xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 6d76303553bab75ffc53993c56aad06251d8de60)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		pdp_pair[i].val = pdp[7 - i];
53 }
54 
55 static int populate_shadow_context(struct intel_vgpu_workload *workload)
56 {
57 	struct intel_vgpu *vgpu = workload->vgpu;
58 	struct intel_gvt *gvt = vgpu->gvt;
59 	int ring_id = workload->ring_id;
60 	struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
61 	struct drm_i915_gem_object *ctx_obj =
62 		shadow_ctx->engine[ring_id].state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 	void *dst;
66 	unsigned long context_gpa, context_page_num;
67 	int i;
68 
69 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
70 			workload->ctx_desc.lrca);
71 
72 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
73 
74 	context_page_num = context_page_num >> PAGE_SHIFT;
75 
76 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
77 		context_page_num = 19;
78 
79 	i = 2;
80 
81 	while (i < context_page_num) {
82 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
83 				(u32)((workload->ctx_desc.lrca + i) <<
84 				GTT_PAGE_SHIFT));
85 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
86 			gvt_vgpu_err("Invalid guest context descriptor\n");
87 			return -EFAULT;
88 		}
89 
90 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
91 		dst = kmap(page);
92 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
93 				GTT_PAGE_SIZE);
94 		kunmap(page);
95 		i++;
96 	}
97 
98 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
99 	shadow_ring_context = kmap(page);
100 
101 #define COPY_REG(name) \
102 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
103 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
104 
105 	COPY_REG(ctx_ctrl);
106 	COPY_REG(ctx_timestamp);
107 
108 	if (ring_id == RCS) {
109 		COPY_REG(bb_per_ctx_ptr);
110 		COPY_REG(rcs_indirect_ctx);
111 		COPY_REG(rcs_indirect_ctx_offset);
112 	}
113 #undef COPY_REG
114 
115 	set_context_pdp_root_pointer(shadow_ring_context,
116 				     workload->shadow_mm->shadow_page_table);
117 
118 	intel_gvt_hypervisor_read_gpa(vgpu,
119 			workload->ring_context_gpa +
120 			sizeof(*shadow_ring_context),
121 			(void *)shadow_ring_context +
122 			sizeof(*shadow_ring_context),
123 			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
124 
125 	kunmap(page);
126 	return 0;
127 }
128 
129 static inline bool is_gvt_request(struct drm_i915_gem_request *req)
130 {
131 	return i915_gem_context_force_single_submission(req->ctx);
132 }
133 
134 static int shadow_context_status_change(struct notifier_block *nb,
135 		unsigned long action, void *data)
136 {
137 	struct drm_i915_gem_request *req = (struct drm_i915_gem_request *)data;
138 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
139 				shadow_ctx_notifier_block[req->engine->id]);
140 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
141 	enum intel_engine_id ring_id = req->engine->id;
142 	struct intel_vgpu_workload *workload;
143 
144 	if (!is_gvt_request(req)) {
145 		spin_lock_bh(&scheduler->mmio_context_lock);
146 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
147 		    scheduler->engine_owner[ring_id]) {
148 			/* Switch ring from vGPU to host. */
149 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
150 					      NULL, ring_id);
151 			scheduler->engine_owner[ring_id] = NULL;
152 		}
153 		spin_unlock_bh(&scheduler->mmio_context_lock);
154 
155 		return NOTIFY_OK;
156 	}
157 
158 	workload = scheduler->current_workload[ring_id];
159 	if (unlikely(!workload))
160 		return NOTIFY_OK;
161 
162 	switch (action) {
163 	case INTEL_CONTEXT_SCHEDULE_IN:
164 		spin_lock_bh(&scheduler->mmio_context_lock);
165 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
166 			/* Switch ring from host to vGPU or vGPU to vGPU. */
167 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
168 					      workload->vgpu, ring_id);
169 			scheduler->engine_owner[ring_id] = workload->vgpu;
170 		} else
171 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
172 				      ring_id, workload->vgpu->id);
173 		spin_unlock_bh(&scheduler->mmio_context_lock);
174 		atomic_set(&workload->shadow_ctx_active, 1);
175 		break;
176 	case INTEL_CONTEXT_SCHEDULE_OUT:
177 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
178 		atomic_set(&workload->shadow_ctx_active, 0);
179 		break;
180 	default:
181 		WARN_ON(1);
182 		return NOTIFY_OK;
183 	}
184 	wake_up(&workload->shadow_ctx_status_wq);
185 	return NOTIFY_OK;
186 }
187 
188 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
189 		struct intel_engine_cs *engine)
190 {
191 	struct intel_context *ce = &ctx->engine[engine->id];
192 	u64 desc = 0;
193 
194 	desc = ce->lrc_desc;
195 
