xref: /openbmc/linux/drivers/gpu/drm/i915/display/i9xx_wm.c (revision 9b4469410cf9a0fcbccc92c480fd42f7c815a745)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i9xx_wm.h"
8 #include "intel_atomic.h"
9 #include "intel_display.h"
10 #include "intel_display_trace.h"
11 #include "intel_mchbar_regs.h"
12 #include "intel_wm.h"
13 #include "skl_watermark.h"
14 #include "vlv_sideband.h"
15 
16 /* used in computing the new watermarks state */
17 struct intel_wm_config {
18 	unsigned int num_pipes_active;
19 	bool sprites_enabled;
20 	bool sprites_scaled;
21 };
22 
23 struct cxsr_latency {
24 	bool is_desktop : 1;
25 	bool is_ddr3 : 1;
26 	u16 fsb_freq;
27 	u16 mem_freq;
28 	u16 display_sr;
29 	u16 display_hpll_disable;
30 	u16 cursor_sr;
31 	u16 cursor_hpll_disable;
32 };
33 
34 static const struct cxsr_latency cxsr_latency_table[] = {
35 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
36 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
37 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
38 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
39 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
40 
41 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
42 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
43 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
44 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
45 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
46 
47 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
48 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
49 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
50 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
51 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
52 
53 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
54 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
55 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
56 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
57 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
58 
59 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
60 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
61 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
62 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
63 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
64 
65 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
66 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
67 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
68 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
69 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
70 };
71 
72 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
73 							 bool is_ddr3,
74 							 int fsb,
75 							 int mem)
76 {
77 	const struct cxsr_latency *latency;
78 	int i;
79 
80 	if (fsb == 0 || mem == 0)
81 		return NULL;
82 
83 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
84 		latency = &cxsr_latency_table[i];
85 		if (is_desktop == latency->is_desktop &&
86 		    is_ddr3 == latency->is_ddr3 &&
87 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
88 			return latency;
89 	}
90 
91 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
92 
93 	return NULL;
94 }
95 
96 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
97 {
98 	u32 val;
99 
100 	vlv_punit_get(dev_priv);
101 
102 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
103 	if (enable)
104 		val &= ~FORCE_DDR_HIGH_FREQ;
105 	else
106 		val |= FORCE_DDR_HIGH_FREQ;
107 	val &= ~FORCE_DDR_LOW_FREQ;
108 	val |= FORCE_DDR_FREQ_REQ_ACK;
109 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
110 
111 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
112 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
113 		drm_err(&dev_priv->drm,
114 			"timed out waiting for Punit DDR DVFS request\n");
115 
116 	vlv_punit_put(dev_priv);
117 }
118 
119 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
120 {
121 	u32 val;
122 
123 	vlv_punit_get(dev_priv);
124 
125 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
126 	if (enable)
127 		val |= DSP_MAXFIFO_PM5_ENABLE;
128 	else
129 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
130 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
131 
132 	vlv_punit_put(dev_priv);
133 }
134 
135 #define FW_WM(value, plane) \
136 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
137 
138 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
139 {
140 	bool was_enabled;
141 	u32 val;
142 
143 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
144 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
145 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
146 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
147 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
148 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
149 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
150 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
151 	} else if (IS_PINEVIEW(dev_priv)) {
152 		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
153 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
154 		if (enable)
155 			val |= PINEVIEW_SELF_REFRESH_EN;
156 		else
157 			val &= ~PINEVIEW_SELF_REFRESH_EN;
158 		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
159 		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
160 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
161 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
162 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
163 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
164 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
165 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
166 	} else if (IS_I915GM(dev_priv)) {
167 		/*
168 		 * FIXME can't find a bit like this for 915G, and
169 		 * yet it does have the related watermark in
170 		 * FW_BLC_SELF. What's going on?
171 		 */
172 		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
173 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
174 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
175 		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
176 		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
177 	} else {
178 		return false;
179 	}
180 
181 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
182 
183 	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
184 		    str_enabled_disabled(enable),
185 		    str_enabled_disabled(was_enabled));
186 
187 	return was_enabled;
188 }
189 
190 /**
191  * intel_set_memory_cxsr - Configure CxSR state
192  * @dev_priv: i915 device
193  * @enable: Allow vs. disallow CxSR
194  *
195  * Allow or disallow the system to enter a special CxSR
196  * (C-state self refresh) state. What typically happens in CxSR mode
197  * is that several display FIFOs may get combined into a single larger
198  * FIFO for a particular plane (so called max FIFO mode) to allow the
199  * system to defer memory fetches longer, and the memory will enter
200  * self refresh.
201  *
202  * Note that enabling CxSR does not guarantee that the system enter
203  * this special mode, nor does it guarantee that the system stays
204  * in that mode once entered. So this just allows/disallows the system
205  * to autonomously utilize the CxSR mode. Other factors such as core
206  * C-states will affect when/if the system actually enters/exits the
207  * CxSR mode.
208  *
209  * Note that on VLV/CHV this actually only controls the max FIFO mode,
210  * and the system is free to enter/exit memory self refresh at any time
211  * even when the use of CxSR has been disallowed.
212  *
213  * While the system is actually in the CxSR/max FIFO mode, some plane
214  * control registers will not get latched on vblank. Thus in order to
215  * guarantee the system will respond to changes in the plane registers
216  * we must always disallow CxSR prior to making changes to those registers.
217  * Unfortunately the system will re-evaluate the CxSR conditions at
218  * frame start which happens after vblank start (which is when the plane
219  * registers would get latched), so we can't proceed with the plane update
220  * during the same frame where we disallowed CxSR.
221  *
222  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
223  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
224  * the hardware w.r.t. HPLL SR when writing to plane registers.
225  * Disallowing just CxSR is sufficient.
226  */
227 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
228 {
229 	bool ret;
230 
231 	mutex_lock(&dev_priv->display.wm.wm_mutex);
232 	ret = _intel_set_memory_cxsr(dev_priv, enable);
233 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
234 		dev_priv->display.wm.vlv.cxsr = enable;
235 	else if (IS_G4X(dev_priv))
236 		dev_priv->display.wm.g4x.cxsr = enable;
237 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
238 
239 	return ret;
240 }
241 
242 /*
243  * Latency for FIFO fetches is dependent on several factors:
244  *   - memory configuration (speed, channels)
245  *   - chipset
246  *   - current MCH state
247  * It can be fairly high in some situations, so here we assume a fairly
248  * pessimal value.  It's a tradeoff between extra memory fetches (if we
249  * set this value too high, the FIFO will fetch frequently to stay full)
250  * and power consumption (set it too low to save power and we might see
251  * FIFO underruns and display "flicker").
252  *
253  * A value of 5us seems to be a good balance; safe for very low end
254  * platforms but not overly aggressive on lower latency configs.
255  */
256 static const int pessimal_latency_ns = 5000;
257 
258 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
259 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
260 
261 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
262 {
263 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
264 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
265 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
266 	enum pipe pipe = crtc->pipe;
267 	int sprite0_start, sprite1_start;
268 	u32 dsparb, dsparb2, dsparb3;
269 
270 	switch (pipe) {
271 	case PIPE_A:
272 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
273 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
274 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
275 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
276 		break;
277 	case PIPE_B:
278 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
279 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
280 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
281 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
282 		break;
283 	case PIPE_C:
284 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
285 		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
286 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
287 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
288 		break;
289 	default:
290 		MISSING_CASE(pipe);
291 		return;
292 	}
293 
294 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
295 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
296 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
297 	fifo_state->plane[PLANE_CURSOR] = 63;
298 }
299 
300 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
301 			      enum i9xx_plane_id i9xx_plane)
302 {
303 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
304 	int size;
305 
306 	size = dsparb & 0x7f;
307 	if (i9xx_plane == PLANE_B)
308 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
309 
310 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
311 		    dsparb, plane_name(i9xx_plane), size);
312 
313 	return size;
314 }
315 
316 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
317 			      enum i9xx_plane_id i9xx_plane)
318 {
319 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
320 	int size;
321 
322 	size = dsparb & 0x1ff;
323 	if (i9xx_plane == PLANE_B)
324 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
325 	size >>= 1; /* Convert to cachelines */
326 
327 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
328 		    dsparb, plane_name(i9xx_plane), size);
329 
330 	return size;
331 }
332 
333 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
334 			      enum i9xx_plane_id i9xx_plane)
335 {
336 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
337 	int size;
338 
339 	size = dsparb & 0x7f;
340 	size >>= 2; /* Convert to cachelines */
341 
342 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
343 		    dsparb, plane_name(i9xx_plane), size);
344 
345 	return size;
346 }
347 
348 /* Pineview has different values for various configs */
349 static const struct intel_watermark_params pnv_display_wm = {
350 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
351 	.max_wm = PINEVIEW_MAX_WM,
352 	.default_wm = PINEVIEW_DFT_WM,
353 	.guard_size = PINEVIEW_GUARD_WM,
354 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
355 };
356 
357 static const struct intel_watermark_params pnv_display_hplloff_wm = {
358 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
359 	.max_wm = PINEVIEW_MAX_WM,
360 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
361 	.guard_size = PINEVIEW_GUARD_WM,
362 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
363 };
364 
365 static const struct intel_watermark_params pnv_cursor_wm = {
366 	.fifo_size = PINEVIEW_CURSOR_FIFO,
367 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
368 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
369 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
370 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
371 };
372 
373 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
374 	.fifo_size = PINEVIEW_CURSOR_FIFO,
375 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
376 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
377 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
378 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
379 };
380 
381 static const struct intel_watermark_params i965_cursor_wm_info = {
382 	.fifo_size = I965_CURSOR_FIFO,
383 	.max_wm = I965_CURSOR_MAX_WM,
384 	.default_wm = I965_CURSOR_DFT_WM,
385 	.guard_size = 2,
386 	.cacheline_size = I915_FIFO_LINE_SIZE,
387 };
388 
389 static const struct intel_watermark_params i945_wm_info = {
390 	.fifo_size = I945_FIFO_SIZE,
391 	.max_wm = I915_MAX_WM,
392 	.default_wm = 1,
393 	.guard_size = 2,
394 	.cacheline_size = I915_FIFO_LINE_SIZE,
395 };
396 
397 static const struct intel_watermark_params i915_wm_info = {
398 	.fifo_size = I915_FIFO_SIZE,
399 	.max_wm = I915_MAX_WM,
400 	.default_wm = 1,
401 	.guard_size = 2,
402 	.cacheline_size = I915_FIFO_LINE_SIZE,
403 };
404 
405 static const struct intel_watermark_params i830_a_wm_info = {
406 	.fifo_size = I855GM_FIFO_SIZE,
407 	.max_wm = I915_MAX_WM,
408 	.default_wm = 1,
409 	.guard_size = 2,
410 	.cacheline_size = I830_FIFO_LINE_SIZE,
411 };
412 
413 static const struct intel_watermark_params i830_bc_wm_info = {
414 	.fifo_size = I855GM_FIFO_SIZE,
415 	.max_wm = I915_MAX_WM / 2,
416 	.default_wm = 1,
417 	.guard_size = 2,
418 	.cacheline_size = I830_FIFO_LINE_SIZE,
419 };
420 
421 static const struct intel_watermark_params i845_wm_info = {
422 	.fifo_size = I830_FIFO_SIZE,
423 	.max_wm = I915_MAX_WM,
424 	.default_wm = 1,
425 	.guard_size = 2,
426 	.cacheline_size = I830_FIFO_LINE_SIZE,
427 };
428 
429 /**
430  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
431  * @pixel_rate: Pipe pixel rate in kHz
432  * @cpp: Plane bytes per pixel
433  * @latency: Memory wakeup latency in 0.1us units
434  *
435  * Compute the watermark using the method 1 or "small buffer"
436  * formula. The caller may additonally add extra cachelines
437  * to account for TLB misses and clock crossings.
438  *
439  * This method is concerned with the short term drain rate
440  * of the FIFO, ie. it does not account for blanking periods
441  * which would effectively reduce the average drain rate across
442  * a longer period. The name "small" refers to the fact the
443  * FIFO is relatively small compared to the amount of data
444  * fetched.
445  *
446  * The FIFO level vs. time graph might look something like:
447  *
448  *   |\   |\
449  *   | \  | \
450  * __---__---__ (- plane active, _ blanking)
451  * -> time
452  *
453  * or perhaps like this:
454  *
455  *   |\|\  |\|\
456  * __----__----__ (- plane active, _ blanking)
457  * -> time
458  *
459  * Returns:
460  * The watermark in bytes
461  */
462 static unsigned int intel_wm_method1(unsigned int pixel_rate,
463 				     unsigned int cpp,
464 				     unsigned int latency)
465 {
466 	u64 ret;
467 
468 	ret = mul_u32_u32(pixel_rate, cpp * latency);
469 	ret = DIV_ROUND_UP_ULL(ret, 10000);
470 
471 	return ret;
472 }
473 
474 /**
475  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
476  * @pixel_rate: Pipe pixel rate in kHz
477  * @htotal: Pipe horizontal total
478  * @width: Plane width in pixels
479  * @cpp: Plane bytes per pixel
480  * @latency: Memory wakeup latency in 0.1us units
481  *
482  * Compute the watermark using the method 2 or "large buffer"
483  * formula. The caller may additonally add extra cachelines
484  * to account for TLB misses and clock crossings.
485  *
486  * This method is concerned with the long term drain rate
487  * of the FIFO, ie. it does account for blanking periods
488  * which effectively reduce the average drain rate across
489  * a longer period. The name "large" refers to the fact the
490  * FIFO is relatively large compared to the amount of data
491  * fetched.
492  *
493  * The FIFO level vs. time graph might look something like:
494  *
495  *    |\___       |\___
496  *    |    \___   |    \___
497  *    |        \  |        \
498  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
499  * -> time
500  *
501  * Returns:
502  * The watermark in bytes
503  */
504 static unsigned int intel_wm_method2(unsigned int pixel_rate,
505 				     unsigned int htotal,
506 				     unsigned int width,
507 				     unsigned int cpp,
508 				     unsigned int latency)
509 {
510 	unsigned int ret;
511 
512 	/*
513 	 * FIXME remove once all users are computing
514 	 * watermarks in the correct place.
515 	 */
516 	if (WARN_ON_ONCE(htotal == 0))
517 		htotal = 1;
518 
519 	ret = (latency * pixel_rate) / (htotal * 10000);
520 	ret = (ret + 1) * width * cpp;
521 
522 	return ret;
523 }
524 
525 /**
526  * intel_calculate_wm - calculate watermark level
527  * @pixel_rate: pixel clock
528  * @wm: chip FIFO params
529  * @fifo_size: size of the FIFO buffer
530  * @cpp: bytes per pixel
531  * @latency_ns: memory latency for the platform
532  *
533  * Calculate the watermark level (the level at which the display plane will
534  * start fetching from memory again).  Each chip has a different display
535  * FIFO size and allocation, so the caller needs to figure that out and pass
536  * in the correct intel_watermark_params structure.
