xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_display_power.c (revision 5197c49d20e39ee5dd60df2272ae6fe6cf7ebfe9)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "i915_reg.h"
11 #include "intel_backlight_regs.h"
12 #include "intel_cdclk.h"
13 #include "intel_clock_gating.h"
14 #include "intel_combo_phy.h"
15 #include "intel_de.h"
16 #include "intel_display_power.h"
17 #include "intel_display_power_map.h"
18 #include "intel_display_power_well.h"
19 #include "intel_display_types.h"
20 #include "intel_dmc.h"
21 #include "intel_mchbar_regs.h"
22 #include "intel_pch_refclk.h"
23 #include "intel_pcode.h"
24 #include "intel_pmdemand.h"
25 #include "intel_pps_regs.h"
26 #include "intel_snps_phy.h"
27 #include "skl_watermark.h"
28 #include "skl_watermark_regs.h"
29 #include "vlv_sideband.h"
30 
31 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
32 	for_each_power_well(__dev_priv, __power_well)				\
33 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
34 
35 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
36 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
37 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
38 
39 const char *
40 intel_display_power_domain_str(enum intel_display_power_domain domain)
41 {
42 	switch (domain) {
43 	case POWER_DOMAIN_DISPLAY_CORE:
44 		return "DISPLAY_CORE";
45 	case POWER_DOMAIN_PIPE_A:
46 		return "PIPE_A";
47 	case POWER_DOMAIN_PIPE_B:
48 		return "PIPE_B";
49 	case POWER_DOMAIN_PIPE_C:
50 		return "PIPE_C";
51 	case POWER_DOMAIN_PIPE_D:
52 		return "PIPE_D";
53 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
54 		return "PIPE_PANEL_FITTER_A";
55 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
56 		return "PIPE_PANEL_FITTER_B";
57 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
58 		return "PIPE_PANEL_FITTER_C";
59 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
60 		return "PIPE_PANEL_FITTER_D";
61 	case POWER_DOMAIN_TRANSCODER_A:
62 		return "TRANSCODER_A";
63 	case POWER_DOMAIN_TRANSCODER_B:
64 		return "TRANSCODER_B";
65 	case POWER_DOMAIN_TRANSCODER_C:
66 		return "TRANSCODER_C";
67 	case POWER_DOMAIN_TRANSCODER_D:
68 		return "TRANSCODER_D";
69 	case POWER_DOMAIN_TRANSCODER_EDP:
70 		return "TRANSCODER_EDP";
71 	case POWER_DOMAIN_TRANSCODER_DSI_A:
72 		return "TRANSCODER_DSI_A";
73 	case POWER_DOMAIN_TRANSCODER_DSI_C:
74 		return "TRANSCODER_DSI_C";
75 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
76 		return "TRANSCODER_VDSC_PW2";
77 	case POWER_DOMAIN_PORT_DDI_LANES_A:
78 		return "PORT_DDI_LANES_A";
79 	case POWER_DOMAIN_PORT_DDI_LANES_B:
80 		return "PORT_DDI_LANES_B";
81 	case POWER_DOMAIN_PORT_DDI_LANES_C:
82 		return "PORT_DDI_LANES_C";
83 	case POWER_DOMAIN_PORT_DDI_LANES_D:
84 		return "PORT_DDI_LANES_D";
85 	case POWER_DOMAIN_PORT_DDI_LANES_E:
86 		return "PORT_DDI_LANES_E";
87 	case POWER_DOMAIN_PORT_DDI_LANES_F:
88 		return "PORT_DDI_LANES_F";
89 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
90 		return "PORT_DDI_LANES_TC1";
91 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
92 		return "PORT_DDI_LANES_TC2";
93 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
94 		return "PORT_DDI_LANES_TC3";
95 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
96 		return "PORT_DDI_LANES_TC4";
97 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
98 		return "PORT_DDI_LANES_TC5";
99 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
100 		return "PORT_DDI_LANES_TC6";
101 	case POWER_DOMAIN_PORT_DDI_IO_A:
102 		return "PORT_DDI_IO_A";
103 	case POWER_DOMAIN_PORT_DDI_IO_B:
104 		return "PORT_DDI_IO_B";
105 	case POWER_DOMAIN_PORT_DDI_IO_C:
106 		return "PORT_DDI_IO_C";
107 	case POWER_DOMAIN_PORT_DDI_IO_D:
108 		return "PORT_DDI_IO_D";
109 	case POWER_DOMAIN_PORT_DDI_IO_E:
110 		return "PORT_DDI_IO_E";
111 	case POWER_DOMAIN_PORT_DDI_IO_F:
112 		return "PORT_DDI_IO_F";
113 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
114 		return "PORT_DDI_IO_TC1";
115 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
116 		return "PORT_DDI_IO_TC2";
117 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
118 		return "PORT_DDI_IO_TC3";
119 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
120 		return "PORT_DDI_IO_TC4";
121 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
122 		return "PORT_DDI_IO_TC5";
123 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
124 		return "PORT_DDI_IO_TC6";
125 	case POWER_DOMAIN_PORT_DSI:
126 		return "PORT_DSI";
127 	case POWER_DOMAIN_PORT_CRT:
128 		return "PORT_CRT";
129 	case POWER_DOMAIN_PORT_OTHER:
130 		return "PORT_OTHER";
131 	case POWER_DOMAIN_VGA:
132 		return "VGA";
133 	case POWER_DOMAIN_AUDIO_MMIO:
134 		return "AUDIO_MMIO";
135 	case POWER_DOMAIN_AUDIO_PLAYBACK:
136 		return "AUDIO_PLAYBACK";
137 	case POWER_DOMAIN_AUX_IO_A:
138 		return "AUX_IO_A";
139 	case POWER_DOMAIN_AUX_IO_B:
140 		return "AUX_IO_B";
141 	case POWER_DOMAIN_AUX_IO_C:
142 		return "AUX_IO_C";
143 	case POWER_DOMAIN_AUX_IO_D:
144 		return "AUX_IO_D";
145 	case POWER_DOMAIN_AUX_IO_E:
146 		return "AUX_IO_E";
147 	case POWER_DOMAIN_AUX_IO_F:
148 		return "AUX_IO_F";
149 	case POWER_DOMAIN_AUX_A:
150 		return "AUX_A";
151 	case POWER_DOMAIN_AUX_B:
152 		return "AUX_B";
153 	case POWER_DOMAIN_AUX_C:
154 		return "AUX_C";
155 	case POWER_DOMAIN_AUX_D:
156 		return "AUX_D";
157 	case POWER_DOMAIN_AUX_E:
158 		return "AUX_E";
159 	case POWER_DOMAIN_AUX_F:
160 		return "AUX_F";
161 	case POWER_DOMAIN_AUX_USBC1:
162 		return "AUX_USBC1";
163 	case POWER_DOMAIN_AUX_USBC2:
164 		return "AUX_USBC2";
165 	case POWER_DOMAIN_AUX_USBC3:
166 		return "AUX_USBC3";
167 	case POWER_DOMAIN_AUX_USBC4:
168 		return "AUX_USBC4";
169 	case POWER_DOMAIN_AUX_USBC5:
170 		return "AUX_USBC5";
171 	case POWER_DOMAIN_AUX_USBC6:
172 		return "AUX_USBC6";
173 	case POWER_DOMAIN_AUX_TBT1:
174 		return "AUX_TBT1";
175 	case POWER_DOMAIN_AUX_TBT2:
176 		return "AUX_TBT2";
177 	case POWER_DOMAIN_AUX_TBT3:
178 		return "AUX_TBT3";
179 	case POWER_DOMAIN_AUX_TBT4:
180 		return "AUX_TBT4";
181 	case POWER_DOMAIN_AUX_TBT5:
182 		return "AUX_TBT5";
183 	case POWER_DOMAIN_AUX_TBT6:
184 		return "AUX_TBT6";
185 	case POWER_DOMAIN_GMBUS:
186 		return "GMBUS";
187 	case POWER_DOMAIN_INIT:
188 		return "INIT";
189 	case POWER_DOMAIN_MODESET:
190 		return "MODESET";
191 	case POWER_DOMAIN_GT_IRQ:
192 		return "GT_IRQ";
193 	case POWER_DOMAIN_DC_OFF:
194 		return "DC_OFF";
195 	case POWER_DOMAIN_TC_COLD_OFF:
196 		return "TC_COLD_OFF";
197 	default:
198 		MISSING_CASE(domain);
199 		return "?";
200 	}
201 }
202 
203 /**
204  * __intel_display_power_is_enabled - unlocked check for a power domain
205  * @dev_priv: i915 device instance
206  * @domain: power domain to check
207  *
208  * This is the unlocked version of intel_display_power_is_enabled() and should
209  * only be used from error capture and recovery code where deadlocks are
210  * possible.
211  *
212  * Returns:
213  * True when the power domain is enabled, false otherwise.
214  */
215 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
216 				      enum intel_display_power_domain domain)
217 {
218 	struct i915_power_well *power_well;
219 	bool is_enabled;
220 
221 	if (dev_priv->runtime_pm.suspended)
222 		return false;
223 
224 	is_enabled = true;
225 
226 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
227 		if (intel_power_well_is_always_on(power_well))
228 			continue;
229 
230 		if (!intel_power_well_is_enabled_cached(power_well)) {
231 			is_enabled = false;
232 			break;
233 		}
234 	}
235 
236 	return is_enabled;
237 }
238 
239 /**
240  * intel_display_power_is_enabled - check for a power domain
241  * @dev_priv: i915 device instance
242  * @domain: power domain to check
243  *
244  * This function can be used to check the hw power domain state. It is mostly
245  * used in hardware state readout functions. Everywhere else code should rely
246  * upon explicit power domain reference counting to ensure that the hardware
247  * block is powered up before accessing it.
