xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_display_power.h"
21 #include "intel_display_types.h"
22 #include "intel_hdcp.h"
23 #include "intel_sideband.h"
24 #include "intel_connector.h"
25 
26 #define KEY_LOAD_TRIES	5
27 #define HDCP2_LC_RETRY_CNT			3
28 
29 static int intel_conn_to_vcpi(struct intel_connector *connector)
30 {
31 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
32 	return connector->port	? connector->port->vcpi.vcpi : 0;
33 }
34 
35 static bool
36 intel_streams_type1_capable(struct intel_connector *connector)
37 {
38 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
39 	bool capable = false;
40 
41 	if (!shim)
42 		return capable;
43 
44 	if (shim->streams_type1_capable)
45 		shim->streams_type1_capable(connector, &capable);
46 
47 	return capable;
48 }
49 
50 /*
51  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
52  * content_type for all streams in DP MST topology because security f/w doesn't
53  * have any provision to mark content_type for each stream separately, it marks
54  * all available streams with the content_type proivided at the time of port
55  * authentication. This may prohibit the userspace to use type1 content on
56  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
57  * DP MST topology. Though it is not compulsory, security fw should change its
58  * policy to mark different content_types for different streams.
59  */
60 static int
61 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
62 {
63 	struct drm_connector_list_iter conn_iter;
64 	struct intel_digital_port *conn_dig_port;
65 	struct intel_connector *connector;
66 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
67 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
68 	bool enforce_type0 = false;
69 	int k;
70 
71 	data->k = 0;
72 
73 	if (dig_port->hdcp_auth_status)
74 		return 0;
75 
76 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
77 	for_each_intel_connector_iter(connector, &conn_iter) {
78 		if (connector->base.status == connector_status_disconnected)
79 			continue;
80 
81 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
82 			continue;
83 
84 		conn_dig_port = intel_attached_dig_port(connector);
85 		if (conn_dig_port != dig_port)
86 			continue;
87 
88 		if (!enforce_type0 && !intel_streams_type1_capable(connector))
89 			enforce_type0 = true;
90 
91 		data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
92 		data->k++;
93 
94 		/* if there is only one active stream */
95 		if (dig_port->dp.active_mst_links <= 1)
96 			break;
97 	}
98 	drm_connector_list_iter_end(&conn_iter);
99 
100 	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
101 		return -EINVAL;
102 
103 	/*
104 	 * Apply common protection level across all streams in DP MST Topology.
105 	 * Use highest supported content type for all streams in DP MST Topology.
106 	 */
107 	for (k = 0; k < data->k; k++)
108 		data->streams[k].stream_type =
109 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
110 
111 	return 0;
112 }
113 
114 static
115 bool intel_hdcp_is_ksv_valid(u8 *ksv)
116 {
117 	int i, ones = 0;
118 	/* KSV has 20 1's and 20 0's */
119 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
120 		ones += hweight8(ksv[i]);
121 	if (ones != 20)
122 		return false;
123 
124 	return true;
125 }
126 
127 static
128 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
129 			       const struct intel_hdcp_shim *shim, u8 *bksv)
130 {
131 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
132 	int ret, i, tries = 2;
133 
134 	/* HDCP spec states that we must retry the bksv if it is invalid */
135 	for (i = 0; i < tries; i++) {
136 		ret = shim->read_bksv(dig_port, bksv);
137 		if (ret)
138 			return ret;
139 		if (intel_hdcp_is_ksv_valid(bksv))
140 			break;
141 	}
142 	if (i == tries) {
143 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
144 		return -ENODEV;
145 	}
146 
147 	return 0;
148 }
149 
150 /* Is HDCP1.4 capable on Platform and Sink */
151 bool intel_hdcp_capable(struct intel_connector *connector)
152 {
153 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
154 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
155 	bool capable = false;
156 	u8 bksv[5];
157 
158 	if (!shim)
159 		return capable;
160 
161 	if (shim->hdcp_capable) {
162 		shim->hdcp_capable(dig_port, &capable);
163 	} else {
164 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
165 			capable = true;
166 	}
167 
168 	return capable;
169 }
170 
171 /* Is HDCP2.2 capable on Platform and Sink */
172 bool intel_hdcp2_capable(struct intel_connector *connector)
173 {
174 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
175 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
176 	struct intel_hdcp *hdcp = &connector->hdcp;
177 	bool capable = false;
178 
179 	/* I915 support for HDCP2.2 */
180 	if (!hdcp->hdcp2_supported)
181 		return false;
182 
183 	/* MEI interface is solid */
184 	mutex_lock(&dev_priv->hdcp_comp_mutex);
185 	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
186 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
187 		return false;
188 	}
189 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
190 
191 	/* Sink's capability for HDCP2.2 */
192 	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
193 
194 	return capable;
195 }
196 
197 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
198 			      enum transcoder cpu_transcoder, enum port port)
199 {
200 	return intel_de_read(dev_priv,
201 	                     HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
202 	       HDCP_STATUS_ENC;
203 }
204 
205 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
206 			       enum transcoder cpu_transcoder, enum port port)
207 {
208 	return intel_de_read(dev_priv,
209 	                     HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
210 	       LINK_ENCRYPTION_STATUS;
211 }
212 
213 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
214 				    const struct intel_hdcp_shim *shim)
215 {
216 	int ret, read_ret;
217 	bool ksv_ready;
218 
219 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
220 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
221 							 &ksv_ready),
222 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
223 			 100 * 1000);
224 	if (ret)
225 		return ret;
226 	if (read_ret)
227 		return read_ret;
228 	if (!ksv_ready)
229 		return -ETIMEDOUT;
230 
231 	return 0;
232 }
233 
234 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
235 {
236 	enum i915_power_well_id id;
237 	intel_wakeref_t wakeref;
238 	bool enabled = false;
239 
240 	/*
241 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
242 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
243 	 */
244 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
245 		id = HSW_DISP_PW_GLOBAL;
246 	else
247 		id = SKL_DISP_PW_1;
248 
249 	/* PG1 (power well #1) needs to be enabled */
250 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
251 		enabled = intel_display_power_well_is_enabled(dev_priv, id);
252 
253 	/*
254 	 * Another req for hdcp key loadability is enabled state of pll for
255 	 * cdclk. Without active crtc we wont land here. So we are assuming that
256 	 * cdclk is already on.
257 	 */
258 
259 	return enabled;
260 }
261 
262 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
263 {
264 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
265 	intel_de_write(dev_priv, HDCP_KEY_STATUS,
266 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
267 }
268 
269 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
270 {
271 	int ret;
272 	u32 val;
273 
274 	val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
275 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
276 		return 0;
277 
278 	/*
279 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
280 	 * out of reset. So if Key is not already loaded, its an error state.
281 	 */
282 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
283 		if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
284 			return -ENXIO;
285 
286 	/*
287 	 * Initiate loading the HDCP key from fuses.
288 	 *
289 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
290 	 * platforms except BXT and GLK, differ in the key load trigger process
291 	 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
292 	 */
293 	if (IS_GEN9_BC(dev_priv)) {
294 		ret = sandybridge_pcode_write(dev_priv,
295 					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
296 		if (ret) {
297 			drm_err(&dev_priv->drm,
298 				"Failed to initiate HDCP key load (%d)\n",
299 				ret);
300 			return ret;
301 		}
302 	} else {
303 		intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
304 	}
305 
306 	/* Wait for the keys to load (500us) */
307 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
308 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
309 					10, 1, &val);
310 	if (ret)
311 		return ret;
312 	else if (!(val & HDCP_KEY_LOAD_STATUS))
313 		return -ENXIO;
314 
315 	/* Send Aksv over to PCH display for use in authentication */
316 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
317 
318 	return 0;
319 }
320 
321 /* Returns updated SHA-1 index */
322 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
323 {
324 	intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
325 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
326 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
327 		return -ETIMEDOUT;
328 	}
329 	return 0;
330 }
331 
332 static
333 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
334 				enum transcoder cpu_transcoder, enum port port)
335 {
336 	if (DISPLAY_VER(dev_priv) >= 12) {
337 		switch (cpu_transcoder) {
338 		case TRANSCODER_A:
339 			return HDCP_TRANSA_REP_PRESENT |
340 			       HDCP_TRANSA_SHA1_M0;
341 		case TRANSCODER_B:
342 			return HDCP_TRANSB_REP_PRESENT |
343 			       HDCP_TRANSB_SHA1_M0;
344 		case TRANSCODER_C:
345 			return HDCP_TRANSC_REP_PRESENT |
346 			       HDCP_TRANSC_SHA1_M0;
347 		case TRANSCODER_D:
348 			return HDCP_TRANSD_REP_PRESENT |
349 			       HDCP_TRANSD_SHA1_M0;
350 		default:
351 			drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
352 				cpu_transcoder);
353 			return -EINVAL;
354 		}
355 	}
356 
357 	switch (port) {
358 	case PORT_A:
359 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
360 	case PORT_B:
361 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
362 	case PORT_C:
363 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
364 	case PORT_D:
365 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
366 	case PORT_E:
367 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
368 	default:
369 		drm_err(&dev_priv->drm, "Unknown port %d\n", port);
370 		return -EINVAL;
371 	}
372 }
373 
374 static
375 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
376 				const struct intel_hdcp_shim *shim,
377 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
378 {
379 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
380 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
381 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
382 	enum port port = dig_port->base.port;
383 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
384 	int ret, i, j, sha_idx;
385 
386 	/* Process V' values from the receiver */
387 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
388 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
389 		if (ret)
390 			return ret;
391 		intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
392 	}
393 
394 	/*
395 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
396 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
397 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
398 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
399 	 * index will keep track of our progress through the 64 bytes as well as
400 	 * helping us work the 40-bit KSVs through our 32-bit register.