196 	/* Update bits 0-11 of the context descriptor which includes flags
197 	 * like GEN8_CTX_* cached in desc_template
198 	 */
199 	desc &= U64_MAX << 12;
200 	desc |= ctx->desc_template & ((1ULL << 12) - 1);
201 
202 	ce->lrc_desc = desc;
203 }
204 
205 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
206 {
207 	struct intel_vgpu *vgpu = workload->vgpu;
208 	void *shadow_ring_buffer_va;
209 	u32 *cs;
210 
211 	/* allocate shadow ring buffer */
212 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
213 	if (IS_ERR(cs)) {
214 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
215 			workload->rb_len);
216 		return PTR_ERR(cs);
217 	}
218 
219 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
220 
221 	/* get shadow ring buffer va */
222 	workload->shadow_ring_buffer_va = cs;
223 
224 	memcpy(cs, shadow_ring_buffer_va,
225 			workload->rb_len);
226 
227 	cs += workload->rb_len / sizeof(u32);
228 	intel_ring_advance(workload->req, cs);
229 
230 	return 0;
231 }
232 
233 void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
234 {
235 	if (!wa_ctx->indirect_ctx.obj)
236 		return;
237 
238 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
239 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
240 }
241 
242 /**
243  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
244  * shadow it as well, include ringbuffer,wa_ctx and ctx.
245  * @workload: an abstract entity for each execlist submission.
246  *
247  * This function is called before the workload submitting to i915, to make
248  * sure the content of the workload is valid.
249  */
250 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
251 {
252 	struct intel_vgpu *vgpu = workload->vgpu;
253 	struct intel_vgpu_submission *s = &vgpu->submission;
254 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
255 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
256 	int ring_id = workload->ring_id;
257 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
258 	struct drm_i915_gem_request *rq;
259 	struct intel_ring *ring;
260 	int ret;
261 
262 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
263 
264 	if (workload->shadowed)
265 		return 0;
266 
267 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
268 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
269 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
270 
271 	if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
272 		shadow_context_descriptor_update(shadow_ctx,
273 					dev_priv->engine[ring_id]);
274 
275 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
276 	if (ret)
277 		goto err_scan;
278 
279 	if ((workload->ring_id == RCS) &&
280 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
281 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
282 		if (ret)
283 			goto err_scan;
284 	}
285 
286 	/* pin shadow context by gvt even the shadow context will be pinned
287 	 * when i915 alloc request. That is because gvt will update the guest
288 	 * context from shadow context when workload is completed, and at that
289 	 * moment, i915 may already unpined the shadow context to make the
290 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
291 	 * the guest context, gvt can unpin the shadow_ctx safely.
292 	 */
293 	ring = engine->context_pin(engine, shadow_ctx);
294 	if (IS_ERR(ring)) {
295 		ret = PTR_ERR(ring);
296 		gvt_vgpu_err("fail to pin shadow context\n");
297 		goto err_shadow;
298 	}
299 
300 	ret = populate_shadow_context(workload);
301 	if (ret)
302 		goto err_unpin;
303 
304 	rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
305 	if (IS_ERR(rq)) {
306 		gvt_vgpu_err("fail to allocate gem request\n");
307 		ret = PTR_ERR(rq);
308 		goto err_unpin;
309 	}
310 
311 	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
312 
313 	workload->req = i915_gem_request_get(rq);
314 	ret = copy_workload_to_ring_buffer(workload);
315 	if (ret)
316 		goto err_unpin;
317 	workload->shadowed = true;
318 	return 0;
319 
320 err_unpin:
321 	engine->context_unpin(engine, shadow_ctx);
322 err_shadow:
323 	release_shadow_wa_ctx(&workload->wa_ctx);
324 err_scan:
325 	return ret;
326 }
327 
328 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
329 {
330 	struct intel_gvt *gvt = workload->vgpu->gvt;
331 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
332 	struct intel_shadow_bb_entry *entry_obj;
333 
334 	/* pin the gem object to ggtt */
335 	list_for_each_entry(entry_obj, &workload->shadow_bb, list) {
336 		struct i915_vma *vma;
337 
338 		vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0);
339 		if (IS_ERR(vma))
340 			return PTR_ERR(vma);
341 
342 		/* FIXME: we are not tracking our pinned VMA leaving it
343 		 * up to the core to fix up the stray pin_count upon
344 		 * free.
