4338 } 4339 4340 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4341 .get_pages = i915_gem_object_get_pages_gtt, 4342 .put_pages = i915_gem_object_put_pages_gtt, 4343 }; 4344 4345 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4346 size_t size) 4347 { 4348 struct drm_i915_gem_object *obj; 4349 struct address_space *mapping; 4350 gfp_t mask; 4351 4352 obj = i915_gem_object_alloc(dev); 4353 if (obj == NULL) 4354 return NULL; 4355 4356 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4357 i915_gem_object_free(obj); 4358 return NULL; 4359 } 4360 4361 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4362 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4363 /* 965gm cannot relocate objects above 4GiB. */ 4364 mask &= ~__GFP_HIGHMEM; 4365 mask |= __GFP_DMA32; 4366 } 4367 4368 mapping = file_inode(obj->base.filp)->i_mapping; 4369 mapping_set_gfp_mask(mapping, mask); 4370 4371 i915_gem_object_init(obj, &i915_gem_object_ops); 4372 4373 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4374 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4375 4376 if (HAS_LLC(dev)) { 4377 /* On some devices, we can have the GPU use the LLC (the CPU 4378 * cache) for about a 10% performance improvement 4379 * compared to uncached. Graphics requests other than 4380 * display scanout are coherent with the CPU in 4381 * accessing this cache. This means in this mode we 4382 * don't need to clflush on the CPU side, and on the 4383 * GPU side we only need to flush internal caches to 4384 * get data visible to the CPU. 4385 * 4386 * However, we maintain the display planes as UC, and so 4387 * need to rebind when first used as such. 4388 */ 4389 obj->cache_level = I915_CACHE_LLC; 4390 } else 4391 obj->cache_level = I915_CACHE_NONE; 4392 4393 trace_i915_gem_object_create(obj); 4394 4395 return obj; 4396 } 4397 4398 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4399 { 4400 /* If we are the last user of the backing storage (be it shmemfs 4401 * pages or stolen etc), we know that the pages are going to be 4402 * immediately released. In this case, we can then skip copying 4403 * back the contents from the GPU. 4404 */ 4405 4406 if (obj->madv != I915_MADV_WILLNEED) 4407 return false; 4408 4409 if (obj->base.filp == NULL) 4410 return true; 4411 4412 /* At first glance, this looks racy, but then again so would be 4413 * userspace racing mmap against close. However, the first external 4414 * reference to the filp can only be obtained through the 4415 * i915_gem_mmap_ioctl() which safeguards us against the user 4416 * acquiring such a reference whilst we are in the middle of 4417 * freeing the object. 4418 */ 4419 return atomic_long_read(&obj->base.filp->f_count) == 1; 4420 } 4421 4422 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4423 { 4424 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4425 struct drm_device *dev = obj->base.dev; 4426 struct drm_i915_private *dev_priv = dev->dev_private; 4427 struct i915_vma *vma, *next; 4428 4429 intel_runtime_pm_get(dev_priv); 4430 4431 trace_i915_gem_object_destroy(obj); 4432 4433 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4434 int ret; 4435 4436 vma->pin_count = 0; 4437 ret = i915_vma_unbind(vma); 4438 if (WARN_ON(ret == -ERESTARTSYS)) { 4439 bool was_interruptible; 4440 4441 was_interruptible = dev_priv->mm.interruptible; 4442 dev_priv->mm.interruptible = false; 4443 4444 WARN_ON(i915_vma_unbind(vma)); 4445 4446 dev_priv->mm.interruptible = was_interruptible; 4447 } 4448 } 4449 4450 i915_gem_object_detach_phys(obj); 4451 4452 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4453 * before progressing. */ 4454 if (obj->stolen) 4455 i915_gem_object_unpin_pages(obj); 4456 4457 WARN_ON(obj->frontbuffer_bits); 4458 4459 if (WARN_ON(obj->pages_pin_count)) 4460 