401 	 *
402 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
403 	 */
404 	sha_idx = 0;
405 	sha_text = 0;
406 	sha_leftovers = 0;
407 	rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
408 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
409 	for (i = 0; i < num_downstream; i++) {
410 		unsigned int sha_empty;
411 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
412 
413 		/* Fill up the empty slots in sha_text and write it out */
414 		sha_empty = sizeof(sha_text) - sha_leftovers;
415 		for (j = 0; j < sha_empty; j++) {
416 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
417 			sha_text |= ksv[j] << off;
418 		}
419 
420 		ret = intel_write_sha_text(dev_priv, sha_text);
421 		if (ret < 0)
422 			return ret;
423 
424 		/* Programming guide writes this every 64 bytes */
425 		sha_idx += sizeof(sha_text);
426 		if (!(sha_idx % 64))
427 			intel_de_write(dev_priv, HDCP_REP_CTL,
428 				       rep_ctl | HDCP_SHA1_TEXT_32);
429 
430 		/* Store the leftover bytes from the ksv in sha_text */
431 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
432 		sha_text = 0;
433 		for (j = 0; j < sha_leftovers; j++)
434 			sha_text |= ksv[sha_empty + j] <<
435 					((sizeof(sha_text) - j - 1) * 8);
436 
437 		/*
438 		 * If we still have room in sha_text for more data, continue.
439 		 * Otherwise, write it out immediately.
440 		 */
441 		if (sizeof(sha_text) > sha_leftovers)
442 			continue;
443 
444 		ret = intel_write_sha_text(dev_priv, sha_text);
445 		if (ret < 0)
446 			return ret;
447 		sha_leftovers = 0;
448 		sha_text = 0;
449 		sha_idx += sizeof(sha_text);
450 	}
451 
452 	/*
453 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
454 	 * bytes are leftover from the last ksv, we might be able to fit them
455 	 * all in sha_text (first 2 cases), or we might need to split them up
456 	 * into 2 writes (last 2 cases).
457 	 */
458 	if (sha_leftovers == 0) {
459 		/* Write 16 bits of text, 16 bits of M0 */
460 		intel_de_write(dev_priv, HDCP_REP_CTL,
461 			       rep_ctl | HDCP_SHA1_TEXT_16);
462 		ret = intel_write_sha_text(dev_priv,
463 					   bstatus[0] << 8 | bstatus[1]);
464 		if (ret < 0)
465 			return ret;
466 		sha_idx += sizeof(sha_text);
467 
468 		/* Write 32 bits of M0 */
469 		intel_de_write(dev_priv, HDCP_REP_CTL,
470 			       rep_ctl | HDCP_SHA1_TEXT_0);
471 		ret = intel_write_sha_text(dev_priv, 0);
472 		if (ret < 0)
473 			return ret;
474 		sha_idx += sizeof(sha_text);
475 
476 		/* Write 16 bits of M0 */
477 		intel_de_write(dev_priv, HDCP_REP_CTL,
478 			       rep_ctl | HDCP_SHA1_TEXT_16);
479 		ret = intel_write_sha_text(dev_priv, 0);
480 		if (ret < 0)
481 			return ret;
482 		sha_idx += sizeof(sha_text);
483 
484 	} else if (sha_leftovers == 1) {
485 		/* Write 24 bits of text, 8 bits of M0 */
486 		intel_de_write(dev_priv, HDCP_REP_CTL,
487 			       rep_ctl | HDCP_SHA1_TEXT_24);
488 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
489 		/* Only 24-bits of data, must be in the LSB */
490 		sha_text = (sha_text & 0xffffff00) >> 8;
491 		ret = intel_write_sha_text(dev_priv, sha_text);
492 		if (ret < 0)
493 			return ret;
494 		sha_idx += sizeof(sha_text);
495 
496 		/* Write 32 bits of M0 */
497 		intel_de_write(dev_priv, HDCP_REP_CTL,
498 			       rep_ctl | HDCP_SHA1_TEXT_0);
499 		ret = intel_write_sha_text(dev_priv, 0);
500 		if (ret < 0)
501 			return ret;
502 		sha_idx += sizeof(sha_text);
503 
504 		/* Write 24 bits of M0 */
505 		intel_de_write(dev_priv, HDCP_REP_CTL,
506 			       rep_ctl | HDCP_SHA1_TEXT_8);
507 		ret = intel_write_sha_text(dev_priv, 0);
508 		if (ret < 0)
509 			return ret;
510 		sha_idx += sizeof(sha_text);
511 
512 	} else if (sha_leftovers == 2) {
513 		/* Write 32 bits of text */
514 		intel_de_write(dev_priv, HDCP_REP_CTL,
515 			       rep_ctl | HDCP_SHA1_TEXT_32);
516 		sha_text |= bstatus[0] << 8 | bstatus[1];
517 		ret = intel_write_sha_text(dev_priv, sha_text);
518 		if (ret < 0)
519 			return ret;
520 		sha_idx += sizeof(sha_text);
521 
522 		/* Write 64 bits of M0 */
523 		intel_de_write(dev_priv, HDCP_REP_CTL,
524 			       rep_ctl | HDCP_SHA1_TEXT_0);
525 		for (i = 0; i < 2; i++) {
526 			ret = intel_write_sha_text(dev_priv, 0);
527 			if (ret < 0)
528 				return ret;
529 			sha_idx += sizeof(sha_text);
530 		}
531 
532 		/*
533 		 * Terminate the SHA-1 stream by hand. For the other leftover
534 		 * cases this is appended by the hardware.
535 		 */
536 		intel_de_write(dev_priv, HDCP_REP_CTL,
537 			       rep_ctl | HDCP_SHA1_TEXT_32);
538 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
539 		ret = intel_write_sha_text(dev_priv, sha_text);
540 		if (ret < 0)
541 			return ret;
542 		sha_idx += sizeof(sha_text);
543 	} else if (sha_leftovers == 3) {
544 		/* Write 32 bits of text (filled from LSB) */
545 		intel_de_write(dev_priv, HDCP_REP_CTL,
546 			       rep_ctl | HDCP_SHA1_TEXT_32);
547 		sha_text |= bstatus[0];
548 		ret = intel_write_sha_text(dev_priv, sha_text);
549 		if (ret < 0)
550 			return ret;
551 		sha_idx += sizeof(sha_text);
552 
553 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
554 		intel_de_write(dev_priv, HDCP_REP_CTL,
555 			       rep_ctl | HDCP_SHA1_TEXT_8);
556 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
557 		if (ret < 0)
558 			return ret;
559 		sha_idx += sizeof(sha_text);
560 
561 		/* Write 32 bits of M0 */
562 		intel_de_write(dev_priv, HDCP_REP_CTL,
563 			       rep_ctl | HDCP_SHA1_TEXT_0);
564 		ret = intel_write_sha_text(dev_priv, 0);
565 		if (ret < 0)
566 			return ret;
567 		sha_idx += sizeof(sha_text);
568 
569 		/* Write 8 bits of M0 */
570 		intel_de_write(dev_priv, HDCP_REP_CTL,
571 			       rep_ctl | HDCP_SHA1_TEXT_24);
572 		ret = intel_write_sha_text(dev_priv, 0);
573 		if (ret < 0)
574 			return ret;
575 		sha_idx += sizeof(sha_text);
576 	} else {
577 		drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
578 			    sha_leftovers);
579 		return -EINVAL;
580 	}
581 
582 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
583 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
584 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
585 		ret = intel_write_sha_text(dev_priv, 0);
586 		if (ret < 0)
587 			return ret;
588 		sha_idx += sizeof(sha_text);
589 	}
590 
591 	/*
592 	 * Last write gets the length of the concatenation in bits. That is:
593 	 *  - 5 bytes per device
594 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
595 	 */
596 	sha_text = (num_downstream * 5 + 10) * 8;
597 	ret = intel_write_sha_text(dev_priv, sha_text);
598 	if (ret < 0)
599 		return ret;
600 
601 	/* Tell the HW we're done with the hash and wait for it to ACK */
602 	intel_de_write(dev_priv, HDCP_REP_CTL,
603 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
604 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
605 				  HDCP_SHA1_COMPLETE, 1)) {
606 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
607 		return -ETIMEDOUT;
608 	}
609 	if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
610 		drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
611 		return -ENXIO;
612 	}
613 
614 	return 0;
615 }
616 
617 /* Implements Part 2 of the HDCP authorization procedure */
618 static
619 int intel_hdcp_auth_downstream(struct intel_connector *connector)
620 {
621 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
622 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
623 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
624 	u8 bstatus[2], num_downstream, *ksv_fifo;
625 	int ret, i, tries = 3;
626 
627 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
628 	if (ret) {
629 		drm_dbg_kms(&dev_priv->drm,
630 			    "KSV list failed to become ready (%d)\n", ret);
631 		return ret;
632 	}
633 
634 	ret = shim->read_bstatus(dig_port, bstatus);
635 	if (ret)
636 		return ret;
637 
638 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
639 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
640 		drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
641 		return -EPERM;
642 	}
643 
644 	/*
645 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
646 	 * the HDCP encryption. That implies that repeater can't have its own
647 	 * display. As there is no consumption of encrypted content in the
648 	 * repeater with 0 downstream devices, we are failing the
649 	 * authentication.