345 		 */
346 
347 		/* update the relocate gma with shadow batch buffer*/
348 		entry_obj->bb_start_cmd_va[1] = i915_ggtt_offset(vma);
349 		if (gmadr_bytes == 8)
350 			entry_obj->bb_start_cmd_va[2] = 0;
351 	}
352 	return 0;
353 }
354 
355 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
358 					struct intel_vgpu_workload,
359 					wa_ctx);
360 	int ring_id = workload->ring_id;
361 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
362 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
363 	struct drm_i915_gem_object *ctx_obj =
364 		shadow_ctx->engine[ring_id].state->obj;
365 	struct execlist_ring_context *shadow_ring_context;
366 	struct page *page;
367 
368 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
369 	shadow_ring_context = kmap_atomic(page);
370 
371 	shadow_ring_context->bb_per_ctx_ptr.val =
372 		(shadow_ring_context->bb_per_ctx_ptr.val &
373 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
374 	shadow_ring_context->rcs_indirect_ctx.val =
375 		(shadow_ring_context->rcs_indirect_ctx.val &
376 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
377 
378 	kunmap_atomic(shadow_ring_context);
379 	return 0;
380 }
381 
382 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
383 {
384 	struct i915_vma *vma;
385 	unsigned char *per_ctx_va =
386 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
387 		wa_ctx->indirect_ctx.size;
388 
389 	if (wa_ctx->indirect_ctx.size == 0)
390 		return 0;
391 
392 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
393 				       0, CACHELINE_BYTES, 0);
394 	if (IS_ERR(vma))
395 		return PTR_ERR(vma);
396 
397 	/* FIXME: we are not tracking our pinned VMA leaving it
398 	 * up to the core to fix up the stray pin_count upon
399 	 * free.
400 	 */
401 
402 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
403 
404 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
405 	memset(per_ctx_va, 0, CACHELINE_BYTES);
406 
407 	update_wa_ctx_2_shadow_ctx(wa_ctx);
408 	return 0;
409 }
410 
411 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
412 {
413 	/* release all the shadow batch buffer */
414 	if (!list_empty(&workload->shadow_bb)) {
415 		struct intel_shadow_bb_entry *entry_obj =
416 			list_first_entry(&workload->shadow_bb,
417 					 struct intel_shadow_bb_entry,
418 					 list);
419 		struct intel_shadow_bb_entry *temp;
420 
421 		list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
422 					 list) {
423 			i915_gem_object_unpin_map(entry_obj->obj);
424 			i915_gem_object_put(entry_obj->obj);
425 			list_del(&entry_obj->list);
426 			kfree(entry_obj);
427 		}
428 	}
429 }
430 
431 static int prepare_workload(struct intel_vgpu_workload *workload)
432 {
433 	struct intel_vgpu *vgpu = workload->vgpu;
434 	int ret = 0;
435 
436 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
437 	if (ret) {
438 		gvt_vgpu_err("fail to vgpu pin mm\n");
439 		return ret;
440 	}
441 
442 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
443 	if (ret) {
444 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
445 		goto err_unpin_mm;
446 	}
447 
448 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
449 	if (ret) {
450 		gvt_vgpu_err("fail to flush post shadow\n");
451 		goto err_unpin_mm;
452 	}
453 
454 	ret = prepare_shadow_batch_buffer(workload);
455 	if (ret) {
456 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
457 		goto err_unpin_mm;
458 	}
459 
460 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
461 	if (ret) {
462 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
463 		goto err_shadow_batch;
464 	}
465 
466 	if (workload->prepare) {
467 		ret = workload->prepare(workload);
468 		if (ret)
469 			goto err_shadow_wa_ctx;
470 	}
471 
472 	return 0;
473 err_shadow_wa_ctx:
474 	release_shadow_wa_ctx(&workload->wa_ctx);
475 err_shadow_batch:
476 	release_shadow_batch_buffer(workload);
477 err_unpin_mm:
478 	intel_vgpu_unpin_mm(workload->shadow_mm);
479 	return ret;
480 }
481 
482 static int dispatch_workload(struct intel_vgpu_workload *workload)
483 {