248  *
249  * Callers must hold the relevant modesetting locks to ensure that concurrent
250  * threads can't disable the power well while the caller tries to read a few
251  * registers.
252  *
253  * Returns:
254  * True when the power domain is enabled, false otherwise.
255  */
256 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
257 				    enum intel_display_power_domain domain)
258 {
259 	struct i915_power_domains *power_domains;
260 	bool ret;
261 
262 	power_domains = &dev_priv->display.power.domains;
263 
264 	mutex_lock(&power_domains->lock);
265 	ret = __intel_display_power_is_enabled(dev_priv, domain);
266 	mutex_unlock(&power_domains->lock);
267 
268 	return ret;
269 }
270 
271 static u32
272 sanitize_target_dc_state(struct drm_i915_private *i915,
273 			 u32 target_dc_state)
274 {
275 	struct i915_power_domains *power_domains = &i915->display.power.domains;
276 	static const u32 states[] = {
277 		DC_STATE_EN_UPTO_DC6,
278 		DC_STATE_EN_UPTO_DC5,
279 		DC_STATE_EN_DC3CO,
280 		DC_STATE_DISABLE,
281 	};
282 	int i;
283 
284 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
285 		if (target_dc_state != states[i])
286 			continue;
287 
288 		if (power_domains->allowed_dc_mask & target_dc_state)
289 			break;
290 
291 		target_dc_state = states[i + 1];
292 	}
293 
294 	return target_dc_state;
295 }
296 
297 /**
298  * intel_display_power_set_target_dc_state - Set target dc state.
299  * @dev_priv: i915 device
300  * @state: state which needs to be set as target_dc_state.
301  *
302  * This function set the "DC off" power well target_dc_state,
303  * based upon this target_dc_stste, "DC off" power well will
304  * enable desired DC state.
305  */
306 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
307 					     u32 state)
308 {
309 	struct i915_power_well *power_well;
310 	bool dc_off_enabled;
311 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
312 
313 	mutex_lock(&power_domains->lock);
314 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
315 
316 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
317 		goto unlock;
318 
319 	state = sanitize_target_dc_state(dev_priv, state);
320 
321 	if (state == power_domains->target_dc_state)
322 		goto unlock;
323 
324 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
325 	/*
326 	 * If DC off power well is disabled, need to enable and disable the
327 	 * DC off power well to effect target DC state.
328 	 */
329 	if (!dc_off_enabled)
330 		intel_power_well_enable(dev_priv, power_well);
331 
332 	power_domains->target_dc_state = state;
333 
334 	if (!dc_off_enabled)
335 		intel_power_well_disable(dev_priv, power_well);
336 
337 unlock:
338 	mutex_unlock(&power_domains->lock);
339 }
340 
341 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
342 
343 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
344 				     struct intel_power_domain_mask *mask)
345 {
346 	bitmap_or(mask->bits,
347 		  power_domains->async_put_domains[0].bits,
348 		  power_domains->async_put_domains[1].bits,
349 		  POWER_DOMAIN_NUM);
350 }
351 
352 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
353 
354 static bool
355 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
356 {
357 	struct drm_i915_private *i915 = container_of(power_domains,
358 						     struct drm_i915_private,
359 						     display.power.domains);
360 
361 	return !drm_WARN_ON(&i915->drm,
362 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
363 					      power_domains->async_put_domains[1].bits,
364 					      POWER_DOMAIN_NUM));
365 }
366 
367 static bool
368 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
369 {
370 	struct drm_i915_private *i915 = container_of(power_domains,
371 						     struct drm_i915_private,
372 						     display.power.domains);
373 	struct intel_power_domain_mask async_put_mask;
374 	enum intel_display_power_domain domain;
375 	bool err = false;
376 
377 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
378 	__async_put_domains_mask(power_domains, &async_put_mask);
379 	err |= drm_WARN_ON(&i915->drm,
380 			   !!power_domains->async_put_wakeref !=
381 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
382 
383 	for_each_power_domain(domain, &async_put_mask)
384 		err |= drm_WARN_ON(&i915->drm,
385 				   power_domains->domain_use_count[domain] != 1);
386 
387 	return !err;
388 }
389 
390 static void print_power_domains(struct i915_power_domains *power_domains,
391 				const char *prefix, struct intel_power_domain_mask *mask)
392 {
393 	struct drm_i915_private *i915 = container_of(power_domains,
394 						     struct drm_i915_private,
395 						     display.power.domains);
396 	enum intel_display_power_domain domain;
397 
398 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
399 	for_each_power_domain(domain, mask)
400 		drm_dbg(&i915->drm, "%s use_count %d\n",
401 			intel_display_power_domain_str(domain),
402 			power_domains->domain_use_count[domain]);
403 }
404 
405 static void
406 print_async_put_domains_state(struct i915_power_domains *power_domains)
407 {
408 	struct drm_i915_private *i915 = container_of(power_domains,
409 						     struct drm_i915_private,
410 						     display.power.domains);
411 
412 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
413 		power_domains->async_put_wakeref);
414 
415 	print_power_domains(power_domains, "async_put_domains[0]",
416 			    &power_domains->async_put_domains[0]);
417 	print_power_domains(power_domains, "async_put_domains[1]",
418 			    &power_domains->async_put_domains[1]);
419 }
420 
421 static void
422 verify_async_put_domains_state(struct i915_power_domains *power_domains)
423 {
424 	if (!__async_put_domains_state_ok(power_domains))
425 		print_async_put_domains_state(power_domains);
426 }
427 
428 #else
429 
430 static void
431 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
432 {
433 }
434 
435 static void
436 verify_async_put_domains_state(struct i915_power_domains *power_domains)
437 {
438 }
439 
440 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
441 
442 static void async_put_domains_mask(struct i915_power_domains *power_domains,
443 				   struct intel_power_domain_mask *mask)
444 
445 {
446 	assert_async_put_domain_masks_disjoint(power_domains);
447 
448 	__async_put_domains_mask(power_domains, mask);
449 }
450 
451 static void
452 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
453 			       enum intel_display_power_domain domain)
454 {
455 	assert_async_put_domain_masks_disjoint(power_domains);
456 
457 	clear_bit(domain, power_domains->async_put_domains[0].bits);
458 	clear_bit(domain, power_domains->async_put_domains[1].bits);
459 }
460 
461 static bool
462 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
463 				       enum intel_display_power_domain domain)
464 {
465 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
466 	struct intel_power_domain_mask async_put_mask;
467 	bool ret = false;
468 
469 	async_put_domains_mask(power_domains, &async_put_mask);
470 	if (!test_bit(domain, async_put_mask.bits))
471 		goto out_verify;
472 
473 	async_put_domains_clear_domain(power_domains, domain);
474 
475 	ret = true;
476 
477 	async_put_domains_mask(power_domains, &async_put_mask);
478 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
479 		goto out_verify;
480 
481 	cancel_delayed_work(&power_domains->async_put_work);
482 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
483 				 fetch_and_zero(&power_domains->async_put_wakeref));
484 out_verify:
485 	verify_async_put_domains_state(power_domains);
486 
487 	return ret;
488 }
489 
490 static void
491 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
492 				 enum intel_display_power_domain domain)
493 {
494 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
495 	struct i915_power_well *power_well;
496 
497 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
498 		return;
499 
500 	for_each_power_domain_well(dev_priv, power_well, domain)
501 		intel_power_well_get(dev_priv, power_well);
502 
503 	power_domains->domain_use_count[domain]++;
504 }
505 
506 /**
507  * intel_display_power_get - grab a power domain reference
508  * @dev_priv: i915 device instance
509  * @domain: power domain to reference
510  *
511  * This function grabs a power domain reference for @domain and ensures that the
512  * power domain and all its parents are powered up. Therefore users should only
513  * grab a reference to the innermost power domain they need.
514  *
515  * Any power domain reference obtained by this function must have a symmetric
516  * call to intel_display_power_put() to release the reference again.
517  */
518 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
519 					enum intel_display_power_domain domain)
520 {
521 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
522 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
523 
524 	mutex_lock(&power_domains->lock);
525 	__intel_display_power_get_domain(dev_priv, domain);
526 	mutex_unlock(&power_domains->lock);
527 
528 	return wakeref;
529 }
530 
531 /**
532  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
533  * @dev_priv: i915 device instance
534  * @domain: power domain to reference
535  *
536  * This function grabs a power domain reference for @domain and ensures that the
537  * power domain and all its parents are powered up. Therefore users should only
538  * grab a reference to the innermost power domain they need.
539  *
540  * Any power domain reference obtained by this function must have a symmetric
541  * call to intel_display_power_put() to release the reference again.