650 	 */
651 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
652 	if (num_downstream == 0) {
653 		drm_dbg_kms(&dev_priv->drm,
654 			    "Repeater with zero downstream devices\n");
655 		return -EINVAL;
656 	}
657 
658 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
659 	if (!ksv_fifo) {
660 		drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
661 		return -ENOMEM;
662 	}
663 
664 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
665 	if (ret)
666 		goto err;
667 
668 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
669 					num_downstream) > 0) {
670 		drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
671 		ret = -EPERM;
672 		goto err;
673 	}
674 
675 	/*
676 	 * When V prime mismatches, DP Spec mandates re-read of
677 	 * V prime atleast twice.
678 	 */
679 	for (i = 0; i < tries; i++) {
680 		ret = intel_hdcp_validate_v_prime(connector, shim,
681 						  ksv_fifo, num_downstream,
682 						  bstatus);
683 		if (!ret)
684 			break;
685 	}
686 
687 	if (i == tries) {
688 		drm_dbg_kms(&dev_priv->drm,
689 			    "V Prime validation failed.(%d)\n", ret);
690 		goto err;
691 	}
692 
693 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
694 		    num_downstream);
695 	ret = 0;
696 err:
697 	kfree(ksv_fifo);
698 	return ret;
699 }
700 
701 /* Implements Part 1 of the HDCP authorization procedure */
702 static int intel_hdcp_auth(struct intel_connector *connector)
703 {
704 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
705 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
706 	struct intel_hdcp *hdcp = &connector->hdcp;
707 	const struct intel_hdcp_shim *shim = hdcp->shim;
708 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
709 	enum port port = dig_port->base.port;
710 	unsigned long r0_prime_gen_start;
711 	int ret, i, tries = 2;
712 	union {
713 		u32 reg[2];
714 		u8 shim[DRM_HDCP_AN_LEN];
715 	} an;
716 	union {
717 		u32 reg[2];
718 		u8 shim[DRM_HDCP_KSV_LEN];
719 	} bksv;
720 	union {
721 		u32 reg;
722 		u8 shim[DRM_HDCP_RI_LEN];
723 	} ri;
724 	bool repeater_present, hdcp_capable;
725 
726 	/*
727 	 * Detects whether the display is HDCP capable. Although we check for
728 	 * valid Bksv below, the HDCP over DP spec requires that we check
729 	 * whether the display supports HDCP before we write An. For HDMI
730 	 * displays, this is not necessary.
731 	 */
732 	if (shim->hdcp_capable) {
733 		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
734 		if (ret)
735 			return ret;
736 		if (!hdcp_capable) {
737 			drm_dbg_kms(&dev_priv->drm,
738 				    "Panel is not HDCP capable\n");
739 			return -EINVAL;
740 		}
741 	}
742 
743 	/* Initialize An with 2 random values and acquire it */
744 	for (i = 0; i < 2; i++)
745 		intel_de_write(dev_priv,
746 			       HDCP_ANINIT(dev_priv, cpu_transcoder, port),
747 			       get_random_u32());
748 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
749 		       HDCP_CONF_CAPTURE_AN);
750 
751 	/* Wait for An to be acquired */
752 	if (intel_de_wait_for_set(dev_priv,
753 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
754 				  HDCP_STATUS_AN_READY, 1)) {
755 		drm_err(&dev_priv->drm, "Timed out waiting for An\n");
756 		return -ETIMEDOUT;
757 	}
758 
759 	an.reg[0] = intel_de_read(dev_priv,
760 				  HDCP_ANLO(dev_priv, cpu_transcoder, port));
761 	an.reg[1] = intel_de_read(dev_priv,
762 				  HDCP_ANHI(dev_priv, cpu_transcoder, port));
763 	ret = shim->write_an_aksv(dig_port, an.shim);
764 	if (ret)
765 		return ret;
766 
767 	r0_prime_gen_start = jiffies;
768 
769 	memset(&bksv, 0, sizeof(bksv));
770 
771 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
772 	if (ret < 0)
773 		return ret;
774 
775 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
776 		drm_err(&dev_priv->drm, "BKSV is revoked\n");
777 		return -EPERM;
778 	}
779 
780 	intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
781 		       bksv.reg[0]);
782 	intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
783 		       bksv.reg[1]);
784 
785 	ret = shim->repeater_present(dig_port, &repeater_present);
786 	if (ret)
787 		return ret;
788 	if (repeater_present)
789 		intel_de_write(dev_priv, HDCP_REP_CTL,
790 			       intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
791 
792 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
793 	if (ret)
794 		return ret;
795 
796 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
797 		       HDCP_CONF_AUTH_AND_ENC);
798 
799 	/* Wait for R0 ready */
800 	if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
801 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
802 		drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
803 		return -ETIMEDOUT;
804 	}
805 
806 	/*
807 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
808 	 * some monitors can take longer than this. We'll set the timeout at
809 	 * 300ms just to be sure.
810 	 *
811 	 * On DP, there's an R0_READY bit available but no such bit
812 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
813 	 * the stupid thing instead of polling on one and not the other.
814 	 */
815 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
816 
817 	tries = 3;
818 
819 	/*
820 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
821 	 * of R0 mismatch.
822 	 */
823 	for (i = 0; i < tries; i++) {
824 		ri.reg = 0;
825 		ret = shim->read_ri_prime(dig_port, ri.shim);
826 		if (ret)
827 			return ret;
828 		intel_de_write(dev_priv,
829 			       HDCP_RPRIME(dev_priv, cpu_transcoder, port),
830 			       ri.reg);
831 
832 		/* Wait for Ri prime match */
833 		if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
834 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
835 			break;
836 	}
837 
838 	if (i == tries) {
839 		drm_dbg_kms(&dev_priv->drm,
840 			    "Timed out waiting for Ri prime match (%x)\n",
841 			    intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
842 					  cpu_transcoder, port)));
843 		return -ETIMEDOUT;
844 	}
845 
846 	/* Wait for encryption confirmation */
847 	if (intel_de_wait_for_set(dev_priv,
848 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
849 				  HDCP_STATUS_ENC,
850 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
851 		drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
852 		return -ETIMEDOUT;
853 	}
854 
855 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
856 	if (shim->stream_encryption) {
857 		ret = shim->stream_encryption(connector, true);
858 		if (ret) {
859 			drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
860 				connector->base.name, connector->base.base.id);
861 			return ret;
862 		}
863 		drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
864 			    transcoder_name(hdcp->stream_transcoder));
865 	}
866 
867 	if (repeater_present)
868 		return intel_hdcp_auth_downstream(connector);
869 
870 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
871 	return 0;
872 }
873 
874 static int _intel_hdcp_disable(struct intel_connector *connector)
875 {
876 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
877 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
878 	struct intel_hdcp *hdcp = &connector->hdcp;
879 	enum port port = dig_port->base.port;
880 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
881 	u32 repeater_ctl;
882 	int ret;
883 
884 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
885 		    connector->base.name, connector->base.base.id);
886 
887 	if (hdcp->shim->stream_encryption) {
888 		ret = hdcp->shim->stream_encryption(connector, false);
889 		if (ret) {
890 			drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
891 				connector->base.name, connector->base.base.id);
892 			return ret;
893 		}
894 		drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
895 			    transcoder_name(hdcp->stream_transcoder));
896 		/*
897 		 * If there are other connectors on this port using HDCP,
898 		 * don't disable it until it disabled HDCP encryption for
899 		 * all connectors in MST topology.
