xref: /openbmc/linux/drivers/gpu/drm/i915/i915_active.c (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_engine_pm.h"
10 #include "gt/intel_ring.h"
11 
12 #include "i915_drv.h"
13 #include "i915_active.h"
14 #include "i915_globals.h"
15 
16 /*
17  * Active refs memory management
18  *
19  * To be more economical with memory, we reap all the i915_active trees as
20  * they idle (when we know the active requests are inactive) and allocate the
21  * nodes from a local slab cache to hopefully reduce the fragmentation.
22  */
23 static struct i915_global_active {
24 	struct i915_global base;
25 	struct kmem_cache *slab_cache;
26 } global;
27 
28 struct active_node {
29 	struct i915_active_fence base;
30 	struct i915_active *ref;
31 	struct rb_node node;
32 	u64 timeline;
33 };
34 
35 static inline struct active_node *
36 node_from_active(struct i915_active_fence *active)
37 {
38 	return container_of(active, struct active_node, base);
39 }
40 
41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42 
43 static inline bool is_barrier(const struct i915_active_fence *active)
44 {
45 	return IS_ERR(rcu_access_pointer(active->fence));
46 }
47 
48 static inline struct llist_node *barrier_to_ll(struct active_node *node)
49 {
50 	GEM_BUG_ON(!is_barrier(&node->base));
51 	return (struct llist_node *)&node->base.cb.node;
52 }
53 
54 static inline struct intel_engine_cs *
55 __barrier_to_engine(struct active_node *node)
56 {
57 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58 }
59 
60 static inline struct intel_engine_cs *
61 barrier_to_engine(struct active_node *node)
62 {
63 	GEM_BUG_ON(!is_barrier(&node->base));
64 	return __barrier_to_engine(node);
65 }
66 
67 static inline struct active_node *barrier_from_ll(struct llist_node *x)
68 {
69 	return container_of((struct list_head *)x,
70 			    struct active_node, base.cb.node);
71 }
72 
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74 
75 static void *active_debug_hint(void *addr)
76 {
77 	struct i915_active *ref = addr;
78 
79 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80 }
81 
82 static struct debug_obj_descr active_debug_desc = {
83 	.name = "i915_active",
84 	.debug_hint = active_debug_hint,
85 };
86 
87 static void debug_active_init(struct i915_active *ref)
88 {
89 	debug_object_init(ref, &active_debug_desc);
90 }
91 
92 static void debug_active_activate(struct i915_active *ref)
93 {
94 	spin_lock_irq(&ref->tree_lock);
95 	if (!atomic_read(&ref->count)) /* before the first inc */
96 		debug_object_activate(ref, &active_debug_desc);
97 	spin_unlock_irq(&ref->tree_lock);
98 }
99 
100 static void debug_active_deactivate(struct i915_active *ref)
101 {
102 	lockdep_assert_held(&ref->tree_lock);
103 	if (!atomic_read(&ref->count)) /* after the last dec */
104 		debug_object_deactivate(ref, &active_debug_desc);
105 }
106 
107 static void debug_active_fini(struct i915_active *ref)
108 {
109 	debug_object_free(ref, &active_debug_desc);
110 }
111 
112 static void debug_active_assert(struct i915_active *ref)
113 {
114 	debug_object_assert_init(ref, &active_debug_desc);
115 }
116 
117 #else
118 
119 static inline void debug_active_init(struct i915_active *ref) { }
120 static inline void debug_active_activate(struct i915_active *ref) { }
121 static inline void debug_active_deactivate(struct i915_active *ref) { }
122 static inline void debug_active_fini(struct i915_active *ref) { }
123 static inline void debug_active_assert(struct i915_active *ref) { }
124 
125 #endif
126 
127 static void
128 __active_retire(struct i915_active *ref)
129 {
130 	struct active_node *it, *n;
131 	struct rb_root root;
132 	unsigned long flags;
133 
134 	GEM_BUG_ON(i915_active_is_idle(ref));
135 
136 	/* return the unused nodes to our slabcache -- flushing the allocator */
137 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
138 		return;
139 
140 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
141 	debug_active_deactivate(ref);
142 
143 	root = ref->tree;
144 	ref->tree = RB_ROOT;
145 	ref->cache = NULL;
146 
147 	spin_unlock_irqrestore(&ref->tree_lock, flags);
148 
149 	/* After the final retire, the entire struct may be freed */
150 	if (ref->retire)
151 		ref->retire(ref);
152 
153 	/* ... except if you wait on it, you must manage your own references! */
154 	wake_up_var(ref);
155 
156 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