537  *
538  * As the pixel clock runs, the FIFO will be drained at a rate that depends
539  * on the pixel size.  When it reaches the watermark level, it'll start
540  * fetching FIFO line sized based chunks from memory until the FIFO fills
541  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
542  * will occur, and a display engine hang could result.
543  */
544 static unsigned int intel_calculate_wm(int pixel_rate,
545 				       const struct intel_watermark_params *wm,
546 				       int fifo_size, int cpp,
547 				       unsigned int latency_ns)
548 {
549 	int entries, wm_size;
550 
551 	/*
552 	 * Note: we need to make sure we don't overflow for various clock &
553 	 * latency values.
554 	 * clocks go from a few thousand to several hundred thousand.
555 	 * latency is usually a few thousand
556 	 */
557 	entries = intel_wm_method1(pixel_rate, cpp,
558 				   latency_ns / 100);
559 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
560 		wm->guard_size;
561 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
562 
563 	wm_size = fifo_size - entries;
564 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
565 
566 	/* Don't promote wm_size to unsigned... */
567 	if (wm_size > wm->max_wm)
568 		wm_size = wm->max_wm;
569 	if (wm_size <= 0)
570 		wm_size = wm->default_wm;
571 
572 	/*
573 	 * Bspec seems to indicate that the value shouldn't be lower than
574 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
575 	 * Lets go for 8 which is the burst size since certain platforms
576 	 * already use a hardcoded 8 (which is what the spec says should be
577 	 * done).
578 	 */
579 	if (wm_size <= 8)
580 		wm_size = 8;
581 
582 	return wm_size;
583 }
584 
585 static bool is_disabling(int old, int new, int threshold)
586 {
587 	return old >= threshold && new < threshold;
588 }
589 
590 static bool is_enabling(int old, int new, int threshold)
591 {
592 	return old < threshold && new >= threshold;
593 }
594 
595 static bool intel_crtc_active(struct intel_crtc *crtc)
596 {
597 	/* Be paranoid as we can arrive here with only partial
598 	 * state retrieved from the hardware during setup.
599 	 *
600 	 * We can ditch the adjusted_mode.crtc_clock check as soon
601 	 * as Haswell has gained clock readout/fastboot support.
602 	 *
603 	 * We can ditch the crtc->primary->state->fb check as soon as we can
604 	 * properly reconstruct framebuffers.
605 	 *
606 	 * FIXME: The intel_crtc->active here should be switched to
607 	 * crtc->state->active once we have proper CRTC states wired up
608 	 * for atomic.
609 	 */
610 	return crtc && crtc->active && crtc->base.primary->state->fb &&
611 		crtc->config->hw.adjusted_mode.crtc_clock;
612 }
613 
614 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
615 {
616 	struct intel_crtc *crtc, *enabled = NULL;
617 
618 	for_each_intel_crtc(&dev_priv->drm, crtc) {
619 		if (intel_crtc_active(crtc)) {
620 			if (enabled)
621 				return NULL;
622 			enabled = crtc;
623 		}
624 	}
625 
626 	return enabled;
627 }
628 
629 static void pnv_update_wm(struct drm_i915_private *dev_priv)
630 {
631 	struct intel_crtc *crtc;
632 	const struct cxsr_latency *latency;
633 	u32 reg;
634 	unsigned int wm;
635 
636 	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
637 					 dev_priv->is_ddr3,
638 					 dev_priv->fsb_freq,
639 					 dev_priv->mem_freq);
640 	if (!latency) {
641 		drm_dbg_kms(&dev_priv->drm,
642 			    "Unknown FSB/MEM found, disable CxSR\n");
643 		intel_set_memory_cxsr(dev_priv, false);
644 		return;
645 	}
646 
647 	crtc = single_enabled_crtc(dev_priv);
648 	if (crtc) {
649 		const struct drm_framebuffer *fb =
650 			crtc->base.primary->state->fb;
651 		int pixel_rate = crtc->config->pixel_rate;
652 		int cpp = fb->format->cpp[0];
653 
654 		/* Display SR */
655 		wm = intel_calculate_wm(pixel_rate, &pnv_display_wm,
656 					pnv_display_wm.fifo_size,
657 					cpp, latency->display_sr);
658 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
659 		reg &= ~DSPFW_SR_MASK;
660 		reg |= FW_WM(wm, SR);
661 		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
662 		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
663 
664 		/* cursor SR */
665 		wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm,
666 					pnv_display_wm.fifo_size,
667 					4, latency->cursor_sr);
668 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_CURSOR_SR_MASK,
669 				 FW_WM(wm, CURSOR_SR));
670 
671 		/* Display HPLL off SR */
672 		wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm,
673 					pnv_display_hplloff_wm.fifo_size,
674 					cpp, latency->display_hpll_disable);
675 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR));
676 
677 		/* cursor HPLL off SR */
678 		wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm,
679 					pnv_display_hplloff_wm.fifo_size,
680 					4, latency->cursor_hpll_disable);
681 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
682 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
683 		reg |= FW_WM(wm, HPLL_CURSOR);
684 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
685 		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
686 
687 		intel_set_memory_cxsr(dev_priv, true);
688 	} else {
689 		intel_set_memory_cxsr(dev_priv, false);
690 	}
691 }
692 
693 /*
694  * Documentation says:
695  * "If the line size is small, the TLB fetches can get in the way of the
696  *  data fetches, causing some lag in the pixel data return which is not
697  *  accounted for in the above formulas. The following adjustment only
698  *  needs to be applied if eight whole lines fit in the buffer at once.
699  *  The WM is adjusted upwards by the difference between the FIFO size
700  *  and the size of 8 whole lines. This adjustment is always performed
701  *  in the actual pixel depth regardless of whether FBC is enabled or not."
702  */
703 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
704 {
705 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
706 
707 	return max(0, tlb_miss);
708 }
709 
710 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
711 				const struct g4x_wm_values *wm)
712 {
713 	enum pipe pipe;
714 
715 	for_each_pipe(dev_priv, pipe)
716 		trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
717 
718 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
719 			   FW_WM(wm->sr.plane, SR) |
720 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
721 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
722 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
723 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
724 			   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
725 			   FW_WM(wm->sr.fbc, FBC_SR) |
726 			   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
727 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
728 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
729 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
730 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
731 			   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
732 			   FW_WM(wm->sr.cursor, CURSOR_SR) |
733 			   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
734 			   FW_WM(wm->hpll.plane, HPLL_SR));
735 
736 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
737 }
738 
739 #define FW_WM_VLV(value, plane) \
740 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
741 
742 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
743 				const struct vlv_wm_values *wm)
744 {
745 	enum pipe pipe;
746 
747 	for_each_pipe(dev_priv, pipe) {
748 		trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
749 
750 		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
751 				   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
752 				   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
753 				   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
754 				   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
755 	}
756 
757 	/*
758 	 * Zero the (unused) WM1 watermarks, and also clear all the
759 	 * high order bits so that there are no out of bounds values
760 	 * present in the registers during the reprogramming.
761 	 */
762 	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
763 	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
764 	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
765 	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
766 	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
767 
768 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
769 			   FW_WM(wm->sr.plane, SR) |
770 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
771 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
772 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
773 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
774 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
775 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
776 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
777 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
778 			   FW_WM(wm->sr.cursor, CURSOR_SR));
779 
780 	if (IS_CHERRYVIEW(dev_priv)) {
781 		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
782 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
783 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
784 		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
785 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
786 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
787 		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
788 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
789 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
790 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
791 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
792 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
793 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
794 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
795 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
796 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
797 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
798 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
799 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
800 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
801 	} else {
802 		intel_uncore_write(&dev_priv->uncore, DSPFW7,
803 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
804 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
805 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
806 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
807 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
808 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
809 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
810 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
811 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
812 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
813 	}
814 
815 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
816 }
817 
818 #undef FW_WM_VLV
819 
820 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
821 {
822 	/* all latencies in usec */
823 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
824 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
825 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
826 
827 	dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1;
828 }
829 
830 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
831 {
832 	/*
833 	 * DSPCNTR[13] supposedly controls whether the
834 	 * primary plane can use the FIFO space otherwise
835 	 * reserved for the sprite plane. It's not 100% clear
836 	 * what the actual FIFO size is, but it looks like we
837 	 * can happily set both primary and sprite watermarks
838 	 * up to 127 cachelines. So that would seem to mean
839 	 * that either DSPCNTR[13] doesn't do anything, or that
840 	 * the total FIFO is >= 256 cachelines in size. Either
841 	 * way, we don't seem to have to worry about this
842 	 * repartitioning as the maximum watermark value the
843 	 * register can hold for each plane is lower than the
844 	 * minimum FIFO size.
845 	 */
846 	switch (plane_id) {
847 	case PLANE_CURSOR:
848 		return 63;
849 	case PLANE_PRIMARY:
850 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
851 	case PLANE_SPRITE0:
852 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
853 	default:
854 		MISSING_CASE(plane_id);
855 		return 0;
856 	}
857 }
858 
859 static int g4x_fbc_fifo_size(int level)
860 {
861 	switch (level) {
862 	case G4X_WM_LEVEL_SR:
863 		return 7;
864 	case G4X_WM_LEVEL_HPLL:
865 		return 15;
866 	default:
867 		MISSING_CASE(level);
868 		return 0;
869 	}
870 }
871 
872 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
873 			  const struct intel_plane_state *plane_state,
874 			  int level)
875 {
876 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
877 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
878 	const struct drm_display_mode *pipe_mode =
879 		&crtc_state->hw.pipe_mode;
880 	unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10;
881 	unsigned int pixel_rate, htotal, cpp, width, wm;
882 
883 	if (latency == 0)
884 		return USHRT_MAX;
885 
886 	if (!intel_wm_plane_visible(crtc_state, plane_state))
887 		return 0;
888 
889 	cpp = plane_state->hw.fb->format->cpp[0];
890 
891 	/*
892 	 * WaUse32BppForSRWM:ctg,elk
893 	 *
894 	 * The spec fails to list this restriction for the
895 	 * HPLL watermark, which seems a little strange.
896 	 * Let's use 32bpp for the HPLL watermark as well.
897 	 */
898 	if (plane->id == PLANE_PRIMARY &&
899 	    level != G4X_WM_LEVEL_NORMAL)
900 		cpp = max(cpp, 4u);
901 
902 	pixel_rate = crtc_state->pixel_rate;
903 	htotal = pipe_mode->crtc_htotal;
904 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
905 
906 	if (plane->id == PLANE_CURSOR) {
907 		wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
908 	} else if (plane->id == PLANE_PRIMARY &&
909 		   level == G4X_WM_LEVEL_NORMAL) {
910 		wm = intel_wm_method1(pixel_rate, cpp, latency);
911 	} else {
912 		unsigned int small, large;
913 
914 		small = intel_wm_method1(pixel_rate, cpp, latency);
915 		large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
916 
917 		wm = min(small, large);
918 	}
919 
920 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
921 			      width, cpp);
922 
923 	wm = DIV_ROUND_UP(wm, 64) + 2;
924 
925 	return min_t(unsigned int, wm, USHRT_MAX);
926 }
927 
928 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
929 				 int level, enum plane_id plane_id, u16 value)
930 {
931 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
932 	bool dirty = false;
933 
934 	for (; level < dev_priv->display.wm.num_levels; level++) {
935 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
936 
937 		dirty |= raw->plane[plane_id] != value;
938 		raw->plane[plane_id] = value;
939 	}
940 
941 	return dirty;
942 }
943 
944 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
945 			       int level, u16 value)
946 {
947 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
948 	bool dirty = false;
949 
950 	/* NORMAL level doesn't have an FBC watermark */
951 	level = max(level, G4X_WM_LEVEL_SR);
952 
953 	for (; level < dev_priv->display.wm.num_levels; level++) {
954 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
955 
956 		dirty |= raw->fbc != value;
957 		raw->fbc = value;
958 	}
959 
960 	return dirty;
961 }
962 
963 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
964 			      const struct intel_plane_state *plane_state,
965 			      u32 pri_val);
966 
967 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
968 				     const struct intel_plane_state *plane_state)
969 {
970 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
971 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
972 	enum plane_id plane_id = plane->id;
973 	bool dirty = false;
974 	int level;
975 
976 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
977 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
978 		if (plane_id == PLANE_PRIMARY)
979 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
980 		goto out;
981 	}
982 
983 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
984 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
985 		int wm, max_wm;
986 
987 		wm = g4x_compute_wm(crtc_state, plane_state, level);
988 		max_wm = g4x_plane_fifo_size(plane_id, level);
989 
990 		if (wm > max_wm)
991 			break;
992 
993 		dirty |= raw->plane[plane_id] != wm;
994 		raw->plane[plane_id] = wm;
995 
996 		if (plane_id != PLANE_PRIMARY ||
997 		    level == G4X_WM_LEVEL_NORMAL)
998 			continue;
999 
1000 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1001 					raw->plane[plane_id]);
1002 		max_wm = g4x_fbc_fifo_size(level);
1003 
1004 		/*
1005 		 * FBC wm is not mandatory as we
1006 		 * can always just disable its use.