542  */
543 intel_wakeref_t
544 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
545 				   enum intel_display_power_domain domain)
546 {
547 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
548 	intel_wakeref_t wakeref;
549 	bool is_enabled;
550 
551 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
552 	if (!wakeref)
553 		return false;
554 
555 	mutex_lock(&power_domains->lock);
556 
557 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
558 		__intel_display_power_get_domain(dev_priv, domain);
559 		is_enabled = true;
560 	} else {
561 		is_enabled = false;
562 	}
563 
564 	mutex_unlock(&power_domains->lock);
565 
566 	if (!is_enabled) {
567 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
568 		wakeref = 0;
569 	}
570 
571 	return wakeref;
572 }
573 
574 static void
575 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
576 				 enum intel_display_power_domain domain)
577 {
578 	struct i915_power_domains *power_domains;
579 	struct i915_power_well *power_well;
580 	const char *name = intel_display_power_domain_str(domain);
581 	struct intel_power_domain_mask async_put_mask;
582 
583 	power_domains = &dev_priv->display.power.domains;
584 
585 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
586 		 "Use count on domain %s is already zero\n",
587 		 name);
588 	async_put_domains_mask(power_domains, &async_put_mask);
589 	drm_WARN(&dev_priv->drm,
590 		 test_bit(domain, async_put_mask.bits),
591 		 "Async disabling of domain %s is pending\n",
592 		 name);
593 
594 	power_domains->domain_use_count[domain]--;
595 
596 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
597 		intel_power_well_put(dev_priv, power_well);
598 }
599 
600 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
601 				      enum intel_display_power_domain domain)
602 {
603 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
604 
605 	mutex_lock(&power_domains->lock);
606 	__intel_display_power_put_domain(dev_priv, domain);
607 	mutex_unlock(&power_domains->lock);
608 }
609 
610 static void
611 queue_async_put_domains_work(struct i915_power_domains *power_domains,
612 			     intel_wakeref_t wakeref)
613 {
614 	struct drm_i915_private *i915 = container_of(power_domains,
615 						     struct drm_i915_private,
616 						     display.power.domains);
617 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
618 	power_domains->async_put_wakeref = wakeref;
619 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
620 						    &power_domains->async_put_work,
621 						    msecs_to_jiffies(100)));
622 }
623 
624 static void
625 release_async_put_domains(struct i915_power_domains *power_domains,
626 			  struct intel_power_domain_mask *mask)
627 {
628 	struct drm_i915_private *dev_priv =
629 		container_of(power_domains, struct drm_i915_private,
630 			     display.power.domains);
631 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
632 	enum intel_display_power_domain domain;
633 	intel_wakeref_t wakeref;
634 
635 	/*
636 	 * The caller must hold already raw wakeref, upgrade that to a proper
637 	 * wakeref to make the state checker happy about the HW access during
638 	 * power well disabling.
639 	 */
640 	assert_rpm_raw_wakeref_held(rpm);
641 	wakeref = intel_runtime_pm_get(rpm);
642 
643 	for_each_power_domain(domain, mask) {
644 		/* Clear before put, so put's sanity check is happy. */
645 		async_put_domains_clear_domain(power_domains, domain);
646 		__intel_display_power_put_domain(dev_priv, domain);
647 	}
648 
649 	intel_runtime_pm_put(rpm, wakeref);
650 }
651 
652 static void
653 intel_display_power_put_async_work(struct work_struct *work)
654 {
655 	struct drm_i915_private *dev_priv =
656 		container_of(work, struct drm_i915_private,
657 			     display.power.domains.async_put_work.work);
658 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
659 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
660 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
661 	intel_wakeref_t old_work_wakeref = 0;
662 
663 	mutex_lock(&power_domains->lock);
664 
665 	/*
666 	 * Bail out if all the domain refs pending to be released were grabbed
667 	 * by subsequent gets or a flush_work.
668 	 */
669 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
670 	if (!old_work_wakeref)
671 		goto out_verify;
672 
673 	release_async_put_domains(power_domains,
674 				  &power_domains->async_put_domains[0]);
675 
676 	/* Requeue the work if more domains were async put meanwhile. */
677 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
678 		bitmap_copy(power_domains->async_put_domains[0].bits,
679 			    power_domains->async_put_domains[1].bits,
680 			    POWER_DOMAIN_NUM);
681 		bitmap_zero(power_domains->async_put_domains[1].bits,
682 			    POWER_DOMAIN_NUM);
683 		queue_async_put_domains_work(power_domains,
684 					     fetch_and_zero(&new_work_wakeref));
685 	} else {
686 		/*
687 		 * Cancel the work that got queued after this one got dequeued,
688 		 * since here we released the corresponding async-put reference.
689 		 */
690 		cancel_delayed_work(&power_domains->async_put_work);
691 	}
692 
693 out_verify:
694 	verify_async_put_domains_state(power_domains);
695 
696 	mutex_unlock(&power_domains->lock);
697 
698 	if (old_work_wakeref)
699 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
700 	if (new_work_wakeref)
701 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
702 }
703 
704 /**
705  * __intel_display_power_put_async - release a power domain reference asynchronously
706  * @i915: i915 device instance
707  * @domain: power domain to reference
708  * @wakeref: wakeref acquired for the reference that is being released
709  *
710  * This function drops the power domain reference obtained by
711  * intel_display_power_get*() and schedules a work to power down the
712  * corresponding hardware block if this is the last reference.
713  */
714 void __intel_display_power_put_async(struct drm_i915_private *i915,
715 				     enum intel_display_power_domain domain,
716 				     intel_wakeref_t wakeref)
717 {
718 	struct i915_power_domains *power_domains = &i915->display.power.domains;
719 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
720 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
721 
722 	mutex_lock(&power_domains->lock);
723 
724 	if (power_domains->domain_use_count[domain] > 1) {
725 		__intel_display_power_put_domain(i915, domain);
726 
727 		goto out_verify;
728 	}
729 
730 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
731 
732 	/* Let a pending work requeue itself or queue a new one. */
733 	if (power_domains->async_put_wakeref) {
734 		set_bit(domain, power_domains->async_put_domains[1].bits);
735 	} else {
736 		set_bit(domain, power_domains->async_put_domains[0].bits);
737 		queue_async_put_domains_work(power_domains,
738 					     fetch_and_zero(&work_wakeref));
739 	}
740 
741 out_verify:
742 	verify_async_put_domains_state(power_domains);
743 
744 	mutex_unlock(&power_domains->lock);
745 
746 	if (work_wakeref)
747 		intel_runtime_pm_put_raw(rpm, work_wakeref);
748 
749 	intel_runtime_pm_put(rpm, wakeref);
750 }
751 
752 /**
753  * intel_display_power_flush_work - flushes the async display power disabling work
754  * @i915: i915 device instance
755  *
756  * Flushes any pending work that was scheduled by a preceding
757  * intel_display_power_put_async() call, completing the disabling of the
758  * corresponding power domains.
759  *
760  * Note that the work handler function may still be running after this
761  * function returns; to ensure that the work handler isn't running use
762  * intel_display_power_flush_work_sync() instead.
763  */
764 void intel_display_power_flush_work(struct drm_i915_private *i915)
765 {
766 	struct i915_power_domains *power_domains = &i915->display.power.domains;
767 	struct intel_power_domain_mask async_put_mask;
768 	intel_wakeref_t work_wakeref;
769 
770 	mutex_lock(&power_domains->lock);
771 
772 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
773 	if (!work_wakeref)
774 		goto out_verify;
775 
776 	async_put_domains_mask(power_domains, &async_put_mask);
777 	release_async_put_domains(power_domains, &async_put_mask);
778 	cancel_delayed_work(&power_domains->async_put_work);
779 
780 out_verify:
781 	verify_async_put_domains_state(power_domains);
782 
783 	mutex_unlock(&power_domains->lock);
784 
785 	if (work_wakeref)
786 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
787 }
788 
789 /**
790  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
791  * @i915: i915 device instance
792  *
793  * Like intel_display_power_flush_work(), but also ensure that the work
794  * handler function is not running any more when this function returns.
795  */
796 static void
797 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
798 {
799 	struct i915_power_domains *power_domains = &i915->display.power.domains;
800 
801 	intel_display_power_flush_work(i915);
802 	cancel_delayed_work_sync(&power_domains->async_put_work);
803 
804 	verify_async_put_domains_state(power_domains);
805 
806 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
807 }
808 
809 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
810 /**
811  * intel_display_power_put - release a power domain reference
812  * @dev_priv: i915 device instance
813  * @domain: power domain to reference
814  * @wakeref: wakeref acquired for the reference that is being released
815  *
816  * This function drops the power domain reference obtained by
817  * intel_display_power_get() and might power down the corresponding hardware
818  * block right away if this is the last reference.
819  */
820 void intel_display_power_put(struct drm_i915_private *dev_priv,
821 			     enum intel_display_power_domain domain,
822 			     intel_wakeref_t wakeref)
823 {
824 	__intel_display_power_put(dev_priv, domain);
825 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
826 }
827 #else
828 /**
829  * intel_display_power_put_unchecked - release an unchecked power domain reference
830  * @dev_priv: i915 device instance
831  * @domain: power domain to reference
832  *
833  * This function drops the power domain reference obtained by
834  * intel_display_power_get() and might power down the corresponding hardware
835  * block right away if this is the last reference.
836  *
837  * This function is only for the power domain code's internal use to suppress wakeref
838  * tracking when the correspondig debug kconfig option is disabled, should not
839  * be used otherwise.
