xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17 
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26 	struct i915_global base;
27 	struct kmem_cache *slab_cache;
28 } global;
29 
30 struct active_node {
31 	struct rb_node node;
32 	struct i915_active_fence base;
33 	struct i915_active *ref;
34 	u64 timeline;
35 };
36 
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38 
39 static inline struct active_node *
40 node_from_active(struct i915_active_fence *active)
41 {
42 	return container_of(active, struct active_node, base);
43 }
44 
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46 
47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49 	return IS_ERR(rcu_access_pointer(active->fence));
50 }
51 
52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54 	GEM_BUG_ON(!is_barrier(&node->base));
55 	return (struct llist_node *)&node->base.cb.node;
56 }
57 
58 static inline struct intel_engine_cs *
59 __barrier_to_engine(struct active_node *node)
60 {
61 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63 
64 static inline struct intel_engine_cs *
65 barrier_to_engine(struct active_node *node)
66 {
67 	GEM_BUG_ON(!is_barrier(&node->base));
68 	return __barrier_to_engine(node);
69 }
70 
71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73 	return container_of((struct list_head *)x,
74 			    struct active_node, base.cb.node);
75 }
76 
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78 
79 static void *active_debug_hint(void *addr)
80 {
81 	struct i915_active *ref = addr;
82 
83 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85 
86 static const struct debug_obj_descr active_debug_desc = {
87 	.name = "i915_active",
88 	.debug_hint = active_debug_hint,
89 };
90 
91 static void debug_active_init(struct i915_active *ref)
92 {
93 	debug_object_init(ref, &active_debug_desc);
94 }
95 
96 static void debug_active_activate(struct i915_active *ref)
97 {
98 	lockdep_assert_held(&ref->tree_lock);
99 	if (!atomic_read(&ref->count)) /* before the first inc */
100 		debug_object_activate(ref, &active_debug_desc);
101 }
102 
103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105 	lockdep_assert_held(&ref->tree_lock);
106 	if (!atomic_read(&ref->count)) /* after the last dec */
107 		debug_object_deactivate(ref, &active_debug_desc);
108 }
109 
110 static void debug_active_fini(struct i915_active *ref)
111 {
112 	debug_object_free(ref, &active_debug_desc);
113 }
114 
115 static void debug_active_assert(struct i915_active *ref)
116 {
117 	debug_object_assert_init(ref, &active_debug_desc);
118 }
119 
120 #else
121 
122 static inline void debug_active_init(struct i915_active *ref) { }
123 static inline void debug_active_activate(struct i915_active *ref) { }
124 static inline void debug_active_deactivate(struct i915_active *ref) { }
125 static inline void debug_active_fini(struct i915_active *ref) { }
126 static inline void debug_active_assert(struct i915_active *ref) { }
127 
128 #endif
129 
130 static void
131 __active_retire(struct i915_active *ref)
132 {
133 	struct rb_root root = RB_ROOT;
134 	struct active_node *it, *n;
135 	unsigned long flags;
136 
137 	GEM_BUG_ON(i915_active_is_idle(ref));
138 
139 	/* return the unused nodes to our slabcache -- flushing the allocator */
140 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141 		return;
142 
143 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144 	debug_active_deactivate(ref);
145 
146 	/* Even if we have not used the cache, we may still have a barrier */
147 	if (!ref->cache)
148 		ref->cache = fetch_node(ref->tree.rb_node);
149 
150 	/* Keep the MRU cached node for reuse */
151 	if (ref->cache) {
152 		/* Discard all other nodes in the tree */
153 		rb_erase(&ref->cache->node, &ref->tree);
154 		root = ref->tree;
155 
156 		/* Rebuild the tree with only the cached node */
157 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158 		rb_insert_color(&ref->cache->node, &ref->tree);
159 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160 
161 		/* Make the cached node available for reuse with any timeline */
162 		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
163 	}
164 
165 	spin_unlock_irqrestore(&ref->tree_lock, flags);
166 
167 	/* After the final retire, the entire struct may be freed */
168 	if (ref->retire)
169 		ref->retire(ref);