157 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
158 		kmem_cache_free(global.slab_cache, it);
159 	}
160 }
161 
162 static void
163 active_work(struct work_struct *wrk)
164 {
165 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
166 
167 	GEM_BUG_ON(!atomic_read(&ref->count));
168 	if (atomic_add_unless(&ref->count, -1, 1))
169 		return;
170 
171 	__active_retire(ref);
172 }
173 
174 static void
175 active_retire(struct i915_active *ref)
176 {
177 	GEM_BUG_ON(!atomic_read(&ref->count));
178 	if (atomic_add_unless(&ref->count, -1, 1))
179 		return;
180 
181 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
182 		queue_work(system_unbound_wq, &ref->work);
183 		return;
184 	}
185 
186 	__active_retire(ref);
187 }
188 
189 static void
190 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
191 {
192 	i915_active_fence_cb(fence, cb);
193 	active_retire(container_of(cb, struct active_node, base.cb)->ref);
194 }
195 
196 static void
197 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
198 {
199 	i915_active_fence_cb(fence, cb);
200 	active_retire(container_of(cb, struct i915_active, excl.cb));
201 }
202 
203 static struct i915_active_fence *
204 active_instance(struct i915_active *ref, struct intel_timeline *tl)
205 {
206 	struct active_node *node, *prealloc;
207 	struct rb_node **p, *parent;
208 	u64 idx = tl->fence_context;
209 
210 	/*
211 	 * We track the most recently used timeline to skip a rbtree search
212 	 * for the common case, under typical loads we never need the rbtree
213 	 * at all. We can reuse the last slot if it is empty, that is
214 	 * after the previous activity has been retired, or if it matches the
215 	 * current timeline.
216 	 */
217 	node = READ_ONCE(ref->cache);
218 	if (node && node->timeline == idx)
219 		return &node->base;
220 
221 	/* Preallocate a replacement, just in case */
222 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
223 	if (!prealloc)
224 		return NULL;
225 
226 	spin_lock_irq(&ref->tree_lock);
227 	GEM_BUG_ON(i915_active_is_idle(ref));
228 
229 	parent = NULL;
230 	p = &ref->tree.rb_node;
231 	while (*p) {
232 		parent = *p;
233 
234 		node = rb_entry(parent, struct active_node, node);
235 		if (node->timeline == idx) {
236 			kmem_cache_free(global.slab_cache, prealloc);
237 			goto out;
238 		}
239 
240 		if (node->timeline < idx)
241 			p = &parent->rb_right;
242 		else
243 			p = &parent->rb_left;
244 	}
245 
246 	node = prealloc;
247 	__i915_active_fence_init(&node->base, &tl->mutex, NULL, node_retire);
248 	node->ref = ref;
249 	node->timeline = idx;
250 
251 	rb_link_node(&node->node, parent, p);
252 	rb_insert_color(&node->node, &ref->tree);
253 
254 out:
255 	ref->cache = node;
256 	spin_unlock_irq(&ref->tree_lock);
257 
258 	BUILD_BUG_ON(offsetof(typeof(*node), base));
259 	return &node->base;
260 }
261 
262 void __i915_active_init(struct i915_active *ref,
263 			int (*active)(struct i915_active *ref),
264 			void (*retire)(struct i915_active *ref),
265 			struct lock_class_key *key)
266 {
267 	unsigned long bits;
268 
269 	debug_active_init(ref);
270 
271 	ref->flags = 0;
272 	ref->active = active;
273 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
274 	if (bits & I915_ACTIVE_MAY_SLEEP)
275 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
276 
277 	spin_lock_init(&ref->tree_lock);
278 	ref->tree = RB_ROOT;
279 	ref->cache = NULL;
280 
281 	init_llist_head(&ref->preallocated_barriers);
282 	atomic_set(&ref->count, 0);
283 	__mutex_init(&ref->mutex, "i915_active", key);
284 	__i915_active_fence_init(&ref->excl, &ref->mutex, NULL, excl_retire);
285 	INIT_WORK(&ref->work, active_work);
286 }
287 
288 static bool ____active_del_barrier(struct i915_active *ref,
289 				   struct active_node *node,
290 				   struct intel_engine_cs *engine)
291 
292 {
293 	struct llist_node *head = NULL, *tail = NULL;
294 	struct llist_node *pos, *next;
295 
296 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
297 
298 	/*
299 	 * Rebuild the llist excluding our node. We may perform this
300 	 * outside of the kernel_context timeline mutex and so someone
301 	 * else may be manipulating the engine->barrier_tasks, in
302 	 * which case either we or they will be upset :)
303 	 *
304 	 * A second __active_del_barrier() will report failure to claim
305 	 * the active_node and the caller will just shrug and know not to
306 	 * claim ownership of its node.
