xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision f56fe3e91787dc29c2a3e7ec8b7bc3b80f65fbbc)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_reg.h"
34 #include "i915_trace.h"
35 #include "i915_user_extensions.h"
36 
37 struct eb_vma {
38 	struct i915_vma *vma;
39 	unsigned int flags;
40 
41 	/** This vma's place in the execbuf reservation list */
42 	struct drm_i915_gem_exec_object2 *exec;
43 	struct list_head bind_link;
44 	struct list_head reloc_link;
45 
46 	struct hlist_node node;
47 	u32 handle;
48 };
49 
50 enum {
51 	FORCE_CPU_RELOC = 1,
52 	FORCE_GTT_RELOC,
53 	FORCE_GPU_RELOC,
54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
55 };
56 
57 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
58 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
59 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
60 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
61 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
62 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
63 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
65 
66 #define __EXEC_HAS_RELOC	BIT(31)
67 #define __EXEC_ENGINE_PINNED	BIT(30)
68 #define __EXEC_USERPTR_USED	BIT(29)
69 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
70 #define UPDATE			PIN_OFFSET_FIXED
71 
72 #define BATCH_OFFSET_BIAS (256*1024)
73 
74 #define __I915_EXEC_ILLEGAL_FLAGS \
75 	(__I915_EXEC_UNKNOWN_FLAGS | \
76 	 I915_EXEC_CONSTANTS_MASK  | \
77 	 I915_EXEC_RESOURCE_STREAMER)
78 
79 /* Catch emission of unexpected errors for CI! */
80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81 #undef EINVAL
82 #define EINVAL ({ \
83 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84 	22; \
85 })
86 #endif
87 
88 /**
89  * DOC: User command execution
90  *
91  * Userspace submits commands to be executed on the GPU as an instruction
92  * stream within a GEM object we call a batchbuffer. This instructions may
93  * refer to other GEM objects containing auxiliary state such as kernels,
94  * samplers, render targets and even secondary batchbuffers. Userspace does
95  * not know where in the GPU memory these objects reside and so before the
96  * batchbuffer is passed to the GPU for execution, those addresses in the
97  * batchbuffer and auxiliary objects are updated. This is known as relocation,
98  * or patching. To try and avoid having to relocate each object on the next
99  * execution, userspace is told the location of those objects in this pass,
100  * but this remains just a hint as the kernel may choose a new location for
101  * any object in the future.
102  *
103  * At the level of talking to the hardware, submitting a batchbuffer for the
104  * GPU to execute is to add content to a buffer from which the HW
105  * command streamer is reading.
106  *
107  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108  *    Execlists, this command is not placed on the same buffer as the
109  *    remaining items.
110  *
111  * 2. Add a command to invalidate caches to the buffer.
112  *
113  * 3. Add a batchbuffer start command to the buffer; the start command is
114  *    essentially a token together with the GPU address of the batchbuffer
115  *    to be executed.
116  *
117  * 4. Add a pipeline flush to the buffer.
118  *
119  * 5. Add a memory write command to the buffer to record when the GPU
120  *    is done executing the batchbuffer. The memory write writes the
121  *    global sequence number of the request, ``i915_request::global_seqno``;
122  *    the i915 driver uses the current value in the register to determine
123  *    if the GPU has completed the batchbuffer.
124  *
125  * 6. Add a user interrupt command to the buffer. This command instructs
126  *    the GPU to issue an interrupt when the command, pipeline flush and
127  *    memory write are completed.
128  *
129  * 7. Inform the hardware of the additional commands added to the buffer
130  *    (by updating the tail pointer).
131  *
132  * Processing an execbuf ioctl is conceptually split up into a few phases.
133  *
134  * 1. Validation - Ensure all the pointers, handles and flags are valid.
135  * 2. Reservation - Assign GPU address space for every object
136  * 3. Relocation - Update any addresses to point to the final locations
137  * 4. Serialisation - Order the request with respect to its dependencies
138  * 5. Construction - Construct a request to execute the batchbuffer
139  * 6. Submission (at some point in the future execution)
140  *
141  * Reserving resources for the execbuf is the most complicated phase. We
142  * neither want to have to migrate the object in the address space, nor do
143  * we want to have to update any relocations pointing to this object. Ideally,
144  * we want to leave the object where it is and for all the existing relocations
145  * to match. If the object is given a new address, or if userspace thinks the
146  * object is elsewhere, we have to parse all the relocation entries and update
147  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148  * all the target addresses in all of its objects match the value in the
149  * relocation entries and that they all match the presumed offsets given by the
150  * list of execbuffer objects. Using this knowledge, we know that if we haven't
151  * moved any buffers, all the relocation entries are valid and we can skip
152  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154  *
155  *      The addresses written in the objects must match the corresponding
156  *      reloc.presumed_offset which in turn must match the corresponding
157  *      execobject.offset.
158  *
159  *      Any render targets written to in the batch must be flagged with
160  *      EXEC_OBJECT_WRITE.
161  *
162  *      To avoid stalling, execobject.offset should match the current
163  *      address of that object within the active context.
164  *
165  * The reservation is done is multiple phases. First we try and keep any
166  * object already bound in its current location - so as long as meets the
167  * constraints imposed by the new execbuffer. Any object left unbound after the
168  * first pass is then fitted into any available idle space. If an object does
169  * not fit, all objects are removed from the reservation and the process rerun
170  * after sorting the objects into a priority order (more difficult to fit
171  * objects are tried first). Failing that, the entire VM is cleared and we try
172  * to fit the execbuf once last time before concluding that it simply will not
173  * fit.
174  *
175  * A small complication to all of this is that we allow userspace not only to
176  * specify an alignment and a size for the object in the address space, but
177  * we also allow userspace to specify the exact offset. This objects are
178  * simpler to place (the location is known a priori) all we have to do is make
179  * sure the space is available.
180  *
181  * Once all the objects are in place, patching up the buried pointers to point
182  * to the final locations is a fairly simple job of walking over the relocation
183  * entry arrays, looking up the right address and rewriting the value into
184  * the object. Simple! ... The relocation entries are stored in user memory
185  * and so to access them we have to copy them into a local buffer. That copy
186  * has to avoid taking any pagefaults as they may lead back to a GEM object
187  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188  * the relocation into multiple passes. First we try to do everything within an
189  * atomic context (avoid the pagefaults) which requires that we never wait. If
190  * we detect that we may wait, or if we need to fault, then we have to fallback
191  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192  * bells yet?) Dropping the mutex means that we lose all the state we have
193  * built up so far for the execbuf and we must reset any global data. However,
194  * we do leave the objects pinned in their final locations - which is a
195  * potential issue for concurrent execbufs. Once we have left the mutex, we can
196  * allocate and copy all the relocation entries into a large array at our
197  * leisure, reacquire the mutex, reclaim all the objects and other state and
198  * then proceed to update any incorrect addresses with the objects.
199  *
200  * As we process the relocation entries, we maintain a record of whether the
201  * object is being written to. Using NORELOC, we expect userspace to provide
202  * this information instead. We also check whether we can skip the relocation
203  * by comparing the expected value inside the relocation entry with the target's
204  * final address. If they differ, we have to map the current object and rewrite
205  * the 4 or 8 byte pointer within.
206  *
207  * Serialising an execbuf is quite simple according to the rules of the GEM
208  * ABI. Execution within each context is ordered by the order of submission.
209  * Writes to any GEM object are in order of submission and are exclusive. Reads
210  * from a GEM object are unordered with respect to other reads, but ordered by
211  * writes. A write submitted after a read cannot occur before the read, and
212  * similarly any read submitted after a write cannot occur before the write.
213  * Writes are ordered between engines such that only one write occurs at any
214  * time (completing any reads beforehand) - using semaphores where available
215  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217  * reads before starting, and any read (either using set-domain or pread) must
218  * flush all GPU writes before starting. (Note we only employ a barrier before,
219  * we currently rely on userspace not concurrently starting a new execution
220  * whilst reading or writing to an object. This may be an advantage or not
221  * depending on how much you trust userspace not to shoot themselves in the
222  * foot.) Serialisation may just result in the request being inserted into
223  * a DAG awaiting its turn, but most simple is to wait on the CPU until
224  * all dependencies are resolved.
225  *
226  * After all of that, is just a matter of closing the request and handing it to
227  * the hardware (well, leaving it in a queue to be executed). However, we also
228  * offer the ability for batchbuffers to be run with elevated privileges so
229  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230  * Before any batch is given extra privileges we first must check that it
231  * contains no nefarious instructions, we check that each instruction is from
232  * our whitelist and all registers are also from an allowed list. We first
233  * copy the user's batchbuffer to a shadow (so that the user doesn't have
234  * access to it, either by the CPU or GPU as we scan it) and then parse each
235  * instruction. If everything is ok, we set a flag telling the hardware to run
236  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237  */
238 
239 struct eb_fence {
240 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241 	struct dma_fence *dma_fence;
242 	u64 value;
243 	struct dma_fence_chain *chain_fence;
244 };
245 
246 struct i915_execbuffer {
247 	struct drm_i915_private *i915; /** i915 backpointer */
248 	struct drm_file *file; /** per-file lookup tables and limits */
249 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
251 	struct eb_vma *vma;
252 
253 	struct intel_gt *gt; /* gt for the execbuf */
254 	struct intel_context *context; /* logical state for the request */
255 	struct i915_gem_context *gem_context; /** caller's context */
256 
257 	/** our requests to build */
258 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259 	/** identity of the batch obj/vma */
260 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
261 	struct i915_vma *trampoline; /** trampoline used for chaining */
262 
263 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
264 	struct dma_fence *composite_fence;
265 
266 	/** actual size of execobj[] as we may extend it for the cmdparser */
267 	unsigned int buffer_count;
268 
269 	/* number of batches in execbuf IOCTL */
270 	unsigned int num_batches;
271 
272 	/** list of vma not yet bound during reservation phase */
273 	struct list_head unbound;
274 
275 	/** list of vma that have execobj.relocation_count */
276 	struct list_head relocs;
277 
278 	struct i915_gem_ww_ctx ww;
279 
280 	/**
281 	 * Track the most recently used object for relocations, as we
282 	 * frequently have to perform multiple relocations within the same
283 	 * obj/page
284 	 */
285 	struct reloc_cache {
286 		struct drm_mm_node node; /** temporary GTT binding */
287 		unsigned long vaddr; /** Current kmap address */
288 		unsigned long page; /** Currently mapped page index */
289 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
290 		bool use_64bit_reloc : 1;
291 		bool has_llc : 1;
292 		bool has_fence : 1;
293 		bool needs_unfenced : 1;
294 	} reloc_cache;
295 
296 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
297 
298 	/** Length of batch within object */
299 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
300 	u32 batch_start_offset; /** Location within object of batch */
301 	u32 batch_flags; /** Flags composed for emit_bb_start() */
302 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
303 
304 	/**
305 	 * Indicate either the size of the hastable used to resolve
306 	 * relocation handles, or if negative that we are using a direct
307 	 * index into the execobj[].
308 	 */
309 	int lut_size;
310 	struct hlist_head *buckets; /** ht for relocation handles */
311 
312 	struct eb_fence *fences;
313 	unsigned long num_fences;
314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316 #endif
317 };
318 
319 static int eb_parse(struct i915_execbuffer *eb);
320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
321 static void eb_unpin_engine(struct i915_execbuffer *eb);
322 static void eb_capture_release(struct i915_execbuffer *eb);
323 
324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325 {
326 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
327 		(intel_engine_using_cmd_parser(eb->context->engine) &&
328 		 eb->args->batch_len);
329 }
330 
331 static int eb_create(struct i915_execbuffer *eb)
332 {
333 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334 		unsigned int size = 1 + ilog2(eb->buffer_count);
335 
336 		/*
337 		 * Without a 1:1 association between relocation handles and
338 		 * the execobject[] index, we instead create a hashtable.
339 		 * We size it dynamically based on available memory, starting
340 		 * first with 1:1 assocative hash and scaling back until
341 		 * the allocation succeeds.
342 		 *
343 		 * Later on we use a positive lut_size to indicate we are
344 		 * using this hashtable, and a negative value to indicate a
345 		 * direct lookup.
346 		 */
347 		do {
348 			gfp_t flags;
349 
350 			/* While we can still reduce the allocation size, don't
351 			 * raise a warning and allow the allocation to fail.
352 			 * On the last pass though, we want to try as hard
353 			 * as possible to perform the allocation and warn
354 			 * if it fails.
355 			 */
356 			flags = GFP_KERNEL;
357 			if (size > 1)
358 				flags |= __GFP_NORETRY | __GFP_NOWARN;
359 
360 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
361 					      flags);
362 			if (eb->buckets)
363 				break;
364 		} while (--size);
365 
366 		if (unlikely(!size))
367 			return -ENOMEM;
368 
369 		eb->lut_size = size;
370 	} else {
371 		eb->lut_size = -eb->buffer_count;
372 	}
373 
374 	return 0;
375 }
376 
377 static bool
378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
379 		 const struct i915_vma *vma,
380 		 unsigned int flags)
381 {
382 	const u64 start = i915_vma_offset(vma);
383 	const u64 size = i915_vma_size(vma);
384 
385 	if (size < entry->pad_to_size)
386 		return true;
387 
388 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
389 		return true;
390 
391 	if (flags & EXEC_OBJECT_PINNED &&
392 	    start != entry->offset)
393 		return true;
394 
395 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
396 	    start < BATCH_OFFSET_BIAS)
397 		return true;
398 
399 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
400 	    (start + size + 4095) >> 32)
401 		return true;
402 
403 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
404 	    !i915_vma_is_map_and_fenceable(vma))
405 		return true;
406 
407 	return false;
408 }
409 
410 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
411 			unsigned int exec_flags)
412 {
413 	u64 pin_flags = 0;
414 
415 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
416 		pin_flags |= PIN_GLOBAL;
417 
418 	/*
419 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
420 	 * limit address to the first 4GBs for unflagged objects.