900 		 */
901 		if (dig_port->num_hdcp_streams > 0)
902 			return 0;
903 	}
904 
905 	hdcp->hdcp_encrypted = false;
906 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
907 	if (intel_de_wait_for_clear(dev_priv,
908 				    HDCP_STATUS(dev_priv, cpu_transcoder, port),
909 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
910 		drm_err(&dev_priv->drm,
911 			"Failed to disable HDCP, timeout clearing status\n");
912 		return -ETIMEDOUT;
913 	}
914 
915 	repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
916 						   port);
917 	intel_de_write(dev_priv, HDCP_REP_CTL,
918 		       intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
919 
920 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
921 	if (ret) {
922 		drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
923 		return ret;
924 	}
925 
926 	drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
927 	return 0;
928 }
929 
930 static int _intel_hdcp_enable(struct intel_connector *connector)
931 {
932 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
933 	struct intel_hdcp *hdcp = &connector->hdcp;
934 	int i, ret, tries = 3;
935 
936 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
937 		    connector->base.name, connector->base.base.id);
938 
939 	if (!hdcp_key_loadable(dev_priv)) {
940 		drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
941 		return -ENXIO;
942 	}
943 
944 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
945 		ret = intel_hdcp_load_keys(dev_priv);
946 		if (!ret)
947 			break;
948 		intel_hdcp_clear_keys(dev_priv);
949 	}
950 	if (ret) {
951 		drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
952 			ret);
953 		return ret;
954 	}
955 
956 	/* Incase of authentication failures, HDCP spec expects reauth. */
957 	for (i = 0; i < tries; i++) {
958 		ret = intel_hdcp_auth(connector);
959 		if (!ret) {
960 			hdcp->hdcp_encrypted = true;
961 			return 0;
962 		}
963 
964 		drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
965 
966 		/* Ensuring HDCP encryption and signalling are stopped. */
967 		_intel_hdcp_disable(connector);
968 	}
969 
970 	drm_dbg_kms(&dev_priv->drm,
971 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
972 	return ret;
973 }
974 
975 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
976 {
977 	return container_of(hdcp, struct intel_connector, hdcp);
978 }
979 
980 static void intel_hdcp_update_value(struct intel_connector *connector,
981 				    u64 value, bool update_property)
982 {
983 	struct drm_device *dev = connector->base.dev;
984 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
985 	struct intel_hdcp *hdcp = &connector->hdcp;
986 
987 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
988 
989 	if (hdcp->value == value)
990 		return;
991 
992 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
993 
994 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
995 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
996 			dig_port->num_hdcp_streams--;
997 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
998 		dig_port->num_hdcp_streams++;
999 	}
1000 
1001 	hdcp->value = value;
1002 	if (update_property) {
1003 		drm_connector_get(&connector->base);
1004 		schedule_work(&hdcp->prop_work);
1005 	}
1006 }
1007 
1008 /* Implements Part 3 of the HDCP authorization procedure */
1009 static int intel_hdcp_check_link(struct intel_connector *connector)
1010 {
1011 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1012 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1013 	struct intel_hdcp *hdcp = &connector->hdcp;
1014 	enum port port = dig_port->base.port;
1015 	enum transcoder cpu_transcoder;
1016 	int ret = 0;
1017 
1018 	mutex_lock(&hdcp->mutex);
1019 	mutex_lock(&dig_port->hdcp_mutex);
1020 
1021 	cpu_transcoder = hdcp->cpu_transcoder;
1022 
1023 	/* Check_link valid only when HDCP1.4 is enabled */
1024 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1025 	    !hdcp->hdcp_encrypted) {
1026 		ret = -EINVAL;
1027 		goto out;
1028 	}
1029 
1030 	if (drm_WARN_ON(&dev_priv->drm,
1031 			!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1032 		drm_err(&dev_priv->drm,
1033 			"%s:%d HDCP link stopped encryption,%x\n",
1034 			connector->base.name, connector->base.base.id,
1035 			intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1036 		ret = -ENXIO;
1037 		intel_hdcp_update_value(connector,
1038 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1039 					true);
1040 		goto out;
1041 	}
1042 
1043 	if (hdcp->shim->check_link(dig_port, connector)) {
1044 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1045 			intel_hdcp_update_value(connector,
1046 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1047 		}
1048 		goto out;
1049 	}
1050 
1051 	drm_dbg_kms(&dev_priv->drm,
1052 		    "[%s:%d] HDCP link failed, retrying authentication\n",
1053 		    connector->base.name, connector->base.base.id);
1054 
1055 	ret = _intel_hdcp_disable(connector);
1056 	if (ret) {
1057 		drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1058 		intel_hdcp_update_value(connector,
1059 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1060 					true);
1061 		goto out;
1062 	}
1063 
1064 	ret = _intel_hdcp_enable(connector);
1065 	if (ret) {
1066 		drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1067 		intel_hdcp_update_value(connector,
1068 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1069 					true);
1070 		goto out;
1071 	}
1072 
1073 out:
1074 	mutex_unlock(&dig_port->hdcp_mutex);
1075 	mutex_unlock(&hdcp->mutex);
1076 	return ret;
1077 }
1078 
1079 static void intel_hdcp_prop_work(struct work_struct *work)
1080 {
1081 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1082 					       prop_work);
1083 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1084 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1085 
1086 	drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1087 	mutex_lock(&hdcp->mutex);
1088 
1089 	/*
1090 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1091 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1092 	 * we're running just after hdcp has been disabled, so just exit
1093 	 */
1094 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1095 		drm_hdcp_update_content_protection(&connector->base,
1096 						   hdcp->value);
1097 
1098 	mutex_unlock(&hdcp->mutex);
1099 	drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1100 
1101 	drm_connector_put(&connector->base);
1102 }
1103 
1104 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1105 {
1106 	return INTEL_INFO(dev_priv)->display.has_hdcp &&
1107 			(DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1108 }
1109 
1110 static int
1111 hdcp2_prepare_ake_init(struct intel_connector *connector,
1112 		       struct hdcp2_ake_init *ake_data)
1113 {
1114 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1115 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1116 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1117 	struct i915_hdcp_comp_master *comp;
1118 	int ret;
1119 
1120 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1121 	comp = dev_priv->hdcp_master;
1122 
1123 	if (!comp || !comp->ops) {
1124 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1125 		return -EINVAL;
1126 	}
1127 
1128 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1129 	if (ret)
1130 		drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1131 			    ret);
1132 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1133 
1134 	return ret;
1135 }
1136 
1137 static int
1138 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1139 				struct hdcp2_ake_send_cert *rx_cert,
1140 				bool *paired,
1141 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1142 				size_t *msg_sz)
1143 {
1144 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1145 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1146 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1147 	struct i915_hdcp_comp_master *comp;
1148 	int ret;
1149 
1150 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1151 	comp = dev_priv->hdcp_master;
1152 
1153 	if (!comp || !comp->ops) {
1154 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1155 		return -EINVAL;
1156 	}
1157 
1158 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1159 							 rx_cert, paired,
1160 							 ek_pub_km, msg_sz);
1161 	if (ret < 0)
1162 		drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1163 			    ret);
1164 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1165 
1166 	return ret;
1167 }
1168 
1169 static int hdcp2_verify_hprime(struct intel_connector *connector,
1170 			       struct hdcp2_ake_send_hprime *rx_hprime)
1171 {
1172 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1173 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1174 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1175 	struct i915_hdcp_comp_master *comp;
1176 	int ret;
1177 
1178 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1179 	comp = dev_priv->hdcp_master;
1180 
1181 	if (!comp || !comp->ops) {
1182 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1183 		return -EINVAL;
1184 	}
1185 
1186 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1187 	if (ret < 0)
1188 		drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1189 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1190 
1191 	return ret;
1192 }
1193 
1194 static int
1195 hdcp2_store_pairing_info(struct intel_connector *connector,
1196 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1197 {
1198 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1199 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1200 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1201 	struct i915_hdcp_comp_master *comp;
1202 	int ret;
1203 
1204 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1205 	comp = dev_priv->hdcp_master;
1206 
1207 	if (!comp || !comp->ops) {
1208 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1209 		return -EINVAL;
1210 	}
1211 
1212 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1213 	if (ret < 0)
1214 		drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1215 			    ret);
1216 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1217 
1218 	return ret;
1219 }
1220 
1221 static int
1222 hdcp2_prepare_lc_init(struct intel_connector *connector,
1223 		      struct hdcp2_lc_init *lc_init)
1224 {
1225 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1226 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1227 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1228 	struct i915_hdcp_comp_master *comp;