obj->pages_pin_count = 0; 4461 if (discard_backing_storage(obj)) 4462 obj->madv = I915_MADV_DONTNEED; 4463 i915_gem_object_put_pages(obj); 4464 i915_gem_object_free_mmap_offset(obj); 4465 4466 BUG_ON(obj->pages); 4467 4468 if (obj->base.import_attach) 4469 drm_prime_gem_destroy(&obj->base, NULL); 4470 4471 if (obj->ops->release) 4472 obj->ops->release(obj); 4473 4474 drm_gem_object_release(&obj->base); 4475 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4476 4477 kfree(obj->bit_17); 4478 i915_gem_object_free(obj); 4479 4480 intel_runtime_pm_put(dev_priv); 4481 } 4482 4483 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4484 struct i915_address_space *vm) 4485 { 4486 struct i915_vma *vma; 4487 list_for_each_entry(vma, &obj->vma_list, vma_link) 4488 if (vma->vm == vm) 4489 return vma; 4490 4491 return NULL; 4492 } 4493 4494 void i915_gem_vma_destroy(struct i915_vma *vma) 4495 { 4496 WARN_ON(vma->node.allocated); 4497 4498 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4499 if (!list_empty(&vma->exec_list)) 4500 return; 4501 4502 list_del(&vma->vma_link); 4503 4504 kfree(vma); 4505 } 4506 4507 static void 4508 i915_gem_stop_ringbuffers(struct drm_device *dev) 4509 { 4510 struct drm_i915_private *dev_priv = dev->dev_private; 4511 struct intel_engine_cs *ring; 4512 int i; 4513 4514 for_each_ring(ring, dev_priv, i) 4515 intel_stop_ring_buffer(ring); 4516 } 4517 4518 int 4519 i915_gem_suspend(struct drm_device *dev) 4520 { 4521 struct drm_i915_private *dev_priv = dev->dev_private; 4522 int ret = 0; 4523 4524 mutex_lock(&dev->struct_mutex); 4525 if (dev_priv->ums.mm_suspended) 4526 goto err; 4527 4528 ret = i915_gpu_idle(dev); 4529 if (ret) 4530 goto err; 4531 4532 i915_gem_retire_requests(dev); 4533 4534 /* Under UMS, be paranoid and evict. */ 4535 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4536 i915_gem_evict_everything(dev); 4537 4538 i915_kernel_lost_context(dev); 4539 i915_gem_stop_ringbuffers(dev); 4540 4541 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4542 * We need to replace this with a semaphore, or something. 4543 * And not confound ums.mm_suspended! 4544 */ 4545 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev, 4546 DRIVER_MODESET); 4547 mutex_unlock(&dev->struct_mutex); 4548 4549 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4550 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4551 flush_delayed_work(&dev_priv->mm.idle_work); 4552 4553 return 0; 4554 4555 err: 4556 mutex_unlock(&dev->struct_mutex); 4557 return ret; 4558 } 4559 4560 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice) 4561 { 4562 struct drm_device *dev = ring->dev; 4563 struct drm_i915_private *dev_priv = dev->dev_private; 4564 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4565 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4566 int i, ret; 4567 4568 if (!HAS_L3_DPF(dev) || !remap_info) 4569 return 0; 4570 4571 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); 4572 if (ret) 4573 return ret; 4574 4575 /* 4576 * Note: We do not worry about the concurrent register cacheline hang 4577 * here because no other code should access these registers other than 4578 * at initialization time. 4579 */ 4580 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4581 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4582 intel_ring_emit(ring, reg_base + i); 4583 intel_ring_emit(ring, remap_info[i/4]); 4584 } 4585 4586 intel_ring_advance(ring); 4587 4588 return ret; 4589 } 4590 4591 void i915_gem_init_swizzling(struct drm_device *dev) 4592 { 4593 struct drm_i915_private *dev_priv = dev->dev_private; 4594 4595 if (INTEL_INFO(dev)->gen < 5 || 4596 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4597 return; 4598 4599 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4600 DISP_TILE_SURFACE_SWIZZLING); 