484 	struct intel_vgpu *vgpu = workload->vgpu;
485 	struct intel_vgpu_submission *s = &vgpu->submission;
486 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
487 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
488 	int ring_id = workload->ring_id;
489 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
490 	int ret = 0;
491 
492 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
493 		ring_id, workload);
494 
495 	mutex_lock(&dev_priv->drm.struct_mutex);
496 
497 	ret = intel_gvt_scan_and_shadow_workload(workload);
498 	if (ret)
499 		goto out;
500 
501 	ret = prepare_workload(workload);
502 	if (ret) {
503 		engine->context_unpin(engine, shadow_ctx);
504 		goto out;
505 	}
506 
507 out:
508 	if (ret)
509 		workload->status = ret;
510 
511 	if (!IS_ERR_OR_NULL(workload->req)) {
512 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
513 				ring_id, workload->req);
514 		i915_add_request(workload->req);
515 		workload->dispatched = true;
516 	}
517 
518 	mutex_unlock(&dev_priv->drm.struct_mutex);
519 	return ret;
520 }
521 
522 static struct intel_vgpu_workload *pick_next_workload(
523 		struct intel_gvt *gvt, int ring_id)
524 {
525 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
526 	struct intel_vgpu_workload *workload = NULL;
527 
528 	mutex_lock(&gvt->lock);
529 
530 	/*
531 	 * no current vgpu / will be scheduled out / no workload
532 	 * bail out
533 	 */
534 	if (!scheduler->current_vgpu) {
535 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
536 		goto out;
537 	}
538 
539 	if (scheduler->need_reschedule) {
540 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
541 		goto out;
542 	}
543 
544 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
545 		goto out;
546 
547 	/*
548 	 * still have current workload, maybe the workload disptacher
549 	 * fail to submit it for some reason, resubmit it.
550 	 */
551 	if (scheduler->current_workload[ring_id]) {
552 		workload = scheduler->current_workload[ring_id];
553 		gvt_dbg_sched("ring id %d still have current workload %p\n",
554 				ring_id, workload);
555 		goto out;
556 	}
557 
558 	/*
559 	 * pick a workload as current workload
560 	 * once current workload is set, schedule policy routines
561 	 * will wait the current workload is finished when trying to
562 	 * schedule out a vgpu.
563 	 */
564 	scheduler->current_workload[ring_id] = container_of(
565 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
566 			struct intel_vgpu_workload, list);
567 
568 	workload = scheduler->current_workload[ring_id];
569 
570 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
571 
572 	atomic_inc(&workload->vgpu->submission.running_workload_num);
573 out:
574 	mutex_unlock(&gvt->lock);
575 	return workload;
576 }
577 
578 static void update_guest_context(struct intel_vgpu_workload *workload)
579 {
580 	struct intel_vgpu *vgpu = workload->vgpu;
581 	struct intel_gvt *gvt = vgpu->gvt;
582 	struct intel_vgpu_submission *s = &vgpu->submission;
583 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
584 	int ring_id = workload->ring_id;
585 	struct drm_i915_gem_object *ctx_obj =
586 		shadow_ctx->engine[ring_id].state->obj;
587 	struct execlist_ring_context *shadow_ring_context;
588 	struct page *page;
589 	void *src;
590 	unsigned long context_gpa, context_page_num;
591 	int i;
592 
593 	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
594 			workload->ctx_desc.lrca);
595 
596 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
597 
598 	context_page_num = context_page_num >> PAGE_SHIFT;
599 
600 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
601 		context_page_num = 19;
602 
603 	i = 2;
604 
605 	while (i < context_page_num) {
606 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
607 				(u32)((workload->ctx_desc.lrca + i) <<
608 					GTT_PAGE_SHIFT));
609 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
610 			gvt_vgpu_err("invalid guest context descriptor\n");
611 			return;
612 		}
613 
614 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
615 		src = kmap(page);