1007 		 */
1008 		if (wm > max_wm)
1009 			wm = USHRT_MAX;
1010 
1011 		dirty |= raw->fbc != wm;
1012 		raw->fbc = wm;
1013 	}
1014 
1015 	/* mark watermarks as invalid */
1016 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1017 
1018 	if (plane_id == PLANE_PRIMARY)
1019 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1020 
1021  out:
1022 	if (dirty) {
1023 		drm_dbg_kms(&dev_priv->drm,
1024 			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1025 			    plane->base.name,
1026 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1027 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1028 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1029 
1030 		if (plane_id == PLANE_PRIMARY)
1031 			drm_dbg_kms(&dev_priv->drm,
1032 				    "FBC watermarks: SR=%d, HPLL=%d\n",
1033 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1034 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1035 	}
1036 
1037 	return dirty;
1038 }
1039 
1040 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1041 				      enum plane_id plane_id, int level)
1042 {
1043 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1044 
1045 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1046 }
1047 
1048 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1049 				     int level)
1050 {
1051 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1052 
1053 	if (level >= dev_priv->display.wm.num_levels)
1054 		return false;
1055 
1056 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1057 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1058 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1059 }
1060 
1061 /* mark all levels starting from 'level' as invalid */
1062 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1063 			       struct g4x_wm_state *wm_state, int level)
1064 {
1065 	if (level <= G4X_WM_LEVEL_NORMAL) {
1066 		enum plane_id plane_id;
1067 
1068 		for_each_plane_id_on_crtc(crtc, plane_id)
1069 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1070 	}
1071 
1072 	if (level <= G4X_WM_LEVEL_SR) {
1073 		wm_state->cxsr = false;
1074 		wm_state->sr.cursor = USHRT_MAX;
1075 		wm_state->sr.plane = USHRT_MAX;
1076 		wm_state->sr.fbc = USHRT_MAX;
1077 	}
1078 
1079 	if (level <= G4X_WM_LEVEL_HPLL) {
1080 		wm_state->hpll_en = false;
1081 		wm_state->hpll.cursor = USHRT_MAX;
1082 		wm_state->hpll.plane = USHRT_MAX;
1083 		wm_state->hpll.fbc = USHRT_MAX;
1084 	}
1085 }
1086 
1087 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1088 			       int level)
1089 {
1090 	if (level < G4X_WM_LEVEL_SR)
1091 		return false;
1092 
1093 	if (level >= G4X_WM_LEVEL_SR &&
1094 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1095 		return false;
1096 
1097 	if (level >= G4X_WM_LEVEL_HPLL &&
1098 	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1099 		return false;
1100 
1101 	return true;
1102 }
1103 
1104 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1105 {
1106 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1107 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1108 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1109 	const struct g4x_pipe_wm *raw;
1110 	enum plane_id plane_id;
1111 	int level;
1112 
1113 	level = G4X_WM_LEVEL_NORMAL;
1114 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1115 		goto out;
1116 
1117 	raw = &crtc_state->wm.g4x.raw[level];
1118 	for_each_plane_id_on_crtc(crtc, plane_id)
1119 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1120 
1121 	level = G4X_WM_LEVEL_SR;
1122 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1123 		goto out;
1124 
1125 	raw = &crtc_state->wm.g4x.raw[level];
1126 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1127 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1128 	wm_state->sr.fbc = raw->fbc;
1129 
1130 	wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1131 
1132 	level = G4X_WM_LEVEL_HPLL;
1133 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1134 		goto out;
1135 
1136 	raw = &crtc_state->wm.g4x.raw[level];
1137 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1138 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1139 	wm_state->hpll.fbc = raw->fbc;
1140 
1141 	wm_state->hpll_en = wm_state->cxsr;
1142 
1143 	level++;
1144 
1145  out:
1146 	if (level == G4X_WM_LEVEL_NORMAL)
1147 		return -EINVAL;
1148 
1149 	/* invalidate the higher levels */
1150 	g4x_invalidate_wms(crtc, wm_state, level);
1151 
1152 	/*
1153 	 * Determine if the FBC watermark(s) can be used. IF
1154 	 * this isn't the case we prefer to disable the FBC
1155 	 * watermark(s) rather than disable the SR/HPLL
1156 	 * level(s) entirely. 'level-1' is the highest valid
1157 	 * level here.
1158 	 */
1159 	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1160 
1161 	return 0;
1162 }
1163 
1164 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1165 			       struct intel_crtc *crtc)
1166 {
1167 	struct intel_crtc_state *crtc_state =
1168 		intel_atomic_get_new_crtc_state(state, crtc);
1169 	const struct intel_plane_state *old_plane_state;
1170 	const struct intel_plane_state *new_plane_state;
1171 	struct intel_plane *plane;
1172 	unsigned int dirty = 0;
1173 	int i;
1174 
1175 	for_each_oldnew_intel_plane_in_state(state, plane,
1176 					     old_plane_state,
1177 					     new_plane_state, i) {
1178 		if (new_plane_state->hw.crtc != &crtc->base &&
1179 		    old_plane_state->hw.crtc != &crtc->base)
1180 			continue;
1181 
1182 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1183 			dirty |= BIT(plane->id);
1184 	}
1185 
1186 	if (!dirty)
1187 		return 0;
1188 
1189 	return _g4x_compute_pipe_wm(crtc_state);
1190 }
1191 
1192 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1193 				       struct intel_crtc *crtc)
1194 {
1195 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1196 	struct intel_crtc_state *new_crtc_state =
1197 		intel_atomic_get_new_crtc_state(state, crtc);
1198 	const struct intel_crtc_state *old_crtc_state =
1199 		intel_atomic_get_old_crtc_state(state, crtc);
1200 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1201 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1202 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1203 	enum plane_id plane_id;
1204 
1205 	if (!new_crtc_state->hw.active ||
1206 	    intel_crtc_needs_modeset(new_crtc_state)) {
1207 		*intermediate = *optimal;
1208 
1209 		intermediate->cxsr = false;
1210 		intermediate->hpll_en = false;
1211 		goto out;
1212 	}
1213 
1214 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1215 		!new_crtc_state->disable_cxsr;
1216 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1217 		!new_crtc_state->disable_cxsr;
1218 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1219 
1220 	for_each_plane_id_on_crtc(crtc, plane_id) {
1221 		intermediate->wm.plane[plane_id] =
1222 			max(optimal->wm.plane[plane_id],
1223 			    active->wm.plane[plane_id]);
1224 
1225 		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1226 			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1227 	}
1228 
1229 	intermediate->sr.plane = max(optimal->sr.plane,
1230 				     active->sr.plane);
1231 	intermediate->sr.cursor = max(optimal->sr.cursor,
1232 				      active->sr.cursor);
1233 	intermediate->sr.fbc = max(optimal->sr.fbc,
1234 				   active->sr.fbc);
1235 
1236 	intermediate->hpll.plane = max(optimal->hpll.plane,
1237 				       active->hpll.plane);
1238 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1239 					active->hpll.cursor);
1240 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1241 				     active->hpll.fbc);
1242 
1243 	drm_WARN_ON(&dev_priv->drm,
1244 		    (intermediate->sr.plane >
1245 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1246 		     intermediate->sr.cursor >
1247 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1248 		    intermediate->cxsr);
1249 	drm_WARN_ON(&dev_priv->drm,
1250 		    (intermediate->sr.plane >
1251 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1252 		     intermediate->sr.cursor >
1253 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1254 		    intermediate->hpll_en);
1255 
1256 	drm_WARN_ON(&dev_priv->drm,
1257 		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1258 		    intermediate->fbc_en && intermediate->cxsr);
1259 	drm_WARN_ON(&dev_priv->drm,
1260 		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1261 		    intermediate->fbc_en && intermediate->hpll_en);
1262 
1263 out:
1264 	/*
1265 	 * If our intermediate WM are identical to the final WM, then we can
1266 	 * omit the post-vblank programming; only update if it's different.
1267 	 */
1268 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1269 		new_crtc_state->wm.need_postvbl_update = true;
1270 
1271 	return 0;
1272 }
1273 
1274 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1275 			 struct g4x_wm_values *wm)
1276 {
1277 	struct intel_crtc *crtc;
1278 	int num_active_pipes = 0;
1279 
1280 	wm->cxsr = true;
1281 	wm->hpll_en = true;
1282 	wm->fbc_en = true;
1283 
1284 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1285 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1286 
1287 		if (!crtc->active)
1288 			continue;
1289 
1290 		if (!wm_state->cxsr)
1291 			wm->cxsr = false;
1292 		if (!wm_state->hpll_en)
1293 			wm->hpll_en = false;
1294 		if (!wm_state->fbc_en)
1295 			wm->fbc_en = false;
1296 
1297 		num_active_pipes++;
1298 	}
1299 
1300 	if (num_active_pipes != 1) {
1301 		wm->cxsr = false;
1302 		wm->hpll_en = false;
1303 		wm->fbc_en = false;
1304 	}
1305 
1306 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1307 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1308 		enum pipe pipe = crtc->pipe;
1309 
1310 		wm->pipe[pipe] = wm_state->wm;
1311 		if (crtc->active && wm->cxsr)
1312 			wm->sr = wm_state->sr;
1313 		if (crtc->active && wm->hpll_en)
1314 			wm->hpll = wm_state->hpll;
1315 	}
1316 }
1317 
1318 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1319 {
1320 	struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x;
1321 	struct g4x_wm_values new_wm = {};
1322 
1323 	g4x_merge_wm(dev_priv, &new_wm);
1324 
1325 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1326 		return;
1327 
1328 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1329 		_intel_set_memory_cxsr(dev_priv, false);
1330 
1331 	g4x_write_wm_values(dev_priv, &new_wm);
1332 
1333 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1334 		_intel_set_memory_cxsr(dev_priv, true);
1335 
1336 	*old_wm = new_wm;
1337 }
1338 
1339 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1340 				   struct intel_crtc *crtc)
1341 {
1342 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1343 	const struct intel_crtc_state *crtc_state =
1344 		intel_atomic_get_new_crtc_state(state, crtc);
1345 
1346 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1347 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1348 	g4x_program_watermarks(dev_priv);
1349 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1350 }
1351 
1352 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1353 				    struct intel_crtc *crtc)
1354 {
1355 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1356 	const struct intel_crtc_state *crtc_state =
1357 		intel_atomic_get_new_crtc_state(state, crtc);
1358 
1359 	if (!crtc_state->wm.need_postvbl_update)
1360 		return;
1361 
1362 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1363 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1364 	g4x_program_watermarks(dev_priv);
1365 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1366 }
1367 
1368 /* latency must be in 0.1us units. */
1369 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1370 				   unsigned int htotal,
1371 				   unsigned int width,
1372 				   unsigned int cpp,
1373 				   unsigned int latency)
1374 {
1375 	unsigned int ret;
1376 
1377 	ret = intel_wm_method2(pixel_rate, htotal,
1378 			       width, cpp, latency);
1379 	ret = DIV_ROUND_UP(ret, 64);
1380 
1381 	return ret;
1382 }
1383 
1384 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1385 {
1386 	/* all latencies in usec */
1387 	dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1388 
1389 	dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1;
1390 
1391 	if (IS_CHERRYVIEW(dev_priv)) {
1392 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1393 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1394 
1395 		dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1;
1396 	}
1397 }
1398 
1399 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1400 				const struct intel_plane_state *plane_state,
1401 				int level)
1402 {
1403 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1404 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1405 	const struct drm_display_mode *pipe_mode =
1406 		&crtc_state->hw.pipe_mode;
1407 	unsigned int pixel_rate, htotal, cpp, width, wm;
1408 
1409 	if (dev_priv->display.wm.pri_latency[level] == 0)
1410 		return USHRT_MAX;
1411 
1412 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1413 		return 0;
1414 
1415 	cpp = plane_state->hw.fb->format->cpp[0];
1416 	pixel_rate = crtc_state->pixel_rate;
1417 	htotal = pipe_mode->crtc_htotal;
1418 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1419 
1420 	if (plane->id == PLANE_CURSOR) {
1421 		/*
1422 		 * FIXME the formula gives values that are
1423 		 * too big for the cursor FIFO, and hence we
1424 		 * would never be able to use cursors. For
1425 		 * now just hardcode the watermark.
1426 		 */
1427 		wm = 63;
1428 	} else {
1429 		wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1430 				    dev_priv->display.wm.pri_latency[level] * 10);
1431 	}
1432 
1433 	return min_t(unsigned int, wm, USHRT_MAX);
1434 }
1435 
1436 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1437 {
1438 	return (active_planes & (BIT(PLANE_SPRITE0) |
1439 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1440 }
1441 
1442 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1443 {
1444 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1445 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1446 	const struct g4x_pipe_wm *raw =
1447 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1448 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1449 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1450 	int num_active_planes = hweight8(active_planes);
1451 	const int fifo_size = 511;
1452 	int fifo_extra, fifo_left = fifo_size;
1453 	int sprite0_fifo_extra = 0;
1454 	unsigned int total_rate;
1455 	enum plane_id plane_id;
1456 
1457 	/*
1458 	 * When enabling sprite0 after sprite1 has already been enabled
1459 	 * we tend to get an underrun unless sprite0 already has some
1460 	 * FIFO space allcoated. Hence we always allocate at least one
1461 	 * cacheline for sprite0 whenever sprite1 is enabled.
1462 	 *
1463 	 * All other plane enable sequences appear immune to this problem.
1464 	 */
1465 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1466 		sprite0_fifo_extra = 1;
1467 
1468 	total_rate = raw->plane[PLANE_PRIMARY] +
1469 		raw->plane[PLANE_SPRITE0] +
1470 		raw->plane[PLANE_SPRITE1] +
1471 		sprite0_fifo_extra;
1472 
1473 	if (total_rate > fifo_size)
1474 		return -EINVAL;
1475 
1476 	if (total_rate == 0)
1477 		total_rate = 1;
1478 
1479 	for_each_plane_id_on_crtc(crtc, plane_id) {
1480 		unsigned int rate;
1481 
1482 		if ((active_planes & BIT(plane_id)) == 0) {
1483 			fifo_state->plane[plane_id] = 0;
1484 			continue;
1485 		}
1486 
1487 		rate = raw->plane[plane_id];
1488 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1489 		fifo_left -= fifo_state->plane[plane_id];
1490 	}
1491 
1492 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1493 	fifo_left -= sprite0_fifo_extra;
1494 
1495 	fifo_state->plane[PLANE_CURSOR] = 63;
1496 
1497 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1498 
1499 	/* spread the remainder evenly */
1500 	for_each_plane_id_on_crtc(crtc, plane_id) {
1501 		int plane_extra;
1502 
1503 		if (fifo_left == 0)
1504 			break;
1505 
1506 		if ((active_planes & BIT(plane_id)) == 0)
1507 			continue;
1508 
1509 		plane_extra = min(fifo_extra, fifo_left);
1510 		fifo_state->plane[plane_id] += plane_extra;
1511 		fifo_left -= plane_extra;
1512 	}
1513 
1514 	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1515 
1516 	/* give it all to the first plane if none are active */
1517 	if (active_planes == 0) {
1518 		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1519 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /* mark all levels starting from 'level' as invalid */
1526 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1527 			       struct vlv_wm_state *wm_state, int level)
1528 {
1529 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1530 
1531 	for (; level < dev_priv->display.wm.num_levels; level++) {
1532 		enum plane_id plane_id;
1533 
1534 		for_each_plane_id_on_crtc(crtc, plane_id)
1535 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1536 
1537 		wm_state->sr[level].cursor = USHRT_MAX;
1538 		wm_state->sr[level].plane = USHRT_MAX;
1539 	}
1540 }
1541 
1542 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1543 {
1544 	if (wm > fifo_size)
1545 		return USHRT_MAX;
1546 	else
1547 		return fifo_size - wm;
1548 }
1549 
1550 /*
1551  * Starting from 'level' set all higher
1552  * levels to 'value' in the "raw" watermarks.