421 	 */
422 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
423 		pin_flags |= PIN_ZONE_4G;
424 
425 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
426 		pin_flags |= PIN_MAPPABLE;
427 
428 	if (exec_flags & EXEC_OBJECT_PINNED)
429 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
430 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
431 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
432 
433 	return pin_flags;
434 }
435 
436 static inline int
437 eb_pin_vma(struct i915_execbuffer *eb,
438 	   const struct drm_i915_gem_exec_object2 *entry,
439 	   struct eb_vma *ev)
440 {
441 	struct i915_vma *vma = ev->vma;
442 	u64 pin_flags;
443 	int err;
444 
445 	if (vma->node.size)
446 		pin_flags =  __i915_vma_offset(vma);
447 	else
448 		pin_flags = entry->offset & PIN_OFFSET_MASK;
449 
450 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
451 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
452 		pin_flags |= PIN_GLOBAL;
453 
454 	/* Attempt to reuse the current location if available */
455 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
456 	if (err == -EDEADLK)
457 		return err;
458 
459 	if (unlikely(err)) {
460 		if (entry->flags & EXEC_OBJECT_PINNED)
461 			return err;
462 
463 		/* Failing that pick any _free_ space if suitable */
464 		err = i915_vma_pin_ww(vma, &eb->ww,
465 					     entry->pad_to_size,
466 					     entry->alignment,
467 					     eb_pin_flags(entry, ev->flags) |
468 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
469 		if (unlikely(err))
470 			return err;
471 	}
472 
473 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
474 		err = i915_vma_pin_fence(vma);
475 		if (unlikely(err))
476 			return err;
477 
478 		if (vma->fence)
479 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
480 	}
481 
482 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
483 	if (eb_vma_misplaced(entry, vma, ev->flags))
484 		return -EBADSLT;
485 
486 	return 0;
487 }
488 
489 static inline void
490 eb_unreserve_vma(struct eb_vma *ev)
491 {
492 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
493 		__i915_vma_unpin_fence(ev->vma);
494 
495 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
496 }
497 
498 static int
499 eb_validate_vma(struct i915_execbuffer *eb,
500 		struct drm_i915_gem_exec_object2 *entry,
501 		struct i915_vma *vma)
502 {
503 	/* Relocations are disallowed for all platforms after TGL-LP.  This
504 	 * also covers all platforms with local memory.
505 	 */
506 	if (entry->relocation_count &&
507 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
508 		return -EINVAL;
509 
510 	if (unlikely(entry->flags & eb->invalid_flags))
511 		return -EINVAL;
512 
513 	if (unlikely(entry->alignment &&
514 		     !is_power_of_2_u64(entry->alignment)))
515 		return -EINVAL;
516 
517 	/*
518 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519 	 * any non-page-aligned or non-canonical addresses.
520 	 */
521 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523 		return -EINVAL;
524 
525 	/* pad_to_size was once a reserved field, so sanitize it */
526 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527 		if (unlikely(offset_in_page(entry->pad_to_size)))
528 			return -EINVAL;
529 	} else {
530 		entry->pad_to_size = 0;
531 	}
532 	/*
533 	 * From drm_mm perspective address space is continuous,
534 	 * so from this point we're always using non-canonical
535 	 * form internally.
536 	 */
537 	entry->offset = gen8_noncanonical_addr(entry->offset);
538 
539 	if (!eb->reloc_cache.has_fence) {
540 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541 	} else {
542 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543 		     eb->reloc_cache.needs_unfenced) &&
544 		    i915_gem_object_is_tiled(vma->obj))
545 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546 	}
547 
548 	return 0;
549 }
550 
551 static inline bool
552 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
553 {
554 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
555 		buffer_idx < eb->num_batches :
556 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
557 }
558 
559 static int
560 eb_add_vma(struct i915_execbuffer *eb,
561 	   unsigned int *current_batch,
562 	   unsigned int i,
563 	   struct i915_vma *vma)
564 {
565 	struct drm_i915_private *i915 = eb->i915;
566 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
567 	struct eb_vma *ev = &eb->vma[i];
568 
569 	ev->vma = vma;
570 	ev->exec = entry;
571 	ev->flags = entry->flags;
572 
573 	if (eb->lut_size > 0) {
574 		ev->handle = entry->handle;
575 		hlist_add_head(&ev->node,
576 			       &eb->buckets[hash_32(entry->handle,
577 						    eb->lut_size)]);
578 	}
579 
580 	if (entry->relocation_count)
581 		list_add_tail(&ev->reloc_link, &eb->relocs);
582 
583 	/*
584 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
585 	 * to negative relocation deltas. Usually that works out ok since the
586 	 * relocate address is still positive, except when the batch is placed
587 	 * very low in the GTT. Ensure this doesn't happen.
588 	 *
589 	 * Note that actual hangs have only been observed on gen7, but for
590 	 * paranoia do it everywhere.
591 	 */
592 	if (is_batch_buffer(eb, i)) {
593 		if (entry->relocation_count &&
594 		    !(ev->flags & EXEC_OBJECT_PINNED))
595 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
596 		if (eb->reloc_cache.has_fence)
597 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
598 
599 		eb->batches[*current_batch] = ev;
600 
601 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
602 			drm_dbg(&i915->drm,
603 				"Attempting to use self-modifying batch buffer\n");
604 			return -EINVAL;
605 		}
606 
607 		if (range_overflows_t(u64,
608 				      eb->batch_start_offset,
609 				      eb->args->batch_len,
610 				      ev->vma->size)) {
611 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
612 			return -EINVAL;
613 		}
614 
615 		if (eb->args->batch_len == 0)
616 			eb->batch_len[*current_batch] = ev->vma->size -
617 				eb->batch_start_offset;
618 		else
619 			eb->batch_len[*current_batch] = eb->args->batch_len;
620 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
621 			drm_dbg(&i915->drm, "Invalid batch length\n");
622 			return -EINVAL;
623 		}
624 
625 		++*current_batch;
626 	}
627 
628 	return 0;
629 }
630 
631 static inline int use_cpu_reloc(const struct reloc_cache *cache,
632 				const struct drm_i915_gem_object *obj)
633 {
634 	if (!i915_gem_object_has_struct_page(obj))
635 		return false;
636 
637 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
638 		return true;
639 
640 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
641 		return false;
642 
643 	/*
644 	 * For objects created by userspace through GEM_CREATE with pat_index
645 	 * set by set_pat extension, i915_gem_object_has_cache_level() always
646 	 * return true, otherwise the call would fall back to checking whether
647 	 * the object is un-cached.
648 	 */
649 	return (cache->has_llc ||
650 		obj->cache_dirty ||
651 		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
652 }
653 
654 static int eb_reserve_vma(struct i915_execbuffer *eb,
655 			  struct eb_vma *ev,
656 			  u64 pin_flags)
657 {
658 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
659 	struct i915_vma *vma = ev->vma;
660 	int err;
661 
662 	if (drm_mm_node_allocated(&vma->node) &&
663 	    eb_vma_misplaced(entry, vma, ev->flags)) {
664 		err = i915_vma_unbind(vma);
665 		if (err)
666 			return err;
667 	}
668 
669 	err = i915_vma_pin_ww(vma, &eb->ww,
670 			   entry->pad_to_size, entry->alignment,
671 			   eb_pin_flags(entry, ev->flags) | pin_flags);
672 	if (err)
673 		return err;
674 
675 	if (entry->offset != i915_vma_offset(vma)) {
676 		entry->offset = i915_vma_offset(vma) | UPDATE;
677 		eb->args->flags |= __EXEC_HAS_RELOC;
678 	}
679 
680 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
681 		err = i915_vma_pin_fence(vma);
682 		if (unlikely(err))
683 			return err;
684 
685 		if (vma->fence)
686 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
687 	}
688 
689 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
690 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
691 
692 	return 0;
693 }
694 
695 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
696 {
697 	const unsigned int count = eb->buffer_count;
698 	unsigned int i;
699 	struct list_head last;
700 	bool unpinned = false;
701 
702 	/* Resort *all* the objects into priority order */
703 	INIT_LIST_HEAD(&eb->unbound);
704 	INIT_LIST_HEAD(&last);
705 
706 	for (i = 0; i < count; i++) {
707 		struct eb_vma *ev = &eb->vma[i];
708 		unsigned int flags = ev->flags;
709 
710 		if (!force && flags & EXEC_OBJECT_PINNED &&
711 		    flags & __EXEC_OBJECT_HAS_PIN)
712 			continue;
713 
714 		unpinned = true;
715 		eb_unreserve_vma(ev);
716 
717 		if (flags & EXEC_OBJECT_PINNED)
718 			/* Pinned must have their slot */
719 			list_add(&ev->bind_link, &eb->unbound);
720 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
721 			/* Map require the lowest 256MiB (aperture) */
722 			list_add_tail(&ev->bind_link, &eb->unbound);
723 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
724 			/* Prioritise 4GiB region for restricted bo */
725 			list_add(&ev->bind_link, &last);
726 		else
727 			list_add_tail(&ev->bind_link, &last);
728 	}
729 
730 	list_splice_tail(&last, &eb->unbound);
731 	return unpinned;
732 }
733 
734 static int eb_reserve(struct i915_execbuffer *eb)
735 {
736 	struct eb_vma *ev;
737 	unsigned int pass;
738 	int err = 0;
739 	bool unpinned;
740 
741 	/*
742 	 * We have one more buffers that we couldn't bind, which could be due to
743 	 * various reasons. To resolve this we have 4 passes, with every next
744 	 * level turning the screws tighter:
745 	 *
746 	 * 0. Unbind all objects that do not match the GTT constraints for the
747 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
748 	 * objects.  This avoids unnecessary unbinding of later objects in order
749 	 * to make room for the earlier objects *unless* we need to defragment.
750 	 *
751 	 * 1. Reorder the buffers, where objects with the most restrictive
752 	 * placement requirements go first (ignoring fixed location buffers for
753 	 * now).  For example, objects needing the mappable aperture (the first
754 	 * 256M of GTT), should go first vs objects that can be placed just
755 	 * about anywhere. Repeat the previous pass.
756 	 *
757 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
758 	 * evict the entire VM this time, leaving only objects that we were
759 	 * unable to lock. Try again to bind the buffers. (still using the new
760 	 * buffer order).
761 	 *
762 	 * 3. We likely have object lock contention for one or more stubborn
763 	 * objects in the VM, for which we need to evict to make forward
764 	 * progress (perhaps we are fighting the shrinker?). When evicting the
765 	 * VM this time around, anything that we can't lock we now track using
766 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
767 	 * prevent deadlocks), instead of trylock. We then continue to evict the
768 	 * VM, this time with the stubborn object locked, which we can now
769 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
770 	 * evicted. Finally we should be able bind everything.
771 	 */
772 	for (pass = 0; pass <= 3; pass++) {
773 		int pin_flags = PIN_USER | PIN_VALIDATE;
774 
775 		if (pass == 0)
776 			pin_flags |= PIN_NONBLOCK;
777 
778 		if (pass >= 1)
779 			unpinned = eb_unbind(eb, pass >= 2);
780 
781 		if (pass == 2) {
782 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
783 			if (!err) {
784 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
785 				mutex_unlock(&eb->context->vm->mutex);
786 			}
787 			if (err)
788 				return err;
789 		}
790 
791 		if (pass == 3) {
792 retry:
793 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
794 			if (!err) {
795 				struct drm_i915_gem_object *busy_bo = NULL;
796 
797 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
798 				mutex_unlock(&eb->context->vm->mutex);
799 				if (err && busy_bo) {
800 					err = i915_gem_object_lock(busy_bo, &eb->ww);
801 					i915_gem_object_put(busy_bo);
802 					if (!err)
803 						goto retry;
804 				}
805 			}
806 			if (err)
807 				return err;
808 		}
809 
810 		list_for_each_entry(ev, &eb->unbound, bind_link) {
811 			err = eb_reserve_vma(eb, ev, pin_flags);
812 			if (err)
813 				break;
814 		}
815 
816 		if (err != -ENOSPC)
817 			break;
818 	}
819 
820 	return err;
821 }
822 
823 static int eb_select_context(struct i915_execbuffer *eb)
824 {
825 	struct i915_gem_context *ctx;
826 
827 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
828 	if (unlikely(IS_ERR(ctx)))
829 		return PTR_ERR(ctx);
830 
831 	eb->gem_context = ctx;
832 	if (i915_gem_context_has_full_ppgtt(ctx))
833 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
834 
835 	return 0;
836 }
837 
838 static int __eb_add_lut(struct i915_execbuffer *eb,
839 			u32 handle, struct i915_vma *vma)
840 {
841 	struct i915_gem_context *ctx = eb->gem_context;
842 	struct i915_lut_handle *lut;
843 	int err;
844 
845 	lut = i915_lut_handle_alloc();
846 	if (unlikely(!lut))
847 		return -ENOMEM;
848 
849 	i915_vma_get(vma);
850 	if (!atomic_fetch_inc(&vma->open_count))
851 		i915_vma_reopen(vma);
852 	lut->handle = handle;
853 	lut->ctx = ctx;
854 
855 	/* Check that the context hasn't been closed in the meantime */
856 	err = -EINTR;
857 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
858 		if (likely(!i915_gem_context_is_closed(ctx)))
859 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
860 		else
861 			err = -ENOENT;
862 		if (err == 0) { /* And nor has this handle */
863 			struct drm_i915_gem_object *obj = vma->obj;
864 
865 			spin_lock(&obj->lut_lock);
866 			if (idr_find(&eb->file->object_idr, handle) == obj) {
867 				list_add(&lut->obj_link, &obj->lut_list);
868 			} else {
869 				radix_tree_delete(&ctx->handles_vma, handle);
870 				err = -ENOENT;
871 			}
872 			spin_unlock(&obj->lut_lock);
873 		}
874 		mutex_unlock(&ctx->lut_mutex);
875 	}
876 	if (unlikely(err))
877 		goto err;
878 
879 	return 0;
880 
881 err:
882 	i915_vma_close(vma);
883 	i915_vma_put(vma);
884 	i915_lut_handle_free(lut);
885 	return err;
886 }
887 
888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
889 {
890 	struct i915_address_space *vm = eb->context->vm;
891 
892 	do {
893 		struct drm_i915_gem_object *obj;
894 		struct i915_vma *vma;
895 		int err;
896 
897 		rcu_read_lock();
898 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
899 		if (likely(vma && vma->vm == vm))
900 			vma = i915_vma_tryget(vma);
901 		rcu_read_unlock();
902 		if (likely(vma))
903 			return vma;
904 
905 		obj = i915_gem_object_lookup(eb->file, handle);
906 		if (unlikely(!obj))
907 			return ERR_PTR(-ENOENT);
908 
909 		/*
910 		 * If the user has opted-in for protected-object tracking, make
911 		 * sure the object encryption can be used.