616 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
617 				GTT_PAGE_SIZE);
618 		kunmap(page);
619 		i++;
620 	}
621 
622 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
623 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
624 
625 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
626 	shadow_ring_context = kmap(page);
627 
628 #define COPY_REG(name) \
629 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
630 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
631 
632 	COPY_REG(ctx_ctrl);
633 	COPY_REG(ctx_timestamp);
634 
635 #undef COPY_REG
636 
637 	intel_gvt_hypervisor_write_gpa(vgpu,
638 			workload->ring_context_gpa +
639 			sizeof(*shadow_ring_context),
640 			(void *)shadow_ring_context +
641 			sizeof(*shadow_ring_context),
642 			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
643 
644 	kunmap(page);
645 }
646 
647 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
648 {
649 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
650 	struct intel_vgpu_workload *workload =
651 		scheduler->current_workload[ring_id];
652 	struct intel_vgpu *vgpu = workload->vgpu;
653 	struct intel_vgpu_submission *s = &vgpu->submission;
654 	int event;
655 
656 	mutex_lock(&gvt->lock);
657 
658 	/* For the workload w/ request, needs to wait for the context
659 	 * switch to make sure request is completed.
660 	 * For the workload w/o request, directly complete the workload.
661 	 */
662 	if (workload->req) {
663 		struct drm_i915_private *dev_priv =
664 			workload->vgpu->gvt->dev_priv;
665 		struct intel_engine_cs *engine =
666 			dev_priv->engine[workload->ring_id];
667 		wait_event(workload->shadow_ctx_status_wq,
668 			   !atomic_read(&workload->shadow_ctx_active));
669 
670 		/* If this request caused GPU hang, req->fence.error will
671 		 * be set to -EIO. Use -EIO to set workload status so
672 		 * that when this request caused GPU hang, didn't trigger
673 		 * context switch interrupt to guest.
674 		 */
675 		if (likely(workload->status == -EINPROGRESS)) {
676 			if (workload->req->fence.error == -EIO)
677 				workload->status = -EIO;
678 			else
679 				workload->status = 0;
680 		}
681 
682 		i915_gem_request_put(fetch_and_zero(&workload->req));
683 
684 		if (!workload->status && !(vgpu->resetting_eng &
685 					   ENGINE_MASK(ring_id))) {
686 			update_guest_context(workload);
687 
688 			for_each_set_bit(event, workload->pending_events,
689 					 INTEL_GVT_EVENT_MAX)
690 				intel_vgpu_trigger_virtual_event(vgpu, event);
691 		}
692 		mutex_lock(&dev_priv->drm.struct_mutex);
693 		/* unpin shadow ctx as the shadow_ctx update is done */
694 		engine->context_unpin(engine, s->shadow_ctx);
695 		mutex_unlock(&dev_priv->drm.struct_mutex);
696 	}
697 
698 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
699 			ring_id, workload, workload->status);
700 
701 	scheduler->current_workload[ring_id] = NULL;
702 
703 	list_del_init(&workload->list);
704 
705 	if (!workload->status) {
706 		release_shadow_batch_buffer(workload);
707 		release_shadow_wa_ctx(&workload->wa_ctx);
708 	}
709 
710 	workload->complete(workload);
711 
712 	atomic_dec(&s->running_workload_num);
713 	wake_up(&scheduler->workload_complete_wq);
714 
715 	if (gvt->scheduler.need_reschedule)
716 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
717 
718 	mutex_unlock(&gvt->lock);
719 }
720 
721 struct workload_thread_param {
722 	struct intel_gvt *gvt;
723 	int ring_id;
724 };
725 
726 static int workload_thread(void *priv)
727 {
728 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
729 	struct intel_gvt *gvt = p->gvt;
730 	int ring_id = p->ring_id;
731 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
732 	struct intel_vgpu_workload *workload = NULL;
733 	struct intel_vgpu *vgpu = NULL;
734 	int ret;
735 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
736 			|| IS_KABYLAKE(gvt->dev_priv);
737 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
738 
739 	kfree(p);
740 
741 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
742 