840  */
841 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
842 				       enum intel_display_power_domain domain)
843 {
844 	__intel_display_power_put(dev_priv, domain);
845 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
846 }
847 #endif
848 
849 void
850 intel_display_power_get_in_set(struct drm_i915_private *i915,
851 			       struct intel_display_power_domain_set *power_domain_set,
852 			       enum intel_display_power_domain domain)
853 {
854 	intel_wakeref_t __maybe_unused wf;
855 
856 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
857 
858 	wf = intel_display_power_get(i915, domain);
859 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
860 	power_domain_set->wakerefs[domain] = wf;
861 #endif
862 	set_bit(domain, power_domain_set->mask.bits);
863 }
864 
865 bool
866 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
867 					  struct intel_display_power_domain_set *power_domain_set,
868 					  enum intel_display_power_domain domain)
869 {
870 	intel_wakeref_t wf;
871 
872 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
873 
874 	wf = intel_display_power_get_if_enabled(i915, domain);
875 	if (!wf)
876 		return false;
877 
878 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
879 	power_domain_set->wakerefs[domain] = wf;
880 #endif
881 	set_bit(domain, power_domain_set->mask.bits);
882 
883 	return true;
884 }
885 
886 void
887 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
888 				    struct intel_display_power_domain_set *power_domain_set,
889 				    struct intel_power_domain_mask *mask)
890 {
891 	enum intel_display_power_domain domain;
892 
893 	drm_WARN_ON(&i915->drm,
894 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
895 
896 	for_each_power_domain(domain, mask) {
897 		intel_wakeref_t __maybe_unused wf = -1;
898 
899 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
900 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
901 #endif
902 		intel_display_power_put(i915, domain, wf);
903 		clear_bit(domain, power_domain_set->mask.bits);
904 	}
905 }
906 
907 static int
908 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
909 				   int disable_power_well)
910 {
911 	if (disable_power_well >= 0)
912 		return !!disable_power_well;
913 
914 	return 1;
915 }
916 
917 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
918 			       int enable_dc)
919 {
920 	u32 mask;
921 	int requested_dc;
922 	int max_dc;
923 
924 	if (!HAS_DISPLAY(dev_priv))
925 		return 0;
926 
927 	if (IS_DG2(dev_priv))
928 		max_dc = 1;
929 	else if (IS_DG1(dev_priv))
930 		max_dc = 3;
931 	else if (DISPLAY_VER(dev_priv) >= 12)
932 		max_dc = 4;
933 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
934 		max_dc = 1;
935 	else if (DISPLAY_VER(dev_priv) >= 9)
936 		max_dc = 2;
937 	else
938 		max_dc = 0;
939 
940 	/*
941 	 * DC9 has a separate HW flow from the rest of the DC states,
942 	 * not depending on the DMC firmware. It's needed by system
943 	 * suspend/resume, so allow it unconditionally.
944 	 */
945 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
946 		DISPLAY_VER(dev_priv) >= 11 ?
947 	       DC_STATE_EN_DC9 : 0;
948 
949 	if (!dev_priv->params.disable_power_well)
950 		max_dc = 0;
951 
952 	if (enable_dc >= 0 && enable_dc <= max_dc) {
953 		requested_dc = enable_dc;
954 	} else if (enable_dc == -1) {
955 		requested_dc = max_dc;
956 	} else if (enable_dc > max_dc && enable_dc <= 4) {
957 		drm_dbg_kms(&dev_priv->drm,
958 			    "Adjusting requested max DC state (%d->%d)\n",
959 			    enable_dc, max_dc);
960 		requested_dc = max_dc;
961 	} else {
962 		drm_err(&dev_priv->drm,
963 			"Unexpected value for enable_dc (%d)\n", enable_dc);
964 		requested_dc = max_dc;
965 	}
966 
967 	switch (requested_dc) {
968 	case 4:
969 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
970 		break;
971 	case 3:
972 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
973 		break;
974 	case 2:
975 		mask |= DC_STATE_EN_UPTO_DC6;
976 		break;
977 	case 1:
978 		mask |= DC_STATE_EN_UPTO_DC5;
979 		break;
980 	}
981 
982 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
983 
984 	return mask;
985 }
986 
987 /**
988  * intel_power_domains_init - initializes the power domain structures
989  * @dev_priv: i915 device instance
990  *
991  * Initializes the power domain structures for @dev_priv depending upon the
992  * supported platform.
993  */
994 int intel_power_domains_init(struct drm_i915_private *dev_priv)
995 {
996 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
997 
998 	dev_priv->params.disable_power_well =
999 		sanitize_disable_power_well_option(dev_priv,
1000 						   dev_priv->params.disable_power_well);
1001 	power_domains->allowed_dc_mask =
1002 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
1003 
1004 	power_domains->target_dc_state =
1005 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1006 
1007 	mutex_init(&power_domains->lock);
1008 
1009 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1010 			  intel_display_power_put_async_work);
1011 
1012 	return intel_display_power_map_init(power_domains);
1013 }
1014 
1015 /**
1016  * intel_power_domains_cleanup - clean up power domains resources
1017  * @dev_priv: i915 device instance
1018  *
1019  * Release any resources acquired by intel_power_domains_init()
1020  */
1021 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1022 {
1023 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1024 }
1025 
1026 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1027 {
1028 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1029 	struct i915_power_well *power_well;
1030 
1031 	mutex_lock(&power_domains->lock);
1032 	for_each_power_well(dev_priv, power_well)
1033 		intel_power_well_sync_hw(dev_priv, power_well);
1034 	mutex_unlock(&power_domains->lock);
1035 }
1036 
1037 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1038 				enum dbuf_slice slice, bool enable)
1039 {
1040 	i915_reg_t reg = DBUF_CTL_S(slice);
1041 	bool state;
1042 
1043 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1044 		     enable ? DBUF_POWER_REQUEST : 0);
1045 	intel_de_posting_read(dev_priv, reg);
1046 	udelay(10);
1047 
1048 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1049 	drm_WARN(&dev_priv->drm, enable != state,
1050 		 "DBuf slice %d power %s timeout!\n",
1051 		 slice, str_enable_disable(enable));
1052 }
1053 
1054 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1055 			     u8 req_slices)
1056 {
1057 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1058 	u8 slice_mask = DISPLAY_INFO(dev_priv)->dbuf.slice_mask;
1059 	enum dbuf_slice slice;
1060 
1061 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1062 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1063 		 req_slices, slice_mask);
1064 
1065 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1066 		    req_slices);
1067 
1068 	/*
1069 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1070 	 * being called from intel_dp_detect for instance,
1071 	 * which causes assertion triggered by race condition,
1072 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1073 	 * were already updated, while dev_priv was not.
1074 	 */
1075 	mutex_lock(&power_domains->lock);
1076 
1077 	for_each_dbuf_slice(dev_priv, slice)
1078 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1079 
1080 	dev_priv->display.dbuf.enabled_slices = req_slices;
1081 
1082 	mutex_unlock(&power_domains->lock);
1083 }
1084 
1085 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1086 {
1087 	u8 slices_mask;
1088 
1089 	dev_priv->display.dbuf.enabled_slices =
1090 		intel_enabled_dbuf_slices_mask(dev_priv);
1091 
1092 	slices_mask = BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices;
1093 
1094 	if (DISPLAY_VER(dev_priv) >= 14)
1095 		intel_pmdemand_program_dbuf(dev_priv, slices_mask);
1096 
1097 	/*
1098 	 * Just power up at least 1 slice, we will
1099 	 * figure out later which slices we have and what we need.
1100 	 */
1101 	gen9_dbuf_slices_update(dev_priv, slices_mask);
1102 }
1103 
1104 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1105 {
1106 	gen9_dbuf_slices_update(dev_priv, 0);
1107 
1108 	if (DISPLAY_VER(dev_priv) >= 14)
1109 		intel_pmdemand_program_dbuf(dev_priv, 0);
1110 }
1111 
1112 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1113 {
1114 	enum dbuf_slice slice;
1115 
1116 	if (IS_ALDERLAKE_P(dev_priv))
1117 		return;
1118 
1119 	for_each_dbuf_slice(dev_priv, slice)
1120 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1121 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1122 			     DBUF_TRACKER_STATE_SERVICE(8));
1123 }
1124 
1125 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1126 {
1127 	unsigned long abox_regs = DISPLAY_INFO(dev_priv)->abox_mask;
1128 	u32 mask, val, i;
1129 
1130 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1131 		return;
1132 
1133 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1134 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1135 		MBUS_ABOX_B_CREDIT_MASK |
1136 		MBUS_ABOX_BW_CREDIT_MASK;
1137 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1138 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1139 		MBUS_ABOX_B_CREDIT(1) |
1140 		MBUS_ABOX_BW_CREDIT(1);
1141 
1142 	/*
1143 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1144 	 * expect us to program the abox_ctl0 register as well, even though
1145 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1146 	 */
1147 	if (DISPLAY_VER(dev_priv) == 12)
1148 		abox_regs |= BIT(0);
1149 
1150 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1151 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1152 }
1153 
1154 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1155 {
1156 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1157 
1158 	/*
1159 	 * The LCPLL register should be turned on by the BIOS. For now
1160 	 * let's just check its state and print errors in case
1161 	 * something is wrong.  Don't even try to turn it on.
1162 	 */
1163 
1164 	if (val & LCPLL_CD_SOURCE_FCLK)
1165 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1166 
1167 	if (val & LCPLL_PLL_DISABLE)
1168 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1169 
1170 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1171 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1172 }
1173 
1174 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1175 {
1176 	struct intel_crtc *crtc;
1177 
1178 	for_each_intel_crtc(&dev_priv->drm, crtc)
1179 		I915_STATE_WARN(dev_priv, crtc->active,
1180 				"CRTC for pipe %c enabled\n",
1181 				pipe_name(crtc->pipe));
1182 
1183 	I915_STATE_WARN(dev_priv, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1184 			"Display power well on\n");
1185 	I915_STATE_WARN(dev_priv,
1186 			intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1187 			"SPLL enabled\n");
1188 	I915_STATE_WARN(dev_priv,
1189 			intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1190 			"WRPLL1 enabled\n");
1191 	I915_STATE_WARN(dev_priv,
1192 			intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1193 			"WRPLL2 enabled\n");
1194 	I915_STATE_WARN(dev_priv,
1195 			intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1196 			"Panel power on\n");
1197 	I915_STATE_WARN(dev_priv,
1198 			intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1199 			"CPU PWM1 enabled\n");
1200 	if (IS_HASWELL(dev_priv))
1201 		I915_STATE_WARN(dev_priv,
1202 				intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1203 				"CPU PWM2 enabled\n");
1204 	I915_STATE_WARN(dev_priv,
1205 			intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1206 			"PCH PWM1 enabled\n");
1207 	I915_STATE_WARN(dev_priv,
1208 			(intel_de_read(dev_priv, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1209 			"Utility pin enabled in PWM mode\n");
1210 	I915_STATE_WARN(dev_priv,
1211 			intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1212 			"PCH GTC enabled\n");
1213 
1214 	/*
1215 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1216 	 * interrupts remain enabled. We used to check for that, but since it's
1217 	 * gen-specific and since we only disable LCPLL after we fully disable
1218 	 * the interrupts, the check below should be enough.