912 		 * We only need to do this when the object is first used with
913 		 * this context, because the context itself will be banned when
914 		 * the protected objects become invalid.
915 		 */
916 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
917 		    i915_gem_object_is_protected(obj)) {
918 			err = intel_pxp_key_check(eb->i915->pxp, obj, true);
919 			if (err) {
920 				i915_gem_object_put(obj);
921 				return ERR_PTR(err);
922 			}
923 		}
924 
925 		vma = i915_vma_instance(obj, vm, NULL);
926 		if (IS_ERR(vma)) {
927 			i915_gem_object_put(obj);
928 			return vma;
929 		}
930 
931 		err = __eb_add_lut(eb, handle, vma);
932 		if (likely(!err))
933 			return vma;
934 
935 		i915_gem_object_put(obj);
936 		if (err != -EEXIST)
937 			return ERR_PTR(err);
938 	} while (1);
939 }
940 
941 static int eb_lookup_vmas(struct i915_execbuffer *eb)
942 {
943 	unsigned int i, current_batch = 0;
944 	int err = 0;
945 
946 	INIT_LIST_HEAD(&eb->relocs);
947 
948 	for (i = 0; i < eb->buffer_count; i++) {
949 		struct i915_vma *vma;
950 
951 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
952 		if (IS_ERR(vma)) {
953 			err = PTR_ERR(vma);
954 			goto err;
955 		}
956 
957 		err = eb_validate_vma(eb, &eb->exec[i], vma);
958 		if (unlikely(err)) {
959 			i915_vma_put(vma);
960 			goto err;
961 		}
962 
963 		err = eb_add_vma(eb, &current_batch, i, vma);
964 		if (err)
965 			return err;
966 
967 		if (i915_gem_object_is_userptr(vma->obj)) {
968 			err = i915_gem_object_userptr_submit_init(vma->obj);
969 			if (err) {
970 				if (i + 1 < eb->buffer_count) {
971 					/*
972 					 * Execbuffer code expects last vma entry to be NULL,
973 					 * since we already initialized this entry,
974 					 * set the next value to NULL or we mess up
975 					 * cleanup handling.
976 					 */
977 					eb->vma[i + 1].vma = NULL;
978 				}
979 
980 				return err;
981 			}
982 
983 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
984 			eb->args->flags |= __EXEC_USERPTR_USED;
985 		}
986 	}
987 
988 	return 0;
989 
990 err:
991 	eb->vma[i].vma = NULL;
992 	return err;
993 }
994 
995 static int eb_lock_vmas(struct i915_execbuffer *eb)
996 {
997 	unsigned int i;
998 	int err;
999 
1000 	for (i = 0; i < eb->buffer_count; i++) {
1001 		struct eb_vma *ev = &eb->vma[i];
1002 		struct i915_vma *vma = ev->vma;
1003 
1004 		err = i915_gem_object_lock(vma->obj, &eb->ww);
1005 		if (err)
1006 			return err;
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 static int eb_validate_vmas(struct i915_execbuffer *eb)
1013 {
1014 	unsigned int i;
1015 	int err;
1016 
1017 	INIT_LIST_HEAD(&eb->unbound);
1018 
1019 	err = eb_lock_vmas(eb);
1020 	if (err)
1021 		return err;
1022 
1023 	for (i = 0; i < eb->buffer_count; i++) {
1024 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1025 		struct eb_vma *ev = &eb->vma[i];
1026 		struct i915_vma *vma = ev->vma;
1027 
1028 		err = eb_pin_vma(eb, entry, ev);
1029 		if (err == -EDEADLK)
1030 			return err;
1031 
1032 		if (!err) {
1033 			if (entry->offset != i915_vma_offset(vma)) {
1034 				entry->offset = i915_vma_offset(vma) | UPDATE;
1035 				eb->args->flags |= __EXEC_HAS_RELOC;
1036 			}
1037 		} else {
1038 			eb_unreserve_vma(ev);
1039 
1040 			list_add_tail(&ev->bind_link, &eb->unbound);
1041 			if (drm_mm_node_allocated(&vma->node)) {
1042 				err = i915_vma_unbind(vma);
1043 				if (err)
1044 					return err;
1045 			}
1046 		}
1047 
1048 		/* Reserve enough slots to accommodate composite fences */
1049 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1050 		if (err)
1051 			return err;
1052 
1053 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1054 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1055 	}
1056 
1057 	if (!list_empty(&eb->unbound))
1058 		return eb_reserve(eb);
1059 
1060 	return 0;
1061 }
1062 
1063 static struct eb_vma *
1064 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1065 {
1066 	if (eb->lut_size < 0) {
1067 		if (handle >= -eb->lut_size)
1068 			return NULL;
1069 		return &eb->vma[handle];
1070 	} else {
1071 		struct hlist_head *head;
1072 		struct eb_vma *ev;
1073 
1074 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1075 		hlist_for_each_entry(ev, head, node) {
1076 			if (ev->handle == handle)
1077 				return ev;
1078 		}
1079 		return NULL;
1080 	}
1081 }
1082 
1083 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1084 {
1085 	const unsigned int count = eb->buffer_count;
1086 	unsigned int i;
1087 
1088 	for (i = 0; i < count; i++) {
1089 		struct eb_vma *ev = &eb->vma[i];
1090 		struct i915_vma *vma = ev->vma;
1091 
1092 		if (!vma)
1093 			break;
1094 
1095 		eb_unreserve_vma(ev);
1096 
1097 		if (final)
1098 			i915_vma_put(vma);
1099 	}
1100 
1101 	eb_capture_release(eb);
1102 	eb_unpin_engine(eb);
1103 }
1104 
1105 static void eb_destroy(const struct i915_execbuffer *eb)
1106 {
1107 	if (eb->lut_size > 0)
1108 		kfree(eb->buckets);
1109 }
1110 
1111 static inline u64
1112 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1113 		  const struct i915_vma *target)
1114 {
1115 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1116 }
1117 
1118 static void reloc_cache_init(struct reloc_cache *cache,
1119 			     struct drm_i915_private *i915)
1120 {
1121 	cache->page = -1;
1122 	cache->vaddr = 0;
1123 	/* Must be a variable in the struct to allow GCC to unroll. */
1124 	cache->graphics_ver = GRAPHICS_VER(i915);
1125 	cache->has_llc = HAS_LLC(i915);
1126 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1127 	cache->has_fence = cache->graphics_ver < 4;
1128 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1129 	cache->node.flags = 0;
1130 }
1131 
1132 static inline void *unmask_page(unsigned long p)
1133 {
1134 	return (void *)(uintptr_t)(p & PAGE_MASK);
1135 }
1136 
1137 static inline unsigned int unmask_flags(unsigned long p)
1138 {
1139 	return p & ~PAGE_MASK;
1140 }
1141 
1142 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1143 
1144 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1145 {
1146 	struct drm_i915_private *i915 =
1147 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1148 	return to_gt(i915)->ggtt;
1149 }
1150 
1151 static void reloc_cache_unmap(struct reloc_cache *cache)
1152 {
1153 	void *vaddr;
1154 
1155 	if (!cache->vaddr)
1156 		return;
1157 
1158 	vaddr = unmask_page(cache->vaddr);
1159 	if (cache->vaddr & KMAP)
1160 		kunmap_atomic(vaddr);
1161 	else
1162 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1163 }
1164 
1165 static void reloc_cache_remap(struct reloc_cache *cache,
1166 			      struct drm_i915_gem_object *obj)
1167 {
1168 	void *vaddr;
1169 
1170 	if (!cache->vaddr)
1171 		return;
1172 
1173 	if (cache->vaddr & KMAP) {
1174 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1175 
1176 		vaddr = kmap_atomic(page);
1177 		cache->vaddr = unmask_flags(cache->vaddr) |
1178 			(unsigned long)vaddr;
1179 	} else {
1180 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1181 		unsigned long offset;
1182 
1183 		offset = cache->node.start;
1184 		if (!drm_mm_node_allocated(&cache->node))
1185 			offset += cache->page << PAGE_SHIFT;
1186 
1187 		cache->vaddr = (unsigned long)
1188 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1189 	}
1190 }
1191 
1192 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1193 {
1194 	void *vaddr;
1195 
1196 	if (!cache->vaddr)
1197 		return;
1198 
1199 	vaddr = unmask_page(cache->vaddr);
1200 	if (cache->vaddr & KMAP) {
1201 		struct drm_i915_gem_object *obj =
1202 			(struct drm_i915_gem_object *)cache->node.mm;
1203 		if (cache->vaddr & CLFLUSH_AFTER)
1204 			mb();
1205 
1206 		kunmap_atomic(vaddr);
1207 		i915_gem_object_finish_access(obj);
1208 	} else {
1209 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1210 
1211 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1212 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1213 
1214 		if (drm_mm_node_allocated(&cache->node)) {
1215 			ggtt->vm.clear_range(&ggtt->vm,
1216 					     cache->node.start,
1217 					     cache->node.size);
1218 			mutex_lock(&ggtt->vm.mutex);
1219 			drm_mm_remove_node(&cache->node);
1220 			mutex_unlock(&ggtt->vm.mutex);
1221 		} else {
1222 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1223 		}
1224 	}
1225 
1226 	cache->vaddr = 0;
1227 	cache->page = -1;
1228 }
1229 
1230 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1231 			struct reloc_cache *cache,
1232 			unsigned long pageno)
1233 {
1234 	void *vaddr;
1235 	struct page *page;
1236 
1237 	if (cache->vaddr) {
1238 		kunmap_atomic(unmask_page(cache->vaddr));
1239 	} else {
1240 		unsigned int flushes;
1241 		int err;
1242 
1243 		err = i915_gem_object_prepare_write(obj, &flushes);
1244 		if (err)
1245 			return ERR_PTR(err);
1246 
1247 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1248 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1249 
1250 		cache->vaddr = flushes | KMAP;
1251 		cache->node.mm = (void *)obj;
1252 		if (flushes)
1253 			mb();
1254 	}
1255 
1256 	page = i915_gem_object_get_page(obj, pageno);
1257 	if (!obj->mm.dirty)
1258 		set_page_dirty(page);
1259 
1260 	vaddr = kmap_atomic(page);
1261 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1262 	cache->page = pageno;
1263 
1264 	return vaddr;
1265 }
1266 
1267 static void *reloc_iomap(struct i915_vma *batch,
1268 			 struct i915_execbuffer *eb,
1269 			 unsigned long page)
1270 {
1271 	struct drm_i915_gem_object *obj = batch->obj;
1272 	struct reloc_cache *cache = &eb->reloc_cache;
1273 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1274 	unsigned long offset;
1275 	void *vaddr;
1276 
1277 	if (cache->vaddr) {
1278 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1279 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1280 	} else {
1281 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1282 		int err;
1283 
1284 		if (i915_gem_object_is_tiled(obj))
1285 			return ERR_PTR(-EINVAL);
1286 
1287 		if (use_cpu_reloc(cache, obj))
1288 			return NULL;
1289 
1290 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1291 		if (err)
1292 			return ERR_PTR(err);
1293 
1294 		/*
1295 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1296 		 * VMA from the object list because we no longer pin.
1297 		 *
1298 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1299 		 * is not inside ggtt, or the batch buffer is not misplaced.