4601 4602 if (IS_GEN5(dev)) 4603 return; 4604 4605 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4606 if (IS_GEN6(dev)) 4607 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4608 else if (IS_GEN7(dev)) 4609 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4610 else if (IS_GEN8(dev)) 4611 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4612 else 4613 BUG(); 4614 } 4615 4616 static bool 4617 intel_enable_blt(struct drm_device *dev) 4618 { 4619 if (!HAS_BLT(dev)) 4620 return false; 4621 4622 /* The blitter was dysfunctional on early prototypes */ 4623 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4624 DRM_INFO("BLT not supported on this pre-production hardware;" 4625 " graphics performance will be degraded.\n"); 4626 return false; 4627 } 4628 4629 return true; 4630 } 4631 4632 static int i915_gem_init_rings(struct drm_device *dev) 4633 { 4634 struct drm_i915_private *dev_priv = dev->dev_private; 4635 int ret; 4636 4637 ret = intel_init_render_ring_buffer(dev); 4638 if (ret) 4639 return ret; 4640 4641 if (HAS_BSD(dev)) { 4642 ret = intel_init_bsd_ring_buffer(dev); 4643 if (ret) 4644 goto cleanup_render_ring; 4645 } 4646 4647 if (intel_enable_blt(dev)) { 4648 ret = intel_init_blt_ring_buffer(dev); 4649 if (ret) 4650 goto cleanup_bsd_ring; 4651 } 4652 4653 if (HAS_VEBOX(dev)) { 4654 ret = intel_init_vebox_ring_buffer(dev); 4655 if (ret) 4656 goto cleanup_blt_ring; 4657 } 4658 4659 if (HAS_BSD2(dev)) { 4660 ret = intel_init_bsd2_ring_buffer(dev); 4661 if (ret) 4662 goto cleanup_vebox_ring; 4663 } 4664 4665 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4666 if (ret) 4667 goto cleanup_bsd2_ring; 4668 4669 return 0; 4670 4671 cleanup_bsd2_ring: 4672 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); 4673 cleanup_vebox_ring: 4674 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4675 cleanup_blt_ring: 4676 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4677 cleanup_bsd_ring: 4678 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4679 cleanup_render_ring: 4680 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4681 4682 return ret; 4683 } 4684 4685 int 4686 i915_gem_init_hw(struct drm_device *dev) 4687 { 4688 struct drm_i915_private *dev_priv = dev->dev_private; 4689 int ret, i; 4690 4691 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4692 return -EIO; 4693 4694 if (dev_priv->ellc_size) 4695 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4696 4697 if (IS_HASWELL(dev)) 4698 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4699 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4700 4701 if (HAS_PCH_NOP(dev)) { 4702 if (IS_IVYBRIDGE(dev)) { 4703 u32 temp = I915_READ(GEN7_MSG_CTL); 4704 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4705 I915_WRITE(GEN7_MSG_CTL, temp); 4706 } else if (INTEL_INFO(dev)->gen >= 7) { 4707 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4708 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4709 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4710 } 4711 } 4712 4713 i915_gem_init_swizzling(dev); 4714 4715 ret = i915_gem_init_rings(dev); 4716 if (ret) 4717 return ret; 4718 4719 for (i = 0; i < NUM_L3_SLICES(dev); i++) 4720 i915_gem_l3_remap(&dev_priv->ring[RCS], i); 4721 4722 /* 4723 * XXX: Contexts should only be initialized once. Doing a switch to the 4724 * default context switch however is something we'd like to do after 4725 * reset or thaw (the latter may not actually be necessary for HW, but 4726 * goes with our code better). Context switching requires rings (for 4727 * the do_switch), but before enabling PPGTT. So don't move this. 4728 */ 4729 ret = i915_gem_context_enable(dev_priv); 4730 if (ret && ret != -EIO) { 4731 DRM_ERROR("Context enable failed %d\n", ret); 4732 i915_gem_cleanup_ringbuffer(dev); 