1229 	int ret;
1230 
1231 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1232 	comp = dev_priv->hdcp_master;
1233 
1234 	if (!comp || !comp->ops) {
1235 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1236 		return -EINVAL;
1237 	}
1238 
1239 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1240 	if (ret < 0)
1241 		drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1242 			    ret);
1243 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1244 
1245 	return ret;
1246 }
1247 
1248 static int
1249 hdcp2_verify_lprime(struct intel_connector *connector,
1250 		    struct hdcp2_lc_send_lprime *rx_lprime)
1251 {
1252 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1253 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1254 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1255 	struct i915_hdcp_comp_master *comp;
1256 	int ret;
1257 
1258 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1259 	comp = dev_priv->hdcp_master;
1260 
1261 	if (!comp || !comp->ops) {
1262 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1263 		return -EINVAL;
1264 	}
1265 
1266 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1267 	if (ret < 0)
1268 		drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1269 			    ret);
1270 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1271 
1272 	return ret;
1273 }
1274 
1275 static int hdcp2_prepare_skey(struct intel_connector *connector,
1276 			      struct hdcp2_ske_send_eks *ske_data)
1277 {
1278 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1279 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1280 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1281 	struct i915_hdcp_comp_master *comp;
1282 	int ret;
1283 
1284 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1285 	comp = dev_priv->hdcp_master;
1286 
1287 	if (!comp || !comp->ops) {
1288 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1289 		return -EINVAL;
1290 	}
1291 
1292 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1293 	if (ret < 0)
1294 		drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1295 			    ret);
1296 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1297 
1298 	return ret;
1299 }
1300 
1301 static int
1302 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1303 				      struct hdcp2_rep_send_receiverid_list
1304 								*rep_topology,
1305 				      struct hdcp2_rep_send_ack *rep_send_ack)
1306 {
1307 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1308 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1309 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1310 	struct i915_hdcp_comp_master *comp;
1311 	int ret;
1312 
1313 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1314 	comp = dev_priv->hdcp_master;
1315 
1316 	if (!comp || !comp->ops) {
1317 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1318 		return -EINVAL;
1319 	}
1320 
1321 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1322 							 rep_topology,
1323 							 rep_send_ack);
1324 	if (ret < 0)
1325 		drm_dbg_kms(&dev_priv->drm,
1326 			    "Verify rep topology failed. %d\n", ret);
1327 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1328 
1329 	return ret;
1330 }
1331 
1332 static int
1333 hdcp2_verify_mprime(struct intel_connector *connector,
1334 		    struct hdcp2_rep_stream_ready *stream_ready)
1335 {
1336 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1337 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1338 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1339 	struct i915_hdcp_comp_master *comp;
1340 	int ret;
1341 
1342 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1343 	comp = dev_priv->hdcp_master;
1344 
1345 	if (!comp || !comp->ops) {
1346 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1347 		return -EINVAL;
1348 	}
1349 
1350 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1351 	if (ret < 0)
1352 		drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1353 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1354 
1355 	return ret;
1356 }
1357 
1358 static int hdcp2_authenticate_port(struct intel_connector *connector)
1359 {
1360 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1361 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1362 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1363 	struct i915_hdcp_comp_master *comp;
1364 	int ret;
1365 
1366 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1367 	comp = dev_priv->hdcp_master;
1368 
1369 	if (!comp || !comp->ops) {
1370 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1371 		return -EINVAL;
1372 	}
1373 
1374 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1375 	if (ret < 0)
1376 		drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1377 			    ret);
1378 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1379 
1380 	return ret;
1381 }
1382 
1383 static int hdcp2_close_mei_session(struct intel_connector *connector)
1384 {
1385 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1386 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1387 	struct i915_hdcp_comp_master *comp;
1388 	int ret;
1389 
1390 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1391 	comp = dev_priv->hdcp_master;
1392 
1393 	if (!comp || !comp->ops) {
1394 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1395 		return -EINVAL;
1396 	}
1397 
1398 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1399 					     &dig_port->hdcp_port_data);
1400 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1401 
1402 	return ret;
1403 }
1404 
1405 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1406 {
1407 	return hdcp2_close_mei_session(connector);
1408 }
1409 
1410 /* Authentication flow starts from here */
1411 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1412 {
1413 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1414 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1415 	struct intel_hdcp *hdcp = &connector->hdcp;
1416 	union {
1417 		struct hdcp2_ake_init ake_init;
1418 		struct hdcp2_ake_send_cert send_cert;
1419 		struct hdcp2_ake_no_stored_km no_stored_km;
1420 		struct hdcp2_ake_send_hprime send_hprime;
1421 		struct hdcp2_ake_send_pairing_info pairing_info;
1422 	} msgs;
1423 	const struct intel_hdcp_shim *shim = hdcp->shim;
1424 	size_t size;
1425 	int ret;
1426 
1427 	/* Init for seq_num */
1428 	hdcp->seq_num_v = 0;
1429 	hdcp->seq_num_m = 0;
1430 
1431 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1432 	if (ret < 0)
1433 		return ret;
1434 
1435 	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1436 				  sizeof(msgs.ake_init));
1437 	if (ret < 0)
1438 		return ret;
1439 
1440 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1441 				 &msgs.send_cert, sizeof(msgs.send_cert));
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1446 		drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1447 		return -EINVAL;
1448 	}
1449 
1450 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1451 
1452 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1453 					msgs.send_cert.cert_rx.receiver_id,
1454 					1) > 0) {
1455 		drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1456 		return -EPERM;
1457 	}
1458 
1459 	/*
1460 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1461 	 * stored also.
1462 	 */
1463 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1464 					      &hdcp->is_paired,
1465 					      &msgs.no_stored_km, &size);
1466 	if (ret < 0)
1467 		return ret;
1468 
1469 	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1470 	if (ret < 0)
1471 		return ret;
1472 
1473 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1474 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1475 	if (ret < 0)
1476 		return ret;
1477 
1478 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1479 	if (ret < 0)
1480 		return ret;
1481 
1482 	if (!hdcp->is_paired) {
1483 		/* Pairing is required */
1484 		ret = shim->read_2_2_msg(dig_port,
1485 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1486 					 &msgs.pairing_info,
1487 					 sizeof(msgs.pairing_info));
1488 		if (ret < 0)
1489 			return ret;
1490 
1491 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1492 		if (ret < 0)
1493 			return ret;
1494 		hdcp->is_paired = true;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int hdcp2_locality_check(struct intel_connector *connector)
1501 {
1502 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1503 	struct intel_hdcp *hdcp = &connector->hdcp;
1504 	union {
1505 		struct hdcp2_lc_init lc_init;
1506 		struct hdcp2_lc_send_lprime send_lprime;
1507 	} msgs;
1508 	const struct intel_hdcp_shim *shim = hdcp->shim;
1509 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1510 
1511 	for (i = 0; i < tries; i++) {
1512 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1513 		if (ret < 0)
1514 			continue;
1515 
1516 		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1517 				      sizeof(msgs.lc_init));
1518 		if (ret < 0)
1519 			continue;
1520 
1521 		ret = shim->read_2_2_msg(dig_port,
1522 					 HDCP_2_2_LC_SEND_LPRIME,
1523 					 &msgs.send_lprime,
1524 					 sizeof(msgs.send_lprime));
1525 		if (ret < 0)
1526 			continue;
1527 
1528 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1529 		if (!ret)
1530 			break;
1531 	}
1532 
1533 	return ret;
1534 }
1535 
1536 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1537 {
1538 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1539 	struct intel_hdcp *hdcp = &connector->hdcp;
1540 	struct hdcp2_ske_send_eks send_eks;
1541 	int ret;
1542 
1543 	ret = hdcp2_prepare_skey(connector, &send_eks);
1544 	if (ret < 0)
1545 		return ret;
1546 
1547 	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1548 					sizeof(send_eks));
1549 	if (ret < 0)
1550 		return ret;
1551 
1552 	return 0;
1553 }
1554 
1555 static
1556 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1557 {
1558 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1559 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1560 	struct intel_hdcp *hdcp = &connector->hdcp;
1561 	union {
1562 		struct hdcp2_rep_stream_manage stream_manage;
1563 		struct hdcp2_rep_stream_ready stream_ready;
1564 	} msgs;
1565 	const struct intel_hdcp_shim *shim = hdcp->shim;
1566 	int ret, streams_size_delta, i;
1567 
1568 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1569 		return -ERANGE;
1570 