1300 		 */
1301 		if (!i915_is_ggtt(batch->vm) ||
1302 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1303 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1304 							  PIN_MAPPABLE |
1305 							  PIN_NONBLOCK /* NOWARN */ |
1306 							  PIN_NOEVICT);
1307 		}
1308 
1309 		if (vma == ERR_PTR(-EDEADLK))
1310 			return vma;
1311 
1312 		if (IS_ERR(vma)) {
1313 			memset(&cache->node, 0, sizeof(cache->node));
1314 			mutex_lock(&ggtt->vm.mutex);
1315 			err = drm_mm_insert_node_in_range
1316 				(&ggtt->vm.mm, &cache->node,
1317 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1318 				 0, ggtt->mappable_end,
1319 				 DRM_MM_INSERT_LOW);
1320 			mutex_unlock(&ggtt->vm.mutex);
1321 			if (err) /* no inactive aperture space, use cpu reloc */
1322 				return NULL;
1323 		} else {
1324 			cache->node.start = i915_ggtt_offset(vma);
1325 			cache->node.mm = (void *)vma;
1326 		}
1327 	}
1328 
1329 	offset = cache->node.start;
1330 	if (drm_mm_node_allocated(&cache->node)) {
1331 		ggtt->vm.insert_page(&ggtt->vm,
1332 				     i915_gem_object_get_dma_address(obj, page),
1333 				     offset,
1334 				     i915_gem_get_pat_index(ggtt->vm.i915,
1335 							    I915_CACHE_NONE),
1336 				     0);
1337 	} else {
1338 		offset += page << PAGE_SHIFT;
1339 	}
1340 
1341 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1342 							 offset);
1343 	cache->page = page;
1344 	cache->vaddr = (unsigned long)vaddr;
1345 
1346 	return vaddr;
1347 }
1348 
1349 static void *reloc_vaddr(struct i915_vma *vma,
1350 			 struct i915_execbuffer *eb,
1351 			 unsigned long page)
1352 {
1353 	struct reloc_cache *cache = &eb->reloc_cache;
1354 	void *vaddr;
1355 
1356 	if (cache->page == page) {
1357 		vaddr = unmask_page(cache->vaddr);
1358 	} else {
1359 		vaddr = NULL;
1360 		if ((cache->vaddr & KMAP) == 0)
1361 			vaddr = reloc_iomap(vma, eb, page);
1362 		if (!vaddr)
1363 			vaddr = reloc_kmap(vma->obj, cache, page);
1364 	}
1365 
1366 	return vaddr;
1367 }
1368 
1369 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1370 {
1371 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1372 		if (flushes & CLFLUSH_BEFORE)
1373 			drm_clflush_virt_range(addr, sizeof(*addr));
1374 
1375 		*addr = value;
1376 
1377 		/*
1378 		 * Writes to the same cacheline are serialised by the CPU
1379 		 * (including clflush). On the write path, we only require
1380 		 * that it hits memory in an orderly fashion and place
1381 		 * mb barriers at the start and end of the relocation phase
1382 		 * to ensure ordering of clflush wrt to the system.
1383 		 */
1384 		if (flushes & CLFLUSH_AFTER)
1385 			drm_clflush_virt_range(addr, sizeof(*addr));
1386 	} else
1387 		*addr = value;
1388 }
1389 
1390 static u64
1391 relocate_entry(struct i915_vma *vma,
1392 	       const struct drm_i915_gem_relocation_entry *reloc,
1393 	       struct i915_execbuffer *eb,
1394 	       const struct i915_vma *target)
1395 {
1396 	u64 target_addr = relocation_target(reloc, target);
1397 	u64 offset = reloc->offset;
1398 	bool wide = eb->reloc_cache.use_64bit_reloc;
1399 	void *vaddr;
1400 
1401 repeat:
1402 	vaddr = reloc_vaddr(vma, eb,
1403 			    offset >> PAGE_SHIFT);
1404 	if (IS_ERR(vaddr))
1405 		return PTR_ERR(vaddr);
1406 
1407 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1408 	clflush_write32(vaddr + offset_in_page(offset),
1409 			lower_32_bits(target_addr),
1410 			eb->reloc_cache.vaddr);
1411 
1412 	if (wide) {
1413 		offset += sizeof(u32);
1414 		target_addr >>= 32;
1415 		wide = false;
1416 		goto repeat;
1417 	}
1418 
1419 	return target->node.start | UPDATE;
1420 }
1421 
1422 static u64
1423 eb_relocate_entry(struct i915_execbuffer *eb,
1424 		  struct eb_vma *ev,
1425 		  const struct drm_i915_gem_relocation_entry *reloc)
1426 {
1427 	struct drm_i915_private *i915 = eb->i915;
1428 	struct eb_vma *target;
1429 	int err;
1430 
1431 	/* we've already hold a reference to all valid objects */
1432 	target = eb_get_vma(eb, reloc->target_handle);
1433 	if (unlikely(!target))
1434 		return -ENOENT;
1435 
1436 	/* Validate that the target is in a valid r/w GPU domain */
1437 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1438 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1439 			  "target %d offset %d "
1440 			  "read %08x write %08x",
1441 			  reloc->target_handle,
1442 			  (int) reloc->offset,
1443 			  reloc->read_domains,
1444 			  reloc->write_domain);
1445 		return -EINVAL;
1446 	}
1447 	if (unlikely((reloc->write_domain | reloc->read_domains)
1448 		     & ~I915_GEM_GPU_DOMAINS)) {
1449 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1450 			  "target %d offset %d "
1451 			  "read %08x write %08x",
1452 			  reloc->target_handle,
1453 			  (int) reloc->offset,
1454 			  reloc->read_domains,
1455 			  reloc->write_domain);
1456 		return -EINVAL;
1457 	}
1458 
1459 	if (reloc->write_domain) {
1460 		target->flags |= EXEC_OBJECT_WRITE;
1461 
1462 		/*
1463 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1464 		 * for MI and pipe_control writes because the gpu doesn't
1465 		 * properly redirect them through the ppgtt for non_secure
1466 		 * batchbuffers.
1467 		 */
1468 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1469 		    GRAPHICS_VER(eb->i915) == 6 &&
1470 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1471 			struct i915_vma *vma = target->vma;
1472 
1473 			reloc_cache_unmap(&eb->reloc_cache);
1474 			mutex_lock(&vma->vm->mutex);
1475 			err = i915_vma_bind(target->vma,
1476 					    target->vma->obj->pat_index,
1477 					    PIN_GLOBAL, NULL, NULL);
1478 			mutex_unlock(&vma->vm->mutex);
1479 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1480 			if (err)
1481 				return err;
1482 		}
1483 	}
1484 
1485 	/*
1486 	 * If the relocation already has the right value in it, no
1487 	 * more work needs to be done.
1488 	 */
1489 	if (!DBG_FORCE_RELOC &&
1490 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1491 		return 0;
1492 
1493 	/* Check that the relocation address is valid... */
1494 	if (unlikely(reloc->offset >
1495 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1496 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1497 			  "target %d offset %d size %d.\n",
1498 			  reloc->target_handle,
1499 			  (int)reloc->offset,
1500 			  (int)ev->vma->size);
1501 		return -EINVAL;
1502 	}
1503 	if (unlikely(reloc->offset & 3)) {
1504 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1505 			  "target %d offset %d.\n",
1506 			  reloc->target_handle,
1507 			  (int)reloc->offset);
1508 		return -EINVAL;
1509 	}
1510 
1511 	/*
1512 	 * If we write into the object, we need to force the synchronisation
1513 	 * barrier, either with an asynchronous clflush or if we executed the
1514 	 * patching using the GPU (though that should be serialised by the
1515 	 * timeline). To be completely sure, and since we are required to
1516 	 * do relocations we are already stalling, disable the user's opt
1517 	 * out of our synchronisation.
1518 	 */
1519 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1520 
1521 	/* and update the user's relocation entry */
1522 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1523 }
1524 
1525 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1526 {
1527 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1528 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1529 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1530 	struct drm_i915_gem_relocation_entry __user *urelocs =
1531 		u64_to_user_ptr(entry->relocs_ptr);
1532 	unsigned long remain = entry->relocation_count;
1533 
1534 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1535 		return -EINVAL;
1536 
1537 	/*
1538 	 * We must check that the entire relocation array is safe
1539 	 * to read. However, if the array is not writable the user loses
1540 	 * the updated relocation values.
1541 	 */
1542 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1543 		return -EFAULT;
1544 
1545 	do {
1546 		struct drm_i915_gem_relocation_entry *r = stack;
1547 		unsigned int count =
1548 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1549 		unsigned int copied;
1550 
1551 		/*
1552 		 * This is the fast path and we cannot handle a pagefault
1553 		 * whilst holding the struct mutex lest the user pass in the
1554 		 * relocations contained within a mmaped bo. For in such a case
1555 		 * we, the page fault handler would call i915_gem_fault() and
1556 		 * we would try to acquire the struct mutex again. Obviously
1557 		 * this is bad and so lockdep complains vehemently.
1558 		 */
1559 		pagefault_disable();
1560 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1561 		pagefault_enable();
1562 		if (unlikely(copied)) {
1563 			remain = -EFAULT;
1564 			goto out;
1565 		}
1566 
1567 		remain -= count;
1568 		do {
1569 			u64 offset = eb_relocate_entry(eb, ev, r);
1570 
1571 			if (likely(offset == 0)) {
1572 			} else if ((s64)offset < 0) {
1573 				remain = (int)offset;
1574 				goto out;
1575 			} else {
1576 				/*
1577 				 * Note that reporting an error now
1578 				 * leaves everything in an inconsistent
1579 				 * state as we have *already* changed
1580 				 * the relocation value inside the
1581 				 * object. As we have not changed the
1582 				 * reloc.presumed_offset or will not
1583 				 * change the execobject.offset, on the
1584 				 * call we may not rewrite the value
1585 				 * inside the object, leaving it
1586 				 * dangling and causing a GPU hang. Unless
1587 				 * userspace dynamically rebuilds the
1588 				 * relocations on each execbuf rather than
1589 				 * presume a static tree.
1590 				 *
1591 				 * We did previously check if the relocations
1592 				 * were writable (access_ok), an error now
1593 				 * would be a strange race with mprotect,
1594 				 * having already demonstrated that we
1595 				 * can read from this userspace address.
1596 				 */
1597 				offset = gen8_canonical_addr(offset & ~UPDATE);
1598 				__put_user(offset,
1599 					   &urelocs[r - stack].presumed_offset);
1600 			}
1601 		} while (r++, --count);
1602 		urelocs += ARRAY_SIZE(stack);
1603 	} while (remain);
1604 out:
1605 	reloc_cache_reset(&eb->reloc_cache, eb);
1606 	return remain;
1607 }
1608 
1609 static int
1610 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1611 {
1612 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1613 	struct drm_i915_gem_relocation_entry *relocs =
1614 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1615 	unsigned int i;
1616 	int err;
1617 
1618 	for (i = 0; i < entry->relocation_count; i++) {
1619 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1620 
1621 		if ((s64)offset < 0) {
1622 			err = (int)offset;
1623 			goto err;
1624 		}
1625 	}
1626 	err = 0;
1627 err:
1628 	reloc_cache_reset(&eb->reloc_cache, eb);
1629 	return err;
1630 }
1631 
1632 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1633 {
1634 	const char __user *addr, *end;
1635 	unsigned long size;
1636 	char __maybe_unused c;
1637 
1638 	size = entry->relocation_count;
1639 	if (size == 0)
1640 		return 0;
1641 
1642 	if (size > N_RELOC(ULONG_MAX))
1643 		return -EINVAL;
1644 
1645 	addr = u64_to_user_ptr(entry->relocs_ptr);
1646 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1647 	if (!access_ok(addr, size))
1648 		return -EFAULT;
1649 
1650 	end = addr + size;
1651 	for (; addr < end; addr += PAGE_SIZE) {
1652 		int err = __get_user(c, addr);
1653 		if (err)
1654 			return err;
1655 	}
1656 	return __get_user(c, end - 1);
1657 }
1658 
1659 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1660 {
1661 	struct drm_i915_gem_relocation_entry *relocs;
1662 	const unsigned int count = eb->buffer_count;
1663 	unsigned int i;
1664 	int err;
1665 
1666 	for (i = 0; i < count; i++) {
1667 		const unsigned int nreloc = eb->exec[i].relocation_count;
1668 		struct drm_i915_gem_relocation_entry __user *urelocs;
1669 		unsigned long size;
1670 		unsigned long copied;
1671 
1672 		if (nreloc == 0)
1673 			continue;
1674 
1675 		err = check_relocations(&eb->exec[i]);
1676 		if (err)
1677 			goto err;
1678 
1679 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1680 		size = nreloc * sizeof(*relocs);
1681 
1682 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1683 		if (!relocs) {
1684 			err = -ENOMEM;
1685 			goto err;
1686 		}
1687 
1688 		/* copy_from_user is limited to < 4GiB */
1689 		copied = 0;
1690 		do {
1691 			unsigned int len =
1692 				min_t(u64, BIT_ULL(31), size - copied);
1693 
1694 			if (__copy_from_user((char *)relocs + copied,
1695 					     (char __user *)urelocs + copied,
1696 					     len))
1697 				goto end;
1698 
1699 			copied += len;
1700 		} while (copied < size);
1701 
1702 		/*
1703 		 * As we do not update the known relocation offsets after
1704 		 * relocating (due to the complexities in lock handling),
1705 		 * we need to mark them as invalid now so that we force the
1706 		 * relocation processing next time. Just in case the target
1707 		 * object is evicted and then rebound into its old
1708 		 * presumed_offset before the next execbuffer - if that
1709 		 * happened we would make the mistake of assuming that the
1710 		 * relocations were valid.
1711 		 */
1712 		if (!user_access_begin(urelocs, size))
1713 			goto end;
1714 
1715 		for (copied = 0; copied < nreloc; copied++)
1716 			unsafe_put_user(-1,
1717 					&urelocs[copied].presumed_offset,
1718 					end_user);
1719 		user_access_end();
1720 
1721 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1722 	}
1723 
1724 	return 0;
1725 
1726 end_user:
1727 	user_access_end();
1728 end:
1729 	kvfree(relocs);
1730 	err = -EFAULT;
1731 err:
1732 	while (i--) {
1733 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1734 		if (eb->exec[i].relocation_count)
1735 			kvfree(relocs);
1736 	}
1737 	return err;
1738 }
1739 
1740 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1741 {
1742 	const unsigned int count = eb->buffer_count;
1743 	unsigned int i;
1744 
1745 	for (i = 0; i < count; i++) {
1746 		int err;
1747 
1748 		err = check_relocations(&eb->exec[i]);
1749 		if (err)
1750 			return err;
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1757 {
1758 	const unsigned int count = eb->buffer_count;
1759 	unsigned int i;
1760 	int ret;
1761 
1762 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1763 		return 0;
1764 
1765 	for (i = 0; i < count; i++) {
1766 		struct eb_vma *ev = &eb->vma[i];
1767 
1768 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1769 			continue;
1770 
1771 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1772 		if (ret)
1773 			return ret;
1774 
1775 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1782 {
1783 	bool have_copy = false;
1784 	struct eb_vma *ev;
1785 	int err = 0;
1786 
1787 repeat:
1788 	if (signal_pending(current)) {
1789 		err = -ERESTARTSYS;
1790 		goto out;
1791 	}
1792 
1793 	/* We may process another execbuffer during the unlock... */
1794 	eb_release_vmas(eb, false);
1795 	i915_gem_ww_ctx_fini(&eb->ww);
1796 
1797 	/*
1798 	 * We take 3 passes through the slowpatch.