1219 	 */
1220 	I915_STATE_WARN(dev_priv, intel_irqs_enabled(dev_priv),
1221 			"IRQs enabled\n");
1222 }
1223 
1224 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1225 {
1226 	if (IS_HASWELL(dev_priv))
1227 		return intel_de_read(dev_priv, D_COMP_HSW);
1228 	else
1229 		return intel_de_read(dev_priv, D_COMP_BDW);
1230 }
1231 
1232 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1233 {
1234 	if (IS_HASWELL(dev_priv)) {
1235 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1236 			drm_dbg_kms(&dev_priv->drm,
1237 				    "Failed to write to D_COMP\n");
1238 	} else {
1239 		intel_de_write(dev_priv, D_COMP_BDW, val);
1240 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1241 	}
1242 }
1243 
1244 /*
1245  * This function implements pieces of two sequences from BSpec:
1246  * - Sequence for display software to disable LCPLL
1247  * - Sequence for display software to allow package C8+
1248  * The steps implemented here are just the steps that actually touch the LCPLL
1249  * register. Callers should take care of disabling all the display engine
1250  * functions, doing the mode unset, fixing interrupts, etc.
1251  */
1252 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1253 			      bool switch_to_fclk, bool allow_power_down)
1254 {
1255 	u32 val;
1256 
1257 	assert_can_disable_lcpll(dev_priv);
1258 
1259 	val = intel_de_read(dev_priv, LCPLL_CTL);
1260 
1261 	if (switch_to_fclk) {
1262 		val |= LCPLL_CD_SOURCE_FCLK;
1263 		intel_de_write(dev_priv, LCPLL_CTL, val);
1264 
1265 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1266 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1267 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1268 
1269 		val = intel_de_read(dev_priv, LCPLL_CTL);
1270 	}
1271 
1272 	val |= LCPLL_PLL_DISABLE;
1273 	intel_de_write(dev_priv, LCPLL_CTL, val);
1274 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1275 
1276 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1277 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1278 
1279 	val = hsw_read_dcomp(dev_priv);
1280 	val |= D_COMP_COMP_DISABLE;
1281 	hsw_write_dcomp(dev_priv, val);
1282 	ndelay(100);
1283 
1284 	if (wait_for((hsw_read_dcomp(dev_priv) &
1285 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1286 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1287 
1288 	if (allow_power_down) {
1289 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1290 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1291 	}
1292 }
1293 
1294 /*
1295  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1296  * source.
1297  */
1298 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1299 {
1300 	u32 val;
1301 
1302 	val = intel_de_read(dev_priv, LCPLL_CTL);
1303 
1304 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1305 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1306 		return;
1307 
1308 	/*
1309 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1310 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1311 	 */
1312 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1313 
1314 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1315 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1316 		intel_de_write(dev_priv, LCPLL_CTL, val);
1317 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1318 	}
1319 
1320 	val = hsw_read_dcomp(dev_priv);
1321 	val |= D_COMP_COMP_FORCE;
1322 	val &= ~D_COMP_COMP_DISABLE;
1323 	hsw_write_dcomp(dev_priv, val);
1324 
1325 	val = intel_de_read(dev_priv, LCPLL_CTL);
1326 	val &= ~LCPLL_PLL_DISABLE;
1327 	intel_de_write(dev_priv, LCPLL_CTL, val);
1328 
1329 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1330 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1331 
1332 	if (val & LCPLL_CD_SOURCE_FCLK) {
1333 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1334 
1335 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1336 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1337 			drm_err(&dev_priv->drm,
1338 				"Switching back to LCPLL failed\n");
1339 	}
1340 
1341 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1342 
1343 	intel_update_cdclk(dev_priv);
1344 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1345 }
1346 
1347 /*
1348  * Package states C8 and deeper are really deep PC states that can only be
1349  * reached when all the devices on the system allow it, so even if the graphics
1350  * device allows PC8+, it doesn't mean the system will actually get to these
1351  * states. Our driver only allows PC8+ when going into runtime PM.
1352  *
1353  * The requirements for PC8+ are that all the outputs are disabled, the power
1354  * well is disabled and most interrupts are disabled, and these are also
1355  * requirements for runtime PM. When these conditions are met, we manually do
1356  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1357  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1358  * hang the machine.
1359  *
1360  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1361  * the state of some registers, so when we come back from PC8+ we need to
1362  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1363  * need to take care of the registers kept by RC6. Notice that this happens even
1364  * if we don't put the device in PCI D3 state (which is what currently happens
1365  * because of the runtime PM support).
1366  *
1367  * For more, read "Display Sequences for Package C8" on the hardware
1368  * documentation.
1369  */
1370 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1371 {
1372 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1373 
1374 	if (HAS_PCH_LPT_LP(dev_priv))
1375 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1376 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1377 
1378 	lpt_disable_clkout_dp(dev_priv);
1379 	hsw_disable_lcpll(dev_priv, true, true);
1380 }
1381 
1382 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1383 {
1384 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1385 
1386 	hsw_restore_lcpll(dev_priv);
1387 	intel_init_pch_refclk(dev_priv);
1388 
1389 	/* Many display registers don't survive PC8+ */
1390 	intel_clock_gating_init(dev_priv);
1391 }
1392 
1393 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1394 				      bool enable)
1395 {
1396 	i915_reg_t reg;
1397 	u32 reset_bits;
1398 
1399 	if (IS_IVYBRIDGE(dev_priv)) {
1400 		reg = GEN7_MSG_CTL;
1401 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1402 	} else {
1403 		reg = HSW_NDE_RSTWRN_OPT;
1404 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1405 	}
1406 
1407 	if (DISPLAY_VER(dev_priv) >= 14)
1408 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1409 
1410 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1411 }
1412 
1413 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1414 				  bool resume)
1415 {
1416 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1417 	struct i915_power_well *well;
1418 
1419 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1420 
1421 	/* enable PCH reset handshake */
1422 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1423 
1424 	if (!HAS_DISPLAY(dev_priv))
1425 		return;
1426 
1427 	/* enable PG1 and Misc I/O */
1428 	mutex_lock(&power_domains->lock);
1429 
1430 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1431 	intel_power_well_enable(dev_priv, well);
1432 
1433 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1434 	intel_power_well_enable(dev_priv, well);
1435 
1436 	mutex_unlock(&power_domains->lock);
1437 
1438 	intel_cdclk_init_hw(dev_priv);
1439 
1440 	gen9_dbuf_enable(dev_priv);
1441 
1442 	if (resume)
1443 		intel_dmc_load_program(dev_priv);
1444 }
1445 
1446 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1447 {
1448 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1449 	struct i915_power_well *well;
1450 
1451 	if (!HAS_DISPLAY(dev_priv))
1452 		return;
1453 
1454 	gen9_disable_dc_states(dev_priv);
1455 	/* TODO: disable DMC program */
1456 
1457 	gen9_dbuf_disable(dev_priv);
1458 
1459 	intel_cdclk_uninit_hw(dev_priv);
1460 
1461 	/* The spec doesn't call for removing the reset handshake flag */
1462 	/* disable PG1 and Misc I/O */
1463 
1464 	mutex_lock(&power_domains->lock);
1465 
1466 	/*
1467 	 * BSpec says to keep the MISC IO power well enabled here, only
1468 	 * remove our request for power well 1.
1469 	 * Note that even though the driver's request is removed power well 1
1470 	 * may stay enabled after this due to DMC's own request on it.
1471 	 */
1472 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1473 	intel_power_well_disable(dev_priv, well);
1474 
1475 	mutex_unlock(&power_domains->lock);
1476 
1477 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1478 }
1479 
1480 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1481 {
1482 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1483 	struct i915_power_well *well;
1484 
1485 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1486 
1487 	/*
1488 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1489 	 * or else the reset will hang because there is no PCH to respond.
1490 	 * Move the handshake programming to initialization sequence.
1491 	 * Previously was left up to BIOS.
1492 	 */
1493 	intel_pch_reset_handshake(dev_priv, false);
1494 
1495 	if (!HAS_DISPLAY(dev_priv))
1496 		return;
1497 
1498 	/* Enable PG1 */
1499 	mutex_lock(&power_domains->lock);
1500 
1501 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1502 	intel_power_well_enable(dev_priv, well);
1503 
1504 	mutex_unlock(&power_domains->lock);
1505 
1506 	intel_cdclk_init_hw(dev_priv);
1507 
1508 	gen9_dbuf_enable(dev_priv);
1509 
1510 	if (resume)
1511 		intel_dmc_load_program(dev_priv);
1512 }
1513 
1514 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1515 {
1516 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1517 	struct i915_power_well *well;
1518 
1519 	if (!HAS_DISPLAY(dev_priv))
1520 		return;
1521 
1522 	gen9_disable_dc_states(dev_priv);
1523 	/* TODO: disable DMC program */
1524 
1525 	gen9_dbuf_disable(dev_priv);
1526 
1527 	intel_cdclk_uninit_hw(dev_priv);
1528 
1529 	/* The spec doesn't call for removing the reset handshake flag */
1530 
1531 	/*
1532 	 * Disable PW1 (PG1).