4733 } 4734 4735 return ret; 4736 } 4737 4738 int i915_gem_init(struct drm_device *dev) 4739 { 4740 struct drm_i915_private *dev_priv = dev->dev_private; 4741 int ret; 4742 4743 mutex_lock(&dev->struct_mutex); 4744 4745 if (IS_VALLEYVIEW(dev)) { 4746 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4747 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); 4748 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 4749 VLV_GTLC_ALLOWWAKEACK), 10)) 4750 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4751 } 4752 4753 i915_gem_init_userptr(dev); 4754 i915_gem_init_global_gtt(dev); 4755 4756 ret = i915_gem_context_init(dev); 4757 if (ret) { 4758 mutex_unlock(&dev->struct_mutex); 4759 return ret; 4760 } 4761 4762 ret = i915_gem_init_hw(dev); 4763 if (ret == -EIO) { 4764 /* Allow ring initialisation to fail by marking the GPU as 4765 * wedged. But we only want to do this where the GPU is angry, 4766 * for all other failure, such as an allocation failure, bail. 4767 */ 4768 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4769 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4770 ret = 0; 4771 } 4772 mutex_unlock(&dev->struct_mutex); 4773 4774 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4775 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4776 dev_priv->dri1.allow_batchbuffer = 1; 4777 return ret; 4778 } 4779 4780 void 4781 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4782 { 4783 struct drm_i915_private *dev_priv = dev->dev_private; 4784 struct intel_engine_cs *ring; 4785 int i; 4786 4787 for_each_ring(ring, dev_priv, i) 4788 intel_cleanup_ring_buffer(ring); 4789 } 4790 4791 int 4792 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4793 struct drm_file *file_priv) 4794 { 4795 struct drm_i915_private *dev_priv = dev->dev_private; 4796 int ret; 4797 4798 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4799 return 0; 4800 4801 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4802 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4803 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4804 } 4805 4806 mutex_lock(&dev->struct_mutex); 4807 dev_priv->ums.mm_suspended = 0; 4808 4809 ret = i915_gem_init_hw(dev); 4810 if (ret != 0) { 4811 mutex_unlock(&dev->struct_mutex); 4812 return ret; 4813 } 4814 4815 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list)); 4816 4817 ret = drm_irq_install(dev, dev->pdev->irq); 4818 if (ret) 4819 goto cleanup_ringbuffer; 4820 mutex_unlock(&dev->struct_mutex); 4821 4822 return 0; 4823 4824 cleanup_ringbuffer: 4825 i915_gem_cleanup_ringbuffer(dev); 4826 dev_priv->ums.mm_suspended = 1; 4827 mutex_unlock(&dev->struct_mutex); 4828 4829 return ret; 4830 } 4831 4832 int 4833 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4834 struct drm_file *file_priv) 4835 { 4836 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4837 return 0; 4838 4839 mutex_lock(&dev->struct_mutex); 4840 drm_irq_uninstall(dev); 4841 mutex_unlock(&dev->struct_mutex); 4842 4843 return i915_gem_suspend(dev); 4844 } 4845 4846 void 4847 i915_gem_lastclose(struct drm_device *dev) 4848 { 4849 int ret; 4850 4851 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4852 return; 4853 4854 ret = i915_gem_suspend(dev); 4855 if (ret) 4856 DRM_ERROR("failed to idle hardware: %d\n", ret); 4857 } 4858 4859 static void 4860 init_ring_lists(struct intel_engine_cs *ring) 4861 { 4862 INIT_LIST_HEAD(&ring->active_list); 4863 INIT_LIST_HEAD(&ring->request_list); 4864 } 4865 4866 void i915_init_vm(struct drm_i915_private *dev_priv, 4867 struct i915_address_space *vm) 4868 { 4869 if (!i915_is_ggtt(vm)) 4870 drm_mm_init(&vm->mm, vm->start, vm->total); 4871 vm->dev = dev_priv->dev; 4872 INIT_LIST_HEAD(&vm->active_list); 4873 INIT_LIST_HEAD(&vm->inactive_list); 4874 INIT_LIST_HEAD(&vm->global_link); 