307 	 *
308 	 * A concurrent i915_request_add_active_barriers() will miss adding
309 	 * any of the tasks, but we will try again on the next -- and since
310 	 * we are actively using the barrier, we know that there will be
311 	 * at least another opportunity when we idle.
312 	 */
313 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
314 		if (node == barrier_from_ll(pos)) {
315 			node = NULL;
316 			continue;
317 		}
318 
319 		pos->next = head;
320 		head = pos;
321 		if (!tail)
322 			tail = pos;
323 	}
324 	if (head)
325 		llist_add_batch(head, tail, &engine->barrier_tasks);
326 
327 	return !node;
328 }
329 
330 static bool
331 __active_del_barrier(struct i915_active *ref, struct active_node *node)
332 {
333 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
334 }
335 
336 int i915_active_ref(struct i915_active *ref,
337 		    struct intel_timeline *tl,
338 		    struct dma_fence *fence)
339 {
340 	struct i915_active_fence *active;
341 	int err;
342 
343 	lockdep_assert_held(&tl->mutex);
344 
345 	/* Prevent reaping in case we malloc/wait while building the tree */
346 	err = i915_active_acquire(ref);
347 	if (err)
348 		return err;
349 
350 	active = active_instance(ref, tl);
351 	if (!active) {
352 		err = -ENOMEM;
353 		goto out;
354 	}
355 
356 	if (is_barrier(active)) { /* proto-node used by our idle barrier */
357 		/*
358 		 * This request is on the kernel_context timeline, and so
359 		 * we can use it to substitute for the pending idle-barrer
360 		 * request that we want to emit on the kernel_context.
361 		 */
362 		__active_del_barrier(ref, node_from_active(active));
363 		RCU_INIT_POINTER(active->fence, NULL);
364 		atomic_dec(&ref->count);
365 	}
366 	if (!__i915_active_fence_set(active, fence))
367 		atomic_inc(&ref->count);
368 
369 out:
370 	i915_active_release(ref);
371 	return err;
372 }
373 
374 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
375 {
376 	/* We expect the caller to manage the exclusive timeline ordering */
377 	GEM_BUG_ON(i915_active_is_idle(ref));
378 
379 	/*
380 	 * As we don't know which mutex the caller is using, we told a small
381 	 * lie to the debug code that it is using the i915_active.mutex;
382 	 * and now we must stick to that lie.
383 	 */
384 	mutex_acquire(&ref->mutex.dep_map, 0, 0, _THIS_IP_);
385 	if (!__i915_active_fence_set(&ref->excl, f))
386 		atomic_inc(&ref->count);
387 	mutex_release(&ref->mutex.dep_map, _THIS_IP_);
388 }
389 
390 bool i915_active_acquire_if_busy(struct i915_active *ref)
391 {
392 	debug_active_assert(ref);
393 	return atomic_add_unless(&ref->count, 1, 0);
394 }
395 
396 int i915_active_acquire(struct i915_active *ref)
397 {
398 	int err;
399 
400 	if (i915_active_acquire_if_busy(ref))
401 		return 0;
402 
403 	err = mutex_lock_interruptible(&ref->mutex);
404 	if (err)
405 		return err;
406 
407 	if (!atomic_read(&ref->count) && ref->active)
408 		err = ref->active(ref);
409 	if (!err) {
410 		debug_active_activate(ref);
411 		atomic_inc(&ref->count);
412 	}
413 
414 	mutex_unlock(&ref->mutex);
415 
416 	return err;
417 }
418 
419 void i915_active_release(struct i915_active *ref)
420 {
421 	debug_active_assert(ref);
422 	active_retire(ref);
423 }
424 
425 static void enable_signaling(struct i915_active_fence *active)
426 {
427 	struct dma_fence *fence;
428 
429 	fence = i915_active_fence_get(active);
430 	if (!fence)
431 		return;
432 
433 	dma_fence_enable_sw_signaling(fence);
434 	dma_fence_put(fence);
435 }
436 
437 int i915_active_wait(struct i915_active *ref)
438 {