1553  */
1554 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1555 				 int level, enum plane_id plane_id, u16 value)
1556 {
1557 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1558 	bool dirty = false;
1559 
1560 	for (; level < dev_priv->display.wm.num_levels; level++) {
1561 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1562 
1563 		dirty |= raw->plane[plane_id] != value;
1564 		raw->plane[plane_id] = value;
1565 	}
1566 
1567 	return dirty;
1568 }
1569 
1570 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1571 				     const struct intel_plane_state *plane_state)
1572 {
1573 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1574 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1575 	enum plane_id plane_id = plane->id;
1576 	int level;
1577 	bool dirty = false;
1578 
1579 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1580 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1581 		goto out;
1582 	}
1583 
1584 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1585 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1586 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1587 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1588 
1589 		if (wm > max_wm)
1590 			break;
1591 
1592 		dirty |= raw->plane[plane_id] != wm;
1593 		raw->plane[plane_id] = wm;
1594 	}
1595 
1596 	/* mark all higher levels as invalid */
1597 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1598 
1599 out:
1600 	if (dirty)
1601 		drm_dbg_kms(&dev_priv->drm,
1602 			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1603 			    plane->base.name,
1604 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1605 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1606 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1607 
1608 	return dirty;
1609 }
1610 
1611 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1612 				      enum plane_id plane_id, int level)
1613 {
1614 	const struct g4x_pipe_wm *raw =
1615 		&crtc_state->wm.vlv.raw[level];
1616 	const struct vlv_fifo_state *fifo_state =
1617 		&crtc_state->wm.vlv.fifo_state;
1618 
1619 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1620 }
1621 
1622 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1623 {
1624 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1625 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1626 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1627 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1628 }
1629 
1630 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1631 {
1632 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1633 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1634 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1635 	const struct vlv_fifo_state *fifo_state =
1636 		&crtc_state->wm.vlv.fifo_state;
1637 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1638 	int num_active_planes = hweight8(active_planes);
1639 	enum plane_id plane_id;
1640 	int level;
1641 
1642 	/* initially allow all levels */
1643 	wm_state->num_levels = dev_priv->display.wm.num_levels;
1644 	/*
1645 	 * Note that enabling cxsr with no primary/sprite planes
1646 	 * enabled can wedge the pipe. Hence we only allow cxsr
1647 	 * with exactly one enabled primary/sprite plane.
1648 	 */
1649 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1650 
1651 	for (level = 0; level < wm_state->num_levels; level++) {
1652 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1653 		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1654 
1655 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1656 			break;
1657 
1658 		for_each_plane_id_on_crtc(crtc, plane_id) {
1659 			wm_state->wm[level].plane[plane_id] =
1660 				vlv_invert_wm_value(raw->plane[plane_id],
1661 						    fifo_state->plane[plane_id]);
1662 		}
1663 
1664 		wm_state->sr[level].plane =
1665 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1666 						 raw->plane[PLANE_SPRITE0],
1667 						 raw->plane[PLANE_SPRITE1]),
1668 					    sr_fifo_size);
1669 
1670 		wm_state->sr[level].cursor =
1671 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1672 					    63);
1673 	}
1674 
1675 	if (level == 0)
1676 		return -EINVAL;
1677 
1678 	/* limit to only levels we can actually handle */
1679 	wm_state->num_levels = level;
1680 
1681 	/* invalidate the higher levels */
1682 	vlv_invalidate_wms(crtc, wm_state, level);
1683 
1684 	return 0;
1685 }
1686 
1687 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1688 			       struct intel_crtc *crtc)
1689 {
1690 	struct intel_crtc_state *crtc_state =
1691 		intel_atomic_get_new_crtc_state(state, crtc);
1692 	const struct intel_plane_state *old_plane_state;
1693 	const struct intel_plane_state *new_plane_state;
1694 	struct intel_plane *plane;
1695 	unsigned int dirty = 0;
1696 	int i;
1697 
1698 	for_each_oldnew_intel_plane_in_state(state, plane,
1699 					     old_plane_state,
1700 					     new_plane_state, i) {
1701 		if (new_plane_state->hw.crtc != &crtc->base &&
1702 		    old_plane_state->hw.crtc != &crtc->base)
1703 			continue;
1704 
1705 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1706 			dirty |= BIT(plane->id);
1707 	}
1708 
1709 	/*
1710 	 * DSPARB registers may have been reset due to the
1711 	 * power well being turned off. Make sure we restore
1712 	 * them to a consistent state even if no primary/sprite
1713 	 * planes are initially active. We also force a FIFO
1714 	 * recomputation so that we are sure to sanitize the
1715 	 * FIFO setting we took over from the BIOS even if there
1716 	 * are no active planes on the crtc.
1717 	 */
1718 	if (intel_crtc_needs_modeset(crtc_state))
1719 		dirty = ~0;
1720 
1721 	if (!dirty)
1722 		return 0;
1723 
1724 	/* cursor changes don't warrant a FIFO recompute */
1725 	if (dirty & ~BIT(PLANE_CURSOR)) {
1726 		const struct intel_crtc_state *old_crtc_state =
1727 			intel_atomic_get_old_crtc_state(state, crtc);
1728 		const struct vlv_fifo_state *old_fifo_state =
1729 			&old_crtc_state->wm.vlv.fifo_state;
1730 		const struct vlv_fifo_state *new_fifo_state =
1731 			&crtc_state->wm.vlv.fifo_state;
1732 		int ret;
1733 
1734 		ret = vlv_compute_fifo(crtc_state);
1735 		if (ret)
1736 			return ret;
1737 
1738 		if (intel_crtc_needs_modeset(crtc_state) ||
1739 		    memcmp(old_fifo_state, new_fifo_state,
1740 			   sizeof(*new_fifo_state)) != 0)
1741 			crtc_state->fifo_changed = true;
1742 	}
1743 
1744 	return _vlv_compute_pipe_wm(crtc_state);
1745 }
1746 
1747 #define VLV_FIFO(plane, value) \
1748 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1749 
1750 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1751 				   struct intel_crtc *crtc)
1752 {
1753 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1754 	struct intel_uncore *uncore = &dev_priv->uncore;
1755 	const struct intel_crtc_state *crtc_state =
1756 		intel_atomic_get_new_crtc_state(state, crtc);
1757 	const struct vlv_fifo_state *fifo_state =
1758 		&crtc_state->wm.vlv.fifo_state;
1759 	int sprite0_start, sprite1_start, fifo_size;
1760 	u32 dsparb, dsparb2, dsparb3;
1761 
1762 	if (!crtc_state->fifo_changed)
1763 		return;
1764 
1765 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1766 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1767 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1768 
1769 	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1770 	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1771 
1772 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1773 
1774 	/*
1775 	 * uncore.lock serves a double purpose here. It allows us to
1776 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1777 	 * it protects the DSPARB registers from getting clobbered by
1778 	 * parallel updates from multiple pipes.
1779 	 *
1780 	 * intel_pipe_update_start() has already disabled interrupts
1781 	 * for us, so a plain spin_lock() is sufficient here.
1782 	 */
1783 	spin_lock(&uncore->lock);
1784 
1785 	switch (crtc->pipe) {
1786 	case PIPE_A:
1787 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
1788 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1789 
1790 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1791 			    VLV_FIFO(SPRITEB, 0xff));
1792 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1793 			   VLV_FIFO(SPRITEB, sprite1_start));
1794 
1795 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1796 			     VLV_FIFO(SPRITEB_HI, 0x1));
1797 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1798 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1799 
1800 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
1801 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1802 		break;
1803 	case PIPE_B:
1804 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
1805 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1806 
1807 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1808 			    VLV_FIFO(SPRITED, 0xff));
1809 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1810 			   VLV_FIFO(SPRITED, sprite1_start));
1811 
1812 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1813 			     VLV_FIFO(SPRITED_HI, 0xff));
1814 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1815 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1816 
1817 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
1818 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1819 		break;
1820 	case PIPE_C:
1821 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
1822 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1823 
1824 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1825 			     VLV_FIFO(SPRITEF, 0xff));
1826 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1827 			    VLV_FIFO(SPRITEF, sprite1_start));
1828 
1829 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1830 			     VLV_FIFO(SPRITEF_HI, 0xff));
1831 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1832 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1833 
1834 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
1835 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1836 		break;
1837 	default:
1838 		break;
1839 	}
1840 
1841 	intel_uncore_posting_read_fw(uncore, DSPARB);
1842 
1843 	spin_unlock(&uncore->lock);
1844 }
1845 
1846 #undef VLV_FIFO
1847 
1848 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
1849 				       struct intel_crtc *crtc)
1850 {
1851 	struct intel_crtc_state *new_crtc_state =
1852 		intel_atomic_get_new_crtc_state(state, crtc);
1853 	const struct intel_crtc_state *old_crtc_state =
1854 		intel_atomic_get_old_crtc_state(state, crtc);
1855 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
1856 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
1857 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
1858 	int level;
1859 
1860 	if (!new_crtc_state->hw.active ||
1861 	    intel_crtc_needs_modeset(new_crtc_state)) {
1862 		*intermediate = *optimal;
1863 
1864 		intermediate->cxsr = false;
1865 		goto out;
1866 	}
1867 
1868 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1869 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1870 		!new_crtc_state->disable_cxsr;
1871 
1872 	for (level = 0; level < intermediate->num_levels; level++) {
1873 		enum plane_id plane_id;
1874 
1875 		for_each_plane_id_on_crtc(crtc, plane_id) {
1876 			intermediate->wm[level].plane[plane_id] =
1877 				min(optimal->wm[level].plane[plane_id],
1878 				    active->wm[level].plane[plane_id]);
1879 		}
1880 
1881 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
1882 						    active->sr[level].plane);
1883 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1884 						     active->sr[level].cursor);
1885 	}
1886 
1887 	vlv_invalidate_wms(crtc, intermediate, level);
1888 
1889 out:
1890 	/*
1891 	 * If our intermediate WM are identical to the final WM, then we can
1892 	 * omit the post-vblank programming; only update if it's different.
1893 	 */
1894 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1895 		new_crtc_state->wm.need_postvbl_update = true;
1896 
1897 	return 0;
1898 }
1899 
1900 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1901 			 struct vlv_wm_values *wm)
1902 {
1903 	struct intel_crtc *crtc;
1904 	int num_active_pipes = 0;
1905 
1906 	wm->level = dev_priv->display.wm.num_levels - 1;
1907 	wm->cxsr = true;
1908 
1909 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1910 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1911 
1912 		if (!crtc->active)
1913 			continue;
1914 
1915 		if (!wm_state->cxsr)
1916 			wm->cxsr = false;
1917 
1918 		num_active_pipes++;
1919 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1920 	}
1921 
1922 	if (num_active_pipes != 1)
1923 		wm->cxsr = false;
1924 
1925 	if (num_active_pipes > 1)
1926 		wm->level = VLV_WM_LEVEL_PM2;
1927 
1928 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1929 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1930 		enum pipe pipe = crtc->pipe;
1931 
1932 		wm->pipe[pipe] = wm_state->wm[wm->level];
1933 		if (crtc->active && wm->cxsr)
1934 			wm->sr = wm_state->sr[wm->level];
1935 
1936 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1937 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1938 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1939 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1940 	}
1941 }
1942 
1943 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1944 {
1945 	struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv;
1946 	struct vlv_wm_values new_wm = {};
1947 
1948 	vlv_merge_wm(dev_priv, &new_wm);
1949 
1950 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1951 		return;
1952 
1953 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1954 		chv_set_memory_dvfs(dev_priv, false);
1955 
1956 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1957 		chv_set_memory_pm5(dev_priv, false);
1958 
1959 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1960 		_intel_set_memory_cxsr(dev_priv, false);
1961 
1962 	vlv_write_wm_values(dev_priv, &new_wm);
1963 
1964 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1965 		_intel_set_memory_cxsr(dev_priv, true);
1966 
1967 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1968 		chv_set_memory_pm5(dev_priv, true);
1969 
1970 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1971 		chv_set_memory_dvfs(dev_priv, true);
1972 
1973 	*old_wm = new_wm;
1974 }
1975 
1976 static void vlv_initial_watermarks(struct intel_atomic_state *state,
1977 				   struct intel_crtc *crtc)
1978 {
1979 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1980 	const struct intel_crtc_state *crtc_state =
1981 		intel_atomic_get_new_crtc_state(state, crtc);
1982 
1983 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1984 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
1985 	vlv_program_watermarks(dev_priv);
1986 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1987 }
1988 
1989 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
1990 				    struct intel_crtc *crtc)
1991 {
1992 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1993 	const struct intel_crtc_state *crtc_state =
1994 		intel_atomic_get_new_crtc_state(state, crtc);
1995 
1996 	if (!crtc_state->wm.need_postvbl_update)
1997 		return;
1998 
1999 	mutex_lock(&dev_priv->display.wm.wm_mutex);
2000 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2001 	vlv_program_watermarks(dev_priv);
2002 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
2003 }
2004 
2005 static void i965_update_wm(struct drm_i915_private *dev_priv)
2006 {
2007 	struct intel_crtc *crtc;
2008 	int srwm = 1;
2009 	int cursor_sr = 16;
2010 	bool cxsr_enabled;
2011 
2012 	/* Calc sr entries for one plane configs */
2013 	crtc = single_enabled_crtc(dev_priv);
2014 	if (crtc) {
2015 		/* self-refresh has much higher latency */
2016 		static const int sr_latency_ns = 12000;
2017 		const struct drm_display_mode *pipe_mode =
2018 			&crtc->config->hw.pipe_mode;
2019 		const struct drm_framebuffer *fb =
2020 			crtc->base.primary->state->fb;
2021 		int pixel_rate = crtc->config->pixel_rate;
2022 		int htotal = pipe_mode->crtc_htotal;
2023 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2024 		int cpp = fb->format->cpp[0];
2025 		int entries;
2026 
2027 		entries = intel_wm_method2(pixel_rate, htotal,
2028 					   width, cpp, sr_latency_ns / 100);
2029 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2030 		srwm = I965_FIFO_SIZE - entries;
2031 		if (srwm < 0)
2032 			srwm = 1;
2033 		srwm &= 0x1ff;
2034 		drm_dbg_kms(&dev_priv->drm,
2035 			    "self-refresh entries: %d, wm: %d\n",
2036 			    entries, srwm);
2037 
2038 		entries = intel_wm_method2(pixel_rate, htotal,
2039 					   crtc->base.cursor->state->crtc_w, 4,
2040 					   sr_latency_ns / 100);
2041 		entries = DIV_ROUND_UP(entries,
2042 				       i965_cursor_wm_info.cacheline_size) +
2043 			i965_cursor_wm_info.guard_size;
2044 
2045 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2046 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2047 			cursor_sr = i965_cursor_wm_info.max_wm;
2048 
2049 		drm_dbg_kms(&dev_priv->drm,
2050 			    "self-refresh watermark: display plane %d "
2051 			    "cursor %d\n", srwm, cursor_sr);
2052 
2053 		cxsr_enabled = true;
2054 	} else {
2055 		cxsr_enabled = false;
2056 		/* Turn off self refresh if both pipes are enabled */
2057 		intel_set_memory_cxsr(dev_priv, false);
2058 	}
2059 
2060 	drm_dbg_kms(&dev_priv->drm,
2061 		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2062 		    srwm);
2063 
2064 	/* 965 has limitations... */
2065 	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2066 		   FW_WM(8, CURSORB) |
2067 		   FW_WM(8, PLANEB) |
2068 		   FW_WM(8, PLANEA));
2069 	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2070 		   FW_WM(8, PLANEC_OLD));
2071 	/* update cursor SR watermark */
2072 	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2073 
2074 	if (cxsr_enabled)
2075 		intel_set_memory_cxsr(dev_priv, true);
2076 }
2077 
2078 #undef FW_WM
2079 
2080 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2081 					       enum i9xx_plane_id i9xx_plane)
2082 {
2083 	struct intel_plane *plane;
2084 
2085 	for_each_intel_plane(&i915->drm, plane) {
2086 		if (plane->id == PLANE_PRIMARY &&
2087 		    plane->i9xx_plane == i9xx_plane)
2088 			return intel_crtc_for_pipe(i915, plane->pipe);
2089 	}
2090 
2091 	return NULL;
2092 }
2093 
2094 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2095 {
2096 	const struct intel_watermark_params *wm_info;
2097 	u32 fwater_lo;
2098 	u32 fwater_hi;
2099 	int cwm, srwm = 1;
2100 	int fifo_size;
2101 	int planea_wm, planeb_wm;
2102 	struct intel_crtc *crtc;
2103 
2104 	if (IS_I945GM(dev_priv))
2105 		wm_info = &i945_wm_info;
2106 	else if (DISPLAY_VER(dev_priv) != 2)
2107 		wm_info = &i915_wm_info;
2108 	else
2109 		wm_info = &i830_a_wm_info;
2110 
2111 	if (DISPLAY_VER(dev_priv) == 2)
2112 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2113 	else
2114 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2115 	crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2116 	if (intel_crtc_active(crtc)) {
2117 		const struct drm_framebuffer *fb =
2118 			crtc->base.primary->state->fb;
2119 		int cpp;
2120 
2121 		if (DISPLAY_VER(dev_priv) == 2)
2122 			cpp = 4;
2123 		else
2124 			cpp = fb->format->cpp[0];
2125 
2126 		planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2127 					       wm_info, fifo_size, cpp,
2128 					       pessimal_latency_ns);
2129 	} else {
2130 		planea_wm = fifo_size - wm_info->guard_size;
2131 		if (planea_wm > (long)wm_info->max_wm)
2132 			planea_wm = wm_info->max_wm;
2133 	}
2134 
2135 	if (DISPLAY_VER(dev_priv) == 2)
2136 		wm_info = &i830_bc_wm_info;
2137 
2138 	if (DISPLAY_VER(dev_priv) == 2)
2139 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2140 	else
2141 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2142 	crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2143 	if (intel_crtc_active(crtc)) {
2144 		const struct drm_framebuffer *fb =
2145 			crtc->base.primary->state->fb;
2146 		int cpp;
2147 
2148 		if (DISPLAY_VER(dev_priv) == 2)
2149 			cpp = 4;
2150 		else
2151 			cpp = fb->format->cpp[0];
2152 
2153 		planeb_wm = intel_calculate_wm(crtc->config->pixel_rate,
2154 					       wm_info, fifo_size, cpp,
2155 					       pessimal_latency_ns);
2156 	} else {
2157 		planeb_wm = fifo_size - wm_info->guard_size;
2158 		if (planeb_wm > (long)wm_info->max_wm)
2159 			planeb_wm = wm_info->max_wm;
2160 	}
2161 
2162 	drm_dbg_kms(&dev_priv->drm,
2163 		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2164 
2165 	crtc = single_enabled_crtc(dev_priv);
2166 	if (IS_I915GM(dev_priv) && crtc) {
2167 		struct drm_i915_gem_object *obj;
2168 
2169 		obj = intel_fb_obj(crtc->base.primary->state->fb);
2170 
2171 		/* self-refresh seems busted with untiled */
2172 		if (!i915_gem_object_is_tiled(obj))
2173 			crtc = NULL;
2174 	}
2175 
2176 	/*
2177 	 * Overlay gets an aggressive default since video jitter is bad.