743 	while (!kthread_should_stop()) {
744 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
745 		do {
746 			workload = pick_next_workload(gvt, ring_id);
747 			if (workload)
748 				break;
749 			wait_woken(&wait, TASK_INTERRUPTIBLE,
750 				   MAX_SCHEDULE_TIMEOUT);
751 		} while (!kthread_should_stop());
752 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
753 
754 		if (!workload)
755 			break;
756 
757 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
758 				workload->ring_id, workload,
759 				workload->vgpu->id);
760 
761 		intel_runtime_pm_get(gvt->dev_priv);
762 
763 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
764 				workload->ring_id, workload);
765 
766 		if (need_force_wake)
767 			intel_uncore_forcewake_get(gvt->dev_priv,
768 					FORCEWAKE_ALL);
769 
770 		mutex_lock(&gvt->lock);
771 		ret = dispatch_workload(workload);
772 		mutex_unlock(&gvt->lock);
773 
774 		if (ret) {
775 			vgpu = workload->vgpu;
776 			gvt_vgpu_err("fail to dispatch workload, skip\n");
777 			goto complete;
778 		}
779 
780 		gvt_dbg_sched("ring id %d wait workload %p\n",
781 				workload->ring_id, workload);
782 		i915_wait_request(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
783 
784 complete:
785 		gvt_dbg_sched("will complete workload %p, status: %d\n",
786 				workload, workload->status);
787 
788 		complete_current_workload(gvt, ring_id);
789 
790 		if (need_force_wake)
791 			intel_uncore_forcewake_put(gvt->dev_priv,
792 					FORCEWAKE_ALL);
793 
794 		intel_runtime_pm_put(gvt->dev_priv);
795 		if (ret && (vgpu_is_vm_unhealthy(ret)))
796 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
797 	}
798 	return 0;
799 }
800 
801 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
802 {
803 	struct intel_vgpu_submission *s = &vgpu->submission;
804 	struct intel_gvt *gvt = vgpu->gvt;
805 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
806 
807 	if (atomic_read(&s->running_workload_num)) {
808 		gvt_dbg_sched("wait vgpu idle\n");
809 
810 		wait_event(scheduler->workload_complete_wq,
811 				!atomic_read(&s->running_workload_num));
812 	}
813 }
814 
815 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
816 {
817 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
818 	struct intel_engine_cs *engine;
819 	enum intel_engine_id i;
820 
821 	gvt_dbg_core("clean workload scheduler\n");
822 
823 	for_each_engine(engine, gvt->dev_priv, i) {
824 		atomic_notifier_chain_unregister(
825 					&engine->context_status_notifier,
826 					&gvt->shadow_ctx_notifier_block[i]);
827 		kthread_stop(scheduler->thread[i]);
828 	}
829 }
830 
831 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
832 {
833 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
834 	struct workload_thread_param *param = NULL;
835 	struct intel_engine_cs *engine;
836 	enum intel_engine_id i;
837 	int ret;
838 
839 	gvt_dbg_core("init workload scheduler\n");
840 
841 	init_waitqueue_head(&scheduler->workload_complete_wq);
842 
843 	for_each_engine(engine, gvt->dev_priv, i) {
844 		init_waitqueue_head(&scheduler->waitq[i]);
845 
846 		param = kzalloc(sizeof(*param), GFP_KERNEL);
847 		if (!param) {
848 			ret = -ENOMEM;
849 			goto err;
850 		}
851 
852 		param->gvt = gvt;
853 		param->ring_id = i;
854 
855 		scheduler->thread[i] = kthread_run(workload_thread, param,
856 			"gvt workload %d", i);
857 		if (IS_ERR(scheduler->thread[i])) {
858 			gvt_err("fail to create workload thread\n");
859 			ret = PTR_ERR(scheduler->thread[i]);
860 			goto err;
861 		}
862 
863 		gvt->shadow_ctx_notifier_block[i].notifier_call =
864 					shadow_context_status_change;
865 		atomic_notifier_chain_register(&engine->context_status_notifier,
866 					&gvt->shadow_ctx_notifier_block[i]);
867 	}
868 	return 0;
869 err:
870 	intel_gvt_clean_workload_scheduler(gvt);
871 	kfree(param);
872 	param = NULL;
873 	return ret;
874 }
875 
876 /**
877  * intel_vgpu_clean_submission - free submission-related resource for vGPU
878  * @vgpu: a vGPU
879  *
880  * This function is called when a vGPU is being destroyed.