170 
171 	/* ... except if you wait on it, you must manage your own references! */
172 	wake_up_var(ref);
173 
174 	/* Finally free the discarded timeline tree  */
175 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
177 		kmem_cache_free(global.slab_cache, it);
178 	}
179 }
180 
181 static void
182 active_work(struct work_struct *wrk)
183 {
184 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
185 
186 	GEM_BUG_ON(!atomic_read(&ref->count));
187 	if (atomic_add_unless(&ref->count, -1, 1))
188 		return;
189 
190 	__active_retire(ref);
191 }
192 
193 static void
194 active_retire(struct i915_active *ref)
195 {
196 	GEM_BUG_ON(!atomic_read(&ref->count));
197 	if (atomic_add_unless(&ref->count, -1, 1))
198 		return;
199 
200 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201 		queue_work(system_unbound_wq, &ref->work);
202 		return;
203 	}
204 
205 	__active_retire(ref);
206 }
207 
208 static inline struct dma_fence **
209 __active_fence_slot(struct i915_active_fence *active)
210 {
211 	return (struct dma_fence ** __force)&active->fence;
212 }
213 
214 static inline bool
215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
216 {
217 	struct i915_active_fence *active =
218 		container_of(cb, typeof(*active), cb);
219 
220 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
221 }
222 
223 static void
224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
225 {
226 	if (active_fence_cb(fence, cb))
227 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
228 }
229 
230 static void
231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
232 {
233 	if (active_fence_cb(fence, cb))
234 		active_retire(container_of(cb, struct i915_active, excl.cb));
235 }
236 
237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
238 {
239 	struct active_node *it;
240 
241 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
242 
243 	/*
244 	 * We track the most recently used timeline to skip a rbtree search
245 	 * for the common case, under typical loads we never need the rbtree
246 	 * at all. We can reuse the last slot if it is empty, that is
247 	 * after the previous activity has been retired, or if it matches the
248 	 * current timeline.
249 	 */
250 	it = READ_ONCE(ref->cache);
251 	if (it) {
252 		u64 cached = READ_ONCE(it->timeline);
253 
254 		/* Once claimed, this slot will only belong to this idx */
255 		if (cached == idx)
256 			return it;
257 
258 		/*
259 		 * An unclaimed cache [.timeline=0] can only be claimed once.
260 		 *
261 		 * If the value is already non-zero, some other thread has
262 		 * claimed the cache and we know that is does not match our
263 		 * idx. If, and only if, the timeline is currently zero is it
264 		 * worth competing to claim it atomically for ourselves (for
265 		 * only the winner of that race will cmpxchg return the old
266 		 * value of 0).
267 		 */
268 		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
269 			return it;
270 	}
271 
272 	BUILD_BUG_ON(offsetof(typeof(*it), node));
273 
274 	/* While active, the tree can only be built; not destroyed */
275 	GEM_BUG_ON(i915_active_is_idle(ref));
276 
277 	it = fetch_node(ref->tree.rb_node);
278 	while (it) {
279 		if (it->timeline < idx) {
280 			it = fetch_node(it->node.rb_right);
281 		} else if (it->timeline > idx) {
282 			it = fetch_node(it->node.rb_left);
283 		} else {
284 			WRITE_ONCE(ref->cache, it);
285 			break;
286 		}
287 	}
288 
289 	/* NB: If the tree rotated beneath us, we may miss our target. */
290 	return it;
291 }
292 
293 static struct i915_active_fence *
294 active_instance(struct i915_active *ref, u64 idx)
295 {
296 	struct active_node *node;
297 	struct rb_node **p, *parent;
298 
299 	node = __active_lookup(ref, idx);
300 	if (likely(node))
301 		return &node->base;
302 
303 	spin_lock_irq(&ref->tree_lock);
304 	GEM_BUG_ON(i915_active_is_idle(ref));
305 
306 	parent = NULL;
307 	p = &ref->tree.rb_node;
308 	while (*p) {
309 		parent = *p;
310 
311 		node = rb_entry(parent, struct active_node, node);
312 		if (node->timeline == idx)
313 			goto out;
314 
315 		if (node->timeline < idx)
316 			p = &parent->rb_right;
317 		else
318 			p = &parent->rb_left;
319 	}
320 
321 	/*
322 	 * XXX: We should preallocate this before i915_active_ref() is ever
323 	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