2178 	 */
2179 	cwm = 2;
2180 
2181 	/* Play safe and disable self-refresh before adjusting watermarks. */
2182 	intel_set_memory_cxsr(dev_priv, false);
2183 
2184 	/* Calc sr entries for one plane configs */
2185 	if (HAS_FW_BLC(dev_priv) && crtc) {
2186 		/* self-refresh has much higher latency */
2187 		static const int sr_latency_ns = 6000;
2188 		const struct drm_display_mode *pipe_mode =
2189 			&crtc->config->hw.pipe_mode;
2190 		const struct drm_framebuffer *fb =
2191 			crtc->base.primary->state->fb;
2192 		int pixel_rate = crtc->config->pixel_rate;
2193 		int htotal = pipe_mode->crtc_htotal;
2194 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2195 		int cpp;
2196 		int entries;
2197 
2198 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2199 			cpp = 4;
2200 		else
2201 			cpp = fb->format->cpp[0];
2202 
2203 		entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2204 					   sr_latency_ns / 100);
2205 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2206 		drm_dbg_kms(&dev_priv->drm,
2207 			    "self-refresh entries: %d\n", entries);
2208 		srwm = wm_info->fifo_size - entries;
2209 		if (srwm < 0)
2210 			srwm = 1;
2211 
2212 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2213 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2214 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2215 		else
2216 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2217 	}
2218 
2219 	drm_dbg_kms(&dev_priv->drm,
2220 		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2221 		     planea_wm, planeb_wm, cwm, srwm);
2222 
2223 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2224 	fwater_hi = (cwm & 0x1f);
2225 
2226 	/* Set request length to 8 cachelines per fetch */
2227 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2228 	fwater_hi = fwater_hi | (1 << 8);
2229 
2230 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2231 	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2232 
2233 	if (crtc)
2234 		intel_set_memory_cxsr(dev_priv, true);
2235 }
2236 
2237 static void i845_update_wm(struct drm_i915_private *dev_priv)
2238 {
2239 	struct intel_crtc *crtc;
2240 	u32 fwater_lo;
2241 	int planea_wm;
2242 
2243 	crtc = single_enabled_crtc(dev_priv);
2244 	if (crtc == NULL)
2245 		return;
2246 
2247 	planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2248 				       &i845_wm_info,
2249 				       i845_get_fifo_size(dev_priv, PLANE_A),
2250 				       4, pessimal_latency_ns);
2251 	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2252 	fwater_lo |= (3<<8) | planea_wm;
2253 
2254 	drm_dbg_kms(&dev_priv->drm,
2255 		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2256 
2257 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2258 }
2259 
2260 /* latency must be in 0.1us units. */
2261 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2262 				   unsigned int cpp,
2263 				   unsigned int latency)
2264 {
2265 	unsigned int ret;
2266 
2267 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2268 	ret = DIV_ROUND_UP(ret, 64) + 2;
2269 
2270 	return ret;
2271 }
2272 
2273 /* latency must be in 0.1us units. */
2274 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2275 				   unsigned int htotal,
2276 				   unsigned int width,
2277 				   unsigned int cpp,
2278 				   unsigned int latency)
2279 {
2280 	unsigned int ret;
2281 
2282 	ret = intel_wm_method2(pixel_rate, htotal,
2283 			       width, cpp, latency);
2284 	ret = DIV_ROUND_UP(ret, 64) + 2;
2285 
2286 	return ret;
2287 }
2288 
2289 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2290 {
2291 	/*
2292 	 * Neither of these should be possible since this function shouldn't be
2293 	 * called if the CRTC is off or the plane is invisible.  But let's be
2294 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2295 	 * elsewhere in the driver.
2296 	 */
2297 	if (WARN_ON(!cpp))
2298 		return 0;
2299 	if (WARN_ON(!horiz_pixels))
2300 		return 0;
2301 
2302 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2303 }
2304 
2305 struct ilk_wm_maximums {
2306 	u16 pri;
2307 	u16 spr;
2308 	u16 cur;
2309 	u16 fbc;
2310 };
2311 
2312 /*
2313  * For both WM_PIPE and WM_LP.
2314  * mem_value must be in 0.1us units.
2315  */
2316 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2317 			      const struct intel_plane_state *plane_state,
2318 			      u32 mem_value, bool is_lp)
2319 {
2320 	u32 method1, method2;
2321 	int cpp;
2322 
2323 	if (mem_value == 0)
2324 		return U32_MAX;
2325 
2326 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2327 		return 0;
2328 
2329 	cpp = plane_state->hw.fb->format->cpp[0];
2330 
2331 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2332 
2333 	if (!is_lp)
2334 		return method1;
2335 
2336 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2337 				 crtc_state->hw.pipe_mode.crtc_htotal,
2338 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2339 				 cpp, mem_value);
2340 
2341 	return min(method1, method2);
2342 }
2343 
2344 /*
2345  * For both WM_PIPE and WM_LP.
2346  * mem_value must be in 0.1us units.
2347  */
2348 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2349 			      const struct intel_plane_state *plane_state,
2350 			      u32 mem_value)
2351 {
2352 	u32 method1, method2;
2353 	int cpp;
2354 
2355 	if (mem_value == 0)
2356 		return U32_MAX;
2357 
2358 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2359 		return 0;
2360 
2361 	cpp = plane_state->hw.fb->format->cpp[0];
2362 
2363 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2364 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2365 				 crtc_state->hw.pipe_mode.crtc_htotal,
2366 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2367 				 cpp, mem_value);
2368 	return min(method1, method2);
2369 }
2370 
2371 /*
2372  * For both WM_PIPE and WM_LP.
2373  * mem_value must be in 0.1us units.
2374  */
2375 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2376 			      const struct intel_plane_state *plane_state,
2377 			      u32 mem_value)
2378 {
2379 	int cpp;
2380 
2381 	if (mem_value == 0)
2382 		return U32_MAX;
2383 
2384 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2385 		return 0;
2386 
2387 	cpp = plane_state->hw.fb->format->cpp[0];
2388 
2389 	return ilk_wm_method2(crtc_state->pixel_rate,
2390 			      crtc_state->hw.pipe_mode.crtc_htotal,
2391 			      drm_rect_width(&plane_state->uapi.src) >> 16,
2392 			      cpp, mem_value);
2393 }
2394 
2395 /* Only for WM_LP. */
2396 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2397 			      const struct intel_plane_state *plane_state,
2398 			      u32 pri_val)
2399 {
2400 	int cpp;
2401 
2402 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2403 		return 0;
2404 
2405 	cpp = plane_state->hw.fb->format->cpp[0];
2406 
2407 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2408 			  cpp);
2409 }
2410 
2411 static unsigned int
2412 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2413 {
2414 	if (DISPLAY_VER(dev_priv) >= 8)
2415 		return 3072;
2416 	else if (DISPLAY_VER(dev_priv) >= 7)
2417 		return 768;
2418 	else
2419 		return 512;
2420 }
2421 
2422 static unsigned int
2423 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2424 		     int level, bool is_sprite)
2425 {
2426 	if (DISPLAY_VER(dev_priv) >= 8)
2427 		/* BDW primary/sprite plane watermarks */
2428 		return level == 0 ? 255 : 2047;
2429 	else if (DISPLAY_VER(dev_priv) >= 7)
2430 		/* IVB/HSW primary/sprite plane watermarks */
2431 		return level == 0 ? 127 : 1023;
2432 	else if (!is_sprite)
2433 		/* ILK/SNB primary plane watermarks */
2434 		return level == 0 ? 127 : 511;
2435 	else
2436 		/* ILK/SNB sprite plane watermarks */
2437 		return level == 0 ? 63 : 255;
2438 }
2439 
2440 static unsigned int
2441 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2442 {
2443 	if (DISPLAY_VER(dev_priv) >= 7)
2444 		return level == 0 ? 63 : 255;
2445 	else
2446 		return level == 0 ? 31 : 63;
2447 }
2448 
2449 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2450 {
2451 	if (DISPLAY_VER(dev_priv) >= 8)
2452 		return 31;
2453 	else
2454 		return 15;
2455 }
2456 
2457 /* Calculate the maximum primary/sprite plane watermark */
2458 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2459 				     int level,
2460 				     const struct intel_wm_config *config,
2461 				     enum intel_ddb_partitioning ddb_partitioning,
2462 				     bool is_sprite)
2463 {
2464 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2465 
2466 	/* if sprites aren't enabled, sprites get nothing */
2467 	if (is_sprite && !config->sprites_enabled)
2468 		return 0;
2469 
2470 	/* HSW allows LP1+ watermarks even with multiple pipes */
2471 	if (level == 0 || config->num_pipes_active > 1) {
2472 		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2473 
2474 		/*
2475 		 * For some reason the non self refresh
2476 		 * FIFO size is only half of the self
2477 		 * refresh FIFO size on ILK/SNB.
2478 		 */
2479 		if (DISPLAY_VER(dev_priv) <= 6)
2480 			fifo_size /= 2;
2481 	}
2482 
2483 	if (config->sprites_enabled) {
2484 		/* level 0 is always calculated with 1:1 split */
2485 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2486 			if (is_sprite)
2487 				fifo_size *= 5;
2488 			fifo_size /= 6;
2489 		} else {
2490 			fifo_size /= 2;
2491 		}
2492 	}
2493 
2494 	/* clamp to max that the registers can hold */
2495 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2496 }
2497 
2498 /* Calculate the maximum cursor plane watermark */
2499 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2500 				      int level,
2501 				      const struct intel_wm_config *config)
2502 {
2503 	/* HSW LP1+ watermarks w/ multiple pipes */
2504 	if (level > 0 && config->num_pipes_active > 1)
2505 		return 64;
2506 
2507 	/* otherwise just report max that registers can hold */
2508 	return ilk_cursor_wm_reg_max(dev_priv, level);
2509 }
2510 
2511 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2512 				    int level,
2513 				    const struct intel_wm_config *config,
2514 				    enum intel_ddb_partitioning ddb_partitioning,
2515 				    struct ilk_wm_maximums *max)
2516 {
2517 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2518 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2519 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2520 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2521 }
2522 
2523 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2524 					int level,
2525 					struct ilk_wm_maximums *max)
2526 {
2527 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2528 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2529 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2530 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2531 }
2532 
2533 static bool ilk_validate_wm_level(int level,
2534 				  const struct ilk_wm_maximums *max,
2535 				  struct intel_wm_level *result)
2536 {
2537 	bool ret;
2538 
2539 	/* already determined to be invalid? */
2540 	if (!result->enable)
2541 		return false;
2542 
2543 	result->enable = result->pri_val <= max->pri &&
2544 			 result->spr_val <= max->spr &&
2545 			 result->cur_val <= max->cur;
2546 
2547 	ret = result->enable;
2548 
2549 	/*
2550 	 * HACK until we can pre-compute everything,
2551 	 * and thus fail gracefully if LP0 watermarks
2552 	 * are exceeded...