1571 	/* Prepare RepeaterAuth_Stream_Manage msg */
1572 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1573 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1574 
1575 	msgs.stream_manage.k = cpu_to_be16(data->k);
1576 
1577 	for (i = 0; i < data->k; i++) {
1578 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1579 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1580 	}
1581 
1582 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1583 				sizeof(struct hdcp2_streamid_type);
1584 	/* Send it to Repeater */
1585 	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1586 				  sizeof(msgs.stream_manage) - streams_size_delta);
1587 	if (ret < 0)
1588 		goto out;
1589 
1590 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1591 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1592 	if (ret < 0)
1593 		goto out;
1594 
1595 	data->seq_num_m = hdcp->seq_num_m;
1596 
1597 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1598 
1599 out:
1600 	hdcp->seq_num_m++;
1601 
1602 	return ret;
1603 }
1604 
1605 static
1606 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1607 {
1608 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1609 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1610 	struct intel_hdcp *hdcp = &connector->hdcp;
1611 	union {
1612 		struct hdcp2_rep_send_receiverid_list recvid_list;
1613 		struct hdcp2_rep_send_ack rep_ack;
1614 	} msgs;
1615 	const struct intel_hdcp_shim *shim = hdcp->shim;
1616 	u32 seq_num_v, device_cnt;
1617 	u8 *rx_info;
1618 	int ret;
1619 
1620 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1621 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1622 	if (ret < 0)
1623 		return ret;
1624 
1625 	rx_info = msgs.recvid_list.rx_info;
1626 
1627 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1628 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1629 		drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1630 		return -EINVAL;
1631 	}
1632 
1633 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1634 	seq_num_v =
1635 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1636 
1637 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1638 		drm_dbg_kms(&dev_priv->drm,
1639 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1640 		return -EINVAL;
1641 	}
1642 
1643 	if (seq_num_v < hdcp->seq_num_v) {
1644 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1645 		drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1646 		return -EINVAL;
1647 	}
1648 
1649 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1650 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1651 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1652 					msgs.recvid_list.receiver_ids,
1653 					device_cnt) > 0) {
1654 		drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1655 		return -EPERM;
1656 	}
1657 
1658 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1659 						    &msgs.recvid_list,
1660 						    &msgs.rep_ack);
1661 	if (ret < 0)
1662 		return ret;
1663 
1664 	hdcp->seq_num_v = seq_num_v;
1665 	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1666 				  sizeof(msgs.rep_ack));
1667 	if (ret < 0)
1668 		return ret;
1669 
1670 	return 0;
1671 }
1672 
1673 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1674 {
1675 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1676 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1677 	struct intel_hdcp *hdcp = &connector->hdcp;
1678 	const struct intel_hdcp_shim *shim = hdcp->shim;
1679 	int ret;
1680 
1681 	ret = hdcp2_authentication_key_exchange(connector);
1682 	if (ret < 0) {
1683 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1684 		return ret;
1685 	}
1686 
1687 	ret = hdcp2_locality_check(connector);
1688 	if (ret < 0) {
1689 		drm_dbg_kms(&i915->drm,
1690 			    "Locality Check failed. Err : %d\n", ret);
1691 		return ret;
1692 	}
1693 
1694 	ret = hdcp2_session_key_exchange(connector);
1695 	if (ret < 0) {
1696 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1697 		return ret;
1698 	}
1699 
1700 	if (shim->config_stream_type) {
1701 		ret = shim->config_stream_type(dig_port,
1702 					       hdcp->is_repeater,
1703 					       hdcp->content_type);
1704 		if (ret < 0)
1705 			return ret;
1706 	}
1707 
1708 	if (hdcp->is_repeater) {
1709 		ret = hdcp2_authenticate_repeater_topology(connector);
1710 		if (ret < 0) {
1711 			drm_dbg_kms(&i915->drm,
1712 				    "Repeater Auth Failed. Err: %d\n", ret);
1713 			return ret;
1714 		}
1715 	}
1716 
1717 	return ret;
1718 }
1719 
1720 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1721 {
1722 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1723 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1724 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1725 	struct intel_hdcp *hdcp = &connector->hdcp;
1726 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1727 	enum port port = dig_port->base.port;
1728 	int ret = 0;
1729 
1730 	if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1731 			    LINK_ENCRYPTION_STATUS)) {
1732 		drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1733 			connector->base.name, connector->base.base.id);
1734 		ret = -EPERM;
1735 		goto link_recover;
1736 	}
1737 
1738 	if (hdcp->shim->stream_2_2_encryption) {
1739 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1740 		if (ret) {
1741 			drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1742 				connector->base.name, connector->base.base.id);
1743 			return ret;
1744 		}
1745 		drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1746 			    transcoder_name(hdcp->stream_transcoder));
1747 	}
1748 
1749 	return 0;
1750 
1751 link_recover:
1752 	if (hdcp2_deauthenticate_port(connector) < 0)
1753 		drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1754 
1755 	dig_port->hdcp_auth_status = false;
1756 	data->k = 0;
1757 
1758 	return ret;
1759 }
1760 
1761 static int hdcp2_enable_encryption(struct intel_connector *connector)
1762 {
1763 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1764 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1765 	struct intel_hdcp *hdcp = &connector->hdcp;
1766 	enum port port = dig_port->base.port;
1767 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1768 	int ret;
1769 
1770 	drm_WARN_ON(&dev_priv->drm,
1771 		    intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1772 		    LINK_ENCRYPTION_STATUS);
1773 	if (hdcp->shim->toggle_signalling) {
1774 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1775 						    true);
1776 		if (ret) {
1777 			drm_err(&dev_priv->drm,
1778 				"Failed to enable HDCP signalling. %d\n",
1779 				ret);
1780 			return ret;
1781 		}
1782 	}
1783 
1784 	if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1785 	    LINK_AUTH_STATUS) {
1786 		/* Link is Authenticated. Now set for Encryption */
1787 		intel_de_write(dev_priv,
1788 			       HDCP2_CTL(dev_priv, cpu_transcoder, port),
1789 			       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1790 	}
1791 
1792 	ret = intel_de_wait_for_set(dev_priv,
1793 				    HDCP2_STATUS(dev_priv, cpu_transcoder,
1794 						 port),
1795 				    LINK_ENCRYPTION_STATUS,
1796 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1797 	dig_port->hdcp_auth_status = true;
1798 
1799 	return ret;
1800 }
1801 
1802 static int hdcp2_disable_encryption(struct intel_connector *connector)
1803 {
1804 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1805 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1806 	struct intel_hdcp *hdcp = &connector->hdcp;
1807 	enum port port = dig_port->base.port;
1808 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1809 	int ret;
1810 
1811 	drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1812 				      LINK_ENCRYPTION_STATUS));
1813 
1814 	intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1815 		       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1816 
1817 	ret = intel_de_wait_for_clear(dev_priv,
1818 				      HDCP2_STATUS(dev_priv, cpu_transcoder,
1819 						   port),
1820 				      LINK_ENCRYPTION_STATUS,
1821 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1822 	if (ret == -ETIMEDOUT)
1823 		drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1824 
1825 	if (hdcp->shim->toggle_signalling) {
1826 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1827 						    false);
1828 		if (ret) {
1829 			drm_err(&dev_priv->drm,
1830 				"Failed to disable HDCP signalling. %d\n",
1831 				ret);
1832 			return ret;
1833 		}
1834 	}
1835 
1836 	return ret;
1837 }
1838 
1839 static int
1840 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1841 {
1842 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1843 	int i, tries = 3, ret;
1844 
1845 	if (!connector->hdcp.is_repeater)
1846 		return 0;
1847 
1848 	for (i = 0; i < tries; i++) {
1849 		ret = _hdcp2_propagate_stream_management_info(connector);
1850 		if (!ret)
1851 			break;
1852 
1853 		/* Lets restart the auth incase of seq_num_m roll over */
1854 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1855 			drm_dbg_kms(&i915->drm,
1856 				    "seq_num_m roll over.(%d)\n", ret);
1857 			break;
1858 		}
1859 
1860 		drm_dbg_kms(&i915->drm,
1861 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1862 			    i + 1, tries, ret);
1863 	}
1864 
1865 	return ret;
1866 }
1867 
1868 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1869 {
1870 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1871 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1872 	int ret = 0, i, tries = 3;
1873 
1874 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1875 		ret = hdcp2_authenticate_sink(connector);
1876 		if (!ret) {
1877 			ret = hdcp2_propagate_stream_management_info(connector);
1878 			if (ret) {
1879 				drm_dbg_kms(&i915->drm,
1880 					    "Stream management failed.(%d)\n",
1881 					    ret);
1882 				break;
1883 			}
1884 
1885 			ret = hdcp2_authenticate_port(connector);
1886 			if (!ret)
1887 				break;
1888 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1889 				    ret);
1890 		}
1891 
1892 		/* Clearing the mei hdcp session */
1893 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1894 			    i + 1, tries, ret);
1895 		if (hdcp2_deauthenticate_port(connector) < 0)
1896 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1897 	}
1898 
1899 	if (!ret && !dig_port->hdcp_auth_status) {
1900 		/*
1901 		 * Ensuring the required 200mSec min time interval between
1902 		 * Session Key Exchange and encryption.