324 	 */
325 	node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC);
326 	if (!node)
327 		goto out;
328 
329 	__i915_active_fence_init(&node->base, NULL, node_retire);
330 	node->ref = ref;
331 	node->timeline = idx;
332 
333 	rb_link_node(&node->node, parent, p);
334 	rb_insert_color(&node->node, &ref->tree);
335 
336 out:
337 	WRITE_ONCE(ref->cache, node);
338 	spin_unlock_irq(&ref->tree_lock);
339 
340 	return &node->base;
341 }
342 
343 void __i915_active_init(struct i915_active *ref,
344 			int (*active)(struct i915_active *ref),
345 			void (*retire)(struct i915_active *ref),
346 			struct lock_class_key *mkey,
347 			struct lock_class_key *wkey)
348 {
349 	unsigned long bits;
350 
351 	debug_active_init(ref);
352 
353 	ref->flags = 0;
354 	ref->active = active;
355 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
356 	if (bits & I915_ACTIVE_MAY_SLEEP)
357 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
358 
359 	spin_lock_init(&ref->tree_lock);
360 	ref->tree = RB_ROOT;
361 	ref->cache = NULL;
362 
363 	init_llist_head(&ref->preallocated_barriers);
364 	atomic_set(&ref->count, 0);
365 	__mutex_init(&ref->mutex, "i915_active", mkey);
366 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
367 	INIT_WORK(&ref->work, active_work);
368 #if IS_ENABLED(CONFIG_LOCKDEP)
369 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
370 #endif
371 }
372 
373 static bool ____active_del_barrier(struct i915_active *ref,
374 				   struct active_node *node,
375 				   struct intel_engine_cs *engine)
376 
377 {
378 	struct llist_node *head = NULL, *tail = NULL;
379 	struct llist_node *pos, *next;
380 
381 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
382 
383 	/*
384 	 * Rebuild the llist excluding our node. We may perform this
385 	 * outside of the kernel_context timeline mutex and so someone
386 	 * else may be manipulating the engine->barrier_tasks, in
387 	 * which case either we or they will be upset :)
388 	 *
389 	 * A second __active_del_barrier() will report failure to claim
390 	 * the active_node and the caller will just shrug and know not to
391 	 * claim ownership of its node.
392 	 *
393 	 * A concurrent i915_request_add_active_barriers() will miss adding
394 	 * any of the tasks, but we will try again on the next -- and since
395 	 * we are actively using the barrier, we know that there will be
396 	 * at least another opportunity when we idle.
397 	 */
398 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
399 		if (node == barrier_from_ll(pos)) {
400 			node = NULL;
401 			continue;
402 		}
403 
404 		pos->next = head;
405 		head = pos;
406 		if (!tail)
407 			tail = pos;
408 	}
409 	if (head)
410 		llist_add_batch(head, tail, &engine->barrier_tasks);
411 
412 	return !node;
413 }
414 
415 static bool
416 __active_del_barrier(struct i915_active *ref, struct active_node *node)
417 {
418 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
419 }
420 
421 static bool
422 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
423 {
424 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
425 		return false;
426 
427 	/*
428 	 * This request is on the kernel_context timeline, and so
429 	 * we can use it to substitute for the pending idle-barrer
430 	 * request that we want to emit on the kernel_context.
431 	 */
432 	__active_del_barrier(ref, node_from_active(active));
433 	return true;
434 }
435 
436 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
437 {
438 	struct i915_active_fence *active;
439 	int err;
440 
441 	/* Prevent reaping in case we malloc/wait while building the tree */
442 	err = i915_active_acquire(ref);
443 	if (err)
444 		return err;
445 
446 	active = active_instance(ref, idx);
447 	if (!active) {
448 		err = -ENOMEM;
449 		goto out;
450 	}
451 
452 	if (replace_barrier(ref, active)) {
453 		RCU_INIT_POINTER(active->fence, NULL);
454 		atomic_dec(&ref->count);
455 	}
456 	if (!__i915_active_fence_set(active, fence))
457 		__i915_active_acquire(ref);
458 
459 out:
460 	i915_active_release(ref);
461 	return err;
462 }
463 
464 static struct dma_fence *
465 __i915_active_set_fence(struct i915_active *ref,
466 			struct i915_active_fence *active,
467 			struct dma_fence *fence)
468 {
469 	struct dma_fence *prev;
470 
471 	if (replace_barrier(ref, active)) {