2553 	 */
2554 	if (level == 0 && !result->enable) {
2555 		if (result->pri_val > max->pri)
2556 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2557 				      level, result->pri_val, max->pri);
2558 		if (result->spr_val > max->spr)
2559 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2560 				      level, result->spr_val, max->spr);
2561 		if (result->cur_val > max->cur)
2562 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2563 				      level, result->cur_val, max->cur);
2564 
2565 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2566 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2567 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2568 		result->enable = true;
2569 	}
2570 
2571 	return ret;
2572 }
2573 
2574 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2575 				 const struct intel_crtc *crtc,
2576 				 int level,
2577 				 struct intel_crtc_state *crtc_state,
2578 				 const struct intel_plane_state *pristate,
2579 				 const struct intel_plane_state *sprstate,
2580 				 const struct intel_plane_state *curstate,
2581 				 struct intel_wm_level *result)
2582 {
2583 	u16 pri_latency = dev_priv->display.wm.pri_latency[level];
2584 	u16 spr_latency = dev_priv->display.wm.spr_latency[level];
2585 	u16 cur_latency = dev_priv->display.wm.cur_latency[level];
2586 
2587 	/* WM1+ latency values stored in 0.5us units */
2588 	if (level > 0) {
2589 		pri_latency *= 5;
2590 		spr_latency *= 5;
2591 		cur_latency *= 5;
2592 	}
2593 
2594 	if (pristate) {
2595 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2596 						     pri_latency, level);
2597 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2598 	}
2599 
2600 	if (sprstate)
2601 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2602 
2603 	if (curstate)
2604 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2605 
2606 	result->enable = true;
2607 }
2608 
2609 static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2610 {
2611 	u64 sskpd;
2612 
2613 	i915->display.wm.num_levels = 5;
2614 
2615 	sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD);
2616 
2617 	wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2618 	if (wm[0] == 0)
2619 		wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2620 	wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2621 	wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2622 	wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2623 	wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2624 }
2625 
2626 static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2627 {
2628 	u32 sskpd;
2629 
2630 	i915->display.wm.num_levels = 4;
2631 
2632 	sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD);
2633 
2634 	wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2635 	wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2636 	wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2637 	wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2638 }
2639 
2640 static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2641 {
2642 	u32 mltr;
2643 
2644 	i915->display.wm.num_levels = 3;
2645 
2646 	mltr = intel_uncore_read(&i915->uncore, MLTR_ILK);
2647 
2648 	/* ILK primary LP0 latency is 700 ns */
2649 	wm[0] = 7;
2650 	wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2651 	wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2652 }
2653 
2654 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2655 				       u16 wm[5])
2656 {
2657 	/* ILK sprite LP0 latency is 1300 ns */
2658 	if (DISPLAY_VER(dev_priv) == 5)
2659 		wm[0] = 13;
2660 }
2661 
2662 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2663 				       u16 wm[5])
2664 {
2665 	/* ILK cursor LP0 latency is 1300 ns */
2666 	if (DISPLAY_VER(dev_priv) == 5)
2667 		wm[0] = 13;
2668 }
2669 
2670 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2671 				    u16 wm[5], u16 min)
2672 {
2673 	int level;
2674 
2675 	if (wm[0] >= min)
2676 		return false;
2677 
2678 	wm[0] = max(wm[0], min);
2679 	for (level = 1; level < dev_priv->display.wm.num_levels; level++)
2680 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2681 
2682 	return true;
2683 }
2684 
2685 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2686 {
2687 	bool changed;
2688 
2689 	/*
2690 	 * The BIOS provided WM memory latency values are often
2691 	 * inadequate for high resolution displays. Adjust them.
2692 	 */
2693 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12);
2694 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12);
2695 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12);
2696 
2697 	if (!changed)
2698 		return;
2699 
2700 	drm_dbg_kms(&dev_priv->drm,
2701 		    "WM latency values increased to avoid potential underruns\n");
2702 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2703 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2704 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2705 }
2706 
2707 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
2708 {
2709 	/*
2710 	 * On some SNB machines (Thinkpad X220 Tablet at least)
2711 	 * LP3 usage can cause vblank interrupts to be lost.
2712 	 * The DEIIR bit will go high but it looks like the CPU
2713 	 * never gets interrupted.
2714 	 *
2715 	 * It's not clear whether other interrupt source could
2716 	 * be affected or if this is somehow limited to vblank
2717 	 * interrupts only. To play it safe we disable LP3
2718 	 * watermarks entirely.
2719 	 */
2720 	if (dev_priv->display.wm.pri_latency[3] == 0 &&
2721 	    dev_priv->display.wm.spr_latency[3] == 0 &&
2722 	    dev_priv->display.wm.cur_latency[3] == 0)
2723 		return;
2724 
2725 	dev_priv->display.wm.pri_latency[3] = 0;
2726 	dev_priv->display.wm.spr_latency[3] = 0;
2727 	dev_priv->display.wm.cur_latency[3] = 0;
2728 
2729 	drm_dbg_kms(&dev_priv->drm,
2730 		    "LP3 watermarks disabled due to potential for lost interrupts\n");
2731 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2732 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2733 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2734 }
2735 
2736 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2737 {
2738 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2739 		hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2740 	else if (DISPLAY_VER(dev_priv) >= 6)
2741 		snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2742 	else
2743 		ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2744 
2745 	memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency,
2746 	       sizeof(dev_priv->display.wm.pri_latency));
2747 	memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency,
2748 	       sizeof(dev_priv->display.wm.pri_latency));
2749 
2750 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency);
2751 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency);
2752 
2753 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2754 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2755 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2756 
2757 	if (DISPLAY_VER(dev_priv) == 6) {
2758 		snb_wm_latency_quirk(dev_priv);
2759 		snb_wm_lp3_irq_quirk(dev_priv);
2760 	}
2761 }
2762 
2763 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
2764 				 struct intel_pipe_wm *pipe_wm)
2765 {
2766 	/* LP0 watermark maximums depend on this pipe alone */
2767 	const struct intel_wm_config config = {
2768 		.num_pipes_active = 1,
2769 		.sprites_enabled = pipe_wm->sprites_enabled,
2770 		.sprites_scaled = pipe_wm->sprites_scaled,
2771 	};
2772 	struct ilk_wm_maximums max;
2773 
2774 	/* LP0 watermarks always use 1/2 DDB partitioning */
2775 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
2776 
2777 	/* At least LP0 must be valid */
2778 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2779 		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
2780 		return false;
2781 	}
2782 
2783 	return true;
2784 }
2785 
2786 /* Compute new watermarks for the pipe */
2787 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
2788 			       struct intel_crtc *crtc)
2789 {
2790 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2791 	struct intel_crtc_state *crtc_state =
2792 		intel_atomic_get_new_crtc_state(state, crtc);
2793 	struct intel_pipe_wm *pipe_wm;
2794 	struct intel_plane *plane;
2795 	const struct intel_plane_state *plane_state;
2796 	const struct intel_plane_state *pristate = NULL;
2797 	const struct intel_plane_state *sprstate = NULL;
2798 	const struct intel_plane_state *curstate = NULL;
2799 	struct ilk_wm_maximums max;
2800 	int level, usable_level;
2801 
2802 	pipe_wm = &crtc_state->wm.ilk.optimal;
2803 
2804 	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
2805 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2806 			pristate = plane_state;
2807 		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2808 			sprstate = plane_state;
2809 		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
2810 			curstate = plane_state;
2811 	}
2812 
2813 	pipe_wm->pipe_enabled = crtc_state->hw.active;
2814 	pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
2815 	pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
2816 
2817 	usable_level = dev_priv->display.wm.num_levels - 1;
2818 
2819 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2820 	if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2821 		usable_level = 1;
2822 
2823 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2824 	if (pipe_wm->sprites_scaled)
2825 		usable_level = 0;
2826 
2827 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2828 	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
2829 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2830 
2831 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
2832 		return -EINVAL;
2833 
2834 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2835 
2836 	for (level = 1; level <= usable_level; level++) {
2837 		struct intel_wm_level *wm = &pipe_wm->wm[level];
2838 
2839 		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
2840 				     pristate, sprstate, curstate, wm);
2841 
2842 		/*
2843 		 * Disable any watermark level that exceeds the
2844 		 * register maximums since such watermarks are
2845 		 * always invalid.
2846 		 */
2847 		if (!ilk_validate_wm_level(level, &max, wm)) {
2848 			memset(wm, 0, sizeof(*wm));
2849 			break;
2850 		}
2851 	}
2852 
2853 	return 0;
2854 }
2855 
2856 /*
2857  * Build a set of 'intermediate' watermark values that satisfy both the old
2858  * state and the new state.  These can be programmed to the hardware
2859  * immediately.
2860  */
2861 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
2862 				       struct intel_crtc *crtc)
2863 {
2864 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2865 	struct intel_crtc_state *new_crtc_state =
2866 		intel_atomic_get_new_crtc_state(state, crtc);
2867 	const struct intel_crtc_state *old_crtc_state =
2868 		intel_atomic_get_old_crtc_state(state, crtc);
2869 	struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
2870 	const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
2871 	int level;
2872 
2873 	/*
2874 	 * Start with the final, target watermarks, then combine with the
2875 	 * currently active watermarks to get values that are safe both before
2876 	 * and after the vblank.
2877 	 */
2878 	*a = new_crtc_state->wm.ilk.optimal;
2879 	if (!new_crtc_state->hw.active ||
2880 	    intel_crtc_needs_modeset(new_crtc_state) ||
2881 	    state->skip_intermediate_wm)
2882 		return 0;
2883 
2884 	a->pipe_enabled |= b->pipe_enabled;
2885 	a->sprites_enabled |= b->sprites_enabled;
2886 	a->sprites_scaled |= b->sprites_scaled;
2887 
2888 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
2889 		struct intel_wm_level *a_wm = &a->wm[level];
2890 		const struct intel_wm_level *b_wm = &b->wm[level];
2891 
2892 		a_wm->enable &= b_wm->enable;
2893 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2894 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2895 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2896 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2897 	}
2898 
2899 	/*
2900 	 * We need to make sure that these merged watermark values are
2901 	 * actually a valid configuration themselves.  If they're not,
2902 	 * there's no safe way to transition from the old state to
2903 	 * the new state, so we need to fail the atomic transaction.
2904 	 */
2905 	if (!ilk_validate_pipe_wm(dev_priv, a))
2906 		return -EINVAL;
2907 
2908 	/*
2909 	 * If our intermediate WM are identical to the final WM, then we can
2910 	 * omit the post-vblank programming; only update if it's different.
2911 	 */
2912 	if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
2913 		new_crtc_state->wm.need_postvbl_update = true;
2914 
2915 	return 0;
2916 }
2917 
2918 /*
2919  * Merge the watermarks from all active pipes for a specific level.
2920  */
2921 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
2922 			       int level,
2923 			       struct intel_wm_level *ret_wm)
2924 {
2925 	const struct intel_crtc *crtc;
2926 
2927 	ret_wm->enable = true;
2928 
2929 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2930 		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
2931 		const struct intel_wm_level *wm = &active->wm[level];
2932 
2933 		if (!active->pipe_enabled)
2934 			continue;
2935 
2936 		/*
2937 		 * The watermark values may have been used in the past,
2938 		 * so we must maintain them in the registers for some
2939 		 * time even if the level is now disabled.
2940 		 */
2941 		if (!wm->enable)
2942 			ret_wm->enable = false;
2943 
2944 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2945 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2946 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2947 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2948 	}
2949 }
2950 
2951 /*
2952  * Merge all low power watermarks for all active pipes.
2953  */
2954 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
2955 			 const struct intel_wm_config *config,
2956 			 const struct ilk_wm_maximums *max,
2957 			 struct intel_pipe_wm *merged)
2958 {
2959 	int level, num_levels = dev_priv->display.wm.num_levels;
2960 	int last_enabled_level = num_levels - 1;
2961 
2962 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2963 	if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2964 	    config->num_pipes_active > 1)
2965 		last_enabled_level = 0;
2966 
2967 	/* ILK: FBC WM must be disabled always */
2968 	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
2969 
2970 	/* merge each WM1+ level */
2971 	for (level = 1; level < num_levels; level++) {
2972 		struct intel_wm_level *wm = &merged->wm[level];
2973 
2974 		ilk_merge_wm_level(dev_priv, level, wm);
2975 
2976 		if (level > last_enabled_level)
2977 			wm->enable = false;
2978 		else if (!ilk_validate_wm_level(level, max, wm))
2979 			/* make sure all following levels get disabled */
2980 			last_enabled_level = level - 1;
2981 
2982 		/*
2983 		 * The spec says it is preferred to disable
2984 		 * FBC WMs instead of disabling a WM level.
2985 		 */
2986 		if (wm->fbc_val > max->fbc) {
2987 			if (wm->enable)
2988 				merged->fbc_wm_enabled = false;
2989 			wm->fbc_val = 0;
2990 		}
2991 	}
2992 
2993 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2994 	if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
2995 	    dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) {
2996 		for (level = 2; level < num_levels; level++) {
2997 			struct intel_wm_level *wm = &merged->wm[level];
2998 
2999 			wm->enable = false;
3000 		}
3001 	}
3002 }
3003 
3004 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3005 {
3006 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3007 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3008 }
3009 
3010 /* The value we need to program into the WM_LPx latency field */
3011 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3012 				      int level)
3013 {
3014 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3015 		return 2 * level;
3016 	else
3017 		return dev_priv->display.wm.pri_latency[level];
3018 }
3019 
3020 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3021 				   const struct intel_pipe_wm *merged,
3022 				   enum intel_ddb_partitioning partitioning,
3023 				   struct ilk_wm_values *results)
3024 {
3025 	struct intel_crtc *crtc;
3026 	int level, wm_lp;
3027 
3028 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3029 	results->partitioning = partitioning;
3030 
3031 	/* LP1+ register values */
3032 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3033 		const struct intel_wm_level *r;
3034 
3035 		level = ilk_wm_lp_to_level(wm_lp, merged);
3036 
3037 		r = &merged->wm[level];
3038 
3039 		/*
3040 		 * Maintain the watermark values even if the level is
3041 		 * disabled. Doing otherwise could cause underruns.
3042 		 */
3043 		results->wm_lp[wm_lp - 1] =
3044 			WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3045 			WM_LP_PRIMARY(r->pri_val) |
3046 			WM_LP_CURSOR(r->cur_val);
3047 
3048 		if (r->enable)
3049 			results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3050 
3051 		if (DISPLAY_VER(dev_priv) >= 8)
3052 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3053 		else
3054 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3055 
3056 		results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3057 
3058 		/*
3059 		 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3060 		 * level is disabled. Doing otherwise could cause underruns.
3061 		 */
3062 		if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3063 			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3064 			results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3065 		}
3066 	}
3067 
3068 	/* LP0 register values */
3069 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3070 		enum pipe pipe = crtc->pipe;
3071 		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3072 		const struct intel_wm_level *r = &pipe_wm->wm[0];
3073 
3074 		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3075 			continue;
3076 
3077 		results->wm_pipe[pipe] =
3078 			WM0_PIPE_PRIMARY(r->pri_val) |
3079 			WM0_PIPE_SPRITE(r->spr_val) |
3080 			WM0_PIPE_CURSOR(r->cur_val);
3081 	}
3082 }
3083 
3084 /*
3085  * Find the result with the highest level enabled. Check for enable_fbc_wm in
3086  * case both are at the same level. Prefer r1 in case they're the same.