439 	struct active_node *it, *n;
440 	int err = 0;
441 
442 	might_sleep();
443 
444 	if (!i915_active_acquire_if_busy(ref))
445 		return 0;
446 
447 	/* Flush lazy signals */
448 	enable_signaling(&ref->excl);
449 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
450 		if (is_barrier(&it->base)) /* unconnected idle barrier */
451 			continue;
452 
453 		enable_signaling(&it->base);
454 	}
455 	/* Any fence added after the wait begins will not be auto-signaled */
456 
457 	i915_active_release(ref);
458 	if (err)
459 		return err;
460 
461 	if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
462 		return -EINTR;
463 
464 	return 0;
465 }
466 
467 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
468 {
469 	int err = 0;
470 
471 	if (rcu_access_pointer(ref->excl.fence)) {
472 		struct dma_fence *fence;
473 
474 		rcu_read_lock();
475 		fence = dma_fence_get_rcu_safe(&ref->excl.fence);
476 		rcu_read_unlock();
477 		if (fence) {
478 			err = i915_request_await_dma_fence(rq, fence);
479 			dma_fence_put(fence);
480 		}
481 	}
482 
483 	/* In the future we may choose to await on all fences */
484 
485 	return err;
486 }
487 
488 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
489 void i915_active_fini(struct i915_active *ref)
490 {
491 	debug_active_fini(ref);
492 	GEM_BUG_ON(atomic_read(&ref->count));
493 	GEM_BUG_ON(work_pending(&ref->work));
494 	GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
495 	mutex_destroy(&ref->mutex);
496 }
497 #endif
498 
499 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
500 {
501 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
502 }
503 
504 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
505 {
506 	struct rb_node *prev, *p;
507 
508 	if (RB_EMPTY_ROOT(&ref->tree))
509 		return NULL;
510 
511 	spin_lock_irq(&ref->tree_lock);
512 	GEM_BUG_ON(i915_active_is_idle(ref));
513 
514 	/*
515 	 * Try to reuse any existing barrier nodes already allocated for this
516 	 * i915_active, due to overlapping active phases there is likely a
517 	 * node kept alive (as we reuse before parking). We prefer to reuse
518 	 * completely idle barriers (less hassle in manipulating the llists),
519 	 * but otherwise any will do.
520 	 */
521 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
522 		p = &ref->cache->node;
523 		goto match;
524 	}
525 
526 	prev = NULL;
527 	p = ref->tree.rb_node;
528 	while (p) {
529 		struct active_node *node =
530 			rb_entry(p, struct active_node, node);
531 
532 		if (is_idle_barrier(node, idx))
533 			goto match;
534 
535 		prev = p;
536 		if (node->timeline < idx)
537 			p = p->rb_right;
538 		else
539 			p = p->rb_left;
540 	}
541 
542 	/*
543 	 * No quick match, but we did find the leftmost rb_node for the
544 	 * kernel_context. Walk the rb_tree in-order to see if there were
545 	 * any idle-barriers on this timeline that we missed, or just use
546 	 * the first pending barrier.
547 	 */
548 	for (p = prev; p; p = rb_next(p)) {
549 		struct active_node *node =
550 			rb_entry(p, struct active_node, node);
551 		struct intel_engine_cs *engine;
552 
553 		if (node->timeline > idx)
554 			break;
555 
556 		if (node->timeline < idx)
557 			continue;
558 
559 		if (is_idle_barrier(node, idx))
560 			goto match;
561 
562 		/*
563 		 * The list of pending barriers is protected by the
564 		 * kernel_context timeline, which notably we do not hold
565 		 * here. i915_request_add_active_barriers() may consume
566 		 * the barrier before we claim it, so we have to check
567 		 * for success.