472 		RCU_INIT_POINTER(active->fence, fence);
473 		return NULL;
474 	}
475 
476 	rcu_read_lock();
477 	prev = __i915_active_fence_set(active, fence);
478 	if (prev)
479 		prev = dma_fence_get_rcu(prev);
480 	else
481 		__i915_active_acquire(ref);
482 	rcu_read_unlock();
483 
484 	return prev;
485 }
486 
487 static struct i915_active_fence *
488 __active_fence(struct i915_active *ref, u64 idx)
489 {
490 	struct active_node *it;
491 
492 	it = __active_lookup(ref, idx);
493 	if (unlikely(!it)) { /* Contention with parallel tree builders! */
494 		spin_lock_irq(&ref->tree_lock);
495 		it = __active_lookup(ref, idx);
496 		spin_unlock_irq(&ref->tree_lock);
497 	}
498 	GEM_BUG_ON(!it); /* slot must be preallocated */
499 
500 	return &it->base;
501 }
502 
503 struct dma_fence *
504 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
505 {
506 	/* Only valid while active, see i915_active_acquire_for_context() */
507 	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
508 }
509 
510 struct dma_fence *
511 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
512 {
513 	/* We expect the caller to manage the exclusive timeline ordering */
514 	return __i915_active_set_fence(ref, &ref->excl, f);
515 }
516 
517 bool i915_active_acquire_if_busy(struct i915_active *ref)
518 {
519 	debug_active_assert(ref);
520 	return atomic_add_unless(&ref->count, 1, 0);
521 }
522 
523 static void __i915_active_activate(struct i915_active *ref)
524 {
525 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
526 	if (!atomic_fetch_inc(&ref->count))
527 		debug_active_activate(ref);
528 	spin_unlock_irq(&ref->tree_lock);
529 }
530 
531 int i915_active_acquire(struct i915_active *ref)
532 {
533 	int err;
534 
535 	if (i915_active_acquire_if_busy(ref))
536 		return 0;
537 
538 	if (!ref->active) {
539 		__i915_active_activate(ref);
540 		return 0;
541 	}
542 
543 	err = mutex_lock_interruptible(&ref->mutex);
544 	if (err)
545 		return err;
546 
547 	if (likely(!i915_active_acquire_if_busy(ref))) {
548 		err = ref->active(ref);
549 		if (!err)
550 			__i915_active_activate(ref);
551 	}
552 
553 	mutex_unlock(&ref->mutex);
554 
555 	return err;
556 }
557 
558 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
559 {
560 	struct i915_active_fence *active;
561 	int err;
562 
563 	err = i915_active_acquire(ref);
564 	if (err)
565 		return err;
566 
567 	active = active_instance(ref, idx);
568 	if (!active) {
569 		i915_active_release(ref);
570 		return -ENOMEM;
571 	}
572 
573 	return 0; /* return with active ref */
574 }
575 
576 void i915_active_release(struct i915_active *ref)
577 {
578 	debug_active_assert(ref);
579 	active_retire(ref);
580 }
581 
582 static void enable_signaling(struct i915_active_fence *active)
583 {
584 	struct dma_fence *fence;
585 
586 	if (unlikely(is_barrier(active)))
587 		return;
588 
589 	fence = i915_active_fence_get(active);
590 	if (!fence)
591 		return;
592 
593 	dma_fence_enable_sw_signaling(fence);
594 	dma_fence_put(fence);
595 }
596 
597 static int flush_barrier(struct active_node *it)
598 {
599 	struct intel_engine_cs *engine;
600 
601 	if (likely(!is_barrier(&it->base)))
602 		return 0;
603 
604 	engine = __barrier_to_engine(it);
605 	smp_rmb(); /* serialise with add_active_barriers */
606 	if (!is_barrier(&it->base))
607 		return 0;
608 
609 	return intel_engine_flush_barriers(engine);
610 }
611 
612 static int flush_lazy_signals(struct i915_active *ref)
613 {
614 	struct active_node *it, *n;
615 	int err = 0;
616 
617 	enable_signaling(&ref->excl);
618 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
619 		err = flush_barrier(it); /* unconnected idle barrier? */
620 		if (err)
621 			break;
622 
623 		enable_signaling(&it->base);
624 	}
625 
626 	return err;
627 }
628 
629 int __i915_active_wait(struct i915_active *ref, int state)
630 {
631 	might_sleep();
632 
633 	/* Any fence added after the wait begins will not be auto-signaled */
634 	if (i915_active_acquire_if_busy(ref)) {
635 		int err;
636 
637 		err = flush_lazy_signals(ref);
638 		i915_active_release(ref);
639 		if (err)
640 			return err;
641 
642 		if (___wait_var_event(ref, i915_active_is_idle(ref),
643 				      state, 0, 0, schedule()))
644 			return -EINTR;
645 	}
646 
647 	/*
648 	 * After the wait is complete, the caller may free the active.