881  *
882  */
883 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
884 {
885 	struct intel_vgpu_submission *s = &vgpu->submission;
886 
887 	i915_gem_context_put(s->shadow_ctx);
888 	kmem_cache_destroy(s->workloads);
889 }
890 
891 /**
892  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
893  * @vgpu: a vGPU
894  *
895  * This function is called when a vGPU is being created.
896  *
897  * Returns:
898  * Zero on success, negative error code if failed.
899  *
900  */
901 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
902 {
903 	struct intel_vgpu_submission *s = &vgpu->submission;
904 	enum intel_engine_id i;
905 	struct intel_engine_cs *engine;
906 	int ret;
907 
908 	s->shadow_ctx = i915_gem_context_create_gvt(
909 			&vgpu->gvt->dev_priv->drm);
910 	if (IS_ERR(s->shadow_ctx))
911 		return PTR_ERR(s->shadow_ctx);
912 
913 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
914 
915 	s->workloads = kmem_cache_create("gvt-g_vgpu_workload",
916 			sizeof(struct intel_vgpu_workload), 0,
917 			SLAB_HWCACHE_ALIGN,
918 			NULL);
919 
920 	if (!s->workloads) {
921 		ret = -ENOMEM;
922 		goto out_shadow_ctx;
923 	}
924 
925 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
926 		INIT_LIST_HEAD(&s->workload_q_head[i]);
927 
928 	atomic_set(&s->running_workload_num, 0);
929 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
930 
931 	return 0;
932 
933 out_shadow_ctx:
934 	i915_gem_context_put(s->shadow_ctx);
935 	return ret;
936 }
937 
938 /**
939  * intel_vgpu_destroy_workload - destroy a vGPU workload
940  * @vgpu: a vGPU
941  *
942  * This function is called when destroy a vGPU workload.
943  *
944  */
945 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
946 {
947 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
948 
949 	if (workload->shadow_mm)
950 		intel_gvt_mm_unreference(workload->shadow_mm);
951 
952 	kmem_cache_free(s->workloads, workload);
953 }
954 
955 static struct intel_vgpu_workload *
956 alloc_workload(struct intel_vgpu *vgpu)
957 {
958 	struct intel_vgpu_submission *s = &vgpu->submission;
959 	struct intel_vgpu_workload *workload;
960 
961 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
962 	if (!workload)
963 		return ERR_PTR(-ENOMEM);
964 
965 	INIT_LIST_HEAD(&workload->list);
966 	INIT_LIST_HEAD(&workload->shadow_bb);
967 
968 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
969 	atomic_set(&workload->shadow_ctx_active, 0);
970 
971 	workload->status = -EINPROGRESS;
972 	workload->shadowed = false;
973 	workload->vgpu = vgpu;
974 
975 	return workload;
976 }
977 
978 #define RING_CTX_OFF(x) \
979 	offsetof(struct execlist_ring_context, x)
980 
981 static void read_guest_pdps(struct intel_vgpu *vgpu,
982 		u64 ring_context_gpa, u32 pdp[8])
983 {
984 	u64 gpa;
985 	int i;
986 
987 	gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
988 
989 	for (i = 0; i < 8; i++)
990 		intel_gvt_hypervisor_read_gpa(vgpu,
991 				gpa + i * 8, &pdp[7 - i], 4);
992 }
993 
994 static int prepare_mm(struct intel_vgpu_workload *workload)
995 {
996 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
997 	struct intel_vgpu_mm *mm;
998 	struct intel_vgpu *vgpu = workload->vgpu;
999 	int page_table_level;
1000 	u32 pdp[8];
1001 
1002 	if (desc->addressing_mode == 1) { /* legacy 32-bit */
1003 		page_table_level = 3;
1004 	} else if (desc->addressing_mode == 3) { /* legacy 64 bit */
1005 		page_table_level = 4;
1006 	} else {
1007 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1008 		return -EINVAL;
1009 	}
1010 
1011 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
1012 
1013 	mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
1014 	if (mm) {
1015 		intel_gvt_mm_reference(mm);
1016 	} else {
1017 
1018 		mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
1019 				pdp, page_table_level, 0);
1020 		if (IS_ERR(mm)) {
1021 			gvt_vgpu_err("fail to create mm object.\n");
1022 			return PTR_ERR(mm);
1023 		}
1024 	}
1025 	workload->shadow_mm = mm;
1026 	return 0;
1027 }
1028 
1029 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1030 		((a)->lrca == (b)->lrca))
1031 
1032 #define get_last_workload(q) \
1033 	(list_empty(q) ? NULL : container_of(q->prev, \
1034 	struct intel_vgpu_workload, list))
1035 /**
1036  * intel_vgpu_create_workload - create a vGPU workload
1037  * @vgpu: a vGPU
1038  * @desc: a guest context descriptor
1039  *
1040  * This function is called when creating a vGPU workload.