1799 	 *
1800 	 * 1 - we try to just prefault all the user relocation entries and
1801 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1802 	 *
1803 	 * 2 - we copy the user entries to a local buffer here outside of the
1804 	 * local and allow ourselves to wait upon any rendering before
1805 	 * relocations
1806 	 *
1807 	 * 3 - we already have a local copy of the relocation entries, but
1808 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1809 	 */
1810 	if (!err) {
1811 		err = eb_prefault_relocations(eb);
1812 	} else if (!have_copy) {
1813 		err = eb_copy_relocations(eb);
1814 		have_copy = err == 0;
1815 	} else {
1816 		cond_resched();
1817 		err = 0;
1818 	}
1819 
1820 	if (!err)
1821 		err = eb_reinit_userptr(eb);
1822 
1823 	i915_gem_ww_ctx_init(&eb->ww, true);
1824 	if (err)
1825 		goto out;
1826 
1827 	/* reacquire the objects */
1828 repeat_validate:
1829 	err = eb_pin_engine(eb, false);
1830 	if (err)
1831 		goto err;
1832 
1833 	err = eb_validate_vmas(eb);
1834 	if (err)
1835 		goto err;
1836 
1837 	GEM_BUG_ON(!eb->batches[0]);
1838 
1839 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1840 		if (!have_copy) {
1841 			err = eb_relocate_vma(eb, ev);
1842 			if (err)
1843 				break;
1844 		} else {
1845 			err = eb_relocate_vma_slow(eb, ev);
1846 			if (err)
1847 				break;
1848 		}
1849 	}
1850 
1851 	if (err == -EDEADLK)
1852 		goto err;
1853 
1854 	if (err && !have_copy)
1855 		goto repeat;
1856 
1857 	if (err)
1858 		goto err;
1859 
1860 	/* as last step, parse the command buffer */
1861 	err = eb_parse(eb);
1862 	if (err)
1863 		goto err;
1864 
1865 	/*
1866 	 * Leave the user relocations as are, this is the painfully slow path,
1867 	 * and we want to avoid the complication of dropping the lock whilst
1868 	 * having buffers reserved in the aperture and so causing spurious
1869 	 * ENOSPC for random operations.
1870 	 */
1871 
1872 err:
1873 	if (err == -EDEADLK) {
1874 		eb_release_vmas(eb, false);
1875 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1876 		if (!err)
1877 			goto repeat_validate;
1878 	}
1879 
1880 	if (err == -EAGAIN)
1881 		goto repeat;
1882 
1883 out:
1884 	if (have_copy) {
1885 		const unsigned int count = eb->buffer_count;
1886 		unsigned int i;
1887 
1888 		for (i = 0; i < count; i++) {
1889 			const struct drm_i915_gem_exec_object2 *entry =
1890 				&eb->exec[i];
1891 			struct drm_i915_gem_relocation_entry *relocs;
1892 
1893 			if (!entry->relocation_count)
1894 				continue;
1895 
1896 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1897 			kvfree(relocs);
1898 		}
1899 	}
1900 
1901 	return err;
1902 }
1903 
1904 static int eb_relocate_parse(struct i915_execbuffer *eb)
1905 {
1906 	int err;
1907 	bool throttle = true;
1908 
1909 retry:
1910 	err = eb_pin_engine(eb, throttle);
1911 	if (err) {
1912 		if (err != -EDEADLK)
1913 			return err;
1914 
1915 		goto err;
1916 	}
1917 
1918 	/* only throttle once, even if we didn't need to throttle */
1919 	throttle = false;
1920 
1921 	err = eb_validate_vmas(eb);
1922 	if (err == -EAGAIN)
1923 		goto slow;
1924 	else if (err)
1925 		goto err;
1926 
1927 	/* The objects are in their final locations, apply the relocations. */
1928 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1929 		struct eb_vma *ev;
1930 
1931 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1932 			err = eb_relocate_vma(eb, ev);
1933 			if (err)
1934 				break;
1935 		}
1936 
1937 		if (err == -EDEADLK)
1938 			goto err;
1939 		else if (err)
1940 			goto slow;
1941 	}
1942 
1943 	if (!err)
1944 		err = eb_parse(eb);
1945 
1946 err:
1947 	if (err == -EDEADLK) {
1948 		eb_release_vmas(eb, false);
1949 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1950 		if (!err)
1951 			goto retry;
1952 	}
1953 
1954 	return err;
1955 
1956 slow:
1957 	err = eb_relocate_parse_slow(eb);
1958 	if (err)
1959 		/*
1960 		 * If the user expects the execobject.offset and
1961 		 * reloc.presumed_offset to be an exact match,
1962 		 * as for using NO_RELOC, then we cannot update
1963 		 * the execobject.offset until we have completed
1964 		 * relocation.
1965 		 */
1966 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1967 
1968 	return err;
1969 }
1970 
1971 /*
1972  * Using two helper loops for the order of which requests / batches are created
1973  * and added the to backend. Requests are created in order from the parent to
1974  * the last child. Requests are added in the reverse order, from the last child
1975  * to parent. This is done for locking reasons as the timeline lock is acquired
1976  * during request creation and released when the request is added to the
1977  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1978  * the ordering.
1979  */
1980 #define for_each_batch_create_order(_eb, _i) \
1981 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1982 #define for_each_batch_add_order(_eb, _i) \
1983 	BUILD_BUG_ON(!typecheck(int, _i)); \
1984 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1985 
1986 static struct i915_request *
1987 eb_find_first_request_added(struct i915_execbuffer *eb)
1988 {
1989 	int i;
1990 
1991 	for_each_batch_add_order(eb, i)
1992 		if (eb->requests[i])
1993 			return eb->requests[i];
1994 
1995 	GEM_BUG_ON("Request not found");
1996 
1997 	return NULL;
1998 }
1999 
2000 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2001 
2002 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2003 static int eb_capture_stage(struct i915_execbuffer *eb)
2004 {
2005 	const unsigned int count = eb->buffer_count;
2006 	unsigned int i = count, j;
2007 
2008 	while (i--) {
2009 		struct eb_vma *ev = &eb->vma[i];
2010 		struct i915_vma *vma = ev->vma;
2011 		unsigned int flags = ev->flags;
2012 
2013 		if (!(flags & EXEC_OBJECT_CAPTURE))
2014 			continue;
2015 
2016 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2017 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2018 			return -EINVAL;
2019 
2020 		for_each_batch_create_order(eb, j) {
2021 			struct i915_capture_list *capture;
2022 
2023 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2024 			if (!capture)
2025 				continue;
2026 
2027 			capture->next = eb->capture_lists[j];
2028 			capture->vma_res = i915_vma_resource_get(vma->resource);
2029 			eb->capture_lists[j] = capture;
2030 		}
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 /* Commit once we're in the critical path */
2037 static void eb_capture_commit(struct i915_execbuffer *eb)
2038 {
2039 	unsigned int j;
2040 
2041 	for_each_batch_create_order(eb, j) {
2042 		struct i915_request *rq = eb->requests[j];
2043 
2044 		if (!rq)
2045 			break;
2046 
2047 		rq->capture_list = eb->capture_lists[j];
2048 		eb->capture_lists[j] = NULL;
2049 	}
2050 }
2051 
2052 /*
2053  * Release anything that didn't get committed due to errors.
2054  * The capture_list will otherwise be freed at request retire.
2055  */
2056 static void eb_capture_release(struct i915_execbuffer *eb)
2057 {
2058 	unsigned int j;
2059 
2060 	for_each_batch_create_order(eb, j) {
2061 		if (eb->capture_lists[j]) {
2062 			i915_request_free_capture_list(eb->capture_lists[j]);
2063 			eb->capture_lists[j] = NULL;
2064 		}
2065 	}
2066 }
2067 
2068 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2069 {
2070 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2071 }
2072 
2073 #else
2074 
2075 static int eb_capture_stage(struct i915_execbuffer *eb)
2076 {
2077 	return 0;
2078 }
2079 
2080 static void eb_capture_commit(struct i915_execbuffer *eb)
2081 {
2082 }
2083 
2084 static void eb_capture_release(struct i915_execbuffer *eb)
2085 {
2086 }
2087 
2088 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2089 {
2090 }
2091 
2092 #endif
2093 
2094 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2095 {
2096 	const unsigned int count = eb->buffer_count;
2097 	unsigned int i = count;
2098 	int err = 0, j;
2099 
2100 	while (i--) {
2101 		struct eb_vma *ev = &eb->vma[i];
2102 		struct i915_vma *vma = ev->vma;
2103 		unsigned int flags = ev->flags;
2104 		struct drm_i915_gem_object *obj = vma->obj;
2105 
2106 		assert_vma_held(vma);
2107 
2108 		/*
2109 		 * If the GPU is not _reading_ through the CPU cache, we need
2110 		 * to make sure that any writes (both previous GPU writes from
2111 		 * before a change in snooping levels and normal CPU writes)
2112 		 * caught in that cache are flushed to main memory.
2113 		 *
2114 		 * We want to say
2115 		 *   obj->cache_dirty &&
2116 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2117 		 * but gcc's optimiser doesn't handle that as well and emits
2118 		 * two jumps instead of one. Maybe one day...
2119 		 *
2120 		 * FIXME: There is also sync flushing in set_pages(), which
2121 		 * serves a different purpose(some of the time at least).
2122 		 *
2123 		 * We should consider:
2124 		 *
2125 		 *   1. Rip out the async flush code.
2126 		 *
2127 		 *   2. Or make the sync flushing use the async clflush path
2128 		 *   using mandatory fences underneath. Currently the below
2129 		 *   async flush happens after we bind the object.
2130 		 */
2131 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2132 			if (i915_gem_clflush_object(obj, 0))
2133 				flags &= ~EXEC_OBJECT_ASYNC;
2134 		}
2135 
2136 		/* We only need to await on the first request */
2137 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2138 			err = i915_request_await_object
2139 				(eb_find_first_request_added(eb), obj,
2140 				 flags & EXEC_OBJECT_WRITE);
2141 		}
2142 
2143 		for_each_batch_add_order(eb, j) {
2144 			if (err)
2145 				break;
2146 			if (!eb->requests[j])
2147 				continue;
2148 
2149 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2150 						       j ? NULL :
2151 						       eb->composite_fence ?