649 	 * We have to flush any concurrent retirement before returning.
650 	 */
651 	flush_work(&ref->work);
652 	return 0;
653 }
654 
655 static int __await_active(struct i915_active_fence *active,
656 			  int (*fn)(void *arg, struct dma_fence *fence),
657 			  void *arg)
658 {
659 	struct dma_fence *fence;
660 
661 	if (is_barrier(active)) /* XXX flush the barrier? */
662 		return 0;
663 
664 	fence = i915_active_fence_get(active);
665 	if (fence) {
666 		int err;
667 
668 		err = fn(arg, fence);
669 		dma_fence_put(fence);
670 		if (err < 0)
671 			return err;
672 	}
673 
674 	return 0;
675 }
676 
677 struct wait_barrier {
678 	struct wait_queue_entry base;
679 	struct i915_active *ref;
680 };
681 
682 static int
683 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
684 {
685 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
686 
687 	if (i915_active_is_idle(wb->ref)) {
688 		list_del(&wq->entry);
689 		i915_sw_fence_complete(wq->private);
690 		kfree(wq);
691 	}
692 
693 	return 0;
694 }
695 
696 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
697 {
698 	struct wait_barrier *wb;
699 
700 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
701 	if (unlikely(!wb))
702 		return -ENOMEM;
703 
704 	GEM_BUG_ON(i915_active_is_idle(ref));
705 	if (!i915_sw_fence_await(fence)) {
706 		kfree(wb);
707 		return -EINVAL;
708 	}
709 
710 	wb->base.flags = 0;
711 	wb->base.func = barrier_wake;
712 	wb->base.private = fence;
713 	wb->ref = ref;
714 
715 	add_wait_queue(__var_waitqueue(ref), &wb->base);
716 	return 0;
717 }
718 
719 static int await_active(struct i915_active *ref,
720 			unsigned int flags,
721 			int (*fn)(void *arg, struct dma_fence *fence),
722 			void *arg, struct i915_sw_fence *barrier)
723 {
724 	int err = 0;
725 
726 	if (!i915_active_acquire_if_busy(ref))
727 		return 0;
728 
729 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
730 	    rcu_access_pointer(ref->excl.fence)) {
731 		err = __await_active(&ref->excl, fn, arg);
732 		if (err)
733 			goto out;
734 	}
735 
736 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
737 		struct active_node *it, *n;
738 
739 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
740 			err = __await_active(&it->base, fn, arg);
741 			if (err)
742 				goto out;
743 		}
744 	}
745 
746 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
747 		err = flush_lazy_signals(ref);
748 		if (err)
749 			goto out;
750 
751 		err = __await_barrier(ref, barrier);
752 		if (err)
753 			goto out;
754 	}
755 
756 out:
757 	i915_active_release(ref);
758 	return err;
759 }
760 
761 static int rq_await_fence(void *arg, struct dma_fence *fence)
762 {
763 	return i915_request_await_dma_fence(arg, fence);
764 }
765 
766 int i915_request_await_active(struct i915_request *rq,
767 			      struct i915_active *ref,
768 			      unsigned int flags)
769 {
770 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
771 }
772 
773 static int sw_await_fence(void *arg, struct dma_fence *fence)
774 {
775 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
776 					     GFP_NOWAIT | __GFP_NOWARN);
777 }
778 
779 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
780 			       struct i915_active *ref,
781 			       unsigned int flags)
782 {
783 	return await_active(ref, flags, sw_await_fence, fence, fence);
784 }
785 
786 void i915_active_fini(struct i915_active *ref)
787 {
788 	debug_active_fini(ref);
789 	GEM_BUG_ON(atomic_read(&ref->count));
790 	GEM_BUG_ON(work_pending(&ref->work));
791 	mutex_destroy(&ref->mutex);
792 
793 	if (ref->cache)
794 		kmem_cache_free(global.slab_cache, ref->cache);
795 }
796 
797 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
798 {
799 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
800 }
801 
802 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
803 {
804 	struct rb_node *prev, *p;
805 
806 	if (RB_EMPTY_ROOT(&ref->tree))
807 		return NULL;
808 
809 	GEM_BUG_ON(i915_active_is_idle(ref));
810 
811 	/*
812 	 * Try to reuse any existing barrier nodes already allocated for this
813 	 * i915_active, due to overlapping active phases there is likely a
814 	 * node kept alive (as we reuse before parking). We prefer to reuse
815 	 * completely idle barriers (less hassle in manipulating the llists),
816 	 * but otherwise any will do.