1041  *
1042  * Returns:
1043  * struct intel_vgpu_workload * on success, negative error code in
1044  * pointer if failed.
1045  *
1046  */
1047 struct intel_vgpu_workload *
1048 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1049 			   struct execlist_ctx_descriptor_format *desc)
1050 {
1051 	struct intel_vgpu_submission *s = &vgpu->submission;
1052 	struct list_head *q = workload_q_head(vgpu, ring_id);
1053 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1054 	struct intel_vgpu_workload *workload = NULL;
1055 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1056 	u64 ring_context_gpa;
1057 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1058 	int ret;
1059 
1060 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1061 			(u32)((desc->lrca + 1) << GTT_PAGE_SHIFT));
1062 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1063 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1064 		return ERR_PTR(-EINVAL);
1065 	}
1066 
1067 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1068 			RING_CTX_OFF(ring_header.val), &head, 4);
1069 
1070 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1071 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1072 
1073 	head &= RB_HEAD_OFF_MASK;
1074 	tail &= RB_TAIL_OFF_MASK;
1075 
1076 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1077 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1078 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1079 				last_workload->rb_tail);
1080 		/*
1081 		 * cannot use guest context head pointer here,
1082 		 * as it might not be updated at this time
1083 		 */
1084 		head = last_workload->rb_tail;
1085 	}
1086 
1087 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1088 
1089 	/* record some ring buffer register values for scan and shadow */
1090 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1091 			RING_CTX_OFF(rb_start.val), &start, 4);
1092 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1093 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1094 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1095 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1096 
1097 	workload = alloc_workload(vgpu);
1098 	if (IS_ERR(workload))
1099 		return workload;
1100 
1101 	workload->ring_id = ring_id;
1102 	workload->ctx_desc = *desc;
1103 	workload->ring_context_gpa = ring_context_gpa;
1104 	workload->rb_head = head;
1105 	workload->rb_tail = tail;
1106 	workload->rb_start = start;
1107 	workload->rb_ctl = ctl;
1108 
1109 	if (ring_id == RCS) {
1110 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1111 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1112 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1113 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1114 
1115 		workload->wa_ctx.indirect_ctx.guest_gma =
1116 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1117 		workload->wa_ctx.indirect_ctx.size =
1118 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1119 			CACHELINE_BYTES;
1120 		workload->wa_ctx.per_ctx.guest_gma =
1121 			per_ctx & PER_CTX_ADDR_MASK;
1122 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1123 	}
1124 
1125 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1126 			workload, ring_id, head, tail, start, ctl);
1127 
1128 	ret = prepare_mm(workload);
1129 	if (ret) {
1130 		kmem_cache_free(s->workloads, workload);
1131 		return ERR_PTR(ret);
1132 	}
1133 
1134 	/* Only scan and shadow the first workload in the queue
1135 	 * as there is only one pre-allocated buf-obj for shadow.
1136 	 */
1137 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1138 		intel_runtime_pm_get(dev_priv);
1139 		mutex_lock(&dev_priv->drm.struct_mutex);
1140 		ret = intel_gvt_scan_and_shadow_workload(workload);
1141 		mutex_unlock(&dev_priv->drm.struct_mutex);
1142 		intel_runtime_pm_put(dev_priv);
1143 	}
1144 
1145 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1146 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1147 		intel_vgpu_destroy_workload(workload);
1148 		return ERR_PTR(ret);
1149 	}
1150 
1151 	return workload;
1152 }
1153