1533 	 * Note that even though the driver's request is removed power well 1
1534 	 * may stay enabled after this due to DMC's own request on it.
1535 	 */
1536 	mutex_lock(&power_domains->lock);
1537 
1538 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1539 	intel_power_well_disable(dev_priv, well);
1540 
1541 	mutex_unlock(&power_domains->lock);
1542 
1543 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1544 }
1545 
1546 struct buddy_page_mask {
1547 	u32 page_mask;
1548 	u8 type;
1549 	u8 num_channels;
1550 };
1551 
1552 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1553 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1554 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1555 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1556 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1557 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1558 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1559 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1560 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1561 	{}
1562 };
1563 
1564 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1565 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1566 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1567 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1568 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1569 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1570 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1571 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1572 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1573 	{}
1574 };
1575 
1576 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1577 {
1578 	enum intel_dram_type type = dev_priv->dram_info.type;
1579 	u8 num_channels = dev_priv->dram_info.num_channels;
1580 	const struct buddy_page_mask *table;
1581 	unsigned long abox_mask = DISPLAY_INFO(dev_priv)->abox_mask;
1582 	int config, i;
1583 
1584 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1585 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1586 		return;
1587 
1588 	if (IS_ALDERLAKE_S(dev_priv) ||
1589 	    IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1590 		/* Wa_1409767108 */
1591 		table = wa_1409767108_buddy_page_masks;
1592 	else
1593 		table = tgl_buddy_page_masks;
1594 
1595 	for (config = 0; table[config].page_mask != 0; config++)
1596 		if (table[config].num_channels == num_channels &&
1597 		    table[config].type == type)
1598 			break;
1599 
1600 	if (table[config].page_mask == 0) {
1601 		drm_dbg(&dev_priv->drm,
1602 			"Unknown memory configuration; disabling address buddy logic.\n");
1603 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1604 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1605 				       BW_BUDDY_DISABLE);
1606 	} else {
1607 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1608 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1609 				       table[config].page_mask);
1610 
1611 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1612 			if (DISPLAY_VER(dev_priv) == 12)
1613 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1614 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1615 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1616 		}
1617 	}
1618 }
1619 
1620 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1621 				  bool resume)
1622 {
1623 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1624 	struct i915_power_well *well;
1625 
1626 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1627 
1628 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1629 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1630 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1631 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1632 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1633 
1634 	/* 1. Enable PCH reset handshake. */
1635 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1636 
1637 	if (!HAS_DISPLAY(dev_priv))
1638 		return;
1639 
1640 	/* 2. Initialize all combo phys */
1641 	intel_combo_phy_init(dev_priv);
1642 
1643 	/*
1644 	 * 3. Enable Power Well 1 (PG1).
1645 	 *    The AUX IO power wells will be enabled on demand.
1646 	 */
1647 	mutex_lock(&power_domains->lock);
1648 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1649 	intel_power_well_enable(dev_priv, well);
1650 	mutex_unlock(&power_domains->lock);
1651 
1652 	if (DISPLAY_VER(dev_priv) == 14)
1653 		intel_de_rmw(dev_priv, DC_STATE_EN,
1654 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1655 
1656 	/* 4. Enable CDCLK. */
1657 	intel_cdclk_init_hw(dev_priv);
1658 
1659 	if (DISPLAY_VER(dev_priv) >= 12)
1660 		gen12_dbuf_slices_config(dev_priv);
1661 
1662 	/* 5. Enable DBUF. */
1663 	gen9_dbuf_enable(dev_priv);
1664 
1665 	/* 6. Setup MBUS. */
1666 	icl_mbus_init(dev_priv);
1667 
1668 	/* 7. Program arbiter BW_BUDDY registers */
1669 	if (DISPLAY_VER(dev_priv) >= 12)
1670 		tgl_bw_buddy_init(dev_priv);
1671 
1672 	/* 8. Ensure PHYs have completed calibration and adaptation */
1673 	if (IS_DG2(dev_priv))
1674 		intel_snps_phy_wait_for_calibration(dev_priv);
1675 
1676 	if (resume)
1677 		intel_dmc_load_program(dev_priv);
1678 
1679 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1680 	if (DISPLAY_VER(dev_priv) >= 12)
1681 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1682 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1683 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1684 
1685 	/* Wa_14011503030:xelpd */
1686 	if (DISPLAY_VER(dev_priv) >= 13)
1687 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1688 }
1689 
1690 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1691 {
1692 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1693 	struct i915_power_well *well;
1694 
1695 	if (!HAS_DISPLAY(dev_priv))
1696 		return;
1697 
1698 	gen9_disable_dc_states(dev_priv);
1699 	intel_dmc_disable_program(dev_priv);
1700 
1701 	/* 1. Disable all display engine functions -> aready done */
1702 
1703 	/* 2. Disable DBUF */
1704 	gen9_dbuf_disable(dev_priv);
1705 
1706 	/* 3. Disable CD clock */
1707 	intel_cdclk_uninit_hw(dev_priv);
1708 
1709 	if (DISPLAY_VER(dev_priv) == 14)
1710 		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1711 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1712 
1713 	/*
1714 	 * 4. Disable Power Well 1 (PG1).
1715 	 *    The AUX IO power wells are toggled on demand, so they are already
1716 	 *    disabled at this point.
1717 	 */
1718 	mutex_lock(&power_domains->lock);
1719 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1720 	intel_power_well_disable(dev_priv, well);
1721 	mutex_unlock(&power_domains->lock);
1722 
1723 	/* 5. */
1724 	intel_combo_phy_uninit(dev_priv);
1725 }
1726 
1727 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1728 {
1729 	struct i915_power_well *cmn_bc =
1730 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1731 	struct i915_power_well *cmn_d =
1732 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1733 
1734 	/*
1735 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1736 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1737 	 * instead maintain a shadow copy ourselves. Use the actual
1738 	 * power well state and lane status to reconstruct the
1739 	 * expected initial value.
1740 	 */
1741 	dev_priv->display.power.chv_phy_control =
1742 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1743 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1744 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1745 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1746 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1747 
1748 	/*
1749 	 * If all lanes are disabled we leave the override disabled
1750 	 * with all power down bits cleared to match the state we
1751 	 * would use after disabling the port. Otherwise enable the
1752 	 * override and set the lane powerdown bits accding to the
1753 	 * current lane status.
1754 	 */
1755 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1756 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1757 		unsigned int mask;
1758 
1759 		mask = status & DPLL_PORTB_READY_MASK;
1760 		if (mask == 0xf)
1761 			mask = 0x0;
1762 		else
1763 			dev_priv->display.power.chv_phy_control |=
1764 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1765 
1766 		dev_priv->display.power.chv_phy_control |=
1767 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1768 
1769 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1770 		if (mask == 0xf)
1771 			mask = 0x0;
1772 		else
1773 			dev_priv->display.power.chv_phy_control |=
1774 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1775 
1776 		dev_priv->display.power.chv_phy_control |=
1777 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1778 
1779 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1780 
1781 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1782 	} else {
1783 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1784 	}
1785 
1786 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1787 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1788 		unsigned int mask;
1789 
1790 		mask = status & DPLL_PORTD_READY_MASK;
1791 
1792 		if (mask == 0xf)
1793 			mask = 0x0;
1794 		else
1795 			dev_priv->display.power.chv_phy_control |=
1796 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1797 
1798 		dev_priv->display.power.chv_phy_control |=
1799 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1800 
1801 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1802 
1803 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1804 	} else {
1805 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1806 	}
1807 
1808 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1809 		    dev_priv->display.power.chv_phy_control);
1810 
1811 	/* Defer application of initial phy_control to enabling the powerwell */
1812 }
1813 
1814 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1815 {
1816 	struct i915_power_well *cmn =
1817 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1818 	struct i915_power_well *disp2d =
1819 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1820 
1821 	/* If the display might be already active skip this */
1822 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1823 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1824 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1825 		return;
1826 
1827 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1828 
1829 	/* cmnlane needs DPLL registers */
1830 	intel_power_well_enable(dev_priv, disp2d);
1831 
1832 	/*
1833 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1834 	 * Need to assert and de-assert PHY SB reset by gating the
1835 	 * common lane power, then un-gating it.
1836 	 * Simply ungating isn't enough to reset the PHY enough to get
1837 	 * ports and lanes running.
1838 	 */
1839 	intel_power_well_disable(dev_priv, cmn);
1840 }
1841 
1842 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1843 {
1844 	bool ret;
1845 
1846 	vlv_punit_get(dev_priv);
1847 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1848 	vlv_punit_put(dev_priv);
1849 
1850 	return ret;
1851 }
1852 
1853 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1854 {
1855 	drm_WARN(&dev_priv->drm,
1856 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1857 		 "VED not power gated\n");
1858 }
1859 
1860 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1861 {
1862 	static const struct pci_device_id isp_ids[] = {
1863 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1864 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1865 		{}
1866 	};
1867 
1868 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1869 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1870 		 "ISP not power gated\n");
1871 }
1872 
1873 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1874 
1875 /**
1876  * intel_power_domains_init_hw - initialize hardware power domain state
1877  * @i915: i915 device instance
1878  * @resume: Called from resume code paths or not
1879  *
1880  * This function initializes the hardware power domain state and enables all
1881  * power wells belonging to the INIT power domain. Power wells in other
1882  * domains (and not in the INIT domain) are referenced or disabled by
1883  * intel_modeset_readout_hw_state(). After that the reference count of each
1884  * power well must match its HW enabled state, see
1885  * intel_power_domains_verify_state().
1886  *
1887  * It will return with power domains disabled (to be enabled later by
1888  * intel_power_domains_enable()) and must be paired with
1889  * intel_power_domains_driver_remove().