817 	 */
818 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
819 		p = &ref->cache->node;
820 		goto match;
821 	}
822 
823 	prev = NULL;
824 	p = ref->tree.rb_node;
825 	while (p) {
826 		struct active_node *node =
827 			rb_entry(p, struct active_node, node);
828 
829 		if (is_idle_barrier(node, idx))
830 			goto match;
831 
832 		prev = p;
833 		if (node->timeline < idx)
834 			p = READ_ONCE(p->rb_right);
835 		else
836 			p = READ_ONCE(p->rb_left);
837 	}
838 
839 	/*
840 	 * No quick match, but we did find the leftmost rb_node for the
841 	 * kernel_context. Walk the rb_tree in-order to see if there were
842 	 * any idle-barriers on this timeline that we missed, or just use
843 	 * the first pending barrier.
844 	 */
845 	for (p = prev; p; p = rb_next(p)) {
846 		struct active_node *node =
847 			rb_entry(p, struct active_node, node);
848 		struct intel_engine_cs *engine;
849 
850 		if (node->timeline > idx)
851 			break;
852 
853 		if (node->timeline < idx)
854 			continue;
855 
856 		if (is_idle_barrier(node, idx))
857 			goto match;
858 
859 		/*
860 		 * The list of pending barriers is protected by the
861 		 * kernel_context timeline, which notably we do not hold
862 		 * here. i915_request_add_active_barriers() may consume
863 		 * the barrier before we claim it, so we have to check
864 		 * for success.
865 		 */
866 		engine = __barrier_to_engine(node);
867 		smp_rmb(); /* serialise with add_active_barriers */
868 		if (is_barrier(&node->base) &&
869 		    ____active_del_barrier(ref, node, engine))
870 			goto match;
871 	}
872 
873 	return NULL;
874 
875 match:
876 	spin_lock_irq(&ref->tree_lock);
877 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
878 	if (p == &ref->cache->node)
879 		WRITE_ONCE(ref->cache, NULL);
880 	spin_unlock_irq(&ref->tree_lock);
881 
882 	return rb_entry(p, struct active_node, node);
883 }
884 
885 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
886 					    struct intel_engine_cs *engine)
887 {
888 	intel_engine_mask_t tmp, mask = engine->mask;
889 	struct llist_node *first = NULL, *last = NULL;
890 	struct intel_gt *gt = engine->gt;
891 
892 	GEM_BUG_ON(i915_active_is_idle(ref));
893 
894 	/* Wait until the previous preallocation is completed */
895 	while (!llist_empty(&ref->preallocated_barriers))
896 		cond_resched();
897 
898 	/*
899 	 * Preallocate a node for each physical engine supporting the target
900 	 * engine (remember virtual engines have more than one sibling).
901 	 * We can then use the preallocated nodes in
902 	 * i915_active_acquire_barrier()
903 	 */
904 	GEM_BUG_ON(!mask);
905 	for_each_engine_masked(engine, gt, mask, tmp) {
906 		u64 idx = engine->kernel_context->timeline->fence_context;
907 		struct llist_node *prev = first;
908 		struct active_node *node;
909 
910 		rcu_read_lock();
911 		node = reuse_idle_barrier(ref, idx);
912 		rcu_read_unlock();
913 		if (!node) {
914 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
915 			if (!node)
916 				goto unwind;
917 
918 			RCU_INIT_POINTER(node->base.fence, NULL);
919 			node->base.cb.func = node_retire;
920 			node->timeline = idx;
921 			node->ref = ref;
922 		}
923 
924 		if (!i915_active_fence_isset(&node->base)) {
925 			/*
926 			 * Mark this as being *our* unconnected proto-node.
927 			 *
928 			 * Since this node is not in any list, and we have
929 			 * decoupled it from the rbtree, we can reuse the
930 			 * request to indicate this is an idle-barrier node
931 			 * and then we can use the rb_node and list pointers
932 			 * for our tracking of the pending barrier.