4875 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4876 } 4877 4878 void 4879 i915_gem_load(struct drm_device *dev) 4880 { 4881 struct drm_i915_private *dev_priv = dev->dev_private; 4882 int i; 4883 4884 dev_priv->slab = 4885 kmem_cache_create("i915_gem_object", 4886 sizeof(struct drm_i915_gem_object), 0, 4887 SLAB_HWCACHE_ALIGN, 4888 NULL); 4889 4890 INIT_LIST_HEAD(&dev_priv->vm_list); 4891 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4892 4893 INIT_LIST_HEAD(&dev_priv->context_list); 4894 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4895 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4896 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4897 for (i = 0; i < I915_NUM_RINGS; i++) 4898 init_ring_lists(&dev_priv->ring[i]); 4899 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4900 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4901 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4902 i915_gem_retire_work_handler); 4903 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 4904 i915_gem_idle_work_handler); 4905 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4906 4907 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4908 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) { 4909 I915_WRITE(MI_ARB_STATE, 4910 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4911 } 4912 4913 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4914 4915 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4916 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4917 dev_priv->fence_reg_start = 3; 4918 4919 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4920 dev_priv->num_fence_regs = 32; 4921 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4922 dev_priv->num_fence_regs = 16; 4923 else 4924 dev_priv->num_fence_regs = 8; 4925 4926 /* Initialize fence registers to zero */ 4927 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4928 i915_gem_restore_fences(dev); 4929 4930 i915_gem_detect_bit_6_swizzle(dev); 4931 init_waitqueue_head(&dev_priv->pending_flip_queue); 4932 4933 dev_priv->mm.interruptible = true; 4934 4935 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 4936 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count; 4937 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS; 4938 register_shrinker(&dev_priv->mm.shrinker); 4939 4940 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 4941 register_oom_notifier(&dev_priv->mm.oom_notifier); 4942 4943 mutex_init(&dev_priv->fb_tracking.lock); 4944 } 4945 4946 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4947 { 4948 struct drm_i915_file_private *file_priv = file->driver_priv; 4949 4950 cancel_delayed_work_sync(&file_priv->mm.idle_work); 4951 4952 /* Clean up our request list when the client is going away, so that 4953 * later retire_requests won't dereference our soon-to-be-gone 4954 * file_priv. 4955 */ 4956 spin_lock(&file_priv->mm.lock); 4957 while (!list_empty(&file_priv->mm.request_list)) { 4958 struct drm_i915_gem_request *request; 4959 4960 request = list_first_entry(&file_priv->mm.request_list, 4961 struct drm_i915_gem_request, 4962 client_list); 4963 list_del(&request->client_list); 4964 request->file_priv = NULL; 4965 } 4966 spin_unlock(&file_priv->mm.lock); 4967 } 4968 4969 static void 4970 i915_gem_file_idle_work_handler(struct work_struct *work) 4971 { 4972 struct drm_i915_file_private *file_priv = 4973 container_of(work, typeof(*file_priv), mm.idle_work.work); 4974 4975 atomic_set(&file_priv->rps_wait_boost, false); 4976 } 4977 4978 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 4979 { 4980 struct drm_i915_file_private *file_priv; 4981 int ret; 4982 4983 DRM_DEBUG_DRIVER("\n"); 4984 4985 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 4986 if (!file_priv) 4987 return -ENOMEM; 4988 4989 file->driver_priv = file_priv; 4990 file_priv->dev_priv = dev->dev_private; 4991 file_priv->file = file; 4992 4993 spin_lock_init(&file_priv->mm.lock); 4994 INIT_LIST_HEAD(&file_priv->mm.request_list); 4995 INIT_DELAYED_WORK(&file_priv->mm.idle_work, 4996 i915_gem_file_idle_work_handler); 4997 4998 ret = i915_gem_context_open(dev, file); 4999 if (ret) 5000 kfree(file_priv); 5001 5002 return ret; 5003 } 5004 5005 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5006 struct drm_i915_gem_object *new, 5007 unsigned frontbuffer_bits) 5008 { 5009 if (old) { 5010 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 5011 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 5012 old->frontbuffer_bits &= ~frontbuffer_bits; 5013 } 5014 5015 if (new) { 5016 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 5017 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 5018 new->frontbuffer_bits |= frontbuffer_bits; 5019 } 5020 } 5021 5022 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 5023 { 5024 if (!mutex_is_locked(mutex)) 5025 return false; 5026 5027 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 5028 return mutex->owner == task; 5029 #else 5030 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 5031 return false; 5032 #endif 5033 } 5034 5035 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock) 5036 { 5037 if (!mutex_trylock(&dev->struct_mutex)) { 5038 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 5039 return false; 5040 5041 if (to_i915(dev)->mm.shrinker_no_lock_stealing) 5042 return false; 5043 5044 *unlock = false; 5045 } else 5046 *unlock = true; 5047 5048 return true; 5049 } 5050 5051 static int num_vma_bound(struct drm_i915_gem_object *obj) 5052 { 5053 struct i915_vma *vma; 5054 int count = 0; 5055 5056 list_for_each_entry(vma, &obj->vma_list, vma_link) 5057 if (drm_mm_node_allocated(&vma->node)) 5058 count++; 5059 5060 return count; 5061 } 5062 5063 static unsigned long 5064 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 5065 { 5066 struct drm_i915_private *dev_priv = 5067 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5068 struct drm_device *dev = dev_priv->dev; 5069 struct drm_i915_gem_object *obj; 5070 unsigned long count; 5071 bool unlock; 5072 5073 if (!i915_gem_shrinker_lock(dev, &unlock)) 5074 return 0; 5075 5076 count = 0; 5077 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 5078 if (obj->pages_pin_count == 0) 5079 count += obj->base.size >> PAGE_SHIFT; 5080 5081 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5082 if (!i915_gem_obj_is_pinned(obj) && 5083 obj->pages_pin_count == num_vma_bound(obj)) 5084 count += obj->base.size >> PAGE_SHIFT; 5085 } 5086 5087 if (unlock) 5088 mutex_unlock(&dev->struct_mutex); 5089 5090 return count; 5091 } 5092 5093 /* All the new VM stuff */ 5094 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, 5095 struct i915_address_space *vm) 5096 { 5097 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5098 struct i915_vma *vma; 5099 5100 if (!dev_priv->mm.aliasing_ppgtt || 5101 vm == &dev_priv->mm.aliasing_ppgtt->base) 5102 vm = &dev_priv->gtt.base; 5103 5104 list_for_each_entry(vma, &o->vma_list, vma_link) { 5105 if (vma->vm == vm) 5106 return vma->node.start; 5107 5108 } 5109 WARN(1, "%s vma for this object not found.