568 		 */
569 		engine = __barrier_to_engine(node);
570 		smp_rmb(); /* serialise with add_active_barriers */
571 		if (is_barrier(&node->base) &&
572 		    ____active_del_barrier(ref, node, engine))
573 			goto match;
574 	}
575 
576 	spin_unlock_irq(&ref->tree_lock);
577 
578 	return NULL;
579 
580 match:
581 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
582 	if (p == &ref->cache->node)
583 		ref->cache = NULL;
584 	spin_unlock_irq(&ref->tree_lock);
585 
586 	return rb_entry(p, struct active_node, node);
587 }
588 
589 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
590 					    struct intel_engine_cs *engine)
591 {
592 	intel_engine_mask_t tmp, mask = engine->mask;
593 	struct intel_gt *gt = engine->gt;
594 	struct llist_node *pos, *next;
595 	int err;
596 
597 	GEM_BUG_ON(i915_active_is_idle(ref));
598 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
599 
600 	/*
601 	 * Preallocate a node for each physical engine supporting the target
602 	 * engine (remember virtual engines have more than one sibling).
603 	 * We can then use the preallocated nodes in
604 	 * i915_active_acquire_barrier()
605 	 */
606 	for_each_engine_masked(engine, gt, mask, tmp) {
607 		u64 idx = engine->kernel_context->timeline->fence_context;
608 		struct active_node *node;
609 
610 		node = reuse_idle_barrier(ref, idx);
611 		if (!node) {
612 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
613 			if (!node) {
614 				err = ENOMEM;
615 				goto unwind;
616 			}
617 
618 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
619 			node->base.lock =
620 				&engine->kernel_context->timeline->mutex;
621 #endif
622 			RCU_INIT_POINTER(node->base.fence, NULL);
623 			node->base.cb.func = node_retire;
624 			node->timeline = idx;
625 			node->ref = ref;
626 		}
627 
628 		if (!i915_active_fence_isset(&node->base)) {
629 			/*
630 			 * Mark this as being *our* unconnected proto-node.
631 			 *
632 			 * Since this node is not in any list, and we have
633 			 * decoupled it from the rbtree, we can reuse the
634 			 * request to indicate this is an idle-barrier node
635 			 * and then we can use the rb_node and list pointers
636 			 * for our tracking of the pending barrier.
637 			 */
638 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
639 			node->base.cb.node.prev = (void *)engine;
640 			atomic_inc(&ref->count);
641 		}
642 
643 		GEM_BUG_ON(barrier_to_engine(node) != engine);
644 		llist_add(barrier_to_ll(node), &ref->preallocated_barriers);
645 		intel_engine_pm_get(engine);
646 	}
647 
648 	return 0;
649 
650 unwind:
651 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
652 		struct active_node *node = barrier_from_ll(pos);
653 
654 		atomic_dec(&ref->count);
655 		intel_engine_pm_put(barrier_to_engine(node));
656 
657 		kmem_cache_free(global.slab_cache, node);
658 	}
659 	return err;
660 }
661 
662 void i915_active_acquire_barrier(struct i915_active *ref)
663 {
664 	struct llist_node *pos, *next;
665 	unsigned long flags;
666 
667 	GEM_BUG_ON(i915_active_is_idle(ref));
668 
669 	/*
670 	 * Transfer the list of preallocated barriers into the
671 	 * i915_active rbtree, but only as proto-nodes. They will be
672 	 * populated by i915_request_add_active_barriers() to point to the
673 	 * request that will eventually release them.
674 	 */
675 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
676 		struct active_node *node = barrier_from_ll(pos);
677 		struct intel_engine_cs *engine = barrier_to_engine(node);
678 		struct rb_node **p, *parent;
679 
680 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
681 					 SINGLE_DEPTH_NESTING);
682 		parent = NULL;
683 		p = &ref->tree.rb_node;
684 		while (*p) {
685 			struct active_node *it;
686 
687 			parent = *p;
688 
689 			it = rb_entry(parent, struct active_node, node);
690 			if (it->timeline < node->timeline)
691 				p = &parent->rb_right;
692 			else
693 				p = &parent->rb_left;
694 		}
695 		rb_link_node(&node->node, parent, p);
696 		rb_insert_color(&node->node, &ref->tree);
697 		spin_unlock_irqrestore(&ref->tree_lock, flags);
698 
699 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
700 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
701 		intel_engine_pm_put(engine);
702 	}
703 }
704 
705 void i915_request_add_active_barriers(struct i915_request *rq)
706 {
707 	struct intel_engine_cs *engine = rq->engine;
708 	struct llist_node *node, *next;
709 	unsigned long flags;
710 
711 	GEM_BUG_ON(intel_engine_is_virtual(engine));
712 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
713 
714 	node = llist_del_all(&engine->barrier_tasks);
715 	if (!node)
716 		return;
717 	/*
718 	 * Attach the list of proto-fences to the in-flight request such
719 	 * that the parent i915_active will be released when this request
720 	 * is retired.