933 			 */
934 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
935 			node->base.cb.node.prev = (void *)engine;
936 			__i915_active_acquire(ref);
937 		}
938 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
939 
940 		GEM_BUG_ON(barrier_to_engine(node) != engine);
941 		first = barrier_to_ll(node);
942 		first->next = prev;
943 		if (!last)
944 			last = first;
945 		intel_engine_pm_get(engine);
946 	}
947 
948 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
949 	llist_add_batch(first, last, &ref->preallocated_barriers);
950 
951 	return 0;
952 
953 unwind:
954 	while (first) {
955 		struct active_node *node = barrier_from_ll(first);
956 
957 		first = first->next;
958 
959 		atomic_dec(&ref->count);
960 		intel_engine_pm_put(barrier_to_engine(node));
961 
962 		kmem_cache_free(global.slab_cache, node);
963 	}
964 	return -ENOMEM;
965 }
966 
967 void i915_active_acquire_barrier(struct i915_active *ref)
968 {
969 	struct llist_node *pos, *next;
970 	unsigned long flags;
971 
972 	GEM_BUG_ON(i915_active_is_idle(ref));
973 
974 	/*
975 	 * Transfer the list of preallocated barriers into the
976 	 * i915_active rbtree, but only as proto-nodes. They will be
977 	 * populated by i915_request_add_active_barriers() to point to the
978 	 * request that will eventually release them.
979 	 */
980 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
981 		struct active_node *node = barrier_from_ll(pos);
982 		struct intel_engine_cs *engine = barrier_to_engine(node);
983 		struct rb_node **p, *parent;
984 
985 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
986 					 SINGLE_DEPTH_NESTING);
987 		parent = NULL;
988 		p = &ref->tree.rb_node;
989 		while (*p) {
990 			struct active_node *it;
991 
992 			parent = *p;
993 
994 			it = rb_entry(parent, struct active_node, node);
995 			if (it->timeline < node->timeline)
996 				p = &parent->rb_right;
997 			else
998 				p = &parent->rb_left;
999 		}
1000 		rb_link_node(&node->node, parent, p);
1001 		rb_insert_color(&node->node, &ref->tree);
1002 		spin_unlock_irqrestore(&ref->tree_lock, flags);
1003 
1004 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1005 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1006 		intel_engine_pm_put_delay(engine, 1);
1007 	}
1008 }
1009 
1010 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1011 {
1012 	return __active_fence_slot(&barrier_from_ll(node)->base);
1013 }
1014 
1015 void i915_request_add_active_barriers(struct i915_request *rq)
1016 {
1017 	struct intel_engine_cs *engine = rq->engine;
1018 	struct llist_node *node, *next;
1019 	unsigned long flags;
1020 
1021 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1022 	GEM_BUG_ON(intel_engine_is_virtual(engine));
1023 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1024 
1025 	node = llist_del_all(&engine->barrier_tasks);
1026 	if (!node)
1027 		return;
1028 	/*
1029 	 * Attach the list of proto-fences to the in-flight request such
1030 	 * that the parent i915_active will be released when this request
1031 	 * is retired.
1032 	 */
1033 	spin_lock_irqsave(&rq->lock, flags);
1034 	llist_for_each_safe(node, next, node) {
1035 		/* serialise with reuse_idle_barrier */
1036 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1037 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1038 	}
1039 	spin_unlock_irqrestore(&rq->lock, flags);
1040 }
1041 
1042 /*
1043  * __i915_active_fence_set: Update the last active fence along its timeline
1044  * @active: the active tracker
1045  * @fence: the new fence (under construction)
1046  *
1047  * Records the new @fence as the last active fence along its timeline in
1048  * this active tracker, moving the tracking callbacks from the previous
1049  * fence onto this one. Returns the previous fence (if not already completed),
1050  * which the caller must ensure is executed before the new fence. To ensure
1051  * that the order of fences within the timeline of the i915_active_fence is
1052  * understood, it should be locked by the caller.
1053  */
1054 struct dma_fence *
1055 __i915_active_fence_set(struct i915_active_fence *active,
1056 			struct dma_fence *fence)
1057 {
1058 	struct dma_fence *prev;
1059 	unsigned long flags;
1060 
1061 	if (fence == rcu_access_pointer(active->fence))
1062 		return fence;
1063 
1064 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1065 
1066 	/*
1067 	 * Consider that we have two threads arriving (A and B), with
1068 	 * C already resident as the active->fence.