\n", 5110 i915_is_ggtt(vm) ? "global" : "ppgtt"); 5111 return -1; 5112 } 5113 5114 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5115 struct i915_address_space *vm) 5116 { 5117 struct i915_vma *vma; 5118 5119 list_for_each_entry(vma, &o->vma_list, vma_link) 5120 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5121 return true; 5122 5123 return false; 5124 } 5125 5126 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5127 { 5128 struct i915_vma *vma; 5129 5130 list_for_each_entry(vma, &o->vma_list, vma_link) 5131 if (drm_mm_node_allocated(&vma->node)) 5132 return true; 5133 5134 return false; 5135 } 5136 5137 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5138 struct i915_address_space *vm) 5139 { 5140 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5141 struct i915_vma *vma; 5142 5143 if (!dev_priv->mm.aliasing_ppgtt || 5144 vm == &dev_priv->mm.aliasing_ppgtt->base) 5145 vm = &dev_priv->gtt.base; 5146 5147 BUG_ON(list_empty(&o->vma_list)); 5148 5149 list_for_each_entry(vma, &o->vma_list, vma_link) 5150 if (vma->vm == vm) 5151 return vma->node.size; 5152 5153 return 0; 5154 } 5155 5156 static unsigned long 5157 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 5158 { 5159 struct drm_i915_private *dev_priv = 5160 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5161 struct drm_device *dev = dev_priv->dev; 5162 unsigned long freed; 5163 bool unlock; 5164 5165 if (!i915_gem_shrinker_lock(dev, &unlock)) 5166 return SHRINK_STOP; 5167 5168 freed = i915_gem_purge(dev_priv, sc->nr_to_scan); 5169 if (freed < sc->nr_to_scan) 5170 freed += __i915_gem_shrink(dev_priv, 5171 sc->nr_to_scan - freed, 5172 false); 5173 if (unlock) 5174 mutex_unlock(&dev->struct_mutex); 5175 5176 return freed; 5177 } 5178 5179 static int 5180 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 5181 { 5182 struct drm_i915_private *dev_priv = 5183 container_of(nb, struct drm_i915_private, mm.oom_notifier); 5184 struct drm_device *dev = dev_priv->dev; 5185 struct drm_i915_gem_object *obj; 5186 unsigned long timeout = msecs_to_jiffies(5000) + 1; 5187 unsigned long pinned, bound, unbound, freed; 5188 bool was_interruptible; 5189 bool unlock; 5190 5191 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) { 5192 schedule_timeout_killable(1); 5193 if (fatal_signal_pending(current)) 5194 return NOTIFY_DONE; 5195 } 5196 if (timeout == 0) { 5197 pr_err("Unable to purge GPU memory due lock contention.\n"); 5198 return NOTIFY_DONE; 5199 } 5200 5201 was_interruptible = dev_priv->mm.interruptible; 5202 dev_priv->mm.interruptible = false; 5203 5204 freed = i915_gem_shrink_all(dev_priv); 5205 5206 dev_priv->mm.interruptible = was_interruptible; 5207 5208 /* Because we may be allocating inside our own driver, we cannot 5209 * assert that there are no objects with pinned pages that are not 5210 * being pointed to by hardware. 5211 */ 5212 unbound = bound = pinned = 0; 5213 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 5214 if (!obj->base.filp) /* not backed by a freeable object */ 5215 continue; 5216 5217 if (obj->pages_pin_count) 5218 pinned += obj->base.size; 5219 else 5220 unbound += obj->base.size; 5221 } 5222 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5223 if (!obj->base.filp) 5224 continue; 5225 5226 if (obj->pages_pin_count) 5227 pinned += obj->base.size; 5228 else 5229 bound += obj->base.size; 5230 } 5231 5232 if (unlock) 5233 mutex_unlock(&dev->struct_mutex); 5234 5235 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n", 5236 freed, pinned); 5237 if (unbound || bound) 5238 pr_err("%lu and %lu bytes still available in the " 5239 "bound and unbound GPU page lists.\n", 5240 bound, unbound); 5241 5242 *(unsigned long *)ptr += freed; 5243 return NOTIFY_DONE; 5244 } 5245 5246 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 5247 { 5248 struct i915_vma *vma; 5249 5250 /* This WARN has probably outlived its usefulness (callers already 5251 * WARN if they don't find the GGTT vma they expect). When removing, 5252 * remember to remove the pre-check in is_pin_display() as well */ 5253 if (WARN_ON(list_empty(&obj->vma_list))) 5254 return NULL; 5255 5256 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link); 5257 if (vma->vm != obj_to_ggtt(obj)) 5258 return NULL; 5259 5260 return vma; 5261 } 5262