1903 		 */
1904 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1905 		ret = hdcp2_enable_encryption(connector);
1906 		if (ret < 0) {
1907 			drm_dbg_kms(&i915->drm,
1908 				    "Encryption Enable Failed.(%d)\n", ret);
1909 			if (hdcp2_deauthenticate_port(connector) < 0)
1910 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1911 		}
1912 	}
1913 
1914 	if (!ret)
1915 		ret = hdcp2_enable_stream_encryption(connector);
1916 
1917 	return ret;
1918 }
1919 
1920 static int _intel_hdcp2_enable(struct intel_connector *connector)
1921 {
1922 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1923 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1924 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1925 	struct intel_hdcp *hdcp = &connector->hdcp;
1926 	int ret;
1927 
1928 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1929 		    connector->base.name, connector->base.base.id,
1930 		    hdcp->content_type);
1931 
1932 	/* Stream which requires encryption */
1933 	if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
1934 		data->k = 1;
1935 		data->streams[0].stream_type = hdcp->content_type;
1936 	} else {
1937 		ret = intel_hdcp_required_content_stream(dig_port);
1938 		if (ret)
1939 			return ret;
1940 	}
1941 
1942 	ret = hdcp2_authenticate_and_encrypt(connector);
1943 	if (ret) {
1944 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1945 			    hdcp->content_type, ret);
1946 		return ret;
1947 	}
1948 
1949 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1950 		    connector->base.name, connector->base.base.id,
1951 		    hdcp->content_type);
1952 
1953 	hdcp->hdcp2_encrypted = true;
1954 	return 0;
1955 }
1956 
1957 static int
1958 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1959 {
1960 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1961 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1962 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1963 	struct intel_hdcp *hdcp = &connector->hdcp;
1964 	int ret;
1965 
1966 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1967 		    connector->base.name, connector->base.base.id);
1968 
1969 	if (hdcp->shim->stream_2_2_encryption) {
1970 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
1971 		if (ret) {
1972 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1973 				connector->base.name, connector->base.base.id);
1974 			return ret;
1975 		}
1976 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1977 			    transcoder_name(hdcp->stream_transcoder));
1978 
1979 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1980 			return 0;
1981 	}
1982 
1983 	ret = hdcp2_disable_encryption(connector);
1984 
1985 	if (hdcp2_deauthenticate_port(connector) < 0)
1986 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1987 
1988 	connector->hdcp.hdcp2_encrypted = false;
1989 	dig_port->hdcp_auth_status = false;
1990 	data->k = 0;
1991 
1992 	return ret;
1993 }
1994 
1995 /* Implements the Link Integrity Check for HDCP2.2 */
1996 static int intel_hdcp2_check_link(struct intel_connector *connector)
1997 {
1998 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1999 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2000 	struct intel_hdcp *hdcp = &connector->hdcp;
2001 	enum port port = dig_port->base.port;
2002 	enum transcoder cpu_transcoder;
2003 	int ret = 0;
2004 
2005 	mutex_lock(&hdcp->mutex);
2006 	mutex_lock(&dig_port->hdcp_mutex);
2007 	cpu_transcoder = hdcp->cpu_transcoder;
2008 
2009 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2010 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2011 	    !hdcp->hdcp2_encrypted) {
2012 		ret = -EINVAL;
2013 		goto out;
2014 	}
2015 
2016 	if (drm_WARN_ON(&dev_priv->drm,
2017 			!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2018 		drm_err(&dev_priv->drm,
2019 			"HDCP2.2 link stopped the encryption, %x\n",
2020 			intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2021 		ret = -ENXIO;
2022 		_intel_hdcp2_disable(connector, true);
2023 		intel_hdcp_update_value(connector,
2024 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2025 					true);
2026 		goto out;
2027 	}
2028 
2029 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2030 	if (ret == HDCP_LINK_PROTECTED) {
2031 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2032 			intel_hdcp_update_value(connector,
2033 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2034 					true);
2035 		}
2036 		goto out;
2037 	}
2038 
2039 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2040 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2041 			goto out;
2042 
2043 		drm_dbg_kms(&dev_priv->drm,
2044 			    "HDCP2.2 Downstream topology change\n");
2045 		ret = hdcp2_authenticate_repeater_topology(connector);
2046 		if (!ret) {
2047 			intel_hdcp_update_value(connector,
2048 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2049 					true);
2050 			goto out;
2051 		}
2052 		drm_dbg_kms(&dev_priv->drm,
2053 			    "[%s:%d] Repeater topology auth failed.(%d)\n",
2054 			    connector->base.name, connector->base.base.id,
2055 			    ret);
2056 	} else {
2057 		drm_dbg_kms(&dev_priv->drm,
2058 			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2059 			    connector->base.name, connector->base.base.id);
2060 	}
2061 
2062 	ret = _intel_hdcp2_disable(connector, true);
2063 	if (ret) {
2064 		drm_err(&dev_priv->drm,
2065 			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2066 			connector->base.name, connector->base.base.id, ret);
2067 		intel_hdcp_update_value(connector,
2068 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2069 		goto out;
2070 	}
2071 
2072 	ret = _intel_hdcp2_enable(connector);
2073 	if (ret) {
2074 		drm_dbg_kms(&dev_priv->drm,
2075 			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2076 			    connector->base.name, connector->base.base.id,
2077 			    ret);
2078 		intel_hdcp_update_value(connector,
2079 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2080 					true);
2081 		goto out;
2082 	}
2083 
2084 out:
2085 	mutex_unlock(&dig_port->hdcp_mutex);
2086 	mutex_unlock(&hdcp->mutex);
2087 	return ret;
2088 }
2089 
2090 static void intel_hdcp_check_work(struct work_struct *work)
2091 {
2092 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2093 					       struct intel_hdcp,
2094 					       check_work);
2095 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2096 
2097 	if (drm_connector_is_unregistered(&connector->base))
2098 		return;
2099 
2100 	if (!intel_hdcp2_check_link(connector))
2101 		schedule_delayed_work(&hdcp->check_work,
2102 				      DRM_HDCP2_CHECK_PERIOD_MS);
2103 	else if (!intel_hdcp_check_link(connector))
2104 		schedule_delayed_work(&hdcp->check_work,
2105 				      DRM_HDCP_CHECK_PERIOD_MS);
2106 }
2107 
2108 static int i915_hdcp_component_bind(struct device *i915_kdev,
2109 				    struct device *mei_kdev, void *data)
2110 {
2111 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2112 
2113 	drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2114 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2115 	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
2116 	dev_priv->hdcp_master->mei_dev = mei_kdev;
2117 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2118 
2119 	return 0;
2120 }
2121 
2122 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2123 				       struct device *mei_kdev, void *data)
2124 {
2125 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2126 
2127 	drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2128 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2129 	dev_priv->hdcp_master = NULL;
2130 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2131 }
2132 
2133 static const struct component_ops i915_hdcp_component_ops = {
2134 	.bind   = i915_hdcp_component_bind,
2135 	.unbind = i915_hdcp_component_unbind,
2136 };
2137 
2138 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2139 {
2140 	switch (port) {
2141 	case PORT_A:
2142 		return MEI_DDI_A;
2143 	case PORT_B ... PORT_F:
2144 		return (enum mei_fw_ddi)port;
2145 	default:
2146 		return MEI_DDI_INVALID_PORT;
2147 	}
2148 }
2149 
2150 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2151 {
2152 	switch (cpu_transcoder) {
2153 	case TRANSCODER_A ... TRANSCODER_D:
2154 		return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2155 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2156 		return MEI_INVALID_TRANSCODER;
2157 	}
2158 }
2159 
2160 static int initialize_hdcp_port_data(struct intel_connector *connector,
2161 				     struct intel_digital_port *dig_port,
2162 				     const struct intel_hdcp_shim *shim)
2163 {
2164 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2165 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2166 	struct intel_hdcp *hdcp = &connector->hdcp;
2167 	enum port port = dig_port->base.port;
2168 
2169 	if (DISPLAY_VER(dev_priv) < 12)
2170 		data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2171 	else
2172 		/*
2173 		 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2174 		 * with zero(INVALID PORT index).
2175 		 */
2176 		data->fw_ddi = MEI_DDI_INVALID_PORT;
2177 
2178 	/*
2179 	 * As associated transcoder is set and modified at modeset, here fw_tc
2180 	 * is initialized to zero (invalid transcoder index). This will be
2181 	 * retained for <Gen12 forever.
2182 	 */
2183 	data->fw_tc = MEI_INVALID_TRANSCODER;
2184 
2185 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2186 	data->protocol = (u8)shim->protocol;
2187 
2188 	if (!data->streams)
2189 		data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2190 					sizeof(struct hdcp2_streamid_type),
2191 					GFP_KERNEL);
2192 	if (!data->streams) {
2193 		drm_err(&dev_priv->drm, "Out of Memory\n");
2194 		return -ENOMEM;
2195 	}
2196 	/* For SST */
2197 	data->streams[0].stream_id = 0;
2198 	data->streams[0].stream_type = hdcp->content_type;
2199 
2200 	return 0;
2201 }
2202 
2203 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2204 {
2205 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2206 		return false;
2207 
2208 	return (DISPLAY_VER(dev_priv) >= 10 ||
2209 		IS_KABYLAKE(dev_priv) ||
2210 		IS_COFFEELAKE(dev_priv) ||
2211 		IS_COMETLAKE(dev_priv));
2212 }
2213 
2214 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2215 {
2216 	int ret;
2217 
2218 	if (!is_hdcp2_supported(dev_priv))
2219 		return;
2220 
2221 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2222 	drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2223 
2224 	dev_priv->hdcp_comp_added = true;
2225 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2226 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2227 				  I915_COMPONENT_HDCP);
2228 	if (ret < 0) {
2229 		drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2230 			    ret);
2231 		mutex_lock(&dev_priv->hdcp_comp_mutex);
2232 		dev_priv->hdcp_comp_added = false;
2233 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2234 		return;
2235 	}
2236 }
2237 
2238 static void intel_hdcp2_init(struct intel_connector *connector,
2239 			     struct intel_digital_port *dig_port,
2240 			     const struct intel_hdcp_shim *shim)
2241 {
2242 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2243 	struct intel_hdcp *hdcp = &connector->hdcp;
2244 	int ret;
2245 
2246 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2247 	if (ret) {
2248 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2249 		return;
2250 	}
2251 
2252 	hdcp->hdcp2_supported = true;
2253 }
2254 
2255 int intel_hdcp_init(struct intel_connector *connector,
2256 		    struct intel_digital_port *dig_port,
2257 		    const struct intel_hdcp_shim *shim)
2258 {
2259 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2260 	struct intel_hdcp *hdcp = &connector->hdcp;
2261 	int ret;
2262 
2263 	if (!shim)
2264 		return -EINVAL;
2265 
2266 	if (is_hdcp2_supported(dev_priv))
2267 		intel_hdcp2_init(connector, dig_port, shim);
2268 
2269 	ret =
2270 	drm_connector_attach_content_protection_property(&connector->base,
2271 							 hdcp->hdcp2_supported);
2272 	if (ret) {
2273 		hdcp->hdcp2_supported = false;
2274 		kfree(dig_port->hdcp_port_data.streams);
2275 		return ret;
2276 	}
2277 
2278 	hdcp->shim = shim;
2279 	mutex_init(&hdcp->mutex);
2280 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2281 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2282 	init_waitqueue_head(&hdcp->cp_irq_queue);
2283 
2284 	return 0;
2285 }
2286 
2287 int intel_hdcp_enable(struct intel_connector *connector,
2288 		      const struct intel_crtc_state *pipe_config, u8 content_type)
2289 {
2290 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2291 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2292 	struct intel_hdcp *hdcp = &connector->hdcp;
2293 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2294 	int ret = -EINVAL;
2295 
2296 	if (!hdcp->shim)
2297 		return -ENOENT;
2298 
2299 	if (!connector->encoder) {
2300 		drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2301 			connector->base.name, connector->base.base.id);
2302 		return -ENODEV;
2303 	}
2304 
2305 	mutex_lock(&hdcp->mutex);
2306 	mutex_lock(&dig_port->hdcp_mutex);
2307 	drm_WARN_ON(&dev_priv->drm,
2308 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2309 	hdcp->content_type = content_type;
2310 
2311 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2312 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2313 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2314 	} else {
2315 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2316 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2317 	}
2318 
2319 	if (DISPLAY_VER(dev_priv) >= 12)
2320 		dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2321 
2322 	/*
2323 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2324 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2325 	 */
2326 	if (intel_hdcp2_capable(connector)) {
2327 		ret = _intel_hdcp2_enable(connector);
2328 		if (!ret)
2329 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2330 	}
2331 
2332 	/*
2333 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2334 	 * be attempted.