2152 						       eb->composite_fence :
2153 						       &eb->requests[j]->fence,
2154 						       flags | __EXEC_OBJECT_NO_RESERVE |
2155 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2156 		}
2157 	}
2158 
2159 #ifdef CONFIG_MMU_NOTIFIER
2160 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2161 		read_lock(&eb->i915->mm.notifier_lock);
2162 
2163 		/*
2164 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2165 		 * could not have been set
2166 		 */
2167 		for (i = 0; i < count; i++) {
2168 			struct eb_vma *ev = &eb->vma[i];
2169 			struct drm_i915_gem_object *obj = ev->vma->obj;
2170 
2171 			if (!i915_gem_object_is_userptr(obj))
2172 				continue;
2173 
2174 			err = i915_gem_object_userptr_submit_done(obj);
2175 			if (err)
2176 				break;
2177 		}
2178 
2179 		read_unlock(&eb->i915->mm.notifier_lock);
2180 	}
2181 #endif
2182 
2183 	if (unlikely(err))
2184 		goto err_skip;
2185 
2186 	/* Unconditionally flush any chipset caches (for streaming writes). */
2187 	intel_gt_chipset_flush(eb->gt);
2188 	eb_capture_commit(eb);
2189 
2190 	return 0;
2191 
2192 err_skip:
2193 	for_each_batch_create_order(eb, j) {
2194 		if (!eb->requests[j])
2195 			break;
2196 
2197 		i915_request_set_error_once(eb->requests[j], err);
2198 	}
2199 	return err;
2200 }
2201 
2202 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2203 				     struct drm_i915_gem_execbuffer2 *exec)
2204 {
2205 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2206 		return -EINVAL;
2207 
2208 	/* Kernel clipping was a DRI1 misfeature */
2209 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2210 			     I915_EXEC_USE_EXTENSIONS))) {
2211 		if (exec->num_cliprects || exec->cliprects_ptr)
2212 			return -EINVAL;
2213 	}
2214 
2215 	if (exec->DR4 == 0xffffffff) {
2216 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2217 		exec->DR4 = 0;
2218 	}
2219 	if (exec->DR1 || exec->DR4)
2220 		return -EINVAL;
2221 
2222 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2223 		return -EINVAL;
2224 
2225 	return 0;
2226 }
2227 
2228 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2229 {
2230 	u32 *cs;
2231 	int i;
2232 
2233 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2234 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2235 		return -EINVAL;
2236 	}
2237 
2238 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2239 	if (IS_ERR(cs))
2240 		return PTR_ERR(cs);
2241 
2242 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2243 	for (i = 0; i < 4; i++) {
2244 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2245 		*cs++ = 0;
2246 	}
2247 	*cs++ = MI_NOOP;
2248 	intel_ring_advance(rq, cs);
2249 
2250 	return 0;
2251 }
2252 
2253 static struct i915_vma *
2254 shadow_batch_pin(struct i915_execbuffer *eb,
2255 		 struct drm_i915_gem_object *obj,
2256 		 struct i915_address_space *vm,
2257 		 unsigned int flags)
2258 {
2259 	struct i915_vma *vma;
2260 	int err;
2261 
2262 	vma = i915_vma_instance(obj, vm, NULL);
2263 	if (IS_ERR(vma))
2264 		return vma;
2265 
2266 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2267 	if (err)
2268 		return ERR_PTR(err);
2269 
2270 	return vma;
2271 }
2272 
2273 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2274 {
2275 	/*
2276 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2277 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2278 	 * hsw should have this fixed, but bdw mucks it up again. */
2279 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2280 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2281 
2282 	return NULL;
2283 }
2284 
2285 static int eb_parse(struct i915_execbuffer *eb)
2286 {
2287 	struct drm_i915_private *i915 = eb->i915;
2288 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2289 	struct i915_vma *shadow, *trampoline, *batch;
2290 	unsigned long len;
2291 	int err;
2292 
2293 	if (!eb_use_cmdparser(eb)) {
2294 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2295 		if (IS_ERR(batch))
2296 			return PTR_ERR(batch);
2297 
2298 		goto secure_batch;
2299 	}
2300 
2301 	if (intel_context_is_parallel(eb->context))
2302 		return -EINVAL;
2303 
2304 	len = eb->batch_len[0];
2305 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2306 		/*
2307 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2308 		 * post-scan tampering
2309 		 */
2310 		if (!eb->context->vm->has_read_only) {
2311 			drm_dbg(&i915->drm,
2312 				"Cannot prevent post-scan tampering without RO capable vm\n");
2313 			return -EINVAL;
2314 		}
2315 	} else {
2316 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2317 	}
2318 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2319 		return -EINVAL;
2320 
2321 	if (!pool) {
2322 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2323 						I915_MAP_WB);
2324 		if (IS_ERR(pool))
2325 			return PTR_ERR(pool);
2326 		eb->batch_pool = pool;
2327 	}
2328 
2329 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2330 	if (err)
2331 		return err;
2332 
2333 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2334 	if (IS_ERR(shadow))
2335 		return PTR_ERR(shadow);
2336 
2337 	intel_gt_buffer_pool_mark_used(pool);
2338 	i915_gem_object_set_readonly(shadow->obj);
2339 	shadow->private = pool;
2340 
2341 	trampoline = NULL;
2342 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2343 		trampoline = shadow;
2344 
2345 		shadow = shadow_batch_pin(eb, pool->obj,
2346 					  &eb->gt->ggtt->vm,
2347 					  PIN_GLOBAL);
2348 		if (IS_ERR(shadow))
2349 			return PTR_ERR(shadow);
2350 
2351 		shadow->private = pool;
2352 
2353 		eb->batch_flags |= I915_DISPATCH_SECURE;
2354 	}
2355 
2356 	batch = eb_dispatch_secure(eb, shadow);
2357 	if (IS_ERR(batch))
2358 		return PTR_ERR(batch);
2359 
2360 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2361 	if (err)
2362 		return err;
2363 
2364 	err = intel_engine_cmd_parser(eb->context->engine,
2365 				      eb->batches[0]->vma,
2366 				      eb->batch_start_offset,
2367 				      eb->batch_len[0],
2368 				      shadow, trampoline);
2369 	if (err)
2370 		return err;
2371 
2372 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2373 	eb->batches[0]->vma = i915_vma_get(shadow);
2374 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2375 
2376 	eb->trampoline = trampoline;
2377 	eb->batch_start_offset = 0;
2378 
2379 secure_batch:
2380 	if (batch) {
2381 		if (intel_context_is_parallel(eb->context))
2382 			return -EINVAL;
2383 
2384 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2385 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2386 		eb->batches[0]->vma = i915_vma_get(batch);
2387 	}
2388 	return 0;
2389 }
2390 
2391 static int eb_request_submit(struct i915_execbuffer *eb,
2392 			     struct i915_request *rq,
2393 			     struct i915_vma *batch,
2394 			     u64 batch_len)
2395 {
2396 	int err;
2397 
2398 	if (intel_context_nopreempt(rq->context))
2399 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2400 
2401 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2402 		err = i915_reset_gen7_sol_offsets(rq);
2403 		if (err)
2404 			return err;
2405 	}
2406 
2407 	/*
2408 	 * After we completed waiting for other engines (using HW semaphores)
2409 	 * then we can signal that this request/batch is ready to run. This
2410 	 * allows us to determine if the batch is still waiting on the GPU
2411 	 * or actually running by checking the breadcrumb.
2412 	 */
2413 	if (rq->context->engine->emit_init_breadcrumb) {
2414 		err = rq->context->engine->emit_init_breadcrumb(rq);
2415 		if (err)
2416 			return err;
2417 	}
2418 
2419 	err = rq->context->engine->emit_bb_start(rq,
2420 						 i915_vma_offset(batch) +
2421 						 eb->batch_start_offset,
2422 						 batch_len,
2423 						 eb->batch_flags);
2424 	if (err)
2425 		return err;
2426 
2427 	if (eb->trampoline) {
2428 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2429 		GEM_BUG_ON(eb->batch_start_offset);
2430 		err = rq->context->engine->emit_bb_start(rq,
2431 							 i915_vma_offset(eb->trampoline) +
2432 							 batch_len, 0, 0);
2433 		if (err)
2434 			return err;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 static int eb_submit(struct i915_execbuffer *eb)
2441 {
2442 	unsigned int i;
2443 	int err;
2444 
2445 	err = eb_move_to_gpu(eb);
2446 
2447 	for_each_batch_create_order(eb, i) {
2448 		if (!eb->requests[i])
2449 			break;
2450 
2451 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2452 		if (!err)
2453 			err = eb_request_submit(eb, eb->requests[i],
2454 						eb->batches[i]->vma,
2455 						eb->batch_len[i]);
2456 	}
2457 
2458 	return err;
2459 }
2460 
2461 /*
2462  * Find one BSD ring to dispatch the corresponding BSD command.
2463  * The engine index is returned.
2464  */
2465 static unsigned int
2466 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2467 			 struct drm_file *file)
2468 {
2469 	struct drm_i915_file_private *file_priv = file->driver_priv;
2470 
2471 	/* Check whether the file_priv has already selected one ring. */
2472 	if ((int)file_priv->bsd_engine < 0)
2473 		file_priv->bsd_engine =
2474 			get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2475 
2476 	return file_priv->bsd_engine;
2477 }
2478 
2479 static const enum intel_engine_id user_ring_map[] = {
2480 	[I915_EXEC_DEFAULT]	= RCS0,
2481 	[I915_EXEC_RENDER]	= RCS0,
2482 	[I915_EXEC_BLT]		= BCS0,
2483 	[I915_EXEC_BSD]		= VCS0,
2484 	[I915_EXEC_VEBOX]	= VECS0
2485 };
2486 
2487 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2488 {
2489 	struct intel_ring *ring = ce->ring;
2490 	struct intel_timeline *tl = ce->timeline;
2491 	struct i915_request *rq;
2492 
2493 	/*
2494 	 * Completely unscientific finger-in-the-air estimates for suitable
2495 	 * maximum user request size (to avoid blocking) and then backoff.
2496 	 */
2497 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2498 		return NULL;
2499 
2500 	/*
2501 	 * Find a request that after waiting upon, there will be at least half
2502 	 * the ring available. The hysteresis allows us to compete for the
2503 	 * shared ring and should mean that we sleep less often prior to
2504 	 * claiming our resources, but not so long that the ring completely
2505 	 * drains before we can submit our next request.
2506 	 */
2507 	list_for_each_entry(rq, &tl->requests, link) {
2508 		if (rq->ring != ring)
2509 			continue;
2510 
2511 		if (__intel_ring_space(rq->postfix,
2512 				       ring->emit, ring->size) > ring->size / 2)
2513 			break;
2514 	}
2515 	if (&rq->link == &tl->requests)
2516 		return NULL; /* weird, we will check again later for real */
2517 
2518 	return i915_request_get(rq);
2519 }
2520 
2521 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2522 			   bool throttle)
2523 {
2524 	struct intel_timeline *tl;
2525 	struct i915_request *rq = NULL;
2526 
2527 	/*
2528 	 * Take a local wakeref for preparing to dispatch the execbuf as
2529 	 * we expect to access the hardware fairly frequently in the
2530 	 * process, and require the engine to be kept awake between accesses.
2531 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2532 	 * until the timeline is idle, which in turn releases the wakeref
2533 	 * taken on the engine, and the parent device.
2534 	 */
2535 	tl = intel_context_timeline_lock(ce);
2536 	if (IS_ERR(tl))
2537 		return PTR_ERR(tl);
2538 
2539 	intel_context_enter(ce);
2540 	if (throttle)
2541 		rq = eb_throttle(eb, ce);
2542 	intel_context_timeline_unlock(tl);
2543 
2544 	if (rq) {
2545 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2546 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2547 
2548 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2549 				      timeout) < 0) {
2550 			i915_request_put(rq);
2551 
2552 			/*
2553 			 * Error path, cannot use intel_context_timeline_lock as
2554 			 * that is user interruptable and this clean up step
2555 			 * must be done.
2556 			 */
2557 			mutex_lock(&ce->timeline->mutex);
2558 			intel_context_exit(ce);
2559 			mutex_unlock(&ce->timeline->mutex);
2560 
2561 			if (nonblock)
2562 				return -EWOULDBLOCK;
2563 			else
2564 				return -EINTR;
2565 		}
2566 		i915_request_put(rq);
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2573 {
2574 	struct intel_context *ce = eb->context, *child;
2575 	int err;
2576 	int i = 0, j = 0;
2577 
2578 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2579 
2580 	if (unlikely(intel_context_is_banned(ce)))
2581 		return -EIO;
2582 
2583 	/*
2584 	 * Pinning the contexts may generate requests in order to acquire
2585 	 * GGTT space, so do this first before we reserve a seqno for
2586 	 * ourselves.
2587 	 */
2588 	err = intel_context_pin_ww(ce, &eb->ww);
2589 	if (err)
2590 		return err;
2591 	for_each_child(ce, child) {
2592 		err = intel_context_pin_ww(child, &eb->ww);
2593 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2594 	}
2595 
2596 	for_each_child(ce, child) {
2597 		err = eb_pin_timeline(eb, child, throttle);
2598 		if (err)
2599 			goto unwind;
2600 		++i;
2601 	}
2602 	err = eb_pin_timeline(eb, ce, throttle);
2603 	if (err)
2604 		goto unwind;
2605 
2606 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2607 	return 0;
2608 
2609 unwind:
2610 	for_each_child(ce, child) {
2611 		if (j++ < i) {
2612 			mutex_lock(&child->timeline->mutex);
2613 			intel_context_exit(child);
2614 			mutex_unlock(&child->timeline->mutex);
2615 		}
2616 	}
2617 	for_each_child(ce, child)
2618 		intel_context_unpin(child);
2619 	intel_context_unpin(ce);
2620 	return err;
2621 }
2622 
2623 static void eb_unpin_engine(struct i915_execbuffer *eb)
2624 {
2625 	struct intel_context *ce = eb->context, *child;
2626 
2627 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2628 		return;
2629 
2630 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2631 
2632 	for_each_child(ce, child) {
2633 		mutex_lock(&child->timeline->mutex);
2634 		intel_context_exit(child);
2635 		mutex_unlock(&child->timeline->mutex);
2636 
2637 		intel_context_unpin(child);
2638 	}
2639 
2640 	mutex_lock(&ce->timeline->mutex);
2641 	intel_context_exit(ce);
2642 	mutex_unlock(&ce->timeline->mutex);
2643 
2644 	intel_context_unpin(ce);
2645 }
2646 
2647 static unsigned int
2648 eb_select_legacy_ring(struct i915_execbuffer *eb)
2649 {
2650 	struct drm_i915_private *i915 = eb->i915;
2651 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2652 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2653 
2654 	if (user_ring_id != I915_EXEC_BSD &&
2655 	    (args->flags & I915_EXEC_BSD_MASK)) {
2656 		drm_dbg(&i915->drm,
2657 			"execbuf with non bsd ring but with invalid "
2658 			"bsd dispatch flags: %d\n", (int)(args->flags));
2659 		return -1;
2660 	}
2661 
2662 	if (user_ring_id == I915_EXEC_BSD &&
2663 	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2664 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2665 
2666 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2667 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2668 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2669 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2670 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2671 			bsd_idx--;
2672 		} else {
2673 			drm_dbg(&i915->drm,
2674 				"execbuf with unknown bsd ring: %u\n",
2675 				bsd_idx);
2676 			return -1;
2677 		}
2678 
2679 		return _VCS(bsd_idx);
2680 	}
2681 
2682 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2683 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2684 			user_ring_id);
2685 		return -1;
2686 	}
2687 
2688 	return user_ring_map[user_ring_id];
2689 }
2690 
2691 static int
2692 eb_select_engine(struct i915_execbuffer *eb)
2693 {
2694 	struct intel_context *ce, *child;
2695 	struct intel_gt *gt;
2696 	unsigned int idx;
2697 	int err;
2698 
2699 	if (i915_gem_context_user_engines(eb->gem_context))
2700 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2701 	else
2702 		idx = eb_select_legacy_ring(eb);
2703 
2704 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2705 	if (IS_ERR(ce))
2706 		return PTR_ERR(ce);
2707 
2708 	if (intel_context_is_parallel(ce)) {
2709 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2710 			intel_context_put(ce);
2711 			return -EINVAL;
2712 		}
2713 		if (eb->batch_start_offset || eb->args->batch_len) {
2714 			intel_context_put(ce);
2715 			return -EINVAL;
2716 		}
2717 	}
2718 	eb->num_batches = ce->parallel.number_children + 1;
2719 	gt = ce->engine->gt;
2720 
2721 	for_each_child(ce, child)
2722 		intel_context_get(child);
2723 	intel_gt_pm_get(gt);
2724 	/*
2725 	 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2726 	 * free VMAs while execbuf ioctl is validating VMAs.