1890  */
1891 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1892 {
1893 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1894 
1895 	power_domains->initializing = true;
1896 
1897 	if (DISPLAY_VER(i915) >= 11) {
1898 		icl_display_core_init(i915, resume);
1899 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1900 		bxt_display_core_init(i915, resume);
1901 	} else if (DISPLAY_VER(i915) == 9) {
1902 		skl_display_core_init(i915, resume);
1903 	} else if (IS_CHERRYVIEW(i915)) {
1904 		mutex_lock(&power_domains->lock);
1905 		chv_phy_control_init(i915);
1906 		mutex_unlock(&power_domains->lock);
1907 		assert_isp_power_gated(i915);
1908 	} else if (IS_VALLEYVIEW(i915)) {
1909 		mutex_lock(&power_domains->lock);
1910 		vlv_cmnlane_wa(i915);
1911 		mutex_unlock(&power_domains->lock);
1912 		assert_ved_power_gated(i915);
1913 		assert_isp_power_gated(i915);
1914 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1915 		hsw_assert_cdclk(i915);
1916 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1917 	} else if (IS_IVYBRIDGE(i915)) {
1918 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1919 	}
1920 
1921 	/*
1922 	 * Keep all power wells enabled for any dependent HW access during
1923 	 * initialization and to make sure we keep BIOS enabled display HW
1924 	 * resources powered until display HW readout is complete. We drop
1925 	 * this reference in intel_power_domains_enable().
1926 	 */
1927 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1928 	power_domains->init_wakeref =
1929 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1930 
1931 	/* Disable power support if the user asked so. */
1932 	if (!i915->params.disable_power_well) {
1933 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1934 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1935 										      POWER_DOMAIN_INIT);
1936 	}
1937 	intel_power_domains_sync_hw(i915);
1938 
1939 	power_domains->initializing = false;
1940 }
1941 
1942 /**
1943  * intel_power_domains_driver_remove - deinitialize hw power domain state
1944  * @i915: i915 device instance
1945  *
1946  * De-initializes the display power domain HW state. It also ensures that the
1947  * device stays powered up so that the driver can be reloaded.
1948  *
1949  * It must be called with power domains already disabled (after a call to
1950  * intel_power_domains_disable()) and must be paired with
1951  * intel_power_domains_init_hw().
1952  */
1953 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1954 {
1955 	intel_wakeref_t wakeref __maybe_unused =
1956 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1957 
1958 	/* Remove the refcount we took to keep power well support disabled. */
1959 	if (!i915->params.disable_power_well)
1960 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1961 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1962 
1963 	intel_display_power_flush_work_sync(i915);
1964 
1965 	intel_power_domains_verify_state(i915);
1966 
1967 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1968 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1969 }
1970 
1971 /**
1972  * intel_power_domains_sanitize_state - sanitize power domains state
1973  * @i915: i915 device instance
1974  *
1975  * Sanitize the power domains state during driver loading and system resume.
1976  * The function will disable all display power wells that BIOS has enabled
1977  * without a user for it (any user for a power well has taken a reference
1978  * on it by the time this function is called, after the state of all the
1979  * pipe, encoder, etc. HW resources have been sanitized).
1980  */
1981 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1982 {
1983 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1984 	struct i915_power_well *power_well;
1985 
1986 	mutex_lock(&power_domains->lock);
1987 
1988 	for_each_power_well_reverse(i915, power_well) {
1989 		if (power_well->desc->always_on || power_well->count ||
1990 		    !intel_power_well_is_enabled(i915, power_well))
1991 			continue;
1992 
1993 		drm_dbg_kms(&i915->drm,
1994 			    "BIOS left unused %s power well enabled, disabling it\n",
1995 			    intel_power_well_name(power_well));
1996 		intel_power_well_disable(i915, power_well);
1997 	}
1998 
1999 	mutex_unlock(&power_domains->lock);
2000 }
2001 
2002 /**
2003  * intel_power_domains_enable - enable toggling of display power wells
2004  * @i915: i915 device instance
2005  *
2006  * Enable the ondemand enabling/disabling of the display power wells. Note that
2007  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2008  * only at specific points of the display modeset sequence, thus they are not
2009  * affected by the intel_power_domains_enable()/disable() calls. The purpose
2010  * of these function is to keep the rest of power wells enabled until the end
2011  * of display HW readout (which will acquire the power references reflecting
2012  * the current HW state).
2013  */
2014 void intel_power_domains_enable(struct drm_i915_private *i915)
2015 {
2016 	intel_wakeref_t wakeref __maybe_unused =
2017 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
2018 
2019 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2020 	intel_power_domains_verify_state(i915);
2021 }
2022 
2023 /**
2024  * intel_power_domains_disable - disable toggling of display power wells
2025  * @i915: i915 device instance
2026  *
2027  * Disable the ondemand enabling/disabling of the display power wells. See
2028  * intel_power_domains_enable() for which power wells this call controls.
2029  */
2030 void intel_power_domains_disable(struct drm_i915_private *i915)
2031 {
2032 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2033 
2034 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2035 	power_domains->init_wakeref =
2036 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2037 
2038 	intel_power_domains_verify_state(i915);
2039 }
2040 
2041 /**
2042  * intel_power_domains_suspend - suspend power domain state
2043  * @i915: i915 device instance
2044  * @s2idle: specifies whether we go to idle, or deeper sleep
2045  *
2046  * This function prepares the hardware power domain state before entering
2047  * system suspend.
2048  *
2049  * It must be called with power domains already disabled (after a call to
2050  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2051  */
2052 void intel_power_domains_suspend(struct drm_i915_private *i915, bool s2idle)
2053 {
2054 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2055 	intel_wakeref_t wakeref __maybe_unused =
2056 		fetch_and_zero(&power_domains->init_wakeref);
2057 
2058 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2059 
2060 	/*
2061 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2062 	 * support don't manually deinit the power domains. This also means the
2063 	 * DMC firmware will stay active, it will power down any HW
2064 	 * resources as required and also enable deeper system power states
2065 	 * that would be blocked if the firmware was inactive.
2066 	 */
2067 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2068 	    intel_dmc_has_payload(i915)) {
2069 		intel_display_power_flush_work(i915);
2070 		intel_power_domains_verify_state(i915);
2071 		return;
2072 	}
2073 
2074 	/*
2075 	 * Even if power well support was disabled we still want to disable
2076 	 * power wells if power domains must be deinitialized for suspend.
2077 	 */
2078 	if (!i915->params.disable_power_well)
2079 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2080 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2081 
2082 	intel_display_power_flush_work(i915);
2083 	intel_power_domains_verify_state(i915);
2084 
2085 	if (DISPLAY_VER(i915) >= 11)
2086 		icl_display_core_uninit(i915);
2087 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2088 		bxt_display_core_uninit(i915);
2089 	else if (DISPLAY_VER(i915) == 9)
2090 		skl_display_core_uninit(i915);
2091 
2092 	power_domains->display_core_suspended = true;
2093 }
2094 
2095 /**
2096  * intel_power_domains_resume - resume power domain state
2097  * @i915: i915 device instance
2098  *
2099  * This function resume the hardware power domain state during system resume.
2100  *
2101  * It will return with power domain support disabled (to be enabled later by
2102  * intel_power_domains_enable()) and must be paired with
2103  * intel_power_domains_suspend().
2104  */
2105 void intel_power_domains_resume(struct drm_i915_private *i915)
2106 {
2107 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2108 
2109 	if (power_domains->display_core_suspended) {
2110 		intel_power_domains_init_hw(i915, true);
2111 		power_domains->display_core_suspended = false;
2112 	} else {
2113 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2114 		power_domains->init_wakeref =
2115 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2116 	}
2117 
2118 	intel_power_domains_verify_state(i915);
2119 }
2120 
2121 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2122 
2123 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2124 {
2125 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2126 	struct i915_power_well *power_well;
2127 
2128 	for_each_power_well(i915, power_well) {
2129 		enum intel_display_power_domain domain;
2130 
2131 		drm_dbg(&i915->drm, "%-25s %d\n",
2132 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2133 
2134 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2135 			drm_dbg(&i915->drm, "  %-23s %d\n",
2136 				intel_display_power_domain_str(domain),
2137 				power_domains->domain_use_count[domain]);
2138 	}
2139 }
2140 
2141 /**
2142  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2143  * @i915: i915 device instance
2144  *
2145  * Verify if the reference count of each power well matches its HW enabled
2146  * state and the total refcount of the domains it belongs to. This must be
2147  * called after modeset HW state sanitization, which is responsible for
2148  * acquiring reference counts for any power wells in use and disabling the
2149  * ones left on by BIOS but not required by any active output.