2335 	 */
2336 	if (ret && intel_hdcp_capable(connector) &&
2337 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2338 		ret = _intel_hdcp_enable(connector);
2339 	}
2340 
2341 	if (!ret) {
2342 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
2343 		intel_hdcp_update_value(connector,
2344 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2345 					true);
2346 	}
2347 
2348 	mutex_unlock(&dig_port->hdcp_mutex);
2349 	mutex_unlock(&hdcp->mutex);
2350 	return ret;
2351 }
2352 
2353 int intel_hdcp_disable(struct intel_connector *connector)
2354 {
2355 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2356 	struct intel_hdcp *hdcp = &connector->hdcp;
2357 	int ret = 0;
2358 
2359 	if (!hdcp->shim)
2360 		return -ENOENT;
2361 
2362 	mutex_lock(&hdcp->mutex);
2363 	mutex_lock(&dig_port->hdcp_mutex);
2364 
2365 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2366 		goto out;
2367 
2368 	intel_hdcp_update_value(connector,
2369 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2370 	if (hdcp->hdcp2_encrypted)
2371 		ret = _intel_hdcp2_disable(connector, false);
2372 	else if (hdcp->hdcp_encrypted)
2373 		ret = _intel_hdcp_disable(connector);
2374 
2375 out:
2376 	mutex_unlock(&dig_port->hdcp_mutex);
2377 	mutex_unlock(&hdcp->mutex);
2378 	cancel_delayed_work_sync(&hdcp->check_work);
2379 	return ret;
2380 }
2381 
2382 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2383 			    struct intel_encoder *encoder,
2384 			    const struct intel_crtc_state *crtc_state,
2385 			    const struct drm_connector_state *conn_state)
2386 {
2387 	struct intel_connector *connector =
2388 				to_intel_connector(conn_state->connector);
2389 	struct intel_hdcp *hdcp = &connector->hdcp;
2390 	bool content_protection_type_changed, desired_and_not_enabled = false;
2391 
2392 	if (!connector->hdcp.shim)
2393 		return;
2394 
2395 	content_protection_type_changed =
2396 		(conn_state->hdcp_content_type != hdcp->content_type &&
2397 		 conn_state->content_protection !=
2398 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2399 
2400 	/*
2401 	 * During the HDCP encryption session if Type change is requested,
2402 	 * disable the HDCP and reenable it with new TYPE value.
2403 	 */
2404 	if (conn_state->content_protection ==
2405 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2406 	    content_protection_type_changed)
2407 		intel_hdcp_disable(connector);
2408 
2409 	/*
2410 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2411 	 * change procedure.
2412 	 */
2413 	if (content_protection_type_changed) {
2414 		mutex_lock(&hdcp->mutex);
2415 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2416 		drm_connector_get(&connector->base);
2417 		schedule_work(&hdcp->prop_work);
2418 		mutex_unlock(&hdcp->mutex);
2419 	}
2420 
2421 	if (conn_state->content_protection ==
2422 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2423 		mutex_lock(&hdcp->mutex);
2424 		/* Avoid enabling hdcp, if it already ENABLED */
2425 		desired_and_not_enabled =
2426 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2427 		mutex_unlock(&hdcp->mutex);
2428 		/*
2429 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2430 		 * prop_work to update correct CP property to user space.
2431 		 */
2432 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2433 			drm_connector_get(&connector->base);
2434 			schedule_work(&hdcp->prop_work);
2435 		}
2436 	}
2437 
2438 	if (desired_and_not_enabled || content_protection_type_changed)
2439 		intel_hdcp_enable(connector,
2440 				  crtc_state,
2441 				  (u8)conn_state->hdcp_content_type);
2442 }
2443 
2444 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2445 {
2446 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2447 	if (!dev_priv->hdcp_comp_added) {
2448 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2449 		return;
2450 	}
2451 
2452 	dev_priv->hdcp_comp_added = false;
2453 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2454 
2455 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2456 }
2457 
2458 void intel_hdcp_cleanup(struct intel_connector *connector)
2459 {
2460 	struct intel_hdcp *hdcp = &connector->hdcp;
2461 
2462 	if (!hdcp->shim)
2463 		return;
2464 
2465 	/*
2466 	 * If the connector is registered, it's possible userspace could kick
2467 	 * off another HDCP enable, which would re-spawn the workers.
2468 	 */
2469 	drm_WARN_ON(connector->base.dev,
2470 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2471 
2472 	/*
2473 	 * Now that the connector is not registered, check_work won't be run,
2474 	 * but cancel any outstanding instances of it
2475 	 */
2476 	cancel_delayed_work_sync(&hdcp->check_work);
2477 
2478 	/*
2479 	 * We don't cancel prop_work in the same way as check_work since it
2480 	 * requires connection_mutex which could be held while calling this
2481 	 * function. Instead, we rely on the connector references grabbed before
2482 	 * scheduling prop_work to ensure the connector is alive when prop_work
2483 	 * is run. So if we're in the destroy path (which is where this
2484 	 * function should be called), we're "guaranteed" that prop_work is not
2485 	 * active (tl;dr This Should Never Happen).
2486 	 */
2487 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2488 
2489 	mutex_lock(&hdcp->mutex);
2490 	hdcp->shim = NULL;
2491 	mutex_unlock(&hdcp->mutex);
2492 }
2493 
2494 void intel_hdcp_atomic_check(struct drm_connector *connector,
2495 			     struct drm_connector_state *old_state,
2496 			     struct drm_connector_state *new_state)
2497 {
2498 	u64 old_cp = old_state->content_protection;
2499 	u64 new_cp = new_state->content_protection;
2500 	struct drm_crtc_state *crtc_state;
2501 
2502 	if (!new_state->crtc) {
2503 		/*
2504 		 * If the connector is being disabled with CP enabled, mark it
2505 		 * desired so it's re-enabled when the connector is brought back
2506 		 */
2507 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2508 			new_state->content_protection =
2509 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2510 		return;
2511 	}
2512 
2513 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2514 						   new_state->crtc);
2515 	/*
2516 	 * Fix the HDCP uapi content protection state in case of modeset.
2517 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2518 	 * need to be sent if there is transition from ENABLED->DESIRED.
2519 	 */
2520 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2521 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2522 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2523 		new_state->content_protection =
2524 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2525 
2526 	/*
2527 	 * Nothing to do if the state didn't change, or HDCP was activated since
2528 	 * the last commit. And also no change in hdcp content type.
2529 	 */
2530 	if (old_cp == new_cp ||
2531 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2532 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2533 		if (old_state->hdcp_content_type ==
2534 				new_state->hdcp_content_type)
2535 			return;
2536 	}
2537 
2538 	crtc_state->mode_changed = true;
2539 }
2540 
2541 /* Handles the CP_IRQ raised from the DP HDCP sink */
2542 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2543 {
2544 	struct intel_hdcp *hdcp = &connector->hdcp;
2545 
2546 	if (!hdcp->shim)
2547 		return;
2548 
2549 	atomic_inc(&connector->hdcp.cp_irq_count);
2550 	wake_up_all(&connector->hdcp.cp_irq_queue);
2551 
2552 	schedule_delayed_work(&hdcp->check_work, 0);
2553 }
2554