2727 	 */
2728 	if (gt->info.id)
2729 		intel_gt_pm_get(to_gt(gt->i915));
2730 
2731 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2732 		err = intel_context_alloc_state(ce);
2733 		if (err)
2734 			goto err;
2735 	}
2736 	for_each_child(ce, child) {
2737 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2738 			err = intel_context_alloc_state(child);
2739 			if (err)
2740 				goto err;
2741 		}
2742 	}
2743 
2744 	/*
2745 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2746 	 * EIO if the GPU is already wedged.
2747 	 */
2748 	err = intel_gt_terminally_wedged(ce->engine->gt);
2749 	if (err)
2750 		goto err;
2751 
2752 	if (!i915_vm_tryget(ce->vm)) {
2753 		err = -ENOENT;
2754 		goto err;
2755 	}
2756 
2757 	eb->context = ce;
2758 	eb->gt = ce->engine->gt;
2759 
2760 	/*
2761 	 * Make sure engine pool stays alive even if we call intel_context_put
2762 	 * during ww handling. The pool is destroyed when last pm reference
2763 	 * is dropped, which breaks our -EDEADLK handling.
2764 	 */
2765 	return err;
2766 
2767 err:
2768 	if (gt->info.id)
2769 		intel_gt_pm_put(to_gt(gt->i915));
2770 
2771 	intel_gt_pm_put(gt);
2772 	for_each_child(ce, child)
2773 		intel_context_put(child);
2774 	intel_context_put(ce);
2775 	return err;
2776 }
2777 
2778 static void
2779 eb_put_engine(struct i915_execbuffer *eb)
2780 {
2781 	struct intel_context *child;
2782 
2783 	i915_vm_put(eb->context->vm);
2784 	/*
2785 	 * This works in conjunction with eb_select_engine() to prevent
2786 	 * i915_vma_parked() from interfering while execbuf validates vmas.
2787 	 */
2788 	if (eb->gt->info.id)
2789 		intel_gt_pm_put(to_gt(eb->gt->i915));
2790 	intel_gt_pm_put(eb->gt);
2791 	for_each_child(eb->context, child)
2792 		intel_context_put(child);
2793 	intel_context_put(eb->context);
2794 }
2795 
2796 static void
2797 __free_fence_array(struct eb_fence *fences, unsigned int n)
2798 {
2799 	while (n--) {
2800 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2801 		dma_fence_put(fences[n].dma_fence);
2802 		dma_fence_chain_free(fences[n].chain_fence);
2803 	}
2804 	kvfree(fences);
2805 }
2806 
2807 static int
2808 add_timeline_fence_array(struct i915_execbuffer *eb,
2809 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2810 {
2811 	struct drm_i915_gem_exec_fence __user *user_fences;
2812 	u64 __user *user_values;
2813 	struct eb_fence *f;
2814 	u64 nfences;
2815 	int err = 0;
2816 
2817 	nfences = timeline_fences->fence_count;
2818 	if (!nfences)
2819 		return 0;
2820 
2821 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2822 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2823 	if (nfences > min_t(unsigned long,
2824 			    ULONG_MAX / sizeof(*user_fences),
2825 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2826 		return -EINVAL;
2827 
2828 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2829 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2830 		return -EFAULT;
2831 
2832 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2833 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2834 		return -EFAULT;
2835 
2836 	f = krealloc(eb->fences,
2837 		     (eb->num_fences + nfences) * sizeof(*f),
2838 		     __GFP_NOWARN | GFP_KERNEL);
2839 	if (!f)
2840 		return -ENOMEM;
2841 
2842 	eb->fences = f;
2843 	f += eb->num_fences;
2844 
2845 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2846 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2847 
2848 	while (nfences--) {
2849 		struct drm_i915_gem_exec_fence user_fence;
2850 		struct drm_syncobj *syncobj;
2851 		struct dma_fence *fence = NULL;
2852 		u64 point;
2853 
2854 		if (__copy_from_user(&user_fence,
2855 				     user_fences++,
2856 				     sizeof(user_fence)))
2857 			return -EFAULT;
2858 
2859 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2860 			return -EINVAL;
2861 
2862 		if (__get_user(point, user_values++))
2863 			return -EFAULT;
2864 
2865 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2866 		if (!syncobj) {
2867 			drm_dbg(&eb->i915->drm,
2868 				"Invalid syncobj handle provided\n");
2869 			return -ENOENT;
2870 		}
2871 
2872 		fence = drm_syncobj_fence_get(syncobj);
2873 
2874 		if (!fence && user_fence.flags &&
2875 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2876 			drm_dbg(&eb->i915->drm,
2877 				"Syncobj handle has no fence\n");
2878 			drm_syncobj_put(syncobj);
2879 			return -EINVAL;
2880 		}
2881 
2882 		if (fence)
2883 			err = dma_fence_chain_find_seqno(&fence, point);
2884 
2885 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2886 			drm_dbg(&eb->i915->drm,
2887 				"Syncobj handle missing requested point %llu\n",
2888 				point);
2889 			dma_fence_put(fence);
2890 			drm_syncobj_put(syncobj);
2891 			return err;
2892 		}
2893 
2894 		/*
2895 		 * A point might have been signaled already and
2896 		 * garbage collected from the timeline. In this case
2897 		 * just ignore the point and carry on.
2898 		 */
2899 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2900 			drm_syncobj_put(syncobj);
2901 			continue;
2902 		}
2903 
2904 		/*
2905 		 * For timeline syncobjs we need to preallocate chains for
2906 		 * later signaling.
2907 		 */
2908 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2909 			/*
2910 			 * Waiting and signaling the same point (when point !=
2911 			 * 0) would break the timeline.
2912 			 */
2913 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2914 				drm_dbg(&eb->i915->drm,
2915 					"Trying to wait & signal the same timeline point.\n");
2916 				dma_fence_put(fence);
2917 				drm_syncobj_put(syncobj);
2918 				return -EINVAL;
2919 			}
2920 
2921 			f->chain_fence = dma_fence_chain_alloc();
2922 			if (!f->chain_fence) {
2923 				drm_syncobj_put(syncobj);
2924 				dma_fence_put(fence);
2925 				return -ENOMEM;
2926 			}
2927 		} else {
2928 			f->chain_fence = NULL;
2929 		}
2930 
2931 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2932 		f->dma_fence = fence;
2933 		f->value = point;
2934 		f++;
2935 		eb->num_fences++;
2936 	}
2937 
2938 	return 0;
2939 }
2940 
2941 static int add_fence_array(struct i915_execbuffer *eb)
2942 {
2943 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2944 	struct drm_i915_gem_exec_fence __user *user;
2945 	unsigned long num_fences = args->num_cliprects;
2946 	struct eb_fence *f;
2947 
2948 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2949 		return 0;
2950 
2951 	if (!num_fences)
2952 		return 0;
2953 
2954 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2955 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2956 	if (num_fences > min_t(unsigned long,
2957 			       ULONG_MAX / sizeof(*user),
2958 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2959 		return -EINVAL;
2960 
2961 	user = u64_to_user_ptr(args->cliprects_ptr);
2962 	if (!access_ok(user, num_fences * sizeof(*user)))
2963 		return -EFAULT;
2964 
2965 	f = krealloc(eb->fences,
2966 		     (eb->num_fences + num_fences) * sizeof(*f),
2967 		     __GFP_NOWARN | GFP_KERNEL);
2968 	if (!f)
2969 		return -ENOMEM;
2970 
2971 	eb->fences = f;
2972 	f += eb->num_fences;
2973 	while (num_fences--) {
2974 		struct drm_i915_gem_exec_fence user_fence;
2975 		struct drm_syncobj *syncobj;
2976 		struct dma_fence *fence = NULL;
2977 
2978 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2979 			return -EFAULT;
2980 
2981 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2982 			return -EINVAL;
2983 
2984 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2985 		if (!syncobj) {
2986 			drm_dbg(&eb->i915->drm,
2987 				"Invalid syncobj handle provided\n");
2988 			return -ENOENT;
2989 		}
2990 
2991 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2992 			fence = drm_syncobj_fence_get(syncobj);
2993 			if (!fence) {
2994 				drm_dbg(&eb->i915->drm,
2995 					"Syncobj handle has no fence\n");
2996 				drm_syncobj_put(syncobj);
2997 				return -EINVAL;
2998 			}
2999 		}
3000 
3001 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3002 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3003 
3004 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3005 		f->dma_fence = fence;
3006 		f->value = 0;
3007 		f->chain_fence = NULL;
3008 		f++;
3009 		eb->num_fences++;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static void put_fence_array(struct eb_fence *fences, int num_fences)
3016 {
3017 	if (fences)
3018 		__free_fence_array(fences, num_fences);
3019 }
3020 
3021 static int
3022 await_fence_array(struct i915_execbuffer *eb,
3023 		  struct i915_request *rq)
3024 {
3025 	unsigned int n;
3026 	int err;
3027 
3028 	for (n = 0; n < eb->num_fences; n++) {
3029 		if (!eb->fences[n].dma_fence)
3030 			continue;
3031 
3032 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3033 		if (err < 0)
3034 			return err;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 static void signal_fence_array(const struct i915_execbuffer *eb,
3041 			       struct dma_fence * const fence)
3042 {
3043 	unsigned int n;
3044 
3045 	for (n = 0; n < eb->num_fences; n++) {
3046 		struct drm_syncobj *syncobj;
3047 		unsigned int flags;
3048 
3049 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3050 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3051 			continue;
3052 
3053 		if (eb->fences[n].chain_fence) {
3054 			drm_syncobj_add_point(syncobj,
3055 					      eb->fences[n].chain_fence,
3056 					      fence,
3057 					      eb->fences[n].value);
3058 			/*
3059 			 * The chain's ownership is transferred to the
3060 			 * timeline.
3061 			 */
3062 			eb->fences[n].chain_fence = NULL;
3063 		} else {
3064 			drm_syncobj_replace_fence(syncobj, fence);
3065 		}
3066 	}
3067 }
3068 
3069 static int
3070 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3071 {
3072 	struct i915_execbuffer *eb = data;
3073 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3074 
3075 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3076 		return -EFAULT;
3077 
3078 	return add_timeline_fence_array(eb, &timeline_fences);
3079 }
3080 
3081 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3082 {
3083 	struct i915_request *rq, *rn;
3084 
3085 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3086 		if (rq == end || !i915_request_retire(rq))
3087 			break;
3088 }
3089 
3090 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3091 			  int err, bool last_parallel)
3092 {
3093 	struct intel_timeline * const tl = i915_request_timeline(rq);
3094 	struct i915_sched_attr attr = {};
3095 	struct i915_request *prev;
3096 
3097 	lockdep_assert_held(&tl->mutex);
3098 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3099 
3100 	trace_i915_request_add(rq);
3101 
3102 	prev = __i915_request_commit(rq);
3103 
3104 	/* Check that the context wasn't destroyed before submission */
3105 	if (likely(!intel_context_is_closed(eb->context))) {
3106 		attr = eb->gem_context->sched;
3107 	} else {
3108 		/* Serialise with context_close via the add_to_timeline */
3109 		i915_request_set_error_once(rq, -ENOENT);
3110 		__i915_request_skip(rq);
3111 		err = -ENOENT; /* override any transient errors */
3112 	}
3113 
3114 	if (intel_context_is_parallel(eb->context)) {
3115 		if (err) {
3116 			__i915_request_skip(rq);
3117 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3118 				&rq->fence.flags);
3119 		}
3120 		if (last_parallel)
3121 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3122 				&rq->fence.flags);
3123 	}
3124 
3125 	__i915_request_queue(rq, &attr);
3126 
3127 	/* Try to clean up the client's timeline after submitting the request */
3128 	if (prev)
3129 		retire_requests(tl, prev);
3130 
3131 	mutex_unlock(&tl->mutex);
3132 
3133 	return err;
3134 }
3135 
3136 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3137 {
3138 	int i;
3139 
3140 	/*
3141 	 * We iterate in reverse order of creation to release timeline mutexes in
3142 	 * same order.
3143 	 */
3144 	for_each_batch_add_order(eb, i) {
3145 		struct i915_request *rq = eb->requests[i];
3146 
3147 		if (!rq)
3148 			continue;
3149 		err |= eb_request_add(eb, rq, err, i == 0);
3150 	}
3151 
3152 	return err;
3153 }
3154 
3155 static const i915_user_extension_fn execbuf_extensions[] = {
3156 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3157 };
3158 
3159 static int
3160 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3161 			  struct i915_execbuffer *eb)
3162 {
3163 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3164 		return 0;
3165 
3166 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3167 	 * have another flag also using it at the same time.