1069 	 *
1070 	 * A does the xchg first, and so it sees C or NULL depending
1071 	 * on the timing of the interrupt handler. If it is NULL, the
1072 	 * previous fence must have been signaled and we know that
1073 	 * we are first on the timeline. If it is still present,
1074 	 * we acquire the lock on that fence and serialise with the interrupt
1075 	 * handler, in the process removing it from any future interrupt
1076 	 * callback. A will then wait on C before executing (if present).
1077 	 *
1078 	 * As B is second, it sees A as the previous fence and so waits for
1079 	 * it to complete its transition and takes over the occupancy for
1080 	 * itself -- remembering that it needs to wait on A before executing.
1081 	 *
1082 	 * Note the strong ordering of the timeline also provides consistent
1083 	 * nesting rules for the fence->lock; the inner lock is always the
1084 	 * older lock.
1085 	 */
1086 	spin_lock_irqsave(fence->lock, flags);
1087 	prev = xchg(__active_fence_slot(active), fence);
1088 	if (prev) {
1089 		GEM_BUG_ON(prev == fence);
1090 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1091 		__list_del_entry(&active->cb.node);
1092 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1093 	}
1094 	list_add_tail(&active->cb.node, &fence->cb_list);
1095 	spin_unlock_irqrestore(fence->lock, flags);
1096 
1097 	return prev;
1098 }
1099 
1100 int i915_active_fence_set(struct i915_active_fence *active,
1101 			  struct i915_request *rq)
1102 {
1103 	struct dma_fence *fence;
1104 	int err = 0;
1105 
1106 	/* Must maintain timeline ordering wrt previous active requests */
1107 	rcu_read_lock();
1108 	fence = __i915_active_fence_set(active, &rq->fence);
1109 	if (fence) /* but the previous fence may not belong to that timeline! */
1110 		fence = dma_fence_get_rcu(fence);
1111 	rcu_read_unlock();
1112 	if (fence) {
1113 		err = i915_request_await_dma_fence(rq, fence);
1114 		dma_fence_put(fence);
1115 	}
1116 
1117 	return err;
1118 }
1119 
1120 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1121 {
1122 	active_fence_cb(fence, cb);
1123 }
1124 
1125 struct auto_active {
1126 	struct i915_active base;
1127 	struct kref ref;
1128 };
1129 
1130 struct i915_active *i915_active_get(struct i915_active *ref)
1131 {
1132 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1133 
1134 	kref_get(&aa->ref);
1135 	return &aa->base;
1136 }
1137 
1138 static void auto_release(struct kref *ref)
1139 {
1140 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1141 
1142 	i915_active_fini(&aa->base);
1143 	kfree(aa);
1144 }
1145 
1146 void i915_active_put(struct i915_active *ref)
1147 {
1148 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1149 
1150 	kref_put(&aa->ref, auto_release);
1151 }
1152 
1153 static int auto_active(struct i915_active *ref)
1154 {
1155 	i915_active_get(ref);
1156 	return 0;
1157 }
1158 
1159 static void auto_retire(struct i915_active *ref)
1160 {
1161 	i915_active_put(ref);
1162 }
1163 
1164 struct i915_active *i915_active_create(void)
1165 {
1166 	struct auto_active *aa;
1167 
1168 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1169 	if (!aa)
1170 		return NULL;
1171 
1172 	kref_init(&aa->ref);
1173 	i915_active_init(&aa->base, auto_active, auto_retire);
1174 
1175 	return &aa->base;
1176 }
1177 
1178 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1179 #include "selftests/i915_active.c"
1180 #endif
1181 
1182 static void i915_global_active_shrink(void)
1183 {
1184 	kmem_cache_shrink(global.slab_cache);
1185 }
1186 
1187 static void i915_global_active_exit(void)
1188 {
1189 	kmem_cache_destroy(global.slab_cache);
1190 }
1191 
1192 static struct i915_global_active global = { {
1193 	.shrink = i915_global_active_shrink,
1194 	.exit = i915_global_active_exit,
1195 } };
1196 
1197 int __init i915_global_active_init(void)
1198 {
1199 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1200 	if (!global.slab_cache)
1201 		return -ENOMEM;
1202 
1203 	i915_global_register(&global.base);
1204 	return 0;
1205 }
1206