3087  */
3088 static struct intel_pipe_wm *
3089 ilk_find_best_result(struct drm_i915_private *dev_priv,
3090 		     struct intel_pipe_wm *r1,
3091 		     struct intel_pipe_wm *r2)
3092 {
3093 	int level, level1 = 0, level2 = 0;
3094 
3095 	for (level = 1; level < dev_priv->display.wm.num_levels; level++) {
3096 		if (r1->wm[level].enable)
3097 			level1 = level;
3098 		if (r2->wm[level].enable)
3099 			level2 = level;
3100 	}
3101 
3102 	if (level1 == level2) {
3103 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3104 			return r2;
3105 		else
3106 			return r1;
3107 	} else if (level1 > level2) {
3108 		return r1;
3109 	} else {
3110 		return r2;
3111 	}
3112 }
3113 
3114 /* dirty bits used to track which watermarks need changes */
3115 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3116 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3117 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3118 #define WM_DIRTY_FBC (1 << 24)
3119 #define WM_DIRTY_DDB (1 << 25)
3120 
3121 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3122 					 const struct ilk_wm_values *old,
3123 					 const struct ilk_wm_values *new)
3124 {
3125 	unsigned int dirty = 0;
3126 	enum pipe pipe;
3127 	int wm_lp;
3128 
3129 	for_each_pipe(dev_priv, pipe) {
3130 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3131 			dirty |= WM_DIRTY_PIPE(pipe);
3132 			/* Must disable LP1+ watermarks too */
3133 			dirty |= WM_DIRTY_LP_ALL;
3134 		}
3135 	}
3136 
3137 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3138 		dirty |= WM_DIRTY_FBC;
3139 		/* Must disable LP1+ watermarks too */
3140 		dirty |= WM_DIRTY_LP_ALL;
3141 	}
3142 
3143 	if (old->partitioning != new->partitioning) {
3144 		dirty |= WM_DIRTY_DDB;
3145 		/* Must disable LP1+ watermarks too */
3146 		dirty |= WM_DIRTY_LP_ALL;
3147 	}
3148 
3149 	/* LP1+ watermarks already deemed dirty, no need to continue */
3150 	if (dirty & WM_DIRTY_LP_ALL)
3151 		return dirty;
3152 
3153 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3154 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3155 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3156 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3157 			break;
3158 	}
3159 
3160 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3161 	for (; wm_lp <= 3; wm_lp++)
3162 		dirty |= WM_DIRTY_LP(wm_lp);
3163 
3164 	return dirty;
3165 }
3166 
3167 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3168 			       unsigned int dirty)
3169 {
3170 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3171 	bool changed = false;
3172 
3173 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3174 		previous->wm_lp[2] &= ~WM_LP_ENABLE;
3175 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3176 		changed = true;
3177 	}
3178 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3179 		previous->wm_lp[1] &= ~WM_LP_ENABLE;
3180 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3181 		changed = true;
3182 	}
3183 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3184 		previous->wm_lp[0] &= ~WM_LP_ENABLE;
3185 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3186 		changed = true;
3187 	}
3188 
3189 	/*
3190 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3191 	 * Doing so could cause underruns.
3192 	 */
3193 
3194 	return changed;
3195 }
3196 
3197 /*
3198  * The spec says we shouldn't write when we don't need, because every write
3199  * causes WMs to be re-evaluated, expending some power.
3200  */
3201 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3202 				struct ilk_wm_values *results)
3203 {
3204 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3205 	unsigned int dirty;
3206 
3207 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3208 	if (!dirty)
3209 		return;
3210 
3211 	_ilk_disable_lp_wm(dev_priv, dirty);
3212 
3213 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3214 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3215 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3216 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3217 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3218 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3219 
3220 	if (dirty & WM_DIRTY_DDB) {
3221 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3222 			intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6,
3223 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3224 					 WM_MISC_DATA_PARTITION_5_6);
3225 		else
3226 			intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6,
3227 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3228 					 DISP_DATA_PARTITION_5_6);
3229 	}
3230 
3231 	if (dirty & WM_DIRTY_FBC)
3232 		intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS,
3233 				 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS);
3234 
3235 	if (dirty & WM_DIRTY_LP(1) &&
3236 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3237 		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3238 
3239 	if (DISPLAY_VER(dev_priv) >= 7) {
3240 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3241 			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3242 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3243 			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3244 	}
3245 
3246 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3247 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3248 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3249 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3250 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3251 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3252 
3253 	dev_priv->display.wm.hw = *results;
3254 }
3255 
3256 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3257 {
3258 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3259 }
3260 
3261 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
3262 				  struct intel_wm_config *config)
3263 {
3264 	struct intel_crtc *crtc;
3265 
3266 	/* Compute the currently _active_ config */
3267 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3268 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3269 
3270 		if (!wm->pipe_enabled)
3271 			continue;
3272 
3273 		config->sprites_enabled |= wm->sprites_enabled;
3274 		config->sprites_scaled |= wm->sprites_scaled;
3275 		config->num_pipes_active++;
3276 	}
3277 }
3278 
3279 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3280 {
3281 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3282 	struct ilk_wm_maximums max;
3283 	struct intel_wm_config config = {};
3284 	struct ilk_wm_values results = {};
3285 	enum intel_ddb_partitioning partitioning;
3286 
3287 	ilk_compute_wm_config(dev_priv, &config);
3288 
3289 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
3290 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
3291 
3292 	/* 5/6 split only in single pipe config on IVB+ */
3293 	if (DISPLAY_VER(dev_priv) >= 7 &&
3294 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3295 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
3296 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
3297 
3298 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
3299 	} else {
3300 		best_lp_wm = &lp_wm_1_2;
3301 	}
3302 
3303 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3304 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3305 
3306 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
3307 
3308 	ilk_write_wm_values(dev_priv, &results);
3309 }
3310 
3311 static void ilk_initial_watermarks(struct intel_atomic_state *state,
3312 				   struct intel_crtc *crtc)
3313 {
3314 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3315 	const struct intel_crtc_state *crtc_state =
3316 		intel_atomic_get_new_crtc_state(state, crtc);
3317 
3318 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3319 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
3320 	ilk_program_watermarks(dev_priv);
3321 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3322 }
3323 
3324 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
3325 				    struct intel_crtc *crtc)
3326 {
3327 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3328 	const struct intel_crtc_state *crtc_state =
3329 		intel_atomic_get_new_crtc_state(state, crtc);
3330 
3331 	if (!crtc_state->wm.need_postvbl_update)
3332 		return;
3333 
3334 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3335 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
3336 	ilk_program_watermarks(dev_priv);
3337 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3338 }
3339 
3340 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
3341 {
3342 	struct drm_device *dev = crtc->base.dev;
3343 	struct drm_i915_private *dev_priv = to_i915(dev);
3344 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3345 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
3346 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
3347 	enum pipe pipe = crtc->pipe;
3348 
3349 	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
3350 
3351 	memset(active, 0, sizeof(*active));
3352 
3353 	active->pipe_enabled = crtc->active;
3354 
3355 	if (active->pipe_enabled) {
3356 		u32 tmp = hw->wm_pipe[pipe];
3357 
3358 		/*
3359 		 * For active pipes LP0 watermark is marked as
3360 		 * enabled, and LP1+ watermaks as disabled since
3361 		 * we can't really reverse compute them in case
3362 		 * multiple pipes are active.
3363 		 */
3364 		active->wm[0].enable = true;
3365 		active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
3366 		active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
3367 		active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
3368 	} else {
3369 		int level;
3370 
3371 		/*
3372 		 * For inactive pipes, all watermark levels
3373 		 * should be marked as enabled but zeroed,
3374 		 * which is what we'd compute them to.
3375 		 */
3376 		for (level = 0; level < dev_priv->display.wm.num_levels; level++)
3377 			active->wm[level].enable = true;
3378 	}
3379 
3380 	crtc->wm.active.ilk = *active;
3381 }
3382 
3383 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state)
3384 {
3385 	struct drm_plane *plane;
3386 	struct intel_crtc *crtc;
3387 
3388 	for_each_intel_crtc(state->dev, crtc) {
3389 		struct intel_crtc_state *crtc_state;
3390 
3391 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
3392 		if (IS_ERR(crtc_state))
3393 			return PTR_ERR(crtc_state);
3394 
3395 		if (crtc_state->hw.active) {
3396 			/*
3397 			 * Preserve the inherited flag to avoid
3398 			 * taking the full modeset path.
3399 			 */
3400 			crtc_state->inherited = true;
3401 		}
3402 	}
3403 
3404 	drm_for_each_plane(plane, state->dev) {
3405 		struct drm_plane_state *plane_state;
3406 
3407 		plane_state = drm_atomic_get_plane_state(state, plane);
3408 		if (IS_ERR(plane_state))
3409 			return PTR_ERR(plane_state);
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 /*
3416  * Calculate what we think the watermarks should be for the state we've read
3417  * out of the hardware and then immediately program those watermarks so that
3418  * we ensure the hardware settings match our internal state.
3419  *
3420  * We can calculate what we think WM's should be by creating a duplicate of the
3421  * current state (which was constructed during hardware readout) and running it
3422  * through the atomic check code to calculate new watermark values in the
3423  * state object.
3424  */
3425 void ilk_wm_sanitize(struct drm_i915_private *dev_priv)
3426 {
3427 	struct drm_atomic_state *state;
3428 	struct intel_atomic_state *intel_state;
3429 	struct intel_crtc *crtc;
3430 	struct intel_crtc_state *crtc_state;
3431 	struct drm_modeset_acquire_ctx ctx;
3432 	int ret;
3433 	int i;
3434 
3435 	/* Only supported on platforms that use atomic watermark design */
3436 	if (!dev_priv->display.funcs.wm->optimize_watermarks)
3437 		return;
3438 
3439 	if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9))
3440 		return;
3441 
3442 	state = drm_atomic_state_alloc(&dev_priv->drm);
3443 	if (drm_WARN_ON(&dev_priv->drm, !state))
3444 		return;
3445 
3446 	intel_state = to_intel_atomic_state(state);
3447 
3448 	drm_modeset_acquire_init(&ctx, 0);
3449 
3450 retry:
3451 	state->acquire_ctx = &ctx;
3452 
3453 	/*
3454 	 * Hardware readout is the only time we don't want to calculate
3455 	 * intermediate watermarks (since we don't trust the current
3456 	 * watermarks).
3457 	 */
3458 	if (!HAS_GMCH(dev_priv))
3459 		intel_state->skip_intermediate_wm = true;
3460 
3461 	ret = ilk_sanitize_watermarks_add_affected(state);
3462 	if (ret)
3463 		goto fail;
3464 
3465 	ret = intel_atomic_check(&dev_priv->drm, state);
3466 	if (ret)
3467 		goto fail;
3468 
3469 	/* Write calculated watermark values back */
3470 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3471 		crtc_state->wm.need_postvbl_update = true;
3472 		intel_optimize_watermarks(intel_state, crtc);
3473 
3474 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
3475 	}
3476 
3477 fail:
3478 	if (ret == -EDEADLK) {
3479 		drm_atomic_state_clear(state);
3480 		drm_modeset_backoff(&ctx);
3481 		goto retry;
3482 	}
3483 
3484 	/*
3485 	 * If we fail here, it means that the hardware appears to be
3486 	 * programmed in a way that shouldn't be possible, given our
3487 	 * understanding of watermark requirements.  This might mean a
3488 	 * mistake in the hardware readout code or a mistake in the
3489 	 * watermark calculations for a given platform.  Raise a WARN
3490 	 * so that this is noticeable.
3491 	 *
3492 	 * If this actually happens, we'll have to just leave the
3493 	 * BIOS-programmed watermarks untouched and hope for the best.