2150  */
2151 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2152 {
2153 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2154 	struct i915_power_well *power_well;
2155 	bool dump_domain_info;
2156 
2157 	mutex_lock(&power_domains->lock);
2158 
2159 	verify_async_put_domains_state(power_domains);
2160 
2161 	dump_domain_info = false;
2162 	for_each_power_well(i915, power_well) {
2163 		enum intel_display_power_domain domain;
2164 		int domains_count;
2165 		bool enabled;
2166 
2167 		enabled = intel_power_well_is_enabled(i915, power_well);
2168 		if ((intel_power_well_refcount(power_well) ||
2169 		     intel_power_well_is_always_on(power_well)) !=
2170 		    enabled)
2171 			drm_err(&i915->drm,
2172 				"power well %s state mismatch (refcount %d/enabled %d)",
2173 				intel_power_well_name(power_well),
2174 				intel_power_well_refcount(power_well), enabled);
2175 
2176 		domains_count = 0;
2177 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2178 			domains_count += power_domains->domain_use_count[domain];
2179 
2180 		if (intel_power_well_refcount(power_well) != domains_count) {
2181 			drm_err(&i915->drm,
2182 				"power well %s refcount/domain refcount mismatch "
2183 				"(refcount %d/domains refcount %d)\n",
2184 				intel_power_well_name(power_well),
2185 				intel_power_well_refcount(power_well),
2186 				domains_count);
2187 			dump_domain_info = true;
2188 		}
2189 	}
2190 
2191 	if (dump_domain_info) {
2192 		static bool dumped;
2193 
2194 		if (!dumped) {
2195 			intel_power_domains_dump_info(i915);
2196 			dumped = true;
2197 		}
2198 	}
2199 
2200 	mutex_unlock(&power_domains->lock);
2201 }
2202 
2203 #else
2204 
2205 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2206 {
2207 }
2208 
2209 #endif
2210 
2211 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2212 {
2213 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2214 	    IS_BROXTON(i915)) {
2215 		bxt_enable_dc9(i915);
2216 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2217 		hsw_enable_pc8(i915);
2218 	}
2219 
2220 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2221 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2222 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2223 }
2224 
2225 void intel_display_power_resume_early(struct drm_i915_private *i915)
2226 {
2227 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2228 	    IS_BROXTON(i915)) {
2229 		gen9_sanitize_dc_state(i915);
2230 		bxt_disable_dc9(i915);
2231 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2232 		hsw_disable_pc8(i915);
2233 	}
2234 
2235 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2236 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2237 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2238 }
2239 
2240 void intel_display_power_suspend(struct drm_i915_private *i915)
2241 {
2242 	if (DISPLAY_VER(i915) >= 11) {
2243 		icl_display_core_uninit(i915);
2244 		bxt_enable_dc9(i915);
2245 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2246 		bxt_display_core_uninit(i915);
2247 		bxt_enable_dc9(i915);
2248 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2249 		hsw_enable_pc8(i915);
2250 	}
2251 }
2252 
2253 void intel_display_power_resume(struct drm_i915_private *i915)
2254 {
2255 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2256 
2257 	if (DISPLAY_VER(i915) >= 11) {
2258 		bxt_disable_dc9(i915);
2259 		icl_display_core_init(i915, true);
2260 		if (intel_dmc_has_payload(i915)) {
2261 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2262 				skl_enable_dc6(i915);
2263 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2264 				gen9_enable_dc5(i915);
2265 		}
2266 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2267 		bxt_disable_dc9(i915);
2268 		bxt_display_core_init(i915, true);
2269 		if (intel_dmc_has_payload(i915) &&
2270 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2271 			gen9_enable_dc5(i915);
2272 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2273 		hsw_disable_pc8(i915);
2274 	}
2275 }
2276 
2277 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2278 {
2279 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2280 	int i;
2281 
2282 	mutex_lock(&power_domains->lock);
2283 
2284 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2285 	for (i = 0; i < power_domains->power_well_count; i++) {
2286 		struct i915_power_well *power_well;
2287 		enum intel_display_power_domain power_domain;
2288 
2289 		power_well = &power_domains->power_wells[i];
2290 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2291 			   intel_power_well_refcount(power_well));
2292 
2293 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2294 			seq_printf(m, "  %-23s %d\n",
2295 				   intel_display_power_domain_str(power_domain),
2296 				   power_domains->domain_use_count[power_domain]);
2297 	}
2298 
2299 	mutex_unlock(&power_domains->lock);
2300 }
2301 
2302 struct intel_ddi_port_domains {
2303 	enum port port_start;
2304 	enum port port_end;
2305 	enum aux_ch aux_ch_start;
2306 	enum aux_ch aux_ch_end;
2307 
2308 	enum intel_display_power_domain ddi_lanes;
2309 	enum intel_display_power_domain ddi_io;
2310 	enum intel_display_power_domain aux_io;
2311 	enum intel_display_power_domain aux_legacy_usbc;
2312 	enum intel_display_power_domain aux_tbt;
2313 };
2314 
2315 static const struct intel_ddi_port_domains
2316 i9xx_port_domains[] = {
2317 	{
2318 		.port_start = PORT_A,
2319 		.port_end = PORT_F,
2320 		.aux_ch_start = AUX_CH_A,
2321 		.aux_ch_end = AUX_CH_F,
2322 
2323 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2324 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2325 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2326 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2327 		.aux_tbt = POWER_DOMAIN_INVALID,
2328 	},
2329 };
2330 
2331 static const struct intel_ddi_port_domains
2332 d11_port_domains[] = {
2333 	{
2334 		.port_start = PORT_A,
2335 		.port_end = PORT_B,
2336 		.aux_ch_start = AUX_CH_A,
2337 		.aux_ch_end = AUX_CH_B,
2338 
2339 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2340 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2341 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2342 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2343 		.aux_tbt = POWER_DOMAIN_INVALID,
2344 	}, {
2345 		.port_start = PORT_C,
2346 		.port_end = PORT_F,
2347 		.aux_ch_start = AUX_CH_C,
2348 		.aux_ch_end = AUX_CH_F,
2349 
2350 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2351 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2352 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2353 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2354 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2355 	},
2356 };
2357 
2358 static const struct intel_ddi_port_domains
2359 d12_port_domains[] = {
2360 	{
2361 		.port_start = PORT_A,
2362 		.port_end = PORT_C,
2363 		.aux_ch_start = AUX_CH_A,
2364 		.aux_ch_end = AUX_CH_C,
2365 
2366 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2367 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2368 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2369 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2370 		.aux_tbt = POWER_DOMAIN_INVALID,
2371 	}, {
2372 		.port_start = PORT_TC1,
2373 		.port_end = PORT_TC6,
2374 		.aux_ch_start = AUX_CH_USBC1,
2375 		.aux_ch_end = AUX_CH_USBC6,
2376 
2377 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2378 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2379 		.aux_io = POWER_DOMAIN_INVALID,
2380 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2381 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2382 	},
2383 };
2384 
2385 static const struct intel_ddi_port_domains
2386 d13_port_domains[] = {
2387 	{
2388 		.port_start = PORT_A,
2389 		.port_end = PORT_C,
2390 		.aux_ch_start = AUX_CH_A,
2391 		.aux_ch_end = AUX_CH_C,
2392 
2393 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2394 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2395 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2396 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2397 		.aux_tbt = POWER_DOMAIN_INVALID,
2398 	}, {
2399 		.port_start = PORT_TC1,
2400 		.port_end = PORT_TC4,
2401 		.aux_ch_start = AUX_CH_USBC1,
2402 		.aux_ch_end = AUX_CH_USBC4,
2403 
2404 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2405 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2406 		.aux_io = POWER_DOMAIN_INVALID,
2407 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2408 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2409 	}, {
2410 		.port_start = PORT_D_XELPD,
2411 		.port_end = PORT_E_XELPD,
2412 		.aux_ch_start = AUX_CH_D_XELPD,
2413 		.aux_ch_end = AUX_CH_E_XELPD,
2414 
2415 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2416 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2417 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2418 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2419 		.aux_tbt = POWER_DOMAIN_INVALID,
2420 	},
2421 };
2422 
2423 static void
2424 intel_port_domains_for_platform(struct drm_i915_private *i915,
2425 				const struct intel_ddi_port_domains **domains,
2426 				int *domains_size)
2427 {
2428 	if (DISPLAY_VER(i915) >= 13) {
2429 		*domains = d13_port_domains;
2430 		*domains_size = ARRAY_SIZE(d13_port_domains);
2431 	} else if (DISPLAY_VER(i915) >= 12) {
2432 		*domains = d12_port_domains;
2433 		*domains_size = ARRAY_SIZE(d12_port_domains);
2434 	} else if (DISPLAY_VER(i915) >= 11) {
2435 		*domains = d11_port_domains;
2436 		*domains_size = ARRAY_SIZE(d11_port_domains);
2437 	} else {
2438 		*domains = i9xx_port_domains;
2439 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2440 	}
2441 }
2442 
2443 static const struct intel_ddi_port_domains *
2444 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2445 {
2446 	const struct intel_ddi_port_domains *domains;
2447 	int domains_size;
2448 	int i;
2449 
2450 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2451 	for (i = 0; i < domains_size; i++)
2452 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2453 			return &domains[i];
2454 
2455 	return NULL;
2456 }
2457 
2458 enum intel_display_power_domain
2459 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2460 {
2461 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2462 
2463 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2464 		return POWER_DOMAIN_PORT_DDI_IO_A;
2465 
2466 	return domains->ddi_io + (int)(port - domains->port_start);
2467 }
2468 
2469 enum intel_display_power_domain
2470 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2471 {
2472 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2473 
2474 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2475 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2476 
2477 	return domains->ddi_lanes + (int)(port - domains->port_start);
2478 }
2479 
2480 static const struct intel_ddi_port_domains *
2481 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2482 {
2483 	const struct intel_ddi_port_domains *domains;
2484 	int domains_size;
2485 	int i;
2486 
2487 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2488 	for (i = 0; i < domains_size; i++)
2489 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2490 			return &domains[i];
2491 
2492 	return NULL;
2493 }
2494 
2495 enum intel_display_power_domain
2496 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2497 {
2498 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2499 
2500 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2501 		return POWER_DOMAIN_AUX_IO_A;
2502 
2503 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2504 }
2505 
2506 enum intel_display_power_domain
2507 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2508 {
2509 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2510 
2511 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2512 		return POWER_DOMAIN_AUX_A;
2513 
2514 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2515 }
2516 
2517 enum intel_display_power_domain
2518 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2519 {
2520 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2521 
2522 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2523 		return POWER_DOMAIN_AUX_TBT1;
2524 
2525 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2526 }
2527