721 	 */
722 	spin_lock_irqsave(&rq->lock, flags);
723 	llist_for_each_safe(node, next, node) {
724 		RCU_INIT_POINTER(barrier_from_ll(node)->base.fence, &rq->fence);
725 		smp_wmb(); /* serialise with reuse_idle_barrier */
726 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
727 	}
728 	spin_unlock_irqrestore(&rq->lock, flags);
729 }
730 
731 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
732 #define active_is_held(active) lockdep_is_held((active)->lock)
733 #else
734 #define active_is_held(active) true
735 #endif
736 
737 /*
738  * __i915_active_fence_set: Update the last active fence along its timeline
739  * @active: the active tracker
740  * @fence: the new fence (under construction)
741  *
742  * Records the new @fence as the last active fence along its timeline in
743  * this active tracker, moving the tracking callbacks from the previous
744  * fence onto this one. Returns the previous fence (if not already completed),
745  * which the caller must ensure is executed before the new fence. To ensure
746  * that the order of fences within the timeline of the i915_active_fence is
747  * maintained, it must be locked by the caller.
748  */
749 struct dma_fence *
750 __i915_active_fence_set(struct i915_active_fence *active,
751 			struct dma_fence *fence)
752 {
753 	struct dma_fence *prev;
754 	unsigned long flags;
755 
756 	/* NB: must be serialised by an outer timeline mutex (active->lock) */
757 	spin_lock_irqsave(fence->lock, flags);
758 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
759 
760 	prev = rcu_dereference_protected(active->fence, active_is_held(active));
761 	if (prev) {
762 		GEM_BUG_ON(prev == fence);
763 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
764 		__list_del_entry(&active->cb.node);
765 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
766 
767 		/*
768 		 * active->fence is reset by the callback from inside
769 		 * interrupt context. We need to serialise our list
770 		 * manipulation with the fence->lock to prevent the prev
771 		 * being lost inside an interrupt (it can't be replaced as
772 		 * no other caller is allowed to enter __i915_active_fence_set
773 		 * as we hold the timeline lock). After serialising with
774 		 * the callback, we need to double check which ran first,
775 		 * our list_del() [decoupling prev from the callback] or
776 		 * the callback...
777 		 */
778 		prev = rcu_access_pointer(active->fence);
779 	}
780 
781 	rcu_assign_pointer(active->fence, fence);
782 	list_add_tail(&active->cb.node, &fence->cb_list);
783 
784 	spin_unlock_irqrestore(fence->lock, flags);
785 
786 	return prev;
787 }
788 
789 int i915_active_fence_set(struct i915_active_fence *active,
790 			  struct i915_request *rq)
791 {
792 	struct dma_fence *fence;
793 	int err = 0;
794 
795 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
796 	lockdep_assert_held(active->lock);
797 #endif
798 
799 	/* Must maintain timeline ordering wrt previous active requests */
800 	rcu_read_lock();
801 	fence = __i915_active_fence_set(active, &rq->fence);
802 	if (fence) /* but the previous fence may not belong to that timeline! */
803 		fence = dma_fence_get_rcu(fence);
804 	rcu_read_unlock();
805 	if (fence) {
806 		err = i915_request_await_dma_fence(rq, fence);
807 		dma_fence_put(fence);
808 	}
809 
810 	return err;
811 }
812 
813 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
814 {
815 	i915_active_fence_cb(fence, cb);
816 }
817 
818 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
819 #include "selftests/i915_active.c"
820 #endif
821 
822 static void i915_global_active_shrink(void)
823 {
824 	kmem_cache_shrink(global.slab_cache);
825 }
826 
827 static void i915_global_active_exit(void)
828 {
829 	kmem_cache_destroy(global.slab_cache);
830 }
831 
832 static struct i915_global_active global = { {
833 	.shrink = i915_global_active_shrink,
834 	.exit = i915_global_active_exit,
835 } };
836 
837 int __init i915_global_active_init(void)
838 {
839 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
840 	if (!global.slab_cache)
841 		return -ENOMEM;
842 
843 	i915_global_register(&global.base);
844 	return 0;
845 }
846