3168 	 */
3169 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3170 		return -EINVAL;
3171 
3172 	if (args->num_cliprects != 0)
3173 		return -EINVAL;
3174 
3175 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3176 				    execbuf_extensions,
3177 				    ARRAY_SIZE(execbuf_extensions),
3178 				    eb);
3179 }
3180 
3181 static void eb_requests_get(struct i915_execbuffer *eb)
3182 {
3183 	unsigned int i;
3184 
3185 	for_each_batch_create_order(eb, i) {
3186 		if (!eb->requests[i])
3187 			break;
3188 
3189 		i915_request_get(eb->requests[i]);
3190 	}
3191 }
3192 
3193 static void eb_requests_put(struct i915_execbuffer *eb)
3194 {
3195 	unsigned int i;
3196 
3197 	for_each_batch_create_order(eb, i) {
3198 		if (!eb->requests[i])
3199 			break;
3200 
3201 		i915_request_put(eb->requests[i]);
3202 	}
3203 }
3204 
3205 static struct sync_file *
3206 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3207 {
3208 	struct sync_file *out_fence = NULL;
3209 	struct dma_fence_array *fence_array;
3210 	struct dma_fence **fences;
3211 	unsigned int i;
3212 
3213 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3214 
3215 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3216 	if (!fences)
3217 		return ERR_PTR(-ENOMEM);
3218 
3219 	for_each_batch_create_order(eb, i) {
3220 		fences[i] = &eb->requests[i]->fence;
3221 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3222 			  &eb->requests[i]->fence.flags);
3223 	}
3224 
3225 	fence_array = dma_fence_array_create(eb->num_batches,
3226 					     fences,
3227 					     eb->context->parallel.fence_context,
3228 					     eb->context->parallel.seqno++,
3229 					     false);
3230 	if (!fence_array) {
3231 		kfree(fences);
3232 		return ERR_PTR(-ENOMEM);
3233 	}
3234 
3235 	/* Move ownership to the dma_fence_array created above */
3236 	for_each_batch_create_order(eb, i)
3237 		dma_fence_get(fences[i]);
3238 
3239 	if (out_fence_fd != -1) {
3240 		out_fence = sync_file_create(&fence_array->base);
3241 		/* sync_file now owns fence_arry, drop creation ref */
3242 		dma_fence_put(&fence_array->base);
3243 		if (!out_fence)
3244 			return ERR_PTR(-ENOMEM);
3245 	}
3246 
3247 	eb->composite_fence = &fence_array->base;
3248 
3249 	return out_fence;
3250 }
3251 
3252 static struct sync_file *
3253 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3254 	      struct dma_fence *in_fence, int out_fence_fd)
3255 {
3256 	struct sync_file *out_fence = NULL;
3257 	int err;
3258 
3259 	if (unlikely(eb->gem_context->syncobj)) {
3260 		struct dma_fence *fence;
3261 
3262 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3263 		err = i915_request_await_dma_fence(rq, fence);
3264 		dma_fence_put(fence);
3265 		if (err)
3266 			return ERR_PTR(err);
3267 	}
3268 
3269 	if (in_fence) {
3270 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3271 			err = i915_request_await_execution(rq, in_fence);
3272 		else
3273 			err = i915_request_await_dma_fence(rq, in_fence);
3274 		if (err < 0)
3275 			return ERR_PTR(err);
3276 	}
3277 
3278 	if (eb->fences) {
3279 		err = await_fence_array(eb, rq);
3280 		if (err)
3281 			return ERR_PTR(err);
3282 	}
3283 
3284 	if (intel_context_is_parallel(eb->context)) {
3285 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3286 		if (IS_ERR(out_fence))
3287 			return ERR_PTR(-ENOMEM);
3288 	} else if (out_fence_fd != -1) {
3289 		out_fence = sync_file_create(&rq->fence);
3290 		if (!out_fence)
3291 			return ERR_PTR(-ENOMEM);
3292 	}
3293 
3294 	return out_fence;
3295 }
3296 
3297 static struct intel_context *
3298 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3299 {
3300 	struct intel_context *child;
3301 
3302 	if (likely(context_number == 0))
3303 		return eb->context;
3304 
3305 	for_each_child(eb->context, child)
3306 		if (!--context_number)
3307 			return child;
3308 
3309 	GEM_BUG_ON("Context not found");
3310 
3311 	return NULL;
3312 }
3313 
3314 static struct sync_file *
3315 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3316 		   int out_fence_fd)
3317 {
3318 	struct sync_file *out_fence = NULL;
3319 	unsigned int i;
3320 
3321 	for_each_batch_create_order(eb, i) {
3322 		/* Allocate a request for this batch buffer nice and early. */
3323 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3324 		if (IS_ERR(eb->requests[i])) {
3325 			out_fence = ERR_CAST(eb->requests[i]);
3326 			eb->requests[i] = NULL;
3327 			return out_fence;
3328 		}
3329 
3330 		/*
3331 		 * Only the first request added (committed to backend) has to
3332 		 * take the in fences into account as all subsequent requests
3333 		 * will have fences inserted inbetween them.
3334 		 */
3335 		if (i + 1 == eb->num_batches) {
3336 			out_fence = eb_fences_add(eb, eb->requests[i],
3337 						  in_fence, out_fence_fd);
3338 			if (IS_ERR(out_fence))
3339 				return out_fence;
3340 		}
3341 
3342 		/*
3343 		 * Not really on stack, but we don't want to call
3344 		 * kfree on the batch_snapshot when we put it, so use the
3345 		 * _onstack interface.
3346 		 */
3347 		if (eb->batches[i]->vma)
3348 			eb->requests[i]->batch_res =
3349 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3350 		if (eb->batch_pool) {
3351 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3352 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3353 							 eb->requests[i]);
3354 		}
3355 	}
3356 
3357 	return out_fence;
3358 }
3359 
3360 static int
3361 i915_gem_do_execbuffer(struct drm_device *dev,
3362 		       struct drm_file *file,
3363 		       struct drm_i915_gem_execbuffer2 *args,
3364 		       struct drm_i915_gem_exec_object2 *exec)
3365 {
3366 	struct drm_i915_private *i915 = to_i915(dev);
3367 	struct i915_execbuffer eb;
3368 	struct dma_fence *in_fence = NULL;
3369 	struct sync_file *out_fence = NULL;
3370 	int out_fence_fd = -1;
3371 	int err;
3372 
3373 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3374 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3375 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3376 
3377 	eb.i915 = i915;
3378 	eb.file = file;
3379 	eb.args = args;
3380 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3381 		args->flags |= __EXEC_HAS_RELOC;
3382 
3383 	eb.exec = exec;
3384 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3385 	eb.vma[0].vma = NULL;
3386 	eb.batch_pool = NULL;
3387 
3388 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3389 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3390 
3391 	eb.buffer_count = args->buffer_count;
3392 	eb.batch_start_offset = args->batch_start_offset;
3393 	eb.trampoline = NULL;
3394 
3395 	eb.fences = NULL;
3396 	eb.num_fences = 0;
3397 
3398 	eb_capture_list_clear(&eb);
3399 
3400 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3401 	       ARRAY_SIZE(eb.requests));
3402 	eb.composite_fence = NULL;
3403 
3404 	eb.batch_flags = 0;
3405 	if (args->flags & I915_EXEC_SECURE) {
3406 		if (GRAPHICS_VER(i915) >= 11)
3407 			return -ENODEV;
3408 
3409 		/* Return -EPERM to trigger fallback code on old binaries. */
3410 		if (!HAS_SECURE_BATCHES(i915))
3411 			return -EPERM;
3412 
3413 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3414 			return -EPERM;
3415 
3416 		eb.batch_flags |= I915_DISPATCH_SECURE;
3417 	}
3418 	if (args->flags & I915_EXEC_IS_PINNED)
3419 		eb.batch_flags |= I915_DISPATCH_PINNED;
3420 
3421 	err = parse_execbuf2_extensions(args, &eb);
3422 	if (err)
3423 		goto err_ext;
3424 
3425 	err = add_fence_array(&eb);
3426 	if (err)
3427 		goto err_ext;
3428 
3429 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3430 	if (args->flags & IN_FENCES) {
3431 		if ((args->flags & IN_FENCES) == IN_FENCES)
3432 			return -EINVAL;
3433 
3434 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3435 		if (!in_fence) {
3436 			err = -EINVAL;
3437 			goto err_ext;
3438 		}
3439 	}
3440 #undef IN_FENCES
3441 
3442 	if (args->flags & I915_EXEC_FENCE_OUT) {
3443 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3444 		if (out_fence_fd < 0) {
3445 			err = out_fence_fd;
3446 			goto err_in_fence;
3447 		}
3448 	}
3449 
3450 	err = eb_create(&eb);
3451 	if (err)
3452 		goto err_out_fence;
3453 
3454 	GEM_BUG_ON(!eb.lut_size);
3455 
3456 	err = eb_select_context(&eb);
3457 	if (unlikely(err))
3458 		goto err_destroy;
3459 
3460 	err = eb_select_engine(&eb);
3461 	if (unlikely(err))
3462 		goto err_context;
3463 
3464 	err = eb_lookup_vmas(&eb);
3465 	if (err) {
3466 		eb_release_vmas(&eb, true);
3467 		goto err_engine;
3468 	}
3469 
3470 	i915_gem_ww_ctx_init(&eb.ww, true);
3471 
3472 	err = eb_relocate_parse(&eb);
3473 	if (err) {
3474 		/*
3475 		 * If the user expects the execobject.offset and
3476 		 * reloc.presumed_offset to be an exact match,
3477 		 * as for using NO_RELOC, then we cannot update
3478 		 * the execobject.offset until we have completed
3479 		 * relocation.
3480 		 */
3481 		args->flags &= ~__EXEC_HAS_RELOC;
3482 		goto err_vma;
3483 	}
3484 
3485 	ww_acquire_done(&eb.ww.ctx);
3486 	err = eb_capture_stage(&eb);
3487 	if (err)
3488 		goto err_vma;
3489 
3490 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3491 	if (IS_ERR(out_fence)) {
3492 		err = PTR_ERR(out_fence);
3493 		out_fence = NULL;
3494 		if (eb.requests[0])
3495 			goto err_request;
3496 		else
3497 			goto err_vma;
3498 	}
3499 
3500 	err = eb_submit(&eb);
3501 
3502 err_request:
3503 	eb_requests_get(&eb);
3504 	err = eb_requests_add(&eb, err);
3505 
3506 	if (eb.fences)
3507 		signal_fence_array(&eb, eb.composite_fence ?
3508 				   eb.composite_fence :
3509 				   &eb.requests[0]->fence);
3510 
3511 	if (unlikely(eb.gem_context->syncobj)) {
3512 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3513 					  eb.composite_fence ?
3514 					  eb.composite_fence :
3515 					  &eb.requests[0]->fence);
3516 	}
3517 
3518 	if (out_fence) {
3519 		if (err == 0) {
3520 			fd_install(out_fence_fd, out_fence->file);
3521 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3522 			args->rsvd2 |= (u64)out_fence_fd << 32;
3523 			out_fence_fd = -1;
3524 		} else {
3525 			fput(out_fence->file);
3526 		}
3527 	}
3528 
3529 	if (!out_fence && eb.composite_fence)
3530 		dma_fence_put(eb.composite_fence);
3531 
3532 	eb_requests_put(&eb);
3533 
3534 err_vma:
3535 	eb_release_vmas(&eb, true);
3536 	WARN_ON(err == -EDEADLK);
3537 	i915_gem_ww_ctx_fini(&eb.ww);
3538 
3539 	if (eb.batch_pool)
3540 		intel_gt_buffer_pool_put(eb.batch_pool);
3541 err_engine:
3542 	eb_put_engine(&eb);
3543 err_context:
3544 	i915_gem_context_put(eb.gem_context);
3545 err_destroy:
3546 	eb_destroy(&eb);
3547 err_out_fence:
3548 	if (out_fence_fd != -1)
3549 		put_unused_fd(out_fence_fd);
3550 err_in_fence:
3551 	dma_fence_put(in_fence);
3552 err_ext:
3553 	put_fence_array(eb.fences, eb.num_fences);
3554 	return err;
3555 }
3556 
3557 static size_t eb_element_size(void)
3558 {
3559 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3560 }
3561 
3562 static bool check_buffer_count(size_t count)
3563 {
3564 	const size_t sz = eb_element_size();
3565 
3566 	/*
3567 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3568 	 * array size (see eb_create()). Otherwise, we can accept an array as
3569 	 * large as can be addressed (though use large arrays at your peril)!
3570 	 */
3571 
3572 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3573 }
3574 
3575 int
3576 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3577 			   struct drm_file *file)
3578 {
3579 	struct drm_i915_private *i915 = to_i915(dev);
3580 	struct drm_i915_gem_execbuffer2 *args = data;
3581 	struct drm_i915_gem_exec_object2 *exec2_list;
3582 	const size_t count = args->buffer_count;
3583 	int err;
3584 
3585 	if (!check_buffer_count(count)) {
3586 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3587 		return -EINVAL;
3588 	}
3589 
3590 	err = i915_gem_check_execbuffer(i915, args);
3591 	if (err)
3592 		return err;
3593 
3594 	/* Allocate extra slots for use by the command parser */
3595 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3596 				    __GFP_NOWARN | GFP_KERNEL);
3597 	if (exec2_list == NULL) {
3598 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3599 			count);
3600 		return -ENOMEM;
3601 	}
3602 	if (copy_from_user(exec2_list,
3603 			   u64_to_user_ptr(args->buffers_ptr),
3604 			   sizeof(*exec2_list) * count)) {
3605 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3606 		kvfree(exec2_list);
3607 		return -EFAULT;
3608 	}
3609 
3610 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3611 
3612 	/*
3613 	 * Now that we have begun execution of the batchbuffer, we ignore
3614 	 * any new error after this point. Also given that we have already
3615 	 * updated the associated relocations, we try to write out the current
3616 	 * object locations irrespective of any error.
3617 	 */
3618 	if (args->flags & __EXEC_HAS_RELOC) {
3619 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3620 			u64_to_user_ptr(args->buffers_ptr);
3621 		unsigned int i;
3622 
3623 		/* Copy the new buffer offsets back to the user's exec list. */
3624 		/*
3625 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3626 		 * because we checked 'count' in check_buffer_count().
3627 		 *
3628 		 * And this range already got effectively checked earlier
3629 		 * when we did the "copy_from_user()" above.
3630 		 */
3631 		if (!user_write_access_begin(user_exec_list,
3632 					     count * sizeof(*user_exec_list)))
3633 			goto end;
3634 
3635 		for (i = 0; i < args->buffer_count; i++) {
3636 			if (!(exec2_list[i].offset & UPDATE))
3637 				continue;
3638 
3639 			exec2_list[i].offset =
3640 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3641 			unsafe_put_user(exec2_list[i].offset,
3642 					&user_exec_list[i].offset,
3643 					end_user);
3644 		}
3645 end_user:
3646 		user_write_access_end();
3647 end:;
3648 	}
3649 
3650 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3651 	kvfree(exec2_list);
3652 	return err;
3653 }
3654