3494 	 */
3495 	drm_WARN(&dev_priv->drm, ret,
3496 		 "Could not determine valid watermarks for inherited state\n");
3497 
3498 	drm_atomic_state_put(state);
3499 
3500 	drm_modeset_drop_locks(&ctx);
3501 	drm_modeset_acquire_fini(&ctx);
3502 }
3503 
3504 #define _FW_WM(value, plane) \
3505 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3506 #define _FW_WM_VLV(value, plane) \
3507 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3508 
3509 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
3510 			       struct g4x_wm_values *wm)
3511 {
3512 	u32 tmp;
3513 
3514 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
3515 	wm->sr.plane = _FW_WM(tmp, SR);
3516 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3517 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
3518 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
3519 
3520 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
3521 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
3522 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
3523 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
3524 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
3525 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3526 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
3527 
3528 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
3529 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
3530 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3531 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
3532 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
3533 }
3534 
3535 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3536 			       struct vlv_wm_values *wm)
3537 {
3538 	enum pipe pipe;
3539 	u32 tmp;
3540 
3541 	for_each_pipe(dev_priv, pipe) {
3542 		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
3543 
3544 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
3545 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3546 		wm->ddl[pipe].plane[PLANE_CURSOR] =
3547 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3548 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
3549 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3550 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
3551 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3552 	}
3553 
3554 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
3555 	wm->sr.plane = _FW_WM(tmp, SR);
3556 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3557 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
3558 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
3559 
3560 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
3561 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
3562 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3563 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
3564 
3565 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
3566 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3567 
3568 	if (IS_CHERRYVIEW(dev_priv)) {
3569 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
3570 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3571 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3572 
3573 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
3574 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
3575 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
3576 
3577 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
3578 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
3579 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
3580 
3581 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3582 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3583 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3584 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3585 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
3586 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3587 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3588 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3589 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3590 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3591 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3592 	} else {
3593 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
3594 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3595 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3596 
3597 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3598 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3599 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3600 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3601 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3602 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3603 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3604 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3605 	}
3606 }
3607 
3608 #undef _FW_WM
3609 #undef _FW_WM_VLV
3610 
3611 static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
3612 {
3613 	struct g4x_wm_values *wm = &dev_priv->display.wm.g4x;
3614 	struct intel_crtc *crtc;
3615 
3616 	g4x_read_wm_values(dev_priv, wm);
3617 
3618 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
3619 
3620 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3621 		struct intel_crtc_state *crtc_state =
3622 			to_intel_crtc_state(crtc->base.state);
3623 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
3624 		struct g4x_pipe_wm *raw;
3625 		enum pipe pipe = crtc->pipe;
3626 		enum plane_id plane_id;
3627 		int level, max_level;
3628 
3629 		active->cxsr = wm->cxsr;
3630 		active->hpll_en = wm->hpll_en;
3631 		active->fbc_en = wm->fbc_en;
3632 
3633 		active->sr = wm->sr;
3634 		active->hpll = wm->hpll;
3635 
3636 		for_each_plane_id_on_crtc(crtc, plane_id) {
3637 			active->wm.plane[plane_id] =
3638 				wm->pipe[pipe].plane[plane_id];
3639 		}
3640 
3641 		if (wm->cxsr && wm->hpll_en)
3642 			max_level = G4X_WM_LEVEL_HPLL;
3643 		else if (wm->cxsr)
3644 			max_level = G4X_WM_LEVEL_SR;
3645 		else
3646 			max_level = G4X_WM_LEVEL_NORMAL;
3647 
3648 		level = G4X_WM_LEVEL_NORMAL;
3649 		raw = &crtc_state->wm.g4x.raw[level];
3650 		for_each_plane_id_on_crtc(crtc, plane_id)
3651 			raw->plane[plane_id] = active->wm.plane[plane_id];
3652 
3653 		level = G4X_WM_LEVEL_SR;
3654 		if (level > max_level)
3655 			goto out;
3656 
3657 		raw = &crtc_state->wm.g4x.raw[level];
3658 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
3659 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
3660 		raw->plane[PLANE_SPRITE0] = 0;
3661 		raw->fbc = active->sr.fbc;
3662 
3663 		level = G4X_WM_LEVEL_HPLL;
3664 		if (level > max_level)
3665 			goto out;
3666 
3667 		raw = &crtc_state->wm.g4x.raw[level];
3668 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
3669 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
3670 		raw->plane[PLANE_SPRITE0] = 0;
3671 		raw->fbc = active->hpll.fbc;
3672 
3673 		level++;
3674 	out:
3675 		for_each_plane_id_on_crtc(crtc, plane_id)
3676 			g4x_raw_plane_wm_set(crtc_state, level,
3677 					     plane_id, USHRT_MAX);
3678 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
3679 
3680 		g4x_invalidate_wms(crtc, active, level);
3681 
3682 		crtc_state->wm.g4x.optimal = *active;
3683 		crtc_state->wm.g4x.intermediate = *active;
3684 
3685 		drm_dbg_kms(&dev_priv->drm,
3686 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
3687 			    pipe_name(pipe),
3688 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
3689 			    wm->pipe[pipe].plane[PLANE_CURSOR],
3690 			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
3691 	}
3692 
3693 	drm_dbg_kms(&dev_priv->drm,
3694 		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
3695 		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
3696 	drm_dbg_kms(&dev_priv->drm,
3697 		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
3698 		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
3699 	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
3700 		    str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
3701 		    str_yes_no(wm->fbc_en));
3702 }
3703 
3704 static void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
3705 {
3706 	struct intel_plane *plane;
3707 	struct intel_crtc *crtc;
3708 
3709 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3710 
3711 	for_each_intel_plane(&dev_priv->drm, plane) {
3712 		struct intel_crtc *crtc =
3713 			intel_crtc_for_pipe(dev_priv, plane->pipe);
3714 		struct intel_crtc_state *crtc_state =
3715 			to_intel_crtc_state(crtc->base.state);
3716 		struct intel_plane_state *plane_state =
3717 			to_intel_plane_state(plane->base.state);
3718 		enum plane_id plane_id = plane->id;
3719 		int level;
3720 
3721 		if (plane_state->uapi.visible)
3722 			continue;
3723 
3724 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3725 			struct g4x_pipe_wm *raw =
3726 				&crtc_state->wm.g4x.raw[level];
3727 
3728 			raw->plane[plane_id] = 0;
3729 
3730 			if (plane_id == PLANE_PRIMARY)
3731 				raw->fbc = 0;
3732 		}
3733 	}
3734 
3735 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3736 		struct intel_crtc_state *crtc_state =
3737 			to_intel_crtc_state(crtc->base.state);
3738 		int ret;
3739 
3740 		ret = _g4x_compute_pipe_wm(crtc_state);
3741 		drm_WARN_ON(&dev_priv->drm, ret);
3742 
3743 		crtc_state->wm.g4x.intermediate =
3744 			crtc_state->wm.g4x.optimal;
3745 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
3746 	}
3747 
3748 	g4x_program_watermarks(dev_priv);
3749 
3750 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3751 }
3752 
3753 static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3754 {
3755 	g4x_wm_get_hw_state(i915);
3756 	g4x_wm_sanitize(i915);
3757 }
3758 
3759 static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
3760 {
3761 	struct vlv_wm_values *wm = &dev_priv->display.wm.vlv;
3762 	struct intel_crtc *crtc;
3763 	u32 val;
3764 
3765 	vlv_read_wm_values(dev_priv, wm);
3766 
3767 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3768 	wm->level = VLV_WM_LEVEL_PM2;
3769 
3770 	if (IS_CHERRYVIEW(dev_priv)) {
3771 		vlv_punit_get(dev_priv);
3772 
3773 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
3774 		if (val & DSP_MAXFIFO_PM5_ENABLE)
3775 			wm->level = VLV_WM_LEVEL_PM5;
3776 
3777 		/*
3778 		 * If DDR DVFS is disabled in the BIOS, Punit
3779 		 * will never ack the request. So if that happens
3780 		 * assume we don't have to enable/disable DDR DVFS
3781 		 * dynamically. To test that just set the REQ_ACK
3782 		 * bit to poke the Punit, but don't change the
3783 		 * HIGH/LOW bits so that we don't actually change
3784 		 * the current state.
3785 		 */
3786 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3787 		val |= FORCE_DDR_FREQ_REQ_ACK;
3788 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3789 
3790 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3791 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3792 			drm_dbg_kms(&dev_priv->drm,
3793 				    "Punit not acking DDR DVFS request, "
3794 				    "assuming DDR DVFS is disabled\n");
3795 			dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1;
3796 		} else {
3797 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3798 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3799 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
3800 		}
3801 
3802 		vlv_punit_put(dev_priv);
3803 	}
3804 
3805 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3806 		struct intel_crtc_state *crtc_state =
3807 			to_intel_crtc_state(crtc->base.state);
3808 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
3809 		const struct vlv_fifo_state *fifo_state =
3810 			&crtc_state->wm.vlv.fifo_state;
3811 		enum pipe pipe = crtc->pipe;
3812 		enum plane_id plane_id;
3813 		int level;
3814 
3815 		vlv_get_fifo_size(crtc_state);
3816 
3817 		active->num_levels = wm->level + 1;
3818 		active->cxsr = wm->cxsr;
3819 
3820 		for (level = 0; level < active->num_levels; level++) {
3821 			struct g4x_pipe_wm *raw =
3822 				&crtc_state->wm.vlv.raw[level];
3823 
3824 			active->sr[level].plane = wm->sr.plane;
3825 			active->sr[level].cursor = wm->sr.cursor;
3826 
3827 			for_each_plane_id_on_crtc(crtc, plane_id) {
3828 				active->wm[level].plane[plane_id] =
3829 					wm->pipe[pipe].plane[plane_id];
3830 
3831 				raw->plane[plane_id] =
3832 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
3833 							    fifo_state->plane[plane_id]);
3834 			}
3835 		}
3836 
3837 		for_each_plane_id_on_crtc(crtc, plane_id)
3838 			vlv_raw_plane_wm_set(crtc_state, level,
3839 					     plane_id, USHRT_MAX);
3840 		vlv_invalidate_wms(crtc, active, level);
3841 
3842 		crtc_state->wm.vlv.optimal = *active;
3843 		crtc_state->wm.vlv.intermediate = *active;
3844 
3845 		drm_dbg_kms(&dev_priv->drm,
3846 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3847 			    pipe_name(pipe),
3848 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
3849 			    wm->pipe[pipe].plane[PLANE_CURSOR],
3850 			    wm->pipe[pipe].plane[PLANE_SPRITE0],
3851 			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
3852 	}
3853 
3854 	drm_dbg_kms(&dev_priv->drm,
3855 		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3856 		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3857 }
3858 
3859 static void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
3860 {
3861 	struct intel_plane *plane;
3862 	struct intel_crtc *crtc;
3863 
3864 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3865 
3866 	for_each_intel_plane(&dev_priv->drm, plane) {
3867 		struct intel_crtc *crtc =
3868 			intel_crtc_for_pipe(dev_priv, plane->pipe);
3869 		struct intel_crtc_state *crtc_state =
3870 			to_intel_crtc_state(crtc->base.state);
3871 		struct intel_plane_state *plane_state =
3872 			to_intel_plane_state(plane->base.state);
3873 		enum plane_id plane_id = plane->id;
3874 		int level;
3875 
3876 		if (plane_state->uapi.visible)
3877 			continue;
3878 
3879 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3880 			struct g4x_pipe_wm *raw =
3881 				&crtc_state->wm.vlv.raw[level];
3882 
3883 			raw->plane[plane_id] = 0;
3884 		}
3885 	}
3886 
3887 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3888 		struct intel_crtc_state *crtc_state =
3889 			to_intel_crtc_state(crtc->base.state);
3890 		int ret;
3891 
3892 		ret = _vlv_compute_pipe_wm(crtc_state);
3893 		drm_WARN_ON(&dev_priv->drm, ret);
3894 
3895 		crtc_state->wm.vlv.intermediate =
3896 			crtc_state->wm.vlv.optimal;
3897 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
3898 	}
3899 
3900 	vlv_program_watermarks(dev_priv);
3901 
3902 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3903 }
3904 
3905 static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3906 {
3907 	vlv_wm_get_hw_state(i915);
3908 	vlv_wm_sanitize(i915);
3909 }
3910 
3911 /*
3912  * FIXME should probably kill this and improve
3913  * the real watermark readout/sanitation instead
3914  */
3915 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
3916 {
3917 	intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0);
3918 	intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0);
3919 	intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0);
3920 
3921 	/*
3922 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3923 	 * Doing so could cause underruns.
3924 	 */
3925 }
3926 
3927 static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
3928 {
3929 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3930 	struct intel_crtc *crtc;
3931 
3932 	ilk_init_lp_watermarks(dev_priv);
3933 
3934 	for_each_intel_crtc(&dev_priv->drm, crtc)
3935 		ilk_pipe_wm_get_hw_state(crtc);
3936 
3937 	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
3938 	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
3939 	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
3940 
3941 	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
3942 	if (DISPLAY_VER(dev_priv) >= 7) {
3943 		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
3944 		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
3945 	}
3946 
3947 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3948 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) &
3949 				    WM_MISC_DATA_PARTITION_5_6) ?
3950 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3951 	else if (IS_IVYBRIDGE(dev_priv))
3952 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) &
3953 				    DISP_DATA_PARTITION_5_6) ?
3954 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3955 
3956 	hw->enable_fbc_wm =
3957 		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3958 }
3959 
3960 static const struct intel_wm_funcs ilk_wm_funcs = {
3961 	.compute_pipe_wm = ilk_compute_pipe_wm,
3962 	.compute_intermediate_wm = ilk_compute_intermediate_wm,
3963 	.initial_watermarks = ilk_initial_watermarks,
3964 	.optimize_watermarks = ilk_optimize_watermarks,
3965 	.get_hw_state = ilk_wm_get_hw_state,
3966 };
3967 
3968 static const struct intel_wm_funcs vlv_wm_funcs = {
3969 	.compute_pipe_wm = vlv_compute_pipe_wm,
3970 	.compute_intermediate_wm = vlv_compute_intermediate_wm,
3971 	.initial_watermarks = vlv_initial_watermarks,
3972 	.optimize_watermarks = vlv_optimize_watermarks,
3973 	.atomic_update_watermarks = vlv_atomic_update_fifo,
3974 	.get_hw_state = vlv_wm_get_hw_state_and_sanitize,
3975 };
3976 
3977 static const struct intel_wm_funcs g4x_wm_funcs = {
3978 	.compute_pipe_wm = g4x_compute_pipe_wm,
3979 	.compute_intermediate_wm = g4x_compute_intermediate_wm,
3980 	.initial_watermarks = g4x_initial_watermarks,
3981 	.optimize_watermarks = g4x_optimize_watermarks,
3982 	.get_hw_state = g4x_wm_get_hw_state_and_sanitize,
3983 };
3984 
3985 static const struct intel_wm_funcs pnv_wm_funcs = {
3986 	.update_wm = pnv_update_wm,
3987 };
3988 
3989 static const struct intel_wm_funcs i965_wm_funcs = {
3990 	.update_wm = i965_update_wm,
3991 };
3992 
3993 static const struct intel_wm_funcs i9xx_wm_funcs = {
3994 	.update_wm = i9xx_update_wm,
3995 };
3996 
3997 static const struct intel_wm_funcs i845_wm_funcs = {
3998 	.update_wm = i845_update_wm,
3999 };
4000 
4001 static const struct intel_wm_funcs nop_funcs = {
4002 };
4003 
4004 void i9xx_wm_init(struct drm_i915_private *dev_priv)
4005 {
4006 	/* For FIFO watermark updates */
4007 	if (HAS_PCH_SPLIT(dev_priv)) {
4008 		ilk_setup_wm_latency(dev_priv);
4009 		dev_priv->display.funcs.wm = &ilk_wm_funcs;
4010 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4011 		vlv_setup_wm_latency(dev_priv);
4012 		dev_priv->display.funcs.wm = &vlv_wm_funcs;
4013 	} else if (IS_G4X(dev_priv)) {
4014 		g4x_setup_wm_latency(dev_priv);
4015 		dev_priv->display.funcs.wm = &g4x_wm_funcs;
4016 	} else if (IS_PINEVIEW(dev_priv)) {
4017 		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
4018 					    dev_priv->is_ddr3,
4019 					    dev_priv->fsb_freq,
4020 					    dev_priv->mem_freq)) {
4021 			drm_info(&dev_priv->drm,
4022 				 "failed to find known CxSR latency "
4023 				 "(found ddr%s fsb freq %d, mem freq %d), "
4024 				 "disabling CxSR\n",
4025 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4026 				 dev_priv->fsb_freq, dev_priv->mem_freq);
4027 			/* Disable CxSR and never update its watermark again */
4028 			intel_set_memory_cxsr(dev_priv, false);
4029 			dev_priv->display.funcs.wm = &nop_funcs;
4030 		} else {
4031 			dev_priv->display.funcs.wm = &pnv_wm_funcs;
4032 		}
4033 	} else if (DISPLAY_VER(dev_priv) == 4) {
4034 		dev_priv->display.funcs.wm = &i965_wm_funcs;
4035 	} else if (DISPLAY_VER(dev_priv) == 3) {
4036 		dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4037 	} else if (DISPLAY_VER(dev_priv) == 2) {
4038 		if (INTEL_NUM_PIPES(dev_priv) == 1)
4039 			dev_priv->display.funcs.wm = &i845_wm_funcs;
4040 		else
4041 			dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4042 	} else {
4043 		drm_err(&dev_priv->drm,
4044 			"unexpected fall-through in %s\n", __func__);
4045 		dev_priv->display.funcs.wm = &nop_funcs;
4